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Geono-Cluster:
Interactive Visual Cluster Analysis for Biologists

Subhajit Das∗, Bahador Saket∗, Bum Chul Kwon, and Alex Endert

Abstract—Biologists often perform clustering analysis to derive meaningful patterns, relationships, and structures from data instances
and attributes. Though clustering plays a pivotal role in biologists’ data exploration, it takes non-trivial efforts for biologists to find the best
grouping in their data using existing tools. Visual cluster analysis is currently performed either programmatically or through menus and
dialogues in many tools, which require parameter adjustments over several steps of trial-and-error. In this paper, we introduce
Geono-Cluster, a novel visual analysis tool designed to support cluster analysis for biologists who do not have formal data science
training. Geono-Cluster enables biologists to apply their domain expertise into clustering results by visually demonstrating how their
expected clustering outputs should look like with a small sample of data instances. The system then predicts users’ intentions and
generates potential clustering results. Our study follows the design study protocol to derive biologists’ tasks and requirements, design the
system, and evaluate the system with experts on their own dataset. Results of our study with six biologists provide initial evidence that
Geono-Cluster enables biologists to create, refine, and evaluate clustering results to effectively analyze their data and gain data-driven
insights. At the end, we discuss lessons learned and implications of our study.

F

1 INTRODUCTION

C LUSTERING is the task of summarizing and aggregating
complex multi-dimensional data in such a way that items

in the same group are more similar to each other than those in
different groups. Domain experts often want to perform clustering
to find groups of data items that share common characteristics with
respect to data attributes. For example, a biologist who wants to
investigate genome data can cluster gene sequential data according
to similarity between their expression profiles. Clustering has a
widespread application in several domains [1], [2], [3].

Our paper aims to accommodate the process of interactive
visual clustering for biologists. Like other domain experts, bi-
ologists also want to cluster their data and visualize the result
to investigate patterns, relationships, and structures among data
instances and attributes. However, not all biologists often have
formal data science training. The lack of knowledge in data science
often prevents users from clustering their data and from interpreting
the results in the biological context using the existing tools. Based
on our collaborations with a group of biologists, we found that they
use tools such as SAS and/or programming languages like R to run
cluster analysis on their data. These programming languages (or
tools) require users to specify clustering algorithms and parameters
in written scripts. The absence of interfaces designed specifically
for clustering tasks frequently required by biologists may increase
execution costs and impede the adoption of clustering methods.

There is a large body of visual analytic systems that employ
visual clustering as a part of high dimensional data analysis
(e.g., [4], [5], [6], [7], [8], [9], [10]). Some of these visual analytic
systems are often complex, and require careful tuning, steering, and
parameterization of the clustering models. Interaction complexity
in such systems often poses fundamental usability challenges for
those domain experts who may not have formal data science
training [11]. Furthermore, it is challenging for domain experts to
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directly apply their knowledge into the clustering processes. For
example, biologists exploring genome data might want to merge
two clusters because of the similarity of evolutionary history of
the genes located in two clusters. Alternatively, they might want
to subdivide a specific cluster to estimate the disease risk of genes
in different sub-clusters in a specific population. As such, current
tools are ill-equipped to help biologists build and explore alternate
groupings based on their domain expertise, hindering their ability
to discover patterns in the data. Many such tools lack usable
interactions to allow domain experts to translate domain-specific
questions and hypotheses about the data into model parameters to
foster the exploratory process of their tasks.

To tackle the challenges for biologists, we present Geono-
Cluster, a visualization tool that applies the “by demonstra-
tion” [12] paradigm. Instead of requiring biologists to transform
their clustering tasks into system specifications by going through
layers of menus or programming it, Geono-Cluster allows biologists
to directly apply their domain expertise by visually demonstrating
how their expected changes should look like (e.g., dragging one
cluster and dropping it over another cluster to show their interest
in merging the clusters). By translating these demonstrations into
numerical processes that update the underlying cluster distance
functions, the system predicts biologists’ intentions and generates
potential clustering results (e.g., different visual clustering outputs
that merged those two clusters). Thus, Geono-Cluster is not
designed solely for constructing the most accurate cluster model,
but instead to help users glean insights through data exploration
facilitated by the the process of testing multiple clustering hy-
potheses realized as alternative models. While at times these two
goals can be met at the same time by specific models (accurate
and domain-relevant models), the exploration of alternative models
may at times lead users to choose models which sacrifice overall
model accuracy for the benefit of allowing them to understand
a new aspect of the data. We have developed Geono-Cluster in
collaboration with biologists investigating disease risks frequency
across different populations. We closely followed the design study
protocol [13] to derive system requirements, tasks to be supported,
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and design guidelines based on feedback from biologists.
We conducted a qualitative study with six expert biologists.

