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Abstract A longstanding assumption of glucose
tracing experiments is that all glucose is microbially
utilized during short incubations of <2 days to
become microbial biomass or carbon dioxide. Carbon
use efficiency (CUE) estimates have consequently
ignored the formation of residues (non-living micro-
bial products) although such materials could represent
an important sink of glucose that is prone to
stabilization as soil organic matter. We examined the
dynamics of microbial residue formation from a short
tracer experiment with frequent samplings over 72 h,
and conducted a meta-analysis of previously published
glucose tracing studies to assess the generality of these
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experimental results. Both our experiment and meta-
analysis indicated 30-34% of amended glucose-C
(13C or l4C) was in the form of residues within the first
6 h of substrate addition. We expand the conventional
efficiency calculation to include residues in both the
numerator and denominator of efficiency, thereby
deriving a novel metric of the potential persistence of
glucose-C in soil as living microbial biomass plus
residues (‘carbon stabilization efficiency’). This new
metric indicates nearly 40% of amended glucose-C
persists in soil 180 days after amendment, the majority
as non-biomass residues. Starting microbial biomass
and clay content emerge as critical factors that
positively promote such long term stabilization of
labile C. Rapid residue production supports the
conclusion that non-growth maintenance activity can
illicit high demands for C in soil, perhaps equaling that
directed towards growth, and that residues may have
an underestimated role in the cycling and sequestra-
tion potential of C in soil.

Keywords Carbon use efficiency - Isotopic glucose

tracing - Carbon cycling - Microbial ecology -
Microbial residues

@ Springer


http://orcid.org/0000-0002-5218-2745
http://orcid.org/0000-0002-5160-2701
http://orcid.org/0000-0002-3214-2295
http://orcid.org/0000-0003-3282-4808
http://orcid.org/0000-0002-9221-5919
https://doi.org/10.1007/s10533-020-00720-4
http://crossmark.crossref.org/dialog/?doi=10.1007/s10533-020-00720-4&amp;domain=pdf
https://doi.org/10.1007/s10533-020-00720-4

238

Biogeochemistry (2020) 151:237-249

Introduction

As the largest pool of carbon (C) in the biosphere, soil
organic matter (SOM) and its transformation represent
a critical component of global C cycling. Carbon
entering the soil is primarily plant-derived but subse-
quent processing relies heavily on microorganisms.
Microbial decomposition and metabolism convert
organic C into biosynthetic molecules that may be
actively recycled, become stable SOM resistant to
decay, or lost from soil as respiration. Understanding
the conditions which drive this partitioning can help to
forecast depletion of soil C stocks and carbon dioxide
(CO,) efflux, particularly as climate stressors such as
warming amplify rates of belowground C transforma-
tion (Melillo et al. 2017; Kuzyakov et al. 2019).
Substantial insights into the processing of C in soil
have been gained using isotopic tracer studies.
Labeled substrates, particularly glucose, are used in
tracer experiments to determine how quickly micro-
bial uptake occurs, whether the added substrate is used
anabolically or mineralized for energy generation, and
what the dynamics of SOM stabilization in soil are
like. The mean residence time of glucose in the soil
solution is typically seconds to hours (Boddy et al.
2007; Hill et al. 2008; Fischer et al. 2010; Leitner et al.
2012; Gunina and Kuzyakov 2015). Glucose itself
appears unlikely to become stabilized on mineral or
organic surfaces via abiotic reactions, given rapid
microbial uptake and the uncharged nature of the
molecule (Gunina and Kuzyakov 2015). Mean resi-
dence time of tracer C in microbial biomass depends
on the turnover time of the microbial community,
typically 1-10 days for active bacteria and
100-300 days for fungi, although the range is large
(Rousk and Baath 2011; Koch et al. 2018). Rates of
tracer C loss from soil will peak within days of
amendment because of microbial respiratory demands
and thereafter decline as stabilization of microbial
residues occurs (e.g., up to 20% of the original added
C stabilized in SOM after 3 years; Cheshire 1979).
Glucose C was originally assumed to be partitioned
only between microbial biomass and respiration
during short (<2 day) incubations (Dictor et al.
1998). However, it was eventually observed that a
substantial portion of the isotope remained unex-
tractable from soil by liquid extraction. This missing C
was attributed to microbial biomass unextractable after
chloroform fumigation. Extraction coefficients (Kgc)

@ Springer

were thus developed from short glucose tracing
experiments (i.e., the in situ labeling method using
3C or 'C) (Sparling and West 1988; Joergensen
1996) to correct fumigation-based estimates of micro-
bial biomass. In situ labeling as well as other
calibration techniques have produced Kgc values of
0.35-0.45, suggesting that 55-65% of isotopic label
becomes “stuck” in unextractable forms of living
biomass like bacterial cell walls and spores (Lynch
and Panting 1980). Although this assumption that all
unextractable C is living microbial biomass is “prob-
ably wrong” (Joergensen 1996; Dictor et al. 1998;
Jenkinson et al. 2004), no attempt has been made to
clarify the issue or assess its impacts on soil biogeo-
chemistry such as microbial biomass determination
and substrate utilization.

