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Abstract

The impacts of invasive species on biodiversity may be mitigated or exacerbated by abiotic environmental changes. Invasive
plants can restructure soil fungal communities with important implications for native biodiversity and nutrient cycling, yet
fungal responses to invasion may depend on numerous anthropogenic stressors. In this study, we experimentally invaded
a long-term soil warming and simulated nitrogen deposition experiment with the widespread invasive plant Alliaria peti-
olata (garlic mustard) and tested the responses of soil fungal communities to invasion, abiotic factors, and their interaction.
We focused on the phytotoxic garlic mustard because it suppresses native mycorrhizae across forests of North America.
We found that invasion in combination with warming, but not under ambient conditions or elevated nitrogen, significantly
reduced soil fungal biomass and ectomycorrhizal relative abundances and increased relative abundances of general soil
saprotrophs and fungal genes encoding for hydrolytic enzymes. These results suggest that warming potentially exacerbates
fungal responses to plant invasion. Soils collected from uninvaded and invaded plots across eight forests spanning a 4 °C
temperature gradient further demonstrated that the magnitude of fungal responses to invasion was positively correlated
with mean annual temperature. Our study is one of the first empirical tests to show that the impacts of invasion on fungal
communities depends on additional anthropogenic pressures and were greater in concert with warming than under elevated
nitrogen or ambient conditions.
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Introduction

Plant invasions are increasing at historically unprecedented
rates (Seebens et al. 2018), and interactions with abiotic
global changes may further promote establishment and
spread of non-native species beyond their home ranges
(Milchunas and Lauenroth 1995; Howard et al. 2004). The
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and other global change factors (Rillig et al. 2019). Thus, we
currently lack an empirical assessment of how belowground
ecosystem structure and function respond to simultaneous
invasion and abiotic global changes.

Most terrestrial plants host a belowground consortium
of microorganisms, including fungi, which affect how eco-
systems respond to invasion (Inderjit and van der Putten
2010). While most studies to date focus on plant responses
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to invasion, fungi are drivers of ecosystem nutrient cycling
as decomposers and mycorrhizal symbionts (Treseder and
Lennon 2015). How fungi respond to invasion can also
feed-back to impact native plant communities (Stinson et al.
2006), soil carbon (C) storage (Ehrenfeld 2003; Tamura and
Tharayil 2014), and ecosystem restoration efforts (Lankau
et al. 2014; Anthony et al. 2019). Fungi are highly sensitive
to abiotic stressors such as warming and nitrogen deposi-
tion (Lilleskov et al. 2011; Geml et al. 2015; Morrison et al.
2016; Fernandez et al. 2017), but the interactive effects of
invasion and concurrent abiotic global changes on soil fungi
are rarely investigated (Wheeler et al. 2017).

Here, we tested how two abiotic global changes of sig-
nificance in the non-native range of Alliaria petiolata
(garlic mustard), atmospheric nitrogen (N) deposition and
soil warming, influence fungal community and functional
responses to invasion. We focused on garlic mustard because
it is invasive throughout temperate forests of North America
(Rodgers et al. 2008), and on N deposition and warming
because these anthropogenic pressures are co-occurring
throughout the non-native range of garlic mustard (Gal-
loway et al. 2004; Allen et al. 2018). Soil fungal biomass
is reduced and community composition is altered by gar-
lic mustard invasion due to it being non-mycorrhizal and
producing antifungal phytochemicals (Rodgers et al. 2008;
Barto et al. 2011; Lankau 2011). Garlic mustard particu-
larly suppresses mycorrhizal fungi (Roberts and Anderson
2001; Stinson et al. 2006; Wolfe et al. 2008; Wheeler et al.
2017) which has been linked to reduced native plant diver-
sity (Stinson et al. 2007) and growth (Stinson et al. 2006;
Wheeler et al. 2017). The decline in mycorrhizal fungi
with garlic mustard invasion is also associated with a shift
towards increased saprotrophic and plant pathogenic fungal
dominance (Anthony et al. 2017), but we do not understand
how garlic mustard affects fungal communities and ecosys-
tem function in the context of progressing global changes.

Our objective was to test whether the effects of garlic
mustard invasion on soil fungi are ameliorated, unaffected,
or amplified by conditions of soil N enrichment and warm-
ing. Typically, potential effects of invasion are inferred
from changes in invasive species growth and cover across
environmental conditions (Bradley et al. 2010; Merow et al.
2017). Previous work has shown that garlic mustard grows
larger with N additions (Meekins and McCarthy 2000) but
not under warmer temperatures (Anderson and Cipollini
2013), which suggests that N additions but not warming may
amplify the impacts of invasion. However, the magnitude
of the invasion effect will also depend on how N enrich-
ment and warming influence fungal community resistance
to invasion (i.e., capacity to be unchanged) which may be
uncoupled from garlic mustard growth. To address this,
we experimentally invaded a long-term soil warming and
simulated N deposition experiment with garlic mustard and
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measured fungal community structure and function, includ-
ing fungal growth, stress response, and cellulolytic and oxi-
dative enzyme decomposition genes.