In this evaluation, we observed how our tool helps biologists to
cluster their data and identify challenges they encounter while
using our tool. We also conducted a semi-structured interview to
collect biologists’ feedback and new ideas. Our results demonstrate
that Geono-Cluster enables biologists to build, refine, and evaluate
clustering outcomes with intuitive demonstration-based interaction
and to interactively explore the results through multiple views.

2 RELATED WORK

Different domains are seeing a surge in data collection at an alarm-
ing rate, which needs to be efficiently analyzed [14]. Clustering a
dataset is a popular approach to understand the inherent structure
of large datasets and is used in several critical domains [1], [2], [3].
Many tools and programming languages such as R, Matlab, SAS,
and Python support cluster analysis. Despite the flexibility, using
such methods often require an intermediate to advanced knowledge
of programming skills. For this reason, domain experts often
need to go through a steep curve of learning these programming
languages. Furthermore, these tools often lack visual feedback and
interactivity, which make users difficult to understand the results
and to reconfigure the setting for improved results in next iterations.
Thus, the lack of interactivity can increase execution costs and
impede the data exploration process [15].

2.1 Interactive Visual Clustering Analysis
Researchers have been investigating various techniques and ap-
proaches to facilitate interaction in clustering analysis, with the
goal of bringing a human in the loop. Effective user interaction
is critical to the exploratory data analysis process, and thus to the
success of the visual analytic systems for visual clustering. A large
body of previous work designed and implemented interactive tools
to support interactive visual clustering and analysis (e.g., [5], [10],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25]).

Clusterophile [17] and Clusterophile 2 [5] are both designed to
enable users to explore different choices of clustering parameters
and reason about clustering instances in relation to data dimensions.
Datta et al. built an interactive clustering system - CommunityDiff,
showing a mechanism to visualize ensemble space by using a
weighted combination of various clustering algorithms to aid
identifying patterns, commonalities, and differences [26]. iVis-
Clustering [27] is another tool that supports document clustering
based on a widely used topic modeling method called latent
Dirichlet allocation (LDA). Hu et al. [21] and Guo [23] separately
developed interactive tools that allow users to select features while
clustering their data. ClusterSculptor [20] is another tool that aids
data scientists in the derivation of classification hierarchies in
cluster analysis. VisBricks [28] provides multiform visualization
for the data represented by clusters (it enables users to select which
visualization technique to use for which cluster). In a different
project, Basu et al. [19] proposed a tool that allows users to move
data items and build clusters of data items from a larger set, while
the system suggests data items which can be further added to the
set. ClusterVision [10] is a more recent tool that enables users to
cluster data using a variety of clustering techniques and parameters
and then ranks clustering results utilizing five quality metrics.

Geono-Cluster differentiates itself from the aforementioned
work mainly by supporting biologists’ visual clustering analysis.
Many of the existing visual analytic systems often require careful

tuning, steering, and parameterization of the clustering models [5],
[20], [27]. In such systems, analysts need to translate their
analytic goals into clustering specifications by going through layers
of menus. Unlike existing tools, Geono-Cluster enhances user
interaction expressivity by enabling users to interactively define
clustering results by their demonstration on data items, which is
more user-friendly and easy to understand for domain experts.

2.2 Interactive Clustering Analysis for Biologists

There exist a few visualization tools that are designed for clustering
analysis of biological data. StratomeX [29] is an interactive
visualization tool that enables users to explore the relationships
of subtypes across multiple genomic data types. StratomeX is
mainly designed to support tasks with “comparative nature” (e.g.,
evaluate how well two or more stratifications support each other).
CComViz [30] is a different application that uses the parallel
sets technique to compare clustering results. Kern et al. proposed
novel methods for evaluating and comparing cluster results and
implemented their methods into StratomeX [31]. XcluSim [32]
is another tool for bioinformatics data helping users to compare
multiple clustering results, supporting a diverse set of algorithms.

Unlike other tools that are mainly designed to support tasks
with “comparative nature”, Geono-Cluster is designed to cover
a different category of tasks such as customizing, merging,
and splitting clusters. Moreover, Geono-Cluster aims to reduce
biologists’ cognitive cost and enhance interaction expressivity
by implementing the “by demonstration” approach [12]. Geono-
Cluster enables biologists to apply their domain expertise into
clustering processes by interacting with visuals representing data
items and clusters (e.g., a biologist can express that a data item
does not belong to a cluster by dragging it out of a cluster). As
a result, the system finds the most appropriate clustering results
based on the user interactions (e.g., finding clustering results where
the selected data item does not belong to the specified cluster).