Microbial residues are an alternative explanation
for unextractable tracer C. We operationally define
residues as any non-living organic material of micro-
bial origin including extracellular enzymes, antibi-
otics, exopolysaccharides, and necromass (Gregorich
et al. 1991; Mueller et al. 1998; Costa et al. 2018).
Such materials may be bound to the cell surface (e.g.,
lipopolysaccharides), exist as dissolved organic C, or
be associated with soil particles via organo-mineral
complexes. Given their varied forms, residues are
often quantified indirectly as the amount of label in
soil minus that in microbial biomass (Gregorich et al.
1991; Gunina and Kuzyakov 2015; Moreno-Cornejo
et al. 2015; Creamer et al. 2016):

Borl4Residue C =371 Soil C =Y MBC (1)

As SOM precursors, residues effectively link the
dynamics of microbial activity on hourly time scales
with the capacity of soil to build C stocks of much
longer residence time (Allison et al. 2010; Kallenbach
et al. 2015).

Ignoring residue production, particularly over short
time scales, has two major consequences. The first is
overestimation of living microbial biomass. MBC is
overestimated by over two times when a Kgc factor of
0.45 is used (e.g., = 1/0.45 = 2.22) if unextractable C
is non-living residues rather than biomass. Second,
microbial carbon use efficiency estimation (CUE; the
proportion of total C uptake that microbes partition
towards growth) is also predicated on an assumption
of no residue production during short (<2 day)
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incubation. A conventional calculation of CUE is as
follows:
13 or 14MBC

CUE = 2
(13 or 4 prBC 413 0r 14 CO,) (2)

The denominator of Eq. (2) would be an unreliable
estimate of total uptake if additional tracer sinks like
non-biomass residues exist beyond MBC and CO,.
Whether residue production occurs during short
incubations remains unknown; the few studies to have
examined the temporal dynamics of residue formation
have been over much longer time scales and none have
assessed the potential impact on microbial CUE.

Here we quantitatively assess glucose partitioning
in soil to address whether residue formation may occur
during short incubations, and the impacts that residue
formation would have for estimation of CUE in soil.
We conducted a laboratory experiment to measure
glucose partitioning among major pools, including
residues, and a subsequent meta-analysis to assess the
generality of our experimental results.

Methods
Glucose tracing experiment

A tracing experiment was conducted to examine the
partitioning of glucose into major soil pools within
hours of amendment. A representative temperate
forest soil was collected from the Harvard Forest
Long Term Ecological Research (LTER) site in
Petersham, MA, USA. Mineral soil (0-15 cm depth)
below the organic horizon of the Gloucester series
(fine loamy, mixed, mesic, typic Dystrochrepts) was
collected, sieved (<2 mm), and stored at 4 °C until
experimental use. Gravimetric water content
(0.47 g g~ ") was determined by drying at 105 °C for
24 h. Field capacity (0.90 g g~') was determined
from the gravimetric water content of saturated soil
after gravity draining for 48 h. Soil organic C (5.7% of
dry soil), microbial biomass concentrations (1% of
SOC), pH (4.2) and C:N ratio (24) were typical for
these soils (Frey et al. 2014). All soil was pre-
incubated for 48 h at 25 °C before glucose addition.
Labeled glucose addition to soil allows for the
determination of substrate-C uptake and mineraliza-
tion, where microbial growth is inferred from '*C

incorporation into microbial biomass. Five replicate
soil samples (40 g each) and one soil control (nutrient
solution without glucose) were prepared for each
target harvest time of 6, 12, 18, 24, 32, 40, 48, 60, 72 h.
Unlabeled glucose was mixed with 99 at% U-'’C
glucose to achieve total enrichment of 5 at%. The
amendment solution delivered 0.05 mg glucose-C g~
dry soil, along with trace nutrients (0.1% MgCl,, 0.2%
KH,PO,4, and 0.1% K,SO,) and sufficient sodium
nitrate to achieve a molar C:N ratio = 40 (Wadso
2009). This experimental design was replicated for a
second amendment concentration of 2.0 mg glucose-
C g ! dry soil and additional nitrogen to maintain a
C:N ratio = 40 of solution. Amendments were briefly
mixed by spatula into the soil, increasing soil moisture
to 65% of field capacity. The lower glucose amend-
ment was chosen to represent a typical substrate
amendment rate used in other tracer experiments (Frey
et al. 2013); the higher glucose amendment was
chosen to induce logistic growth (Reischke et al.
2014).