Materials and methods
Site description and experimental design

This work was conducted at the Soil Warming X Nitrogen
Addition Study located at the Harvard Forest LTER in
Petersham, MA (42°29'1" N 72°11'15"” W). This experi-
ment, initiated in 2006 to examine interactions between
soil warming and simulated N deposition (see Contosta
et al. 2011), is located in an even-aged, mixed deciduous
stand with a canopy of red and black oak (Quercus rubra,
Q. velutina), red and striped maple (Acer rubrum, A. pen-
sylvanicum), American beech (Fagus grandifolia), white
birch (Betula papyrifera), and an understory of saplings
of the same species, along with stump sprouts of Ameri-
can chestnut (Castanea denata). Mean annual tempera-
ture at Harvard Forest is 8.3 °C and annual precipitation is
1247 mm (Boose and VanScoy 2001). Warming (5 °C above
ambient) is achieved with heating cables buried to 10 cm,
and simulated N deposition plots are fertilized with aque-
ous NH,-NO; (5 g N m~2 year™!) at equal monthly doses
throughout May—October.

In each of the plots (9 m?), we established uninvaded and
invaded subplots (1 m?) using a fully factorial, randomly
distributed design (n=35; see diagram in Supplementary
Fig. 1). First year garlic mustard seedlings were planted in
invaded subplots in April 2015 at densities typical to the
region (20 plants m~2) and allowed to establish and grow
for approximately 1 year, then removed prior to the onset
of reproduction. Though the size of the subplots is small,
garlic mustard establishes in small, dense patches in temper-
ate forest understories (Nuzzo 1999). To simulate a realistic
invasion, the number of garlic mustard plants in each plot
was maintained throughout the invasion at a similar density
across treatments (see Wheeler et al. 2017 for details). To
summarize, the full experiment had 4 main treatments (con-
trol, warming, N addition, N addition X warming), 2 invasion
statuses (uninvaded, invaded), and 5 replicates for a total of
40 experimental units.

Soil sampling and processing

Soil samples were collected a little over 1 year after the
artificial invasion (July 2016) at two randomly selected
locations within each plot. At each location, we removed
a 100 cm? block of the organic horizon to the depth of
the mineral soil followed by a cylindrical core (5 cm
width X 10 cm depth) of mineral soil. The two samples
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from each plot were homogenized by depth increment.
Homogenized samples were stored on frozen ice packs
in the field and immediately placed at 4 °C within 12 h of
sampling. Samples were sieved (<4 mm) within 24 h of
sampling to remove roots, rocks, and organic debris. Sub-
samples for molecular (~2 g) and lipid (~ 10 g) analyses
were taken from the sieved material and stored at — 80 °C
and — 20 °C, respectively, until processing. The remaining
soil was stored at 4 °C.

Edaphic analyses

Soil pH was measured on soil slurries made from air-
dried soil and deionized water (10 g soil: 20 mL deion-
ized water). Total soil C and N were measured on dried,
finely ground soils using an elemental analyzer (Perkin
Elmer 2400 Series IT CHN, Waltham, MA). Soil C stocks
were calculated on a volumetric basis using bulk density
measurements previously made at the site (unpublished
data). Soil inorganic N concentrations were determined on
2 M extracts (10 g soil: 40 mL potassium chloride) using
a colorimetric approach (Braman and Hendrix 1989), and
net N mineralization was estimated by measuring inor-
ganic N concentrations before and after a 7-day laboratory
incubation and calculating the difference. In a separate
incubation, we measured C mineralization using a 10-day
laboratory incubation. Field moist soil (10 g) was incu-
bated in Mason jars with lids equipped with sealed septa.
The headspace of each jar was sampled daily and ana-
lyzed for CO, concentration on a LICOR 6252 Infrared
Gas Analyzer (LI-COR Biosciences, Lincoln, NE). After
10 days, we calculated an average respiration rate as a
proxy for labile C. Fine root biomass was estimated by
picking fine roots (<2 mm) from 100 g of fresh mineral
soil; fine root stocks were calculated on a volumetric basis
using soil bulk density.

Fungal biomass was assessed via phospholipid and neu-
tral lipid fatty acid analysis (P/N-LFA) for total fungi and
AMF, respectively, consistent with Olsson et al. (1995). In
short, lipids were extracted from freeze-dried soil (1 g) using
phosphate buffer, chloroform, and methanol (0.8:1:2; v:v:v).
The polar (phospholipids) and neutral lipids were isolated
separately using silicic acid chromatography and methyl-
ated using 0.2 M methanolic potassium hydroxide (1 mL) at
60 °C for 30 min to form fatty acid methyl esters (FAMES)
that were quantified on a Varian CP-3800 gas chromato-
graph equipped with a flame ionization detector (Agilent
Technologies, Santa Clara, CA). We compared FAME
peaks against a standard library of FAMES specific to fungi
(18:2w6, 9c¢, 18:109¢c) and AMF (16:1w5c¢). Standards for
each marker were used to convert peak area concentrations
to nmol PLFA/NLFA g~! dry soil.