2.3 Demonstration-Based Interaction

Demonstration-based interaction has been applied to many ap-
plications. A common application of the technique in human-
computer interaction is “programming by demonstration” [33].
Other domains that have successfully used the “demonstration-
based” paradigm include data cleaning [34], [35], database query-
ing [36], temporal navigation [37], visual data analysis [38], and
visualization construction [12], [39]. For example, Kandel et al. [35]
enables users to demonstrate desired changes to tabular dataset by
making direct edits to the table elements (e.g., select and delete
empty rows) [40]. In response to the given demonstrations, the
system suggests potential transformations to accept to generalize
the demonstrated change and update the data table. Prior works also
enabled steering dimension reduction models by demonstrating
relative similarity between data items (e.g., [41], [42]).

Our work enables biologists to demonstrate their desired
clustering results by directly manipulating visual elements rep-
resenting clusters (e.g., moving a subset of data items from one
cluster to another). In response to users’ demonstrations, the
system computes possible clustering results and recommends
them. Inspired by previous work [12], [35], each recommendation
provides a visualization which gives an overview of the clustering
result and a textual explanation.
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3 FORMATIVE ASSESSMENT

Here we explain a formative assessment that we conducted to
characterize users’ workflow, derive tasks and requirements from
it, to generate design guidelines to design the system.

3.1 Characterizing domain experts, data, and tasks
The motivation of this work stems from an ongoing project in
which we have been collaborating with biologists at the Georgia
Tech. We have been working with the biologists over the past 13
months to design and build solutions for supporting interactive
visual clustering of disease risk factors.

The dataset used by the biologists is from Genome Wide
Association Studies (GWAS Catalog) [43] which includes published
SNPs (single-nucleotide polymorphisms, representing differences
in a single DNA building block, called a nucleotide), and associ-
ation studies to analyse genetic sequences. Through this dataset,
biologists intend to determine “alleles” that correlate to various
diseases and traits. Alleles are various forms of a gene that
are formed by mutation and are found at the same place on a
chromosome. Using GWAS dataset biologists analyse SNPs to find
how do they vary between various genome samples.

During data analysis, biologists often focus on certain features
of their dataset such as, disease/trait, SNP identification number,
risk allele frequency, p-value, and odds ratio/beta. Focusing on
those values, they try to answer questions like, how and why disease
risk frequencies differ across populations, what are the statistical
power to detect those known SNPs, and how well associations
found in one population can transfer/replicate well to another
population. To answer such questions, researchers cluster their data
to investigate patterns and relationships of position on the genome,
risk allele, and risk allele frequencies that impact diseases risk
frequencies across different populations. This is an iterative process
and biologists frequently create customized clusters, merge/split
clusters, and investigate sub-clusters within a specific cluster to test
their hypotheses based on their expertise.

To cluster and visualize their data, these biologists currently
use tools/programming languages like Python, R, and SAS. They
revealed that the current process of clustering and visualizing the
data is rather time-consuming, cumbersome, and occasionally error-
prone. Our observations as well as researchers’ feedback show
that they often need to write and execute scripts to accomplish
their tasks. Writing scripts becomes even more challenging when
they want to perform more specific tasks such as merging two or
more clusters, as they have to translate these operations into the
proper syntax, sequence, etc. To overcome these challenges, we
designed an interactive visual clustering tool that enables visual
data clustering specifically tailored for biologists.

3.2 Tasks and Requirements
Following a user-centered method [44], we began our iterative
design process by investigating current practices, needs, and
challenges. We conducted multiple group discussions with two
biologists at the Georgia Tech. We started our discussions with the
biologists by asking them: 1) what kinds of questions do they ask
and answer while exploring their data? 2) why do they perform
clustering tasks during their analysis?, and 3) how do they currently
create clusters? Then, we freely continued our conversation that
touched upon the tools, analytic methods, and challenges they face
during the process. We took notes during all the group discussions.
We then read through our notes to gain a better understanding of

the requirements and challenges these biologists encounter while
clustering their data. After reading the data, we identified the
meaningful text segments (e.g., “[...] here we combine these two
clusters.”). We then assigned a code phrase that describes the
meaning of the text segment (e.g., merging clusters).