Specimen cups containing the soil were parafilm
covered and incubated at 25 °C until harvesting.
Ninety minutes prior to harvest, cups were uncovered
and sealed within 1 L jars fitted with rubber septa. Jars
were flushed for 15 min with CO,-free air. At the time
of harvest, 15 mL of headspace was sampled via
syringe and injected into evacuated exetainers
(12 mL). Jars were then opened and the soil immedi-
ately extracted for microbial biomass by chloroform
fumigation extraction (Vance et al. 1987). Briefly,
15 g of each sample was fumigated with ethanol-free
chloroform for 24 h, after which the sample was
extracted in 0.05 M K,SO,. A paired 15 g sample was
immediately extracted without fumigation. Total dis-
solved organic C (DOC) extracts were frozen at
—20 °C and shipped, along with headspace samples,
to the University of California (Davis) Stable Isotope
Facility (Davis, CA, USA) for total C and '’C
quantification. The difference in total DOC concen-
tration between fumigated and non-fumigated samples
was used to calculate microbial biomass C. Remaining
soil was frozen at —20 °C and later dried and finely
ground for determination of total soil C and N, and B¢
quantification at the University of New Hampshire
Stable Isotope Facility (Durham, NH, USA).

All estimates of growth, respiration, and CUE were
calculated using published mixing models and equa-
tions (Brant et al. 2006). Total microbial growth
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(®MBC; pg C g™ soil) was calculated as the product
of total microbial biomass (F DOC-NF DOC;
pg C g71 soil) and the percent of total microbial
biomass labeled (%1 3MBC):

at% MBC =
[(at% F DOC x F DOC) — (at% NF DOC x NF DOC)|
(F DOC — NF DOC)

(3)

(at% MBC, — at% MBC,)

BMBC = 100 (4
i’ (at% sol — at% MBC,) x )
¥ MBC = (F DOC — NF DOC)

x %" MBC/100/0.45 (5)

where at% F DOC, F DOC, at% NF DOC, and NF
DOC represent the atom % and total C concentrations
(ug C g~ soil) of fumigated (F) and non-fumigated
(NF) K,S0, extracts, respectively. at% MBC, and at%
MBC., are the atom % of sample treatments and natural
abundance controls, and at% sol is the atom % of
amendment solution (5 at%). A typical extraction
efficiency of 0.45 was applied to account for unex-
tractable biomass (Joergensen 1996; Jenkison et al.
2004). Finally, CUE was calculated using Eq. 2 where
3C0, is the cumulative respiration derived from
added glucose (ug ">CO,—C g~ ! soil).

Meta-analysis

We conducted a meta-analysis of previously published
data to assess the generality of our experimental
results across soil types and study-specific treatments.
For our purposes, we included only those studies that
provided sufficient detail to construct a budget that
could account for ~100% of the amended glucose
tracer.

The search for relevant studies was conducted using
the online ISI Web of Science Core Collection in
September 2018. Search criteria were “C-13 AND
glucose AND soil” (264 results) and “C-14 AND
glucose AND soil” (378 results). Studies from this list
also needed to meet the following criteria to be
included in the analysis: (1) at least two of the three
major tracer sinks (CO,, MBC, bulk soil) were
reported so that a budget could be reconstructed and
residue amounts calculated using Eq. 1, (2) MBC
estimates were made using a fumigation-extraction
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technique and a Kgc value <1 applied to account for
unextractable biomass, (3) incubation times did not
exceed 180 days. This time frame was chosen as net
movement of tracer plateaued within 50 days of
amendment. Search criteria resulted in a final list of
315 observations from 18 studies. Data presented in
graphical form were gleaned using PlotDigitizer X (v.
2.0.1). Tracer remaining in the DOC pool was
assumed to be negligible unless otherwise stated since
the majority of studies reported undetectable concen-
trations at harvest. The Satterthwaite method was used
to generate pooled variance estimates when tracer
concentrations were estimated from other data (e.g., %
tracer in CO, = 100% — % tracer in soil) (Satterth-
waite 1946).

The primary response variables in the meta-anal-
ysis dataset (percent of tracer in MBC, soil, CO,, and
residue pools and CUE) were asymptotic over time.
Non-linear least squares modeling was conducted
using a self-starting asymptotic R function (SSasymp)
to assess model fit using the entire dataset of 0-180
incubation days. The data was further subset into
observations <2 days (the length of a typical CUE
assay) and >24 days (when response variables had
generally reached an asymptote). Subsetting in this
manner allowed us to control for incubation length
during some analyses.

