
Efficient Quantum Circuit Decompositions

via Intermediate Qudits

Jonathan M. Baker

Department of Computer Science

University of Chicago

jmbaker@uchicago.edu

Casey Duckering

Department of Computer Science

University of Chicago

cduck@uchicago.edu

Frederic T. Chong

Department of Computer Science

University of Chicago

chong@cs.uchicago.edu

Abstract—Many quantum algorithms make use of ancilla,
additional qubits used to store temporary information during
computation, to reduce the total execution time. Quantum com-
puters will be resource-constrained for years to come so reducing
ancilla requirements is crucial. In this work, we give a method
to generate ancilla out of idle qubits by placing some in higher-
value states, called qudits. We show how to take a circuit with
many O(n) ancilla and design an ancilla-free circuit with the
same asymptotic depth. Using this, we give a circuit construction
for an in-place adder and a constant adder both with O(log n)
depth using temporary qudits and no ancilla.

Index Terms—quantum computing, multi-valued logic, adder
circuit, qutrit, qudit

I. INTRODUCTION

Many quantum algorithms make use of ancilla, additional

free bits used to store temporary information during compu-

tation which are typically returned to their original state after

use. Ancilla have a variety of use cases such as to reduce the

total execution time. In some cases, they can provide asymp-

totic improvements to the depth of circuit decompositions.

This highlights an important space-time tradeoff in quantum

programs - we spend extra space in the form of ancilla in order

to reduce the depth of an input circuit.

Real quantum machines will have a limited number of qubits

so it is important that we make the most of them to enable

computation of larger, more useful problems sooner. Recently,

[1] demonstrated higher dimensional qudits could be used

as a replacement for ancilla in certain circuit components to

great effect. While quantum circuits are often written in terms

of binary logic gates on qubits, in many quantum technolo-

gies this two-level abstraction is superficial. Superconducting

qubits [2] and trapped ions [3] have an infinite spectrum of

possible states and the higher states are typically suppressed.

Unfortunately, by accessing these states, the computation is

subject to a greater variety of errors, in fact the number of error

types scale quadratically in the computing radix [1]. However,

if qudit states are used properly, the amount gained outweighs

this cost. Specifically, we use qudit states temporarily during

computation while maintaining binary inputs and outputs of a

circuit.

This work is funded in part by EPiQC, an NSF Expedition in Computing,
under grants CCF-1730449/1832377; in part by STAQ under grant NSF Phy-
1818914; and in part by DOE grants DE-SC0020289 and DE-SC0020331.

Here we propose ancilla, specifically clean ancilla, be gen-

erated local during the decomposition of an algorithm into

a quantum circuit. That is, we propose a new circuit which

performs qubit-qudit compression storing the information of

many qubits as a small number of qudits at the cost of

some gate overhead. These compression circuits produce clean

ancilla in the |0〉 state. The stored data can be retrieved

later when needed since all quantum operations are reversible.

Essentially, when certain groups of qubits will be unused for

a long period of time, we can repurpose them by compressing

them and using the produced ancilla. This “compression”

is a rearrangement of the stored binary values into higher

states. This allows us to store more information into the same

number of physical quantum devices and free up qubits for

computation.

In this work we present an application of this technique to

give logarithmic depth decompositions of quantum arithmetic

circuits - a carry lookahead adder and by extension addition by

a constant. In Section III we present two compression circuits

for qubit-qutrit and qubit-ququart compression and evaluate

advantages of various compression schemes. In Section IV

we present our decomposition of the zero-ancilla, in-place

A + B adder which takes as input two registers A and B of

qubits and possibly carryin and carryout; any fresh |0〉 states

used are generated locally. We then evaluate the costs of this

decomposition. Finally, we discuss various extensions to our

arithmetic decomposition in Sections IV-A and IV-B.

II. BACKGROUND

In this section we will briefly introduce the basics of

quantum computing on qubits, two-level quantum systems,

and then present a more general approach on qudits, d-

level quantum systems. For a more complete introduction to

quantum computing we refer the reader to [4] and, for a good

introduction to ternary quantum gates, [5]; our notation is a

natural extension to the gates used there as well.