We initially identified three commonly performed clustering
operations that are currently challenging for biologists to complete
using existing programming languages and tools. Here we define
“clusters” or “clustering” interchangeably in two contexts: (1)
Algorithmic clustering models such as K-Means,etc, and (2) Group
of data items assigned to a collection based on an algorithmic
cluster model represented visually as a grouped node view.

T1: Hand-craft, Merge, and Split Clusters: Biologists apply
their domain knowledge to create customized clusters to better
understand which factor(s) is causing the ascertainment bias on
the dataset that are being used popularly. For example, one of
the biologist stated: “Given the identified SNPs [single-nucleotide
polymorphisms] that are associated with common disease and traits,
it’s interesting to create a cluster of SNPs.” In addition, biologists
apply their domain expertise to merge or split two or more clusters
depending on how related they think the clusters are based on
given feature(s). For example, one of the biologists mentioned:

“Depending on the evolutionary history of the genes, two or more
clusters can be really related to each other. If ascertained they
are related, we will merge them as one cluster." Another biologist
reported that “In my new project, we are comparing Africans to
non-Africans. In this case I merge Americans, East Asians, and
Europeans as one cluster, and compare that to Africans data.”

T2: Divide each cluster to sub-clusters: Biologists often investi-
gate sub-clusters within a specific cluster to: 1) understand which
other factors can affect the cluster, 2) compare two clusters based
on the member data items in each, and 3) see trends and patterns in
the sub-clusters, with respect to chosen features, We noticed that
the biologists found existing solutions challenging because they
had to write lines of scripts to compute and visualize sub-clusters
in a given cluster. Furthermore, the existing methods prohibit rapid
iteration and visualization of results, which inevitably prolongs the
exploratory clustering process to understand their data better.

T3: Adjust feature contributions: Biologists need to easily see
by how much different attributes/features contribute to computing
a cluster. Moreover, they often need to adjust the importance of
different features used for computing a cluster. Biologists currently
have to programmatically adjust the importance of features, execute
the code, and visualize the outcome. They often repeat this process
multiple times until they achieve a satisfactory result. They need
interactive methods to view and refine feature contributions.

3.3 Design Guidelines
We needed to explore alternatives and make design decisions
to better support the aforementioned tasks. In particular, Geono-
Cluster should be easy to use by experts who do not have formal
data science training. We developed a set of design guidelines
to inform those interested in developing visual analytic tools for
domain experts (in particular biologists). These guidelines are based
on existing tools designed for supporting visual data exploration
for biologists [31], [32], mixed-initiative systems [45], and our
experiences through several design iterations with biologists.

G1: Shifting the burden of specification from the biologists
to the systems. The existing tools and technologies put the
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Recommendation Panel

Attribute Panel

Table View

Cluster View

Fig. 1. The Geono-Cluster user interface consists of a Cluster View, a Recommendation Panel, a Table View, and an Attribute Panel. Cluster view
visualizes the clustered data and provide a medium for users to provide visual demonstrations. Recommendation panel shows different clustering
results based on the demonstrations provided by users. The Table view and Attribute Panel show the raw data and attribute weights.

burden of specification on biologists. For instance, one of the
biologists noted: “It sometimes takes time to perform specific
tasks [using Python]. I have to Google and find out how to do it.”
Instead of requiring biologists to specify the clustering models by
programming or going through layers of menus, the tool should
provide an environment that enables them to demonstrate how the
expected clustering outcomes should look like [12]. By translating
the given demonstrations, the system could estimate the biologist’s
intention and generate appropriate results. This way we could
balance the responsibility between the biologist and the system –
biologists provide visual demonstrations, based on this, the system
infers potential clustering results and recommends them.
G2: Enable user interaction to drive recommendations. As an-
alysts explore their data, their interests will evolve [46]. Our initial
observations and interviews also showed that biologists need to
explore various clustering models rapidly during their data analysis
process. One potential approach to support such a rapid data analy-
sis is to recommend potential cluster models that biologists should
consider during their data analysis process [31], [45]. Furthermore,
the clustering recommendations should be adapted for biologists’
analytic goals. The recommendation engine should steer multiple
clustering models based on biologist-specified expected visual
outcomes. In addition, biologists can also directly adjust feature
contributions to update the clustering results. In aggregate, these in-
teractions create demonstrations which serve as the primary units by
which biologists communicate their expected changes to the system.
G3: Enhance interpretability of recommendations. Biologists
reported their interest in seeing more details about different clus-
tering results while skimming through different recommendations.
However, not all biologists might be familiar with technical terms
used to describe a cluster such as silhouette value. Therefore,
recommended clustering results should be presented in a transparent
manner so that biologists can extract the most important and

understandable information (e.g., contributing features) used for
clustering results. One powerful approach to enhance transparency
of the recommended clustering options is to use natural lan-
guage [47] to explain them. This way biologists can learn about the
recommended clustering outcomes without having to know about
more technical terms describing each clustering outcome.