The denominator of CUE is intended to capture all
C uptake by microbes. This term may be underesti-
mated if some C is used for non-biomass residue
formation (e.g., Eq. 1). We developed a second CUE
metric (“CUE,”) to additionally account for any
residues as a portion of microbial C uptake:

13 or 14MBC
(13or UMBC + B3 or14CO, + 13 or 14Residue C)

(6)

A metric of carbon stabilization efficiency (“CSE”)
was also formulated to express the potential of a soil to
stabilize all microbial products, whether biomass or
residue:

CUE, =

CSE — (13 orl4MBc+ 13 or 14Residue C)

(13or 4MBC 4 130r14CO, + B or 4Residue C)
(7)

We assume that all tracer C is rapidly utilized such
that a term for the original, unprocessed substrate is
unnecessary. Similar to the ‘carbon sequestration
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efficiency’ of Gleixner (2013) or CUErp (total micro-
bial products) of Joergensen and Wichern (2018), CSE
provides a meaningful link between microbial meta-
bolism and SOM formation at ecosystem scales.

Three independent variables were examined as
predictors of glucose partitioning and efficiency:
starting MBC at the onset of experimentation, glucose
amendment concentration, and soil clay content.
Linear mixed effects, partial regression models were
fit to the subsetted data (<2 and >24 incubation days)
and full 180-day dataset with random terms to account
for non-independence of results by publication source.
Partial regression allowed the removal of (1) clay and
starting MBC effects from one another, as a positive
relationship was observed between these predictors
and (2) the effect of time from the full 180-day dataset.
Normality of residuals and homogeneity of variance
were tested and transformations applied if failed.
Multiple linear regression was not used as only a small
number of observations (n = 29) had all three drivers
reported.

In addition to the mixed effects modeling, meta-
analysis results were analyzed following the recom-
mendations outlined by Viechtbauer (2010) for the
‘metafor’ R package. The effect size and variance of
mean value responses were estimated using the
‘escalc’ function. These data were fitted to multivari-
ate meta-analytic models with the rma.mv function
using a restricted maximum likelihood method and a
random term to account for clustering of the data by
publication source. Normality of model residuals was
assessed with the Shapiro test and, if failed, a
transformation applied to the response variable.
Publication bias was also assessed using the ‘ranktest’
and ‘weightfunct’ functions. In most cases, fewer
observations existed for meta-analysis than with
comparable mixed effects modeling because variance
estimates also had to be reported from the literature.
As the results from mixed effects and meta-analytical
approaches were similar, only the former are pre-
sented. All stats were performed in R (v. 3.6.0).

Results
Glucose tracing experiment

Quantification of 3Cin the pools of CO,, MBC, DOC,
and bulk soil C indicates relatively stable tracer

concentrations throughout the 72-h incubation follow-
ing 0.05 mg glucose-C g~ dry soil addition (Fig. 1).
No tracer was found in the DOC pool even after the
shortest incubation interval of 6 h, suggesting rapid
microbial uptake of added substrate. Steady concen-
trations in microbial biomass (~45% of tracer
applied) throughout the incubation suggest that any
accumulation of tracer C in the MBC pool was being
offset by losses from respiration, biomass turnover, or
exudation. Even after an extraction coefficient of 0.45
was applied to MBC estimates, the residue pool (**Soil
C - "MBC; gray shaded area Fig. 1) represented
~40% of tracer C remaining in the soil within 6 h of
incubation, or about 30% of the total glucose added.
Carbon use efficiency (Eq. 2) significantly declined
during incubation from 0.86 to 0.74 (p < 0.001).
Higher glucose amendment (2.0 mg glucose-C g~
dry soil) substantially altered tracer dynamics. A
logistic pattern of growth occurred as evident from (1)

0.05 mg C/g soil
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Fig.1 Glucose-derived C in the pools of respiration (CO,), soil
C, microbial biomass C (MBC), and dissolved organic C (DOC)
over 72 h after amendment with 0.05 or 2.0 mg glucose-C g~
dry soil. Measurements were made after 6, 12, 18, 24, 32, 40, 48,
60, and 72 h of incubation with tracer. Error bars are one
standard deviation. '3C respiration is cumulative '>CO,
emission, depicted here as the excess beyond '>C remaining in
soil (pink shaded region). Microbial residues are calculated as
the difference between °C in soil and the sum of (13MBC + 13
DOC) (gray shaded region). (Color figure online)
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alag phase of ~24 h with insignificant tracer found as
MBC or CO, followed by (2) a depletion of tracer
from DOC and appearance in MBC and CO, as
microbial growth was initiated (Fig. 1). Evidence for
logistic growth is supported by '®O-water tracing that
was conducted simultaneously (Geyer et al. 2019). All
tracer C in soil was in the form of DOC (extractable by
K,S0,) during the lag phase suggesting glucose was
not microbially utilized or abiotically stabilized via
reaction with native SOM or other means. A residue
pool was not observed during the lag phase but
developed rapidly once microbial growth was initi-
ated, reaching ~50% of the initial glucose amend-
ment after 72 h of incubation. This indicates that
residue formation is linked to microbial activity.