Fungal community characterization

Fungal (including ectomycorrhizal fungi; EMF) and arbus-
cular mycorrhizal fungal (AMF) community structure was
characterized using ITS2 and 18S metabarcoding on the
Illumina MiSeq platform, respectively. DNA was extracted
from soil (0.25 g) using the DNeasy PowerSoil Kit (Qiagen,
Hilden, Germany). The ITS2 region was amplified using the
fungal specific primer pair fITS7 (Ihrmark et al. 2012) and
ITS4 (White et al. 1990). Primers currently used to study
fungi poorly cover the Glomeromycotina and therefore the
18S region was also amplified using the Glomeromycotina
(AMF) specific primer pair NS31 (Simon et al. 1992) and
AML2 (Lee et al. 2008). Going forward, we refer to fungi
identified by the ITS2 region as ‘fungi’ and AMF identified
by the 18S region as ‘AMF’. PCR primers contained the Illu-
mina adaptor sequence, an 8 bp pad sequence, a 2 bp linker
sequence, and were dual indexed to include two unique 8 bp
sequences (see custom PCR primer constructs, Supplemen-
tary Table 1). PCR reactions were performed in triplicate for
each sample in 25 pL reactions with the following reagents:
PCR Grade H,O (13 pL), Phusion® High-Fidelity PCR
Master Mix with HF Buffer (10 uL; New England BioLabs
Inc, Ipswitch, MA), 10 uM forward primer (0.5 pL), 10 uM
reverse primer (0.5 puL), and template DNA (1 pL). Ther-
mocycler conditions and library preparation followed that
of Anthony et al. (2017). Equimolar libraries of the ITS2
and 18S samples were sequenced on two, replicate Illumina
MiSeq v2 (2x250 bp) and two MiSeq v3 (2x300 bp) runs
at the Center for Genomics and Bioinformatics at Indiana
State University, Bloomington, IN, respectively. Differ-
ent sequencing chemistries were used because the ITS2
amplicons are shorter than the 18S amplicons. Sequences
are available in the NCBI database under the BioProject
PRINAS522440 for ITS2 sequences and PRINA522442 for
18S sequences.

All sequences were passed through a series of qual-
ity control measures. Illumina adapter and PCR primer
sequences, reads < 100 bp, and low-quality bases and reads
(Phred scores < 2) were removed using Trimmomatic (v0.32;
Bolger et al. 2014). We then merged forward and reverse
reads using the join_paired_ends.py function in QIIME
(Caporaso et al. 2010). The ITS2 reads were merged at a
20 bp overlap allowing 5% mismatch. The 18S reads were
merged at a 10 bp overlap allowing 10% mismatch. Merged
ITS2 sequences were then passed through ITSx (Bengts-
son-Palme et al. 2013) to isolate the ITS2 region from
flanking LSU and 5.8S regions. A total of 60% and 62% of
initial paired end sequences were retained for the ITS2 and
18S datasets, respectively, after quality control (see Sup-
plementary Table 2 for details on sequence retention). We
used USEARCH (v8) to create OTU tables (Edgar 2010).
Sequences were dereplicated (-fastx_uniques), sorted by
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size with singletons removed (-sortbysize), and clustered
at 97% sequence similarity with chimera removal (-clus-
ter_otus). We assigned taxonomy to ITS2 OTUs using the
UNITE reference database (v7; Abarenkov et al. 2010) and
the assign_taxonomy.py function in QIIME. 18S OTUs were
blasted against the MARJAAM database (Opik et al. 2010).
OTUs without a match to fungi in the UNITE or MAR-
JAAM databases were then blasted against the entire NCBI
nt database, and OTUs assigned to non-fungal organisms
for ITS2 data or non-Glomeromycotina fungi for the 18S
sequences were removed from subsequent analyses to con-
strain analysis to the target groups. To confirm the taxonomy
of the top 20 most common ITS2 fungi, we also performed
manual BLAST searches and selected the best hit (lowest E
value) if sequence identity was > 98%. Fungi from the ITS2
dataset were assigned guild annotations using FUNGuild
and all “probable” or higher designations were included
(Nguyen et al. 2016). Information on the number of OTUs
and proportion of sequences assigned taxonomy and guild
annotations is in Supplementary Table 2.