4 GEONO-CLUSTER

Based on the tasks and guidelines, we developed Geono-Cluster, a
visual clustering tool for biologists. All components of the Geono-
Cluster were implemented using JavaScript, D3.js, and Python.

4.1 Usage Scenario
In this section, we motivate the design of our system and illustrate
the functionality via a usage scenario. We indicate how a domain
expert can utilize Geono-Cluster to perform visual cluster analysis
on the GWAS Catalog dataset [43]. This dataset includes detailed
information regarding the identified single-nucleotide polymor-
phisms (SNPs) associated with common diseases and traits (e.g.,
position on the genome, risk allele frequencies, p-value, effect
sizes, etc.). SNP is a region on the gene where more than one allele
(A, C, G, T) is observed and each row on the dataset is a SNP [48].

Megan is a biologist who wants to compare populations from
the GWAS dataset to understand disease risk factors related to
geographical regions (e.g., if gene samples collected from “America”
are more prone to cancer than gene samples collected from
“Europe”). She launches Geono-Cluster to cluster the data, and
to compare associated sub-populations. First, Megan skims through
different features on the Table View (see Figure 1).

Megan knows that there are two types of gene samples: ANC
and DER. ANC samples are the genes that are derived from
either humans or monkeys. DER are the gene samples that are
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Fig. 2. A) Megan clicks on a cell in the column ANC-or-DER with
the value ANC. The system automatically selects all data items with
ancestory ANC. B) She drags the selected data items and drops them
to the cluster view. The system automatically represents data items as
red circles and places them in an independent cluster. C) The system
also recommends potential clustering layouts of the non-interacted data
instances based on the demonstration provided by Megan.

derived from the mixture of humans and monkeys. Megan starts
her exploration by comparing the disease risk factor between the
two types of genes samples based on their ancestry. Megan first
skims through different features to find the ANC-or-DER feature
on the Table View. She clicks on a cell in the column ANC-or-DER
with the value ANC in the Table View to demonstrate her interest in
selecting all the data items with ancestry ANC. In response, Geono-
Cluster automatically selects all data items with ancestry ANC (see
Figure 2-A). Megan then demonstrates her interest in clustering
data items with ANC value by dragging them from the Table
View and dropping them to the Cluster View. In response to the
demonstration, the system automatically represents data items as
red circles and places them in the Red Cluster (see Figure 2-B). At
this point, the system also recommends potential clustering results
based on the demonstration provided by Megan (see Figure 2-C).
Even though Megan’s interactions may lead to grouping the data
based on the chosen categorical data attribute (ANC or DER), in
essence, this is a start to allow a user demonstrate their intent to
find a clustering model that represents agreeable clusters in the data.
Their interactions are inferred as implicit intents by the system to
find the most appropriate cluster model as opposed to just group
the data by a set of categorical variables.

Megan opens the recommendation panel and previews other
clustering options through the thumbnail previews. She finds one
of the clustering results recommended by the system interesting.
She clicks on this thumbnail (the first recommendation), which
updates the Cluster View with the recommended cluster layout by
adding the Blue Cluster and the Purple Cluster (along with the
Red Cluster) in the Cluster View (see Figure 3-A).

Megan explores the data items within each cluster by hovering
over each data item to see its details. She notices that while the Red
Cluster contains genome samples with ancestry ANC, the recently
added clusters (Blue Cluster and the Purple Cluster) contains all
the gene samples with ancestry DER. She further notices that most
of the items in the Blue Cluster have the chromosome value higher
than 8, and the genome samples belong to the region America. Now
she understands what each clusters represent.

A B

Fig. 3. A) Megan uses lasso tool to select a subset of data items from
the red cluster and drags them out. B The system automatically finds
other similar data items and defines the yellow cluster containing them.

Fig. 4. Megan clicks on the ”+” icon to open the sub-cluster panel for
clusters purple and yellow. Bar chart views showing comparisons of the
feature Average-Risk-Allele between these clusters.