Meta-analysis

Meta-analysis of 18 glucose tracing studies supports
the generality of our laboratory experiment. In the
initial hours of incubation, 42% (£2.12 S.E.) of tracer
was in MBC, 34% (£1.07 S.E.) was found as residue,
and 13% (£1.91 S.E.) had been mineralized to CO,
(Table 1, y-intercepts). The proportion of tracer in soil,
MBC, and residues significantly declined during the
first days of incubation, whereas the proportion in CO,
increased, all significantly fit by asymptotic functions
(p < 0.05). Changes in tracer concentrations among
pools largely stopped within 24 days of incubation
although the percent in residues continued to slowly
decline through the 180 days of incubation surveyed.
The majority of tracer was ultimately lost from soil as
CO, (58% =+ 0.78 S.E.), with the remaining left in soil
as MBC (11% =+ 1.11 S.E.) or residues (19% = 9.06
S.E.) after 180 days (Fig. 2).

Similar to our experimental results, the meta-
analysis indicates accumulation of tracer as residues
within hours of glucose addition. This occurred
despite the application of extraction coefficients in
all studies to account for unextractable C as microbial
biomass. Extraction coefficients ranged from 0.29 to
0.45 (mean = 0.41) among the 18 studies we exam-
ined. Of the 40 observations where incubations lasted
<2 days, only two used an extraction coefficient that
fully accounted for unextractable C as biomass such
that no reside was found [i.e., Eq. (1) = 0]. Extraction
coefficients would need to be smaller to adequately
fully account for all unextractable C as living biomass
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in soil, or a significant percent of tracer accumulated as
non-biomass residues.

CUE estimates were impacted by the inclusion of
residues in the calculation (Fig. 3). Average CUE
using a conventional ratio ignoring residues [Eq. (2)]
was 0.78 (£0.03 S.E.) during the shortest incubations
(Table 1, y-intercept). CUE,, where residues have
been added to the denominator to account for all
microbial uptake, had significantly lower efficiency of
0.46 (£0.02 S.E.) at the onset of incubation. Incorpo-
rating residues into the CUE denominator and numer-
ator as CSE resulted in significantly higher efficiency
of 0.83 (£0.02 S.E.) during the same time period. All
three CUE metrics declined over time and reached
significantly different asymptotes (Fig. 3). While
CUE and CUE, declined to ~0.15, CSE remained
relatively high at 0.40 (£0.01 S.E.). Thus, 40% of
tracer appears to remain in soil as microbial products
(living or dead) after 180 days, presumably as precur-
sors to stable SOM.

The amount of starting microbial biomass and soil
clay content were particularly influential predictors of
tracer partitioning according to regression analysis
(Table ). Starting microbial biomass
(7577 ug C g~ £32.3 SEE., n = 192) had signifi-
cant positive effects on tracer accumulation in the
microbial biomass and soil pools, but negative effects
on accumulation as residues or CO,. Clay content
(18.9% =+ 1.25 S.E., n = 135) had significant positive
effects on tracer presence in both soil and residue
pools, but a negative effect on accumulation in
microbial biomass and C mineralization. Glucose
amendment level (899.6 ug C g~' £56.1 SE.,
n = 315) had weak but significant positive effects on
tracer mineralization at the expense of presence in soil
or residues. These effects on tracer partitioning
resulted in starting MBC being the strongest predictor
of CUE, while glucose amendment concentration had
a weaker, negative effect. Starting MBC was also the
strongest predictor of CUE, and CSE, although clay
content was a significant positive predictor of the latter
as well. Approximately 70% and 76% of the variabil-
ity in CUE and CUE, was explained by starting MBC
alone, respectively, while 41% of the variability in
CSE was due to starting MBC (26%) and clay content
(15%).
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Table 1 Meta-analysis of results from 18 studies (Supp.
Table 1) tracing isotopic glucose among the pools of respira-
tion (CO.,), soil C, microbial biomass (MBC), and microbial
residue C (= Soil C — MBC) over 180 incubation days,
measured as percent of C added. Standard errors are shown in
parentheses. Linear mixed effects, partial regression analysis

was used to explain tracer partitioning with the drivers starting
MBC, glucose addition concentration, and soil clay content for
<2, >24, and the full span of surveyed incubation days
(0-180). Regression coefficients include both fixed and random
(i.e., publication source) effects. Italics used to indi-
cate when the moderator effect on response was negative