A. Binary Quantum Computing

In quantum computation, we use quantum bits, or qubits,

which may occupy a superposition of basis states |0〉 and |1〉.
Single qubits are manipulated by applying quantum gates, such

as X , H or Z which transform the state in a reversible way,

unlike in typical classical computing where most operations,

303

2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL)

978-1-7281-5406-0/20/$31.00 ©2020 IEEE
DOI 10.1109/ISMVL49045.2020.00012

20
20

 IE
EE

 5
0t

h 
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n 

M
ul

tip
le

-V
al

ue
d 

Lo
gi

c 
(IS

M
VL

) |
 9

78
-1

-7
28

1-
54

06
-0

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IS
M

VL
49

04
5.

20
20

.9
34

56
04

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on February 11,2021 at 19:14:05 UTC from IEEE Xplore.  Restrictions apply. 



such as AND and OR are irreversible. In order to interact

multiple qubits, such as to entangle states, gates such as the

CNOT are applied. The CNOT is a controlled X , or NOT,

operation where it is applied to a target qubit only on states

where the control is in the |1〉 state.

Quantum circuits consist of a sequence of operations, also

called gates, applied to a set of input qubits. The depth of a

circuit is given as the length of the longest critical path from

input to output and the width of a circuit is the number of

qubits operated on. These circuits do not have fan-in or fan-

out and so when represented each line in the circuit diagram

corresponds to a single qubit and time flows from left to right

from inputs to outputs.

B. Multi-valued Quantum Computing

In many quantum systems, such as the ion trap or su-

perconducting computers, there is an infinite spectrum of

discrete energy levels. The standard binary abstraction is

an artificial simplification using the first two states. Instead,

we may consider qudits, d-dimensional qubits, to exist in a

superposition of any number of these states |0〉, |1〉, |2〉, etc.

We express this superposition as

|ψ〉 = α0 |0〉+ α1 |1〉+ ...+ αd−1 |d− 1〉 =
d−1∑

i=1

αi |i〉

where the αi are the complex amplitudes and |αi|
2

corre-

sponds to the probability of a qudit being measured in the

i-th state. For an n qudit system we have dn many basis

states. In theory, we have access to any finite number of these

levels. However, for various physical reasons, it is not often

practical to use large numbers of these levels. For example

in superconducting qubits, higher energy states decay more

quickly. Also, the energy gap between states is reduced for

higher states, making it harder to distinguish neighboring

states and reducing their reliability. For a complete guide to

superconducting qubits we refer to [6].

Qudits are manipulated in a similar manner to qubits,

however there are many additional gates which can be used

depending on d. In quantum circuits we inherit all of the

classical reversible operations. For example, for qubits, we saw

the X gate was equivalent to the classical reversible NOT. For

a single qudit we have access to every permutation of the d
basis states, or d!− 1 nontrivial operations. In practice, many

of these operations are unnecessary and only a small number

are needed to for universal computation. We make use of the

increment permutations, denoted X+k where + is addition

modulo d, which rotates a state |i〉 to |i+ k mod d〉 and the

flip permutations denoted Xij which flip the states |i〉 and |j〉
and leaves all others unchanged. X01 is equivalent to the qubit

X gate.

Each of these operations can be extended to two qudits as

a controlled operation that applies the single-qudit operation

conditioned on the control qudit being in a certain state. For

example, consider applying an X+2 operation on a d = 4 level

system conditioned on a control qudit being in the |3〉 state.

These controlled qudits have been physically realized and they

are universal for qudit computation [7]. This can be extended

to any number of controls but only two-qudit gates can be

directly executed on typical quantum hardware; any use of a

multi-controlled gate has a decomposition into one and two

qudit gates since these gates are universal. We only require a

single 2-controlled gate (Toffoli-like) and its decomposition is

given in [5]. We represent these gates in circuit diagrams with

the control types indicated by circles with the control values

inside. The applied gates, specifically the increment (X+i) and

flip gates (Xij) will be given as a square with the type of gate

inside.

III. QUBIT-QUDIT COMPRESSION

Typically, when using a higher radix computing paradigm,

we express a circuit entirely in the specified base, that is all

inputs and outputs are in the designated radix. An alternative

approach is to fix the input and output radix but allow the

use of higher level states temporarily during the computation,

i.e. we are permitted to occupy any level up to a specified d
during a computation with the guarantee that we return to the

specified radix.

What does this gain for us? It is known that by simply

fully encoding a computation into a higher radix we obtain a

constant space and time advantage over binary-only circuits.