Next, Megan demonstrates her interest of excluding data items
with ancestry ANC that belong to Africa from the Red Cluster.
To do so, she lasso-selects a subset of data items with ancestry
ANC that belong to the region Africa from the Red Cluster (see
Figure 3-A). Important to note that points closer to each other
in a cluster are expected to be similar to one another based on
the applied cluster model. Thus using the lasso selection, Megan
selects similar points from a cluster for further analysis. She then
drag-and-drops these points out of the cluster. In response, the
system automatically finds other similar data items with ancestry
ANC that belong to the region Africa, and then defines the Yellow
Cluster containing these data items.Further, the system updates the
recommendations in the recommendation panel accordingly.

Looking at the Purple Cluster, and the Yellow Cluster, Megan
realizes that the items in these two cluster are with ancestry ANC
and DER respectively. Megan wants to compare the distribution
of the feature Average-Risk-allele between these two clusters to
compare their disease risk factors. She clicks on the ”+” icon (see
Figure 4), which is shown upon hovering on a cluster, to open the
sub-cluster panel for each cluster. Each sub-cluster further clusters
the data items per cluster. Also, the sub-cluster panel contains a bar
chart, highlighting the distribution of a chosen feature (Average-
Risk-allele) through a drop-down selector for all data items in the
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parent cluster (see Figure 4). After inspecting the distributions,
Megan does not notice any significant difference in the value of
Average-Risk-Allele between the Purple and the Yellow cluster.

Megan explores the Blue Cluster (with DER ancestory) to
inspect its sub-cluster layout and distribution of the feature Average-
Risk-Allele. When she compares the distribution of feature contri-
butions of the Yellow Cluster, she discovers that the genes sampled
from Africa with ancestory ANC has much higher disease risk
factor than those sampled from other regions with ancestry DER.

Megan decides to merge the clusters Blue and Purple. To
do so, she demonstrates her interest in merging the clusters by
drag-drop the Blue cluster on the Purple cluster. In response, the
system recommends new cluster layouts on the Recommendation
Panel. She previews the thumbnails from the recommendation panel
and selects the second recommendation, which results in placing 3
clusters in the Cluster View. To continue discussing the findings and
implications with other colleagues, she exports a .png screenshot
of the current cluster layout. She also saves the results as a .csv file
to investigate them more in other programs like R and SPSS.

4.2 Views and User Interface
Geono-Cluster’s interface consists of: a Cluster View, a Recommen-
dation Panel, a Table View, and an Attribute Panel. See Figure 1.

Cluster View visualizes the clustered data as Figure 1 shows. For
testing their hypotheses, biologists often perform actions at the level
of data items (e.g., move data items from one cluster to another).
We visually present each cluster and its members on the Cluster
View. The colored circles in each group represent members of a
cluster; the surrounding hull represents the cluster. Users can hover
over a circle, which prompts relevant attribute details of the data.
Users can specify the number of clusters using the slider shown
on the top-left. Cluster View is an environment similar to a spatial
workspace in which users can move data items to structure their
information and provide visual demonstrations (G1). For example,
a biologist might notice a set of data items should not be in a
specific cluster. Thus, she can demonstrate that those points belong
to a different cluster by dragging them from one cluster to another.
The system uses the visual demonstrations provided by the users
to steer the underlying recommendation engine (G2).

The Cluster View shows an overview of the clustering results
and then encourages users to query additional information (e.g.,
tooltips, attribute distribution histograms) as they explore the
data. The visual representation of the Cluster View powered by a
force-directed layout algorithm shows the size and shape of each
cluster, the number of clusters, and an overview of clustered data
items without overwhelming users with too much information.
Furthermore, the design encourages cluster-level interactions such
as merging two clusters, or splitting a cluster to refine or customize
a cluster. Within each cluster the position of the node (a data item)
placed at the center represents a stronger cluster membership than
those that are on the periphery. This allows users to understand
the clustering probabilities of each data item in relation to others.
However, each cluster in the layout is positioned by the force-
directed layout simulation that does not capture if two clusters
are similar or different. We deliberately restricted ourselves to
communicate that information as we intended users to inspect
differences between clusters by viewing the thumbnail previews of
recommended models.

Recommendation Panel shows different clustering results. Based
on users’ demonstrations on the Cluster View, the system rec-

ommends a set of appropriate clustering outputs. To compute
the recommended clustering results, the underlying recommen-
dation engine takes into account different (1) clustering tech-
niques/algorithms; (2) combinations of attributes/features; and (3)
clustering hyperparameters (i.e., varying ’k’ for k-means clustering
technique). Read section 4.4 for more details.