Non-linear modeling

Mixed effects, partial regression coefficients

Starting MBC (ug C g™

dry)

Glucose addition (png C g71
dry)

Clay content (%)

y-intercept Asymptote Incubation (days)

Incubation (days) Incubation (days)

Mean (S.E.) <2 >24 0-180 <2 >24 0-180 <2 >24  0-180
n =315 r? n=36 n=29 n=8 n=40 n=130 n=275 n=11 n=29 n=280

MBC 4] .9k 11.3%%k 0.43 0.74%%% (. 76% % 0.34""
(2.12) (1.11)

Soil C  75.3%#x 382 0.63 0.38%%% (), 22k 0.74™" 025" 0.12"
(1.58) (1.05)

Residue  34.4%%* 18.5% 0.07 0.36%%% (). 49%%* 0.80%*  0.02" 0.40™" 0417

C (1.07) (9.06)

Co, 13.0%% 582 0.75 0.29%% Q. 2]%%* 0.59" 0.27%%  (.]2%*
1.91) 0.78)

CUE (.78 0.16%#% 0.66 0.64%=%  0.70%*% (. 4]*
(0.03) 0.01)

CUE, 0.46% 5 0.12% 0.48 0.74%5% (764 0.02% 0.07*
0.02) 0.01)

CSE (.83 0.40%% 0.68 0.36%%%  (0.26%** 0.72%% 0.96%  0.27%% (.15%*
0.02) 0.01)

#p < 0.05; **p < 0.01; #=%p < 0.001

Discussion

Glucose tracing experiments have traditionally
assumed that tracer C is partitioned only between
microbial biomass and CO, pools during short incu-
bations <2 days (Joergensen 1996; Dictor et al. 1998;
Jenkinson et al. 2004). Microbial residues, opera-
tionally defined as non-living organic C of microbial
origin, have been suggested to accumulate only later in
time as necromass accumulates or cells exude prod-
ucts to favorably modify their environment for growth.
As a result, CUE and extraction coefficients used in
the estimation of microbial biomass do not account for
residues. Given recent evidence for the largely
microbial provenance of SOM (Schmidt et al. 2011;
Miltner et al. 2012; Kallenbach et al. 2016), residues
should no longer be overlooked.

We found from our lab experiment that 30% of
amended C is present as microbial residues within 6 h

of tracer amendment, much sooner than is generally
assumed. Meta-analysis of 18 previously published
glucose tracing studies corroborates this result: ~34%
of tracer C was found in the form of residues within
minutes of amendment, nearly as much as in microbial
biomass. Contrary to expectation, residues also appear
to decline over time after substrate addition rather than
accrue. These results suggest that soil microorganisms
have the potential to rapidly synthesize and exude
substrate C and/or that biomass turnover generates
necromass-derived residues almost immediately after
tracer addition. Given that the estimated lifespan of
soil bacteria may average roughly two days (Rousk
and Baath 2011; Koch et al. 2018), it should perhaps
be expected that residues could form this quickly.
Rapid residue formation is also consistent with the
prioritization of maintenance activities before growth;
many residue products like exoenzymes and capsular
polysaccharides for biofilm formation may be
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added) over 180 incubation days between the pools of
respiration (CO,), soil C, microbial biomass C (MBC), and
residue C (=Soil C — MBC). Data represents 315 observations
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Fig. 3 Trends in carbon use efficiency (CUE) over 180 days
after glucose tracer addition. Data represents 315 observations
from 18 published studies (Supp. Table 1). Solid line fit to green
circles: CUE (* " "*MBC/("* " MBC + '*°"'*CO,)); dashed
line fit to red squares: CUE, (" "“MBC/('* " "“MBC + 2o !4
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CSE ((13 or ]4MBC + 13 or '4Residue C)/(l’; or I4MBC + 13 or 14
CO, + 3o Residue C)). Inset expands detail from the first 50
incubation days. (Color figure online)
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from 18 published studies (Supp. Table 1). Statistics generated
from non-linear least squares modeling of responses over time.
*p < 0.05; **p < 0.01; ***p < 0.001

constitutively produced before growth can occur
(Joergensen and Wichern 2018; Marchus et al.
2018). The slow decline and asymptote in residue
mass over time likely represents a slowing of micro-
bial recycling until less biologically available, stabi-
lized materials remain in soil.