Fungal functional characterization

To investigate fungal functional potential, we enriched and
sequenced targeted functional genes. We focused on genes
encoding hydrolytic extracellular enzymes (betaglucosidase,
cellobiohydrolase, cellobioside dehydrogenase), oxidative
extracellular enzymes (lignin peroxidase, manganese per-
oxidase, laccase, laccase-like multicopper oxidase), proteins
used for general stress tolerance (RNA helicase, neutral tre-
halase; beta-1,3-glucan synthase; polyketide synthase), and
ribosomal DNA production (partial 18S rRNA genes). The
short, 18S rRNA gene sequences were used to investigate
investments in processes such as growth since rRNA is fre-
quently used as a marker for microbial biomass (Zhang et al.
2017) and rRNA levels increase during microbial growth
(Klappenbach et al. 2000). We identified 2322 genes in
NCBI related to the aforementioned fungal functions. Arbor
Biosciences (Ann Arbor, MI) used these template sequences
to design 34,249 candidate probes. Probe-to-probe comple-
mentary was diagnosed, and probes with>94% similarity
across > 83% of the sequences were clustered into a single
representative of each cluster for the final probe set which
consisted of 20,005 probes. The final custom probe set had
a>97% target gene enrichment success rate. Probes lengths
were 100 nucleotides, and those < 100 nucleotides were
padded with T’s. This length was chosen because of the
relatively high GC content of the target sequences (average:
51%). Since we were targeting divergent regions of the fun-
gal genome (i.e., length, similarity, rearrangements), probes
were varied with 3 X tiling density. We used the myBaits
Custom kit (Arbor Biosciences) and followed the manufac-
turer’s protocol to target and enrich genes.
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DNA concentrations were diluted to 20 ng pL~" and frag-
mented to 350 bp by sonicating (Covaris, Woburn, MA).
Libraries were prepared for target probe enrichment using
the Illumina TruSeq PCR-free Library Prep. Target-gene
libraries were enriched in 50 pL reactions containing: tem-
plate DNA (15 pL), 10 pM illumina flow site binding frag-
ments (2.5 pL of P5 and P7), PCR master mix (25 pL; 2X
Kapa HiFi HotStart ReadyMix, Kapa Biosystems), and PCR
grade H,O (5 pL). Enriched libraries were then cleaned,
quantified, and library prep was performed using the same
methods as described above for the DNA metabarcoding
libraries. The probe library was then sequenced on an Illu-
mina Next-Seq 150 platform at the Center for Genomics and
Bioinformatics at Indiana University (Bloomington, Indi-
ana). Sequences are available in the NCBI database under
the BioProject PRINA633326.

Sequences were first passed through Trimmomatic to
remove any Illumina adapter sequences and low-quality
sequences (Phred <2 at a 20 bp sliding window; < 1%
sequences removed). Sequences were aligned using bwa
(v7.17; Li et al. 2009) against a custom database constructed
from the NCBI template DNA sequences. The probe data-
base was created using the index algorithm, and forward and
reverse reads were aligned using the bwa mem algorithm.
We filtered alignments to include forward sequence align-
ments (retaining 59% of the sequences) because the forward
and reverse reads did not pair. We only included alignments
with >90% sequence similarity using SAMtools (Li et al.
2009). A total of 38% of the sequences were aligned. Four
samples were removed because of low sequencing depth.
The remaining samples were rarified to the lowest sequence
depth (9539 sequences per sample) using the rarefy func-
tion in vegan. We then calculated the relative abundance of
individual genes and functional groups of genes encoding
for hydrolytic enzymes, oxidative enzymes, stress tolerance,
and growth.

Statistical analyses

All statistical analyses were conducted in R (v3.6.1; R Core
Team 2019) with criteria for rejecting the null hypothesis
set to a P value of <0.05. Linear mixed effects models were
used to assess whether the main effects of N addition, warm-
ing, and invasion, plus all interaction terms, had a significant
effect on soil properties, soil processes, fungal biomass, and
fungal functional guild relative abundances. We used the
Ime function adapted for type III sums of squares within the
nlme package (Pinheiro et al. 2017). Since uninvaded and
invaded subplots were within the same plot (i.e., split-plot
design), plot was included in the model as a random effect.
For all statistical models, we confirmed that residuals were
normally distributed using Shapiro—Wilk tests of normality
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and we visually assessed ggqnorm and residual versus fitted
model plots.

To assess how much each treatment level effected the
fungal community, we compared the effect size of each treat-
ment level relative to uninvaded control plots. This allowed
us to test whether the effect of invasion was enhanced,
unchanged, or amplified by conditions of soil warming and
N addition, which was our primary objective. We calculated
effect sizes as Cohen’s D for each treatment level using the
cohen.d function in the psych package (Revelle and Revelle
2015). Cohen’s D values of 0.2, 0.5, and 0.8 or greater repre-
sent small, medium, and large effect sizes, respectively. We
also used Welch’s two-sample ¢ tests with unequal variance
and the base t.fest function to assess whether independent
treatment level differences were significant from uninvaded,
control plots. Lastly, we calculated response ratios in treat-
ment plots relative to uninvaded, control plots as logl10
(Treatmenty,, ./Controly.,,) with 95% confidence intervals.
Confidence intervals which did not pass through 0 were con-
sidered significant.

Variation in fungal communities across the abiotic global
change treatments (nitrogen and warming) and invasion sta-
tuses were assessed on OTU relative abundances converted
to Bray—Curtis dissimilarities using the vegdist function in
vegan (Oksanen et al. 2013). The effects of nitrogen, warm-
ing, invasion, plus all two- and three-way interactions on
fungal community composition were assessed using PER-
MANOVA implemented using the adonis function in vegan.
To control for the effect of horizon, we included it as a ran-
dom effect using the strata option. To compare treatment
plots to uninvaded, control plots, we split the data-frame by
treatment groups and performed pair-wise PERMANOVA
comparisons. Lastly, we performed distance-based redun-
dancy analysis (ds-RDA) using the capscale function
(vegan) to visualize differences in fungal community com-
position using nitrogen, warming, and invasion as predictor
variables.