However, recently it was shown that use of these higher states

can act as temporarily storage, similar to the use of an ancilla,

and can convey an asymptotic reduction in circuit depth [1].

This circuit construction, as well as other work, suggests we

can obtain better circuits while using fewer qubits by accessing

higher states temporarily.

We take this a step further and generate ancilla temporarily

out of input qubits in order to take advantage of previously

known efficient binary circuit decompositions like that of [8].

Using this method, we can reduce the number of external

ancilla needed from O(n) to 0 while keeping the same

asymptotic circuit depth. To do this, we allow subsets of qubits

to temporarily store higher values, becoming qudits, to store

the information of many qubits within a few qudits. As a

concrete example, consider three qubits. There are 23 = 8
total basis states while for two qutrits there are 32 = 9 basis

states. Therefore all the information of 3 qubits can be stored

in two qutrits and the third qubit can be left in a chosen state,

|0〉, a clean ancilla. We refer to this process as compression,

that is storing the information of many qubits in a smaller

number of qudits.

We consider various reversible compression schemes la-

beled x-y-z compression, where x is the radix of the input

qudits, y is the radix of the output qudits, and z is the number

of ancilla generated. Such operations exist if xm ≤ yn with

0 < n < m and m − n = z for some integers m,n, the

number of input qudits and the number of non-ancilla outputs,

respectively. Put more simply, these proposed compression

circuits exist if the number of basis states of the inputs is

fewer than the number of basis states of the non-ancilla outputs

and the number of non-ancilla outputs is strictly smaller

304

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on February 11,2021 at 19:14:05 UTC from IEEE Xplore.  Restrictions apply. 



A(d = 2)

2− 3− 1

+1 2 +1 2 A′(d = 3)

B(d = 2) = +1 2 +1 2 B′(d = 3)

C(d = 2) 1 X01 1 X01 1 1 X01 |0〉

Fig. 1. The compression of 3 qubits into 2 qutrits and an ancilla, |0〉. All +1 gates are done modulo 3. Using a sequence of qutrit gates, we can transform
three input qubits into the desired ancilla. When A, B and C are not going to be used for a long time in the circuit, they can be temporarily repurposed as
an ancilla bit elsewhere in the circuit. When we want to operate on these stored bits, we run the inverse of this circuit using any ancilla for the third qubit.

A B C A’ B’ C’

0 0 0 0 0 0
0 0 1 2 2 0
0 1 0 0 1 0
0 1 1 0 2 0
1 0 0 1 0 0
1 0 1 2 1 0
1 1 0 1 1 0
1 1 1 1 2 0

TABLE I
TRUTH TABLE FOR 2-3-1 COMPRESSION

than the number of inputs. Ideally, we choose compression

schemes with a good compression ratio, i.e. those for which

xm/yn ≈ 1.

In this paper, we consider 2-3-1 and 2-4-1 compression

as methods of generating ancilla for simplicity. Many other

schemes such as 2-8-2 and 3-9-1 are possible but require

increasingly complex compression circuits.

A. 2-3-1 Compression

In 2-3-1 compression we take as input three qubits and

output 2 qutrits and a single ancilla, a qubit guaranteed to

be in the |0〉 state. First, consider the truth table of Table I.

We note the partial function represented by this truth table is

invertible, implying there exists a reversible circuit that realizes

it. The third output, C’, is guaranteed to be in the |0〉 state,

an ancilla. By storing qubit information used infrequently we

can generate an extremely useful ancilla to be used elsewhere

in the circuit. Because we ensure all inputs are binary, we

do not need to consider the inputs with value 2 to the ternary

circuit. An example circuit realizing this truth table is given in

Figure 1. When a compression circuit of this type is applied,

we need to keep track of which pair of qutrits encodes the

three qubits, in order. When the compressed data is needed,

we can decompress by applying the inverse of this function.

The inverse circuit is simply the gates in reverse order with +1
replaced with −1. Notably, this inversion requires an ancilla

as input. To retrieve the information, the inverse should be

applied taking in any free ancilla and then the stored bits can

be computed on as normal.

This circuit, while accomplishing what is desired, can be

rather inefficient. For example, in architectures with limited

connectivity this circuit requires some number of expensive

communication operations since every input qubit must be

adjacent at some point. Furthermore, this circuit requires

the use of a two-controlled qutrit gate which is typically

decomposed into a sequence of 6 two-qutrit gates and 10

single-qutrit gates [5]. In total this compression requires 22

gates, 12 two-qutrit and 10 single-qutrit gates.