The low standard error of the mean for glucose
partitioning was surprising given the differences
among the 18 surveyed studies in soil biology (e.g.,
starting MBC; range 37-1654 ug C g~ dry), texture
(e.g., percent clay; range 1.7-50%), and experimental
conditions (e.g., glucose amendment; range
0.0009-5000 pg C g~' dry). For example, ~42%
(£2.1 S.E.) of glucose accumulated as MBC and 13%
(£1.91 S.E.) as CO; in the hours immediately after
amendment. CUE was relatively fixed at ~75%
[=42%/(42% + 13%)] for the studies we surveyed as
a result of the low standard error. Since this has been
reported frequently by others (Dijkstra et al.
2011, 2015; Frey et al. 2013; Jones et al. 2018;
Mehnaz et al. 2019), glucose metabolism appears to
be a conserved process in soil. This could limit the
range of insights gained from isotopic glucose tracing
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if this method is insensitive to other drivers of CUE,
such as differences in trait-based features of microbial
communities (Fierer et al. 2007; Morrissey et al. 2017;
Malik et al. 2019).

In contrast to short incubations, glucose partition-
ing over longer (>24 day) incubations was responsive
to other soil variables. For instance, high starting
MBC led to a greater percent of tracer accumulating in
MBC and less mineralized to CO, or present as
residues. The net effect of these drivers was tracer
retention in soil when initial MBC was higher. High
microbial biomass is likely accompanied by biofilm
production and denser cell consortia that enhance the
exchange and recycling of residues, effectively pro-
moting C return to the biomass pool. Additionally,
tracer retention in soil over longer periods of time may
be under the control of certain master variables (e.g.,
SOM content) that also positively affect microbial
biomass.

Clay content and glucose amendment levels appear
to be secondarily influential drivers (after MBC) on
tracer partitioning. Others have suggested that clay
enhances microbial biosynthesis by serving as a
reservoir of exchangeable organic substrates (van
Veen et al. 1985; Gregorich et al. 1991). Although we
also observed a positive relationship between clay
content and starting MBC, clay content negatively
affected tracer acquisition by microbes while strongly
promoting residue mass. From this it appears that clay
content competes with microbial biomass by scav-
enging exudates and necromass or physically protect-
ing it (Jilling et al. 2018). This clay effect may be
transient; for example, the exchangeability of residues
with organo-mineral complexes can increase with soil
pH (Kleber et al. 2015) or elevated root exudation
(Keiluweit et al. 2015). We caution that use of high
glucose addition rates, although less consistent and
weaker in effect than other predictors, can inflate
glucose mineralization (Schneckenberger et al. 2008)
and thereby reduce CUE estimates below in-situ
levels.

Certain conditions are associated with maximal
CUE in soil and thus the potential to build SOM
(Sauvadet et al. 2018; Kallenbach et al. 2019). For
example, CUE appears to be highest when tempera-
tures do not exceed species-specific thresholds (Stein-
weg et al. 2008; Schipper et al. 2014; Min et al. 2016)
and when resource stoichiometry is in balance with
metabolic requirements (Keiblinger et al. 2010;

Sinsabaugh et al. 2013). From our present work, the
initial MBC amount emerges as another critical factor
that enhances CUE [Eq. (2)] by promoting accumu-
lation of tracer C in microbial biomass and dampening
its mineralization. In contrast, clay content was not an
important predictor of CUE as its effects on tracer
accumulation in MBC and CO, pools offset one
another.

Focusing on a two-pool definition of CUE [i.e.,
MBC and CO,; Eq. (2)] appears shortsighted given the
evidence that residues can form rapidly, have sub-
stantial mass, and are important SOM precursors.
Tracer C is nearly as likely to be in the form of
residues as MBC after short incubation (34% vs. 42%
of added tracer-C, respectively), and almost twice as
likely after longer incubation (19% vs. 11%, respec-
tively). An ecosystem perspective on CUE (sensu
Geyer et al. 2016) that accounts for substrate recycling
and matrix stabilization in the form of residues is
merited. CUE, adds residues into the efficiency
denominator [Eq. (6)] to fully account for substrate
uptake, reducing the average efficiency observed 48 h
after glucose addition from 0.65 to 0.40 for the studies
surveyed here (Fig. 4). Adding residue mass into the
CUE denominator and numerator (CSE), yields an
efficiency of 0.75; 75% of added glucose was retained
in soil as MBC or any non-biomass microbial products
which may collectively be SOM precursors. By
factoring in residues, CSE may directly link microbial
efficiency with ecosystem-scale SOM formation more
than a conventional CUE metric could.