Results
Fungal biomass and community composition

None of the global change factors affected fungal biomass
individually, but there was a significant three-way interac-
tion among N addition, warming, and invasion in the full
statistical model in the organic horizon (P =0.02; see mixed
effects model results in Supplementary Table 3). Based on
independent comparisons, fungal biomass was reduced
by 43% in the two-factor warming X invasion plots in the
organic horizon relative to control plots (Table 1). The effect
size for fungal biomass was large in the warming X invasion
plots (Cohen’s D=2.1), particularly compared to the single

factor invasion treatment (Cohen’s D =0.44; Supplementary
Fig. 2). Fungal community composition (ITS2) was unaf-
fected by garlic mustard invasion and N additions alone, but
it differed between ambient temperature and warmed plots
(see polygons in Fig. 1a; P=0.004), and there was also a sig-
nificant three-way interaction among N addition, warming,
and invasion in the full PERMANOVA model (P =0.03; see
PERMANOVA model results in Supplementary Table 4).
Treatment level comparisons relative to the uninvaded, con-
trol further revealed that fungal community composition was
distinct in the single-factor warming and two-factor warm-
ing X invasion treatment (Supplementary Table 4).

Relative abundances of fungal functional
and taxonomic groups

Ectomycorrhizal fungi were the dominant guild and com-
prised 48-83% of the total ITS2 sequences across treatment
levels, though relative abundance was not impacted by N
addition, invasion, or warming as single or interacting effects
(Supplementary Table 5). However, independent compari-
sons relative to uninvaded, control plots revealed that the
relative abundance of EMF was significantly reduced in the
two-factor warming X invasion plots (Fig. 2a). The effect size
for EMF relative abundance was large in the warming X inva-
sion plots (Cohen’s D=1.26), especially compared to the
single-factor invasion treatment where the effect size was
negligible (Cohen’s D =0.02; Supplementary Fig. 3).

Saprotrophs were the second most dominant fungal guild,
and while relative abundance was not affected by the single
factor treatments, there was a significant three-way interac-
tion effect on saprotroph relative abundance among N addi-
tion, warming, and invasion in the full statistical model in
the organic horizon (P =0.05) and between warming and
invasion in the mineral soil (P =0.02; see linear mixed
effects model results in Supplementary Table 5). In com-
parison to the uninvaded control plots, the relative abun-
dance of saprotrophs increased in relative abundance in the
warming X invasion plots (Fig. 2b) and had a large effect size
(Cohen’s D=1.14). The third most dominant guild included
plant pathogenic fungi which were not affected by the abi-
otic treatments as main effects, but increased in relative
abundance in the two-factor warming X invasion treatment,
though only significantly in the organic horizon (Fig. 2d).
There were no shifts in the relative abundance of white rot
fungi, the fourth most common guild.

Relative abundances of the most dominant taxa, which
were different EMF Russulaceae, varied in the single-
factor and two-factor warming X invasion treatments rel-
ative to control plots (Fig. 3a, b). We only present the
results for these two treatments for this fine-resolution
analysis because fungal community composition exclu-
sively differed from control plots for the warming and
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Fig. 1 Fungal community composition across the global change treat-
ments based on fungal ITS2 (a) and AMF 18S (b) DNA metabarcod-
ing. Community composition was visualized using distance-based
redundancy analysis (ds-RDA). Points represents the average site
score configurations based on Bray—Curtis dissimilarity and error
bars are the standard error. Pink and gold polygons outline the ranges
of ambient temperature versus warmed plots which significantly dif-
fered from each other (Pyrg;=0.008, P,3q=0.004), respectively.
Asterisks indicate significantly different treatment level community
compositions relative to the uninvaded control plots (P <0.05; see
Supplementary Table 4)

warming X invasion treatments. Different Russula line-
ages were dominant in control (R. cyanoxantha) versus
warming only (R. laurocerasi) or warming X invasion plots
(Russula sp. 108; see Supplementary Table 7), but R. lau-
rocerasi was overly dominant in the single-factor warming
plots (i.e., double the relative abundance in control plots;
P =0.04) and sensitive to the additional pressures of inva-
sion. Three of the four most abundant saprotrophs (Mor-
tierella minutissima, Umbelopsis nana, and U. ramanni-
ana) were most abundant in the warming X invasion plots
(Fig. 3a, b).

AMF community biomass, composition,
and taxonomic relative abundances

Arbuscular mycorrhizal fungal biomass was reduced by
65% in the organic horizon by the combined effects of
warming and invasion (Table 1), but was not affected by
invasion, N addition, or warming as single factor treat-
ments (Supplementary Table 3). The effect size for AMF
biomass was large (3.9), especially compared to the single-
factor invasion treatment (0.15; Supplementary Fig. 2).
AMF (18S) community composition differed between
uninvaded and invaded plots as a single factor (P =0.02)
and between ambient temperature and warmed plots (see
polygons in Fig. 1b; P=0.001), but neither N addition nor
the combined effects of N addition and warming had an
effect (Supplementary Table 4). As observed for general
fungi (ITS2), AMF communities were distinct from con-
trol in warming (P =0.004) and warming X invasion plots
(P=0.02; Supplementary Table 4).