B. 2-4-1 Compression

While 2-3-1 compression required a fairly substantial num-

ber of gates, the 2-4-1 compression circuit can convert qubit

inputs into ancilla more simply and with few gates. This

does not come for free. In quantum computing, we subject

our computation to a greater probability of error by using

higher radix gates and by persisting for longer durations in

higher energy states. In Table II, we show that two qubits

can be compressed into a single ququart and one ancilla. 2-

4-1 compression is simpler than 2-3-1 compression because

22 states fit evenly in a single ququart with 4 states. In

Figure 2, we show a compression circuit using only 3 two-

ququart gates in total, a substantial reduction over the 2-3-1

counterpart. In the next section, we show how compression

and decompression can be used to design efficient circuits

requiring no ancilla.

A B A’ B’

0 0 0 0
0 1 2 0
1 0 1 0
1 1 3 0

TABLE II
TRUTH TABLE FOR 2-4-1 COMPRESSION

A(d = 2)
2− 4− 1

+2 2 3 A′(d = 4)

B(d = 2) = 1 X01 X01 |0〉

Fig. 2. The compression of 2 qubits into a single ququart and generating
an ancilla, |0〉. The +2 gate here is done modulo 4. This operation takes as
input two qubits, A and B, and produces a single ququart and an ancilla |0〉.
To do this, we need only 3 two-ququart gates. Similarly, to retrieve the stored
information, we can do the inverse of this operation using any ancilla for the
second qubit.

305

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on February 11,2021 at 19:14:05 UTC from IEEE Xplore.  Restrictions apply. 



IV. A+B ADDER

We now present our A+B adder. This circuit takes as input

two equal-sized registers of qubits, A and B, and optionally

carry-in or carry-out bits. This decomposition uses no ancilla

and instead generates ancilla locally when needed by sub-

components. In prior work, to achieve a logarithmic depth

decomposition, O(n) many ancilla were required where n is

the size of the input register. We will demonstrate how this

efficient decomposition can be used along with our new com-

pression technique to obtain an O(log n) depth decomposition

of the same adder in-place without the extra use of ancilla.

We first briefly review the work of [8] which gives a qubit-

only in-place adder with ancilla which we will refer to as

(A+B)2. We give the decomposition for registers of size 4 in

Figure 3. One of the key contributions of this prior work is to

demonstrate how, in logarithmic depth, the carry bits could be

computed and used (and subsequently uncomputed to restore

input ancilla back to the |0〉 state). This decomposition requires

2m−w(m)−⌊logm⌋ ancilla, where w(m) is the number of 1’s

appearing in the binary expansion of the number of inputs, m.

We will use this number later to determine how many ancilla to

generate via compression. This same prior work demonstrates

several variants of this circuit. We require those with either a

carry-in bit, a carry-out bit, or both.

We will now present our decomposition shown in Figure

4. Let A = (a1a2 . . . an) and B = (b1b2 . . . bn) be the input

registers with a1, b1 the least significant bits of each register.

We divide these registers into c blocks R1, . . . , Rc each of size

2n/c. We assume for clarity that n is a multiple of c but our

constructions will work for any n, with one additional block

containing the remaining 2(n mod c) qubits. Take Ri =
(a(i−1)(c/n)+1b(i−1)(c/n)+1 . . . ai(c/n)bi(c/n)) then notice for

i > 1 we can perform an addition circuit (A + B)2 with

carry-in and carry-out on block Ri in O(log(n/c)) = O(log n)
depth by generating the proper number of ancilla out of the

other input qubits, specifically 2(n/c) − w(n/c) − ⌊log n/c⌋
ancilla. We will assume a worst case scenario of 2n/c ancilla

to simplify the analysis. Suppose we are performing (A+B)2
on block Ri while every other block is unused. We can perform

compression on the currently unused qubits in all other blocks

{Rj |j �= i} to obtain generated ancilla which can then be used

by the current adder subcircuit.