Our discussion to this point has assumed that tracer
C in soil that is not MBC, after applying an extraction
coefficient to account for unextractable biomass, is
microbial residues. Two further hypotheses warrant
mention: this tracer is (1) additional unex-
tractable biomass that needs to be accounted for with
lower Kgc values, or (2) glucose that has been directly
stabilized on organic or mineral surfaces without
microbial processing. The first hypothesis would
require lowering the average Kgc from 0.41 to 0.22
for the studies we surveyed with the shortest incuba-
tions of <2 days (n = 40 observations) (Fig. 5). A
coefficient this low is unlikely given the range of
coefficient values that have been found via direct and
indirect calibration (0.21-0.59, mean = 0.46; Joer-
gensen 1996). Direct stabilization of glucose in the
second hypothesis is also unlikely, given that glucose
is an uncharged molecule that undergoes rapid
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Fig. 4 Conceptual diagram summarizing the trends in glucose-
derived C found by meta-analysis of 315 observations in 18
studies (Supp. Table 1) over time after glucose addition (bottom
panel). While the total amount of glucose-C remaining in soil
declines over time, the relative proportion found as residues
(“Res”) increases compared to microbial biomass C (“MBC”).
All pools, including respiration (“CO,”), reach an asymptote
within ~24 incubation days. Three equations of carbon use
efficiency are derived from this data: CUE (MBC/
(MBC + CO,)); CUE, (MBC/(MBC + CO, + Residue C));
CSE ((MBC + Residue C)/(MBC + CO, + Residue C)).
Solid rectangles enclose ‘efficient’ pools positively related to
the efficiency metric; dashed rectangles enclose ‘inefficient’
pools negatively related to the metric. The traditional 2-pool
formulation of CUE does not account for the substantial residue
C pool. We expand on this definition by including residue C as a
source of ‘inefficiency’ within CUE, and by including residue C
as a source of ‘efficiency’ within CSE (carbon sequestration
efficiency)

microbial uptake (Fischer et al. 2010; Glanville et al.
2016). After sterilization to prevent microbial uptake,
glucose is largely re-extractable from soil (Bremer and
van Kessel 1990; Kuzyakov and Jones 2006; Hill et al.
2008). Our laboratory experiment also shows that,
when microbial uptake is delayed by high glucose
concentrations, glucose extractability from soil is
unaffected and non-biomass ‘residues’ do not form
(Fig. 1). We find only one reference reporting sub-
stantial sorption of glucose in soil (~ 7% of the initial
amendment after 5 h) that may serve as an upper
bound on such processes (Fischer et al. 2010).

Direct quantification of residues would support our
conclusions but are difficult to make. Culture-based
approaches can permit physical isolation of biomass
from exuded products, although natural growth con-
ditions are sacrificed. Isotopic tracing combined with
nuclear magnetic resonance imaging or mass
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Fig. 5 The relationship between extraction coefficient (Kgc)
used in estimation of microbial biomass C and the resultant
proportion of glucose-derived C that would be attributed to
residue C (=Soil C — MBC). Smaller Kgc values result in larger
MBC estimates, thereby accounting for a greater proportion of
glucose-derived C remaining in soil such that residue C
declines. Bottom panel is a frequency histogram of Kgc values
used in the 18 studies we examined by meta-analysis (mean
Kgc = 0.41). Top panel depicts the mean residue C estimated
immediately after tracer addition for the 18 studies we examined
(black dot = 34%; see Table 1). Solid line indicates hypothetical
changes in this quantity of residue C with use of other Kgc
values, including full accounting of all glucose-derived C in soil
as MBC (i.e., no residue C) with a Kgc value of 0.22

spectrometry are adept at characterizing metabolites
in soils, but discriminating between intracellular and
exuded, non-living compounds remains a challenge
(Derrien et al. 2007; Simpson et al. 2018) alongside
many of other technical difficulties with working in
soil.

We conclude that residues likely have an underes-
timated role in soil C cycling given the evidence that
microbes can generate non-biomass residues as
rapidly as living biomass. This is consistent with the
wide-ranging challenges microorganisms must over-
come before growth in soil can presumably occur:
preventing desiccation with capsular sugars, acquiring
C and nutrients via exogenous metabolism (Joer-
gensen and Wichern 2018), and combating neighbors
(Maynard et al. 2017) among others. Increasing
severity of environmental stresses caused by climate
change or other anthropogenic activity may induce
greater shifts towards such investments at the expense
of growth. Understanding when, why, and to what
extent microbial residues form will inform
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fundamental aspects of soil science like microbial
biomass estimation, but also provide continuity
between spatially and temporally narrow concepts
like microbial activity with those like SOM formation
at much broader scales of relevance.
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