During the design process of Geono-Cluster, we examined
different ways of presenting recommended clusters. We first
considered showing all the recommended clustering results as small
thumbnails in the Recommendation Panel. The biologists liked the
idea and the way that we recommended clustering results. However,
the main challenge that biologists encountered was that they were
not able to infer detailed information from the small thumbnails.
Thus, they requested adding textual description of details about
each clustering result in the recommendation. Currently, each
thumbnail includes a textual description about the number of
clusters, features used to compute the clustering recommendations,
and a visualization of the clustering result (G3).

Initially, we designed the recommendation module to update the
view with new clustering recommendations whenever users show
their demonstrations and/or adjust feature contributions. However,
our users revealed that such approaches may distract their ongoing
investigations on the current results. Thus, we compute cluster
recommendations in the background but do not show the results
immediately. Once the computation is done, a notification pops up,
encouraging users to explore the results on demand by toggling the
‘show recommendations’ button (see Figure 1).

Table View shows a tabular representation of the loaded dataset
where each row is a data item (see Figure 1).Biologists specifically
requested adding this view since it enabled them to check the raw
data. It provides standard table interactivity, with the one feature
that shows similar rows to those selected. From the design study
we noted that the existing workflow of the biologists involved
exploring the data in MS Excel, then using “R” to run clustering
models, and then export the data back to MS Excel.

Attribute Panel lists the attributes of the loaded data set as
Figure 1 shows. Users can turn on and off a set of attributes which
directly affects the clustering algorithm. Furthermore, users can
also adjust attribute contributions, specifying relative importance
of the selected attributes to define cluster memberships (G2).

4.3 Interactions
In this section we discuss how Geono-Cluster supports interactive
operations commonly performed by biologists.
Merging and Splitting Clusters (T1): To merge two or more
clusters, users first click on a cluster. They then demonstrate their
interest in merging two clusters by drag-and-dropping the cluster
on top of another cluster. Users can drag point(s) out of the cluster
and drop into either i) another cluster or ii) a blank space (on the
Cluster View). Drag-and-drop items into blank space is translated
as forming a new cluster of the selected items outside the current
cluster (see Figure 2). Demonstration-based cluster customization
enables users to interact with the data directly and removes any
mid-level instruments such as control panels or menus.

The merge interaction is derived from the previous work by
Sarvghad et al. [38], in which they enabled HIV researchers to
merge bars in bar charts by dragging one bar and dropping it over
another bar. Biologists liked this interaction design and found it
“direct and intuitive”. To split clusters, we initially enabled biolo-
gists to select the data items by clicking on each circle representing
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a data item. However, biologists found it cumbersome and time-
consuming. So, we implemented the lasso-selection such that users
can select multiple data items easily. This operation allows user
to brush over a set of data samples (represented as circles) in the
Cluster View. In response the system extracts those samples from
the current cluster and places them in a new cluster. If data samples
from multiple clusters are selected (using lasso selection), then the
system makes a new cluster from these lasso picked data samples.

Sub Clustering (T2): Hovering over a cluster reveals a plus button.
Users can click on it to open a subcluster panel on the Cluster
View, which shows subgroups of the data items within the selected
cluster. In addition, a bar chart shows the distribution of a chosen
attribute. Alongside, text description highlights the attributes that
were used to compute the sub-clusters. Given that the users are not
experts in data science, we do not present the quality metrics (e.g.,
silhouette scores, homogeneity score, etc.) Instead, we describe
cluster models by showing thumbnail previews of clustering results
with text descriptions as Figure 4 shows.

Delete data items or Clusters (T3): Our discussion with biologists
revealed that they sometimes need to ‘exclude’ data items or
clusters from their analysis while testing a hypothesis. Thus, we
initially implemented the ‘delete’ feature by enabling users to select
a subset of items or clusters from the main view and click on the
delete icon. However, when we showed it to the biologists, they had
trouble due to inconsistencies between the button-based interaction
and other demonstration-based interaction.

Currently in Geono-Cluster users cam drag-drop a selected
cluster on the delete icon shown on the top-left of the interface to
show their interest in moving the selected cluster out of the layout.
Similarly, they can drag-drop individual data items to demonstrate
their interests in removing them from the cluster assignment.