Recall 2-3-1 compression takes 3 qubits and outputs a

single ancilla. Let a 2-3-1 Compress circuit be a circuit which

takes any number of qubits m as input and applies 2-3-

1 compression to triplets resulting in ⌊m/3⌋ ancilla. Then

applying 2-3-1 compression to all qubits in {Rj |j �= i} we

obtain ⌊(c − 1)2n/3c⌋ ancilla. We now have constraints on

what the constant c should be for our decomposition to be

feasible. That is we must have ⌊(c − 1)2n/3c⌋ ≥ 2n/c.
Because we must store intermediate carry values between each

(A+B)2, we will actually require an additional c− 1 ancilla,

giving us ⌊(c − 1)2n/3c⌋ ≥ 2n/c + c − 1. By solving the

inequality, this implies our construction is feasible for c = 5
and n ≥ 30. An alternative adder that is ancilla-free but does

a0

(A
+
B
) 2

• • • • a0

b0 • X • X s0

|0〉 • • • |0〉
a1 • • • • • a1

b1 • • X • • X s1

|0〉 • • • • |0〉
a2 = • • • • • a2

b2 • • • X • • • X s2

|0〉 • |0〉
|0〉 • • |0〉
a3 • • a3
b3 • • • • s3
|0〉 cout

a b c d e

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Fig. 3. An adder circuit from [8] on two four-bit registers A and B with
a carry-out bit using ancilla. The sum S is computed in-place on register B

while A is untouched and the ancilla are restored to |0〉. We use this as a sub-
component of our general decomposition. Each of the ancilla in this circuit
can be generated from other input qubits not shown here via our compression
circuits. Part a of the circuit computes carry generate and propagate for each
bit position. Part b computes the carry-in for every bit position. Part c does
the addition, storing the output in register B. Parts d and e uncompute b and
a respectively, restoring the ancilla back to |0〉.

not scale well asymptotically, like an O(n)-depth adder [9],

may be used where our construction is infeasible on small

problem sizes with n < 30.

The circuit construction now goes as follows, first con-

sidering the case when we have no carry-in and no carry-

out. To add in these additional features requires only minor

adjustments, discussed later. First, we compress the qubits in

blocks {Rj |j �= 1}. Then we apply (A + B)2 with carry-

out to the block R1 using the newly generated ancilla. The

compression block is constant depth (O(1)) and the adder

is logarithmic depth (O(log(n/c)) = O(log n)). The qubits

b1, . . . , bn/c now store the first n/c bits of the addition,

s1, . . . , sn/c. Also note the adder circuit restores all ancilla

(except the carry-out) to |0〉. Then, apply a compression

block to R1. Swap the carry-out, cout,1, to any of the ancilla

generated to hold on to whether a carry should be applied to

the next block (these carries are where the additional c − 1
term come from above). Next, we uncompress all of the bits

in R2 so we can apply (A+B)2 with carry-out and carry-in

(cin = cout,1) to block R2 using the other generated ancilla.

We repeat this process until the last block, Rc. In this case,

since we do not have a carry-out bit we apply (A+B)2 with

only carry-in (cin = cout,c−1).

We have now computed the sum A + B and now must

cleanup the intermediate carry bits. This can be done by work-

ing in reverse to uncompute each carry-out without undoing

the addition. One intuitive way would be to simply apply the

inverse of the (A + B)2 circuit we applied to block Rc−1

which will uncompute the addition and cout,c−1 and then re-

apply it without carry-out. Now the ancilla storing cout,c−1 is

restored to |0〉. We repeat this process on each of the blocks

306

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on February 11,2021 at 19:14:05 UTC from IEEE Xplore.  Restrictions apply. 



a1

(A
+
B
) 2

C
o

m
p

re
ss

(d = 3)

U
n

co
m

p
re

ss

U
n

d
o

ca
rr

y

a1

b1 (d = 3) s1
...

|0〉 ...
.

an/c . an/c

bn/c × cout,1 cin,2 × sn/c
an/c+1

C
o

m
p

re
ss

(d = 3)

U
n

co
m

p
re

ss

An/c+1

(A
+
B
) 2

An/c+1

C
o

m
p

re
ss

U
n

co
m

p
re

ss

an/c+1

bn/c+1 (d = 3) Bn/c+1 Sn/c+1 sn/c+1

...
|0〉 cout,1 × . . × cout,1 ...

(d = 3) . .

a2n/c (d = 3) A2n/c A2n/c a2n/c

b2n/c |0〉 B2n/c S2n/c × s2n/c

(d = 3)

(d = 3)
...

|0〉 cout,2 × ...
.