AMF within the Glomus genus were dominant and
communities were hyper-uneven, with the two most domi-
nant taxa having twofold higher relative abundances than
the rest of the community (Fig. 3c, d). Glomus sp. 3 had
twice the relative abundance in warming only compared to
control plots (P=0.01) and the warming X invasion plots
(P=0.002; Fig. 3; see Supplementary Table 7). Con-
versely, the relative abundance of Glomus sp. 1 was more
than double the relative abundance in warming X invasion
(43%; relative abundance) compared to control plots (21%;
P=0.02; Fig. 3c, d), and to a lesser extent warming alone
(23%; P=0.06). The second most common AMF genus,
Scutellospora, did not vary with invasion or N addition,
but it had reduced relative abundance with warming (3%)
compared to control plots (12%; P=0.03).

Changes in fungal functional gene profiles

Fungal functional genes shifted in both the soil warming
and N addition plots. The relative abundance of rRNA
genes (a proxy for growth) was higher in the warming
only treatment compared to uninvaded, control plots, but
this was only significant in the organic horizon (P <0.05;
Fig. 4). Nitrogen addition alone reduced relative abun-
dances of hydrolytic enzyme encoding and stress-response
genes in the organic horizon. Nitrogen addition crossed
with invasion increased rRNA and stress response gene
proportions in mineral soil and increased hydrolytic
enzyme encoding gene relative abundances in the organic
horizon. Warming crossed with invasion also increased
hydrolytic enzyme gene proportions, though only signifi-
cantly in mineral soil.
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Soil properties and processes Discussion

Changes in soil properties and processes were generally small
across the treatment plots with the exception of total soil C in
the organic horizon. Neither invasion nor N addition as sin-
gle-factors had an effect on soil properties or processes (Sup-
plementary Table 3). Soil C was affected by warming in the
organic horizon (P=0.01), and specifically, was reduced com-
pared to uninvaded, control plots in the single-factor warming
and N addition X warming X invasion plots (Table 1). Carbon
mineralization, a proxy for C lability, was reduced in the
warming X invasion plots relative to control plots in the organic
horizon. Neither, total inorganic N concentration nor net N
mineralization were affected by N addition, warming, or inva-
sion alone. Fine root biomass was not affected by warming or
N addition, but organic horizon samples in the warming X inva-
sion plots had more fine roots compared to uninvaded, control
plots (Table 1).
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As decomposers, mycorrhizal symbionts, and pathogens, soil
fungi strongly shape the functioning of forested ecosystems
(Treseder and Lennon 2015). What we know about their
sensitivities to global change primarily comes from single-
factor studies (Lekberg et al. 2007; Lilleskov et al. 2011;
Morrison et al. 2016; Fernandez et al. 2017; Gibbons et al.
2017), but global change factors typically do not occur in
isolation from each other (Aber et al. 2001). The impact of
multiple global change stressors on microbial communities
are seldom tested—only 20% of studies have examined more
than one factor, and only 1% have examined more than two
factors (Rillig et al. 2019). Our study addressed this gap by
experimentally testing how soil fungal communities and their
functional potential responded to simultaneous soil warming,
N addition, and invasion by the non-native, phytotoxic plant,
garlic mustard. Our study demonstrates that soil warming was
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Fig.3 Rank abundance curves showing the top 20 most dominant
fungal (a, b) and AMF (¢, d) taxa. Bars represent the mean relative
abundance. Only treatments where fungal community composition

the dominant factor to impact fungal communities and their
functional capacity, but warming interacted with invasion and
N addition. There was a significant three-way interaction effect
among N addition, warming, and invasion in the full statisti-
cal models for fungal biomass and community composition;
however, the effect size relative to uninvaded control plots
was large and significant in the two-factor warming X invasion
treatment but not in the single-factor invasion, two-factor nitro-
gen Xinvasion, or three-factor nitrogen X warming X invasion
plots. This suggests that the impacts of garlic mustard invasion
on soil fungi may be enhanced under warmer conditions but
only in the absence of N additions.

Warming altered fungal community structure
and increased invasibility to garlic mustard

Garlic mustard invasion profoundly restructures temper-
ate forest understories (Stinson et al. 2007; Rodgers et al.
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was significantly different from control are shown. Relative abun-
dances are plotted separately for organic (a, ¢) and mineral (b, d) soil
horizons

