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ABSTRACT Here, we present the draft genome sequence of a novel species of the
genus Singulisphaera (phylum Planctomycetes, family Isosphaeraceae) isolated from
soil. Singulisphaera sp. strain GP187 has a relatively large mobilome and numerous
novel genes that may contribute to the production of bioactive molecules.

Culture-independent analysis reveals that Planctomycetes is the fifth most abundant
bacterial phylum in global soil samples (1), yet this phylum remains underrepre-

sented in axenic cultures, and a large majority of these cultures are derived from aque-
ous environments (2). Aqueous planctomycetes are hypothesized to have evolved
from terrestrial species (3).

Singulisphaera sp. strain GP187 was isolated on 3 June 2014 from the Harvard
Forest, a temperate forest ecosystem in Petersham, MA (42.54°N, 272.18°W). Organic
horizon soil was pretreated with 6% yeast extract plus 0.05% SDS (4), plated onto oat-
meal medium, and incubated aerobically at 20°C, with colonies appearing after 8 days.
GP187 was the only Planctomycetes strain of the hundreds of isolates from this site (5)
and thus was subjected to whole-genome sequencing.

GP187 was grown aerobically on Reasoner’s 2A (R2A) medium (pH 7) (6). Genomic
DNA was purified using a modified cetyltrimethylammonium bromide (CTAB) proce-
dure (7) but was not sheared or size selected. The draft genome sequence was gener-
ated at the DOE Joint Genome Institute (JGI). A PacBio SMRTbell library was con-
structed and sequenced on the PacBio RS platform, generating 407,937 reads (N50,
3.6 kbp). The filtered raw reads (675.3Mbp) were assembled using HGAP v2.3 _p5 (pro-
tocol version, 2.3.0; method, RS HGAP Assembly.3, smrtpipe.py v1.87.139483) (8). The
final draft assembly contained 5 contigs in 5 scaffolds (N50, 6.278Mbp), estimated as
99.61% complete and 5.81% contaminated using CheckM v1.0.18 (9) in KBase (10). The
input read sequencing depth was 72.8�. Gene annotations were completed within the
JGI’s Integrated Microbial Genomes (IMG) platform (11) and KBase. Default parameters
were used for all software.

The genome is 10,689,158 bp (G1C content, 63.07%) and is predicted to encode
8,388 proteins (36.6% without predicted function), 8 rRNA operons, and 110 RNA genes
(24 rRNAs, 64 tRNAs). GP187 has the largest genome of cultured Isosphaeraceae strains
and the second largest genome of cultured Planctomycetes strains (12).

Phylogenetically, the closest species to GP187 is the aquatic Singulisphaera acidi-
phila DSM 18658 (13). These strains share 98.84% homology for 16S rRNA genes (aver-
age as determined by searching public RNA isolates with IMG BLAST) and 86.7%
whole-genome average nucleotide identity (ANI) (IMG pairwise ANI). Isosphaeraceae
genome sequences characteristically carry large plasmids; GP187 harbors a putative
plasmid of 63.8 kb (G1C content, 61.8%; a lower G1C content is typical of plasmids
[14]). The subtilisin gene open reading frame spans, without gaps, the ends of contig5
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and shares 82% homology with the plasmid-encoded subtilisin gene of S. acidiphila
DSM 18658, suggesting that contig5 is a circular plasmid.

GP187 contains 60% more mobilome-associated genes (186 [2.2% of protein-
encoding genes] versus 117 [1.5%], respectively) and 78% more genomic islands (41
versus 23, respectively) than S. acidiphila DSM 18658, as predicted by IslandViewer4
(15). GP187 has a greater potential to synthesize specialized metabolites, given that
novel genes of this species are categorized as giant genes (#5,000 bp with Kbase RAST
annotation) (16) or are located in biosynthesis gene clusters (17) more often than in S.
acidiphila DSM 18658 (Table 1).

This genome sequence will contribute to our understanding of terrestrial species
of Planctomycetes, a phylum abundant in soil but underrepresented in isolate ge-
nome analysis. Analysis of this genome sequence may elucidate its ecological role in
terrestrial ecosystems, identify evolutionary relationships between terrestrial and
aquatic Singulisphaera species, and contribute to the discovery of novel secondary
metabolites.

Data availability. This whole-genome sequence was deposited at DDBJ/EMBL/
GenBank under the accession number NZ_FSRB00000000.1. The raw data were depos-
ited in the JGI GOLD under the project number Gp0151081 and in the Sequence Read
Archive under the accession number SRX2158412. The JGI annotation is found at https://
img.jgi.doe.gov/cgi-bin/m/main.cgi?section=TaxonDetail&page=taxonDetail&taxon_oid=
2695420965#.
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Genes without
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Genes without predicted
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