.

. cin,c−1

a(c−2)n/c+1

U
n

co
m

p
re

ss

U
n

d
o

ca
rr

y

C
o

m
p

re
ss

a(c−2)n/c+1

b(c−2)n/c+1 s(c−2)n/c+1

...
...

a(c−1)n/c a(c−1)n/c

b(c−1)n/c cin,c × s(c−1)n/c

a(c−1)n/c+1

U
n

co
m

p
re

ss

(A
+

B
) 2

C
o

m
p

re
ss

a(c−1)n/c+1

b(c−1)n/c+1 s(c−1)n/c+1

...
× cout,c−1 ...

an an

bn sn

Fig. 4. Our A+B adder that uses no external ancilla. The variant shown here for c = 5 uses 2-3-1 compression to generate one ancilla (marked as |0〉) for every three unused qubits, storing their values
in two qutrits (marked as d = 3). A box is drawn around every (A+B)2 and Undo carry gate to indicate that they use all the generated ancilla across the circuit. cout,i or cin,i is included on some of the
gates to indicate when the carry-in and carry-out versions are used and on which ancilla the carry-out is stored. The SWAP gates (pairs of × in the diagram) simply move a carry-out bit to another ancilla
where it is used as the next carry-in. The two blocks of gates shown with dashed lines are repeated c− 2 = 3 times along the diagonal indicated. If 2-4-1 compression is used, an ancilla is generated for
every two unused qubits so only c = 4 blocks are needed. The depth of this circuit is O(logn).

307

A
u
th

o
riz

e
d
 lic

e
n
s
e
d
 u

s
e
 lim

ite
d
 to

: U
N

IV
 O

F
 C

H
IC

A
G

O
 L

IB
R

A
R

Y
. D

o
w

n
lo

a
d
e
d
 o

n
 F

e
b
ru

a
ry

 1
1
,2

0
2
1
 a

t 1
9
:1

4
:0

5
 U

T
C

 fro
m

 IE
E

E
 X

p
lo

re
.  R

e
s
tric

tio
n

s
 a

p
p

ly
. 



in reverse order. Finally, after cout,1 has been uncomputed and

the ancilla restored to |0〉, we uncompress all of the qubits.

The resulting output will be the sum S in register B with

register A left unchanged from the input.

Uncomputing the intermediate carry-out bits can be im-

proved dramatically by noticing that by applying the inverse

of (A+B)2 with carry-in and carry-out and the subsequently

applying (A+B)2 with only carry-in is unnecessary. Instead

we can uncompute the carry-out by only applying the inverse

of the second half of (A + B)2 with carry-out and then

executing the second half of (A+B)2 with a few extra gates

in Figure 3d to cancel the carry-out.

Earlier, we show our decomposition only works when

c = 5 using 2-3-1 compression. However, due to page size

constraints, we do not show some of the repeated blocks in

Figure 4. The block of gates surrounded by a dashed line is

simply repeated in a block diagonal pattern indicated by the

ellipsis. If we instead used 2-4-1 compression, the factor of

3 in the earlier inequality would be replaced with 2 making

c = 4 feasible with a constraint of n ≥ 12.

Our decomposition performs addition in-place with zero

ancilla, taking advantage of qutrits (qudits in general) to obtain

ancilla instead of extra qubits for ancilla. Each of the (A+B)2
blocks has depth O(log n) for input register size n and we

perform only a constant 2c− 1 of them so our decomposition

also has O(log n) depth.

A. Carry-in and Carry-out

We can extend the above decomposition to allow for carry-

in quite simply. When computing the (A + B)2 and Undo

carry on R1 we simply use the (A+B)2 circuit with carry-in.

Similarly, we can allow for carry-out by simply substituting

an (A+B)2 with carry-in and carry-out on block Rc.

B. +K Adder

The method used to construct the A+B adder shown above

can be applied to any circuit that can be divided into blocks

while only needing to pass a constant number of bits to the

input of the following block. One example that follows from

A+B is the +K adder. The +K adder acts on a single register

of qubits B and computes the sum B +K in-place where K
is a classical constant known when creating the circuit.