2008) and belowground fungal communities (Barto et al.
2011; Lankau 2011) in North America. In part, this is
related to the production of secondary chemicals (glu-
cosinolates) which suppress native mycorrhizal fungi in
North American forests where garlic mustard is invad-
ing (Stinson et al. 2006; Cantor et al. 2011). Surprisingly,
we found no effect of invasion on soil fungi in absence
of abiotic stressors. The impact of garlic mustard inva-
sion on soil fungal communities can take years to mani-
fest (Lankau 2011), which could explain why we saw no
effect during our short-term (i.e., ~ 1 year) experimental
invasion. However, in combination with warming, invasion
reduced fungal and AMF biomass and altered the commu-
nity composition of both groups. This indicates that fungi
responded to a greater degree to multiple global change
factors than single factors, and the community shaped by
the abiotic filter of warming was especially susceptible to
garlic mustard invasion.
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Among plants, community composition can affect
resistance to invasion if common species are sensitive to
the invader (Wilsey and Polley 2002; Losure et al. 2007;
Hillebrand et al. 2008). A similar form of resistance to
invasion (or lack thereof) may apply to fungi as observed
dominant fungi in the warming plots were sensitive to inva-
sion whereas dominant fungi in the control plots were less
responsive. The EMF, Russula laurocerasi, and the AMF,
Glomus sp. 3, were both overly dominant in the warming
plots (i.e., more than double the relative abundance of con-
trol plots), and the relative abundances of both taxa were
reduced by warming X invasion. While we know little about
the actual sensitivities of these taxa to invasion, warming
within the temperature range of our study can stimulate fun-
gal growth (Rillig et al. 2002; Pietikidinen et al. 2005). Faster
growth reduces microbial ‘bet-hedging’ or the allocation of
energy to unrequired growth conditions which facilitate
adaptation to environmental changes (Mori et al. 2017; Kim
et al. 2020). We observed that warming increased the rela-
tive abundance of fungal rRNA genes, a proxy for growth.
Thus, one hypothesis is that faster growth in the warming
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plots reduced fungal capacities to adapt to garlic mustard
invasion, leading to enhanced community turnover.

Long-term garlic mustard invasion can reduce fungal bio-
mass (Cantor et al. 2011), EMF abundances (Wolfe et al.
2008), and shift fungal trophic guild dominance towards
saprotrophic and plant pathogenic fungi (Anthony et al.
2017). While there were no differences in fungal functional
group relative abundances in the invasion-only or invasion
plus N addition plots, invasion in concert with warming
reduced fungal biomass and relative abundance of EMF and
increased that of saprotrophs and plant pathogens (Fig. 2).
This mirrors expected results from previous research on
long-term established invasions in the study region (Anthony
et al. 2017, 2019). One possibility is that under warmer con-
ditions garlic mustard invasion more strongly (or quickly)
suppresses mutualistic fungi and selects for saprotrophic and
pathotrophic taxa. As a result, under future warmer condi-
tions, the phytotoxic effect of garlic mustard on forest fungi
may be amplified, and forest soils may be more susceptible
to new garlic mustard invasions than has been previously
shown (Lankau 2011).
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As a further test of the hypothesis that warming inten-
sifies fungal responses to invasion, we examined whether
fungal communities at sites with higher mean annual tem-
perature (MAT) were more responsive to garlic mustard
invasion compared to sites with lower MAT. We used pre-
viously published data on fungal communities from unin-
vaded and invaded plots across eight temperate forests in
NY and MA (see Anthony et al. 2019). We calculated fungal
community response ratios to garlic mustard invasion using
non-metric multidimensional scaling configurations as log10
(invaded composition/uninvaded, control plot composition).
We found a strong positive correlation between fungal com-
munity response to invasion and MAT over a temperature
gradient of 4 °C (Fig. 5). This correlation could be due to
other environmental variables, but when taken together with
our experimental soil warming results, it provides another
line of evidence supporting the hypothesis that warming
intensifies fungal responses to invasion. It is also worth not-
ing that the warming treatment in our experimental study
was instrumented using buried heating cables. While this
technique increases soil temperature, it does not appreciably
warm aboveground (Aronson and McNulty 2009). Thus,
the experimental effects we observed in the warming plots
might be different, and possibly even stronger, if we warmed
aboveground using infrared heating lamps.

R?=0.89, P = 0.0004 A

0.08 1

0.04 1

0.00

Fungal community composition response ratio (log(Invaded/Uninvaded))

7 8 9 10 11
Mean annual temperature (°C)

Fig.5 Dissimilarity in fungal community composition associated
with garlic mustard invasion in relation to mean annual temperature
(MAT). Responses were calculated as the log ratio of fungal commu-
nity composition in plots actively invaded by garlic mustard to unin-
vaded plots across eight mixed temperate forests in the northeastern
USA. Points represent mean configurations from non-metric multidi-
mensional scaling [Data from Anthony et al. (2019)]

Nitrogen additions alone and in combination
with invasion weakly affected fungal community
composition

Nitrogen additions have well-known but variable effects on
soil fungi (Frey et al. 2004; Lilleskov et al. 2011; Morri-
son et al. 2016; Linde et al. 2018). The impacts of N addi-
tion on fungi as a single-factor depend on the quantity of
added N (Linde et al. 2018) and the duration of additions,
and our study applied N at levels and over a time period
(10 years) which do not always affect fungal community
composition (Morrison et al. 2016). Nitrogen addition also
had little effect on fungal community responses to invasion
in the absence of warming. However, the effects of added N
can potentially nullify the impacts of warming. For exam-
ple, a recent meta-analysis found that warming elevates soil
respiration and microbial biomass, but this effect is reversed
by concurrent N additions (Yue et al. 2017). Here, we show
that relative to control plots, communities were different in
the single-factor warming treatment but when warming was
crossed with N addition (N addition X warming; N addi-
tion X warming X invasion) no changes were observed, which
supports the idea that N additions can mitigate the impacts
of warming.