The design of our +K adder will use as subcircuits the

(+K)2 circuit derived from (A+B)2 from [8] and described

earlier. The design of (+K)2 is the same as (A+B)2 except

the qubits of register A are removed and all CNOT gates with

a control on ai are removed and only replaced with X gates if

ki = 1. Similarly, the Toffoli gates (controlled-controlled-not

gates) are removed and replaced with CNOT gates in the same

way. Depending on the value of K, some of the ancilla may

also be removed but in the worst case, (+K)2 may still require

2n/c−w(n/c)−⌊log n/c⌋−1 ancilla for input size n/c which

we upper bound by 2n/c. The circuit still has O(log n) depth.

We use the same diagonal block structure as A + B but

now we define Ri = (b(i−1)(c/n)+1 . . . bi(c/n)). At step i, the

number of ancilla generated by applying 2-3-1 compression

to all qubits in {Rj |j �= i} is ⌊(c − 1)n/3c⌋. From this, we

obtain the inequality ⌊(c − 1)n/3c⌋ ≥ 2n/c + c − 1 which

determines when there are enough unused qubits to generate

the required ancilla. The extra c−1 ancilla are needed to store

intermediate carry values. When we solve this inequality, we

find that c = 8 blocks are required and the circuit will only

have enough ancilla when n ≥ 168. Both the number of blocks

and the minimum n are larger than for A+B because the input

to +K is only a single register so the ancilla required per input

qubit is doubled, resulting in a higher minimum n.

2-3-1 compression is not the only option. If we use 2-4-1

compression instead, more ancilla can be generated per input

qubit and we obtain the inequality ⌊(c − 1)n/2c⌋ ≥ 2n/c +
c − 1. The solution to this tells us that the minimum c = 6
and we can use the circuit for n ≥ 60.

V. CONCLUSION

We have shown a new use of qudits to generate ancilla

in-place and its application to the class of quantum circuits

that can be split into blocks. We give a new construction

for an in-place addition circuit that uses no ancilla but still

obtains the same O(log n) asymptotic depth as the qubit circuit

it was based on that needed O(n) ancilla. The new circuit

can be used as a drop-in replacement in algorithms to use

significantly fewer total qubits. These results should encourage

further work in qudit-assisted quantum computing. We are

particularly interested in validating these designs on hardware

as more quantum machines are built. This would allow us

to better evaluate the space and reliability tradeoffs of using

higher radix quantum states.

VI. ACKNOWLEDGEMENTS

We thank Craig Gidney and Pranav Gokhale for helpful

discussions.

REFERENCES

[1] P. Gokhale, J. M. Baker, C. Duckering, N. C. Brown, K. R. Brown,
and F. T. Chong, “Asymptotic improvements to quantum circuits via
qutrits,” in Proceedings of the 46th International Symposium on Computer

Architecture, pp. 554–566, ACM, 2019.
[2] P. J. Low, B. M. White, A. Cox, M. L. Day, and C. Senko, “Practical

trapped-ion protocols for universal qudit-based quantum computing,”
arXiv preprint arXiv:1907.08569, 2019.

[3] T. Liu, Q.-P. Su, J.-H. Yang, Y. Zhang, S.-J. Xiong, J.-M. Liu, and
C.-P. Yang, “Transferring arbitrary d-dimensional quantum states of a
superconducting transmon qudit in circuit QED,” Scientific reports, vol. 7,
no. 1, pp. 1–10, 2017.

[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information: 10th Anniversary Edition. USA: Cambridge University
Press, 10th ed., 2011.

[5] Y.-M. Di and H.-R. Wei, “Elementary gates for ternary quantum logic
circuit,” arXiv preprint arXiv:1105.5485, 2011.

[6] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D.
Oliver, “A quantum engineer’s guide to superconducting qubits,” Applied

Physics Reviews, vol. 6, no. 2, p. 021318, 2019.
[7] A. Muthukrishnan and C. R. Stroud, “Multivalued logic gates for quantum

computation,” Phys. Rev. A, vol. 62, p. 052309, Oct 2000.
[8] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, “A logarithmic-

depth quantum carry-lookahead adder,” Quantum Information & Compu-

tation, vol. 6, no. 4, pp. 351–369, 2006.
[9] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A new

quantum ripple-carry addition circuit,” arXiv preprint quant-ph/0410184,
2004.

308

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on February 11,2021 at 19:14:05 UTC from IEEE Xplore.  Restrictions apply. 