Treatment effects on fungal functional genes, soil
properties, and soil processes

In addition to fungal community shifts, there were differ-
ences in fungal functional profiles in response to warm-
ing and warming X invasion. The effects of warming on
fungal functional potential varied by soil horizon: growth
(rRNA) functional genes increased in relative abundance
in the organic horizon where warming may be selecting for
faster growing r-strategists (as discussed earlier), but this
remains to be tested. In the two-factor warming X invasion
plots, there was increased relative abundance of hydrolytic
genes in mineral soil, which may promote the degradation
of cellulose and beta-1,4, glucans (Ljungdahl and Eriksson
1985). Interestingly, warming X invasion promoted cellu-
lose degrading genes and the saprotrophic fungi with fully
sequenced genomes that were abundant in those plots pos-
sess > 10 copies of these cellulose degrading genes (Gri-
goriev et al. 2014). Our data suggest a higher potential for
fungal growth in the warming plots and the enhanced deg-
radation of cellulose in the warming X invasion treatment.
Nitrogen additions reduced the relative abundance of
hydrolytic enzyme encoding genes but only as a single-factor
treatment and in the organic horizon. Since soil organic mat-
ter decomposition in temperate forests is suppressed by N
additions (Zak et al. 2008; Frey et al. 2014), this result is not
unexpected. Relative abundance of stress response genes was
also reduced by N additions, though only significantly in the
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organic horizon. Stress response genes were also at reduced
relative abundance in the N addition X warming X invasion
plots. There may be lower requirements for the enzymes
encoded by these stress response genes under N additions
because fungi are less metabolically active under chronic
N limitations compared to ambient conditions (Frey et al.
2014), but this remains to be tested and would be limited
to a certain N addition range as N eventually becomes toxic
to microbes (Bowman et al. 2008). While we have demon-
strated community composition and functional profile shifts
specific to soil fungi, future studies should target particular
fungal taxa that play disproportionate roles in mediating eco-
system responses to global changes. It is also important to
acknowledge that whether these genes are being expressed
is unknown. Future work on transcriptomes and proteomes
remains to be done.

Physical soil characteristics were less sensitive to the
treatments than were soil fungal communities, though there
were changes in soil C stocks, C mineralization, fine root
biomass and fungal biomass. Warming alone reduced total
soil C stock, an expected outcome of elevated soil respira-
tion under warming conditions (Contosta et al. 2011; Melillo
et al. 2017). The observed higher relative abundance of
rRNA genes under warming (Fig. 4) without a concomitant
increase in fungal biomass (Table 1), further suggests shifts
in fungal physiology including reduced growth efficiency.
Warming can increase carbon allocation towards CO, and
away from biomass production (lower growth efficiency)
and this can reduce soil C stocks (Frey et al. 2013). In the
warming X invasion plots, carbon mineralization, a proxy for
C lability, was reduced; fine root biomass increased; and
total fungal and AMF biomass decreased in the organic hori-
zon of the warming X invasion plots, suggesting that garlic
mustard reduced a labile carbon source for fungi and fungal
biomass via increased root in-growth. Fine root biomass was
also higher in the organic horizons of the nitrogen X invasion
plots, though this was not associated with other changes in
soil properties/processes or fungal biomass. Garlic mustard
has well known negative impacts on AMF (Cantor et al.
2011) and EMF biomass (Wolfe et al. 2008), and the effect
of garlic mustard invasion on fungal biomass appeared to be
amplified in the context of warming.

Conclusion

This study shows that warming impacts how soil fungi
respond to plant invasion but only in the absence of N
additions. We acknowledge that it is possible that invasion
modified the impact of warming as a single factor, but the
observed fungal community shifts in mycorrhizal, sapro-
troph, and pathogen guilds were similar to those seen under
long-term, established garlic mustard invasions. Reduced
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fungal and AMF biomass (Cantor et al. 2011), lower EMF
relative abundance (Wolfe et al. 2008), and increased rela-
tive abundances of saprotrophs and pathogens (Anthony
et al. 2017) are all associated with long-term garlic mustard
invasions. Our observation of these effects within just 1 year
of invasion in the warmed treatments but not under ambi-
ent conditions further suggests that warming may accelerate
impacts of garlic mustard on forest fungi. Previously col-
lected field data further support the idea that warming poten-
tially exacerbates the invasion effect—across eight forested
sites spanning a 4 °C temperature gradient, fungal commu-
nity responses to invasion were positively correlated to MAT
(Fig. 5). Garlic mustard invasion has substantial effects on
temperate forest understories, and these impacts may worsen
with projected increases in MAT in the northeastern USA.
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