Creating Customized Clusters: Users can select a subset of data
items by clicking on the rows shown on the Table View (each row
represents a data item). After selecting a subset of rows, users
can drag-and-drop them on the Cluster View to demonstrate their
interest in creating a clustering, in which all the selected data items
fall in the same cluster. Users can iteratively repeat the process, and
each drag-and-drop operation forms a new cluster in the Cluster
View. Participants liked this idea as they found the design and the
workflow of this interaction consistent with other interactions.

4.4 Computational Techniques
This section describes the underlying computational techniques
which enable Geono-Cluster to recommend cluster models by
incrementally steering (multiple cluster models) them to adhere to
demonstrated user preferences. Our cluster model recommendation
process includes the human in the loop. On a high level, the user
shows their intentions on a cluster layout. Based on the operations,
Geono-Cluster models multiple cluster algorithms and finds top k
closest cluster models to the users’ intention. Then, the user can
refine the results through a series of customizations (instrumented
through the interactions described above). In response, Geono-
Cluster automatically finds close variants of cluster models and
updates the recommendations in the Recommendation Panel. In
summary, the system finds a set of cluster models with a distance
function that reflects user-demonstrated cluster assignments.

Multiple clustering models: The clustering task begins when the
user requests a new cluster layout (when they press the cluster
button in the interface). In response, Geono-Cluster generates

multiple clustering models M. Each cluster model Mi in M
(M1,M2,M3,M4, ... MT ) is defined by a careful combination of
a learning algorithm ωi and a set of p hyperparameters φ ,
defined as φi1, φi2, φi3, φi4, ... φip. Applied clustering algorithms
include K-Means, DBScan, Agglomerative Clustering, and Spectral
Clustering. In the evaluation of the system, we used K-Means
cluster model as we observed through our design-study that most
of our users are familiar with packages in “R” to use K-Means
clustering (with default parameterization) to cluster the genome
data. However, depending on the need of the user and the data used,
Geono-Cluster can be extended to use other clustering methods.
Nevertheless, each algorithm has its hyperparameters. For example,
K-Means is a learning algorithm with ”k” and the ”max-iteration”
value as an input hyperparameter. Furthermore, each model Mi
in M is assigned a metric score Si to compute S, which defines
the quality of the clustering output (a higher Si means a better
cluster definition). Geono-Cluster uses Scikit-Learn’s ML package
to construct and evaluate the cluster models using various quality
metrics (e.g., Silhouette Coefficient, Davies-Bouldin index)

Recommendation Technique: Geono-Cluster ranks the models
in M by their scores S explained below, and visualizes the best
clustering layout in the Cluster View. Further, the system allows
the user to inspect top f best cluster models from the ranked
models M, through the Recommendation Panel (see Figure 1-a).
If a user makes any customization to the shown cluster model Mc
(e.g., merge or split clusters), the system automatically updates the
recommendations by computing a new set of M cluster models,
except the model Mc, which is currently shown in the Cluster View.
Per iteration, the system updates S and the ranking of the models
M based on user interactions with the data. Next it visualizes the
best model in M in the Cluster View and shows thumbnail previews
of the top f models in the Recommendation Panel (G2).

Geono-Cluster’s model recommendation finds the closest fitting
cluster assignments, whenever the user customizes the current
cluster layout in the Cluster View. However, there can be scenarios
that no cluster recommendation matches the user’s intended
changes. This may occur when users seek clustering results, which
are mathematically infeasible. There could be various reasons for it,
such as, users may have a different understanding of the data than
what the data actually contains, or the data may have noise, etc. In
such cases, users may need to be educated to understand the reasons
for a different clustering result, which we plan to integrate in the
workflow in the future. Currently, in such cases, Geono-Cluster
still responds with the nearest best clustering output, though it may
not resemble the layout shown by the user. Furthermore, to ensure
users can see unexpected clustering results (to ideate and explore),
every few iterations the system also recommends a set of cluster
models that are randomly parameterized and thus clusters the data
in an unexpected way. While our approach may seem similar to
active learning (AL) [49] as in both, users specify feedback to the
input data that drives the generation of a model. However, in our
case the data does not have class labels. Furthermore, in AL, the
system “asks” users to give feedback on specific data points, while
in our technique users have the freedom to interactively explore
and provide feedback any time along the process.

Clustering Metric: Initially the system does not have cluster
assignments or labels for any of the data instances. Thus to compute
S the initial cluster models M, are evaluated using the Silhouette
Score metric [50]. This metric is computed using the mean intra-
cluster distance, and the mean nearest-cluster distance for every
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data instance. As users interact and assign clusters to a set of
data instances I, Geono-Cluster applies two types of metrics to
calculate S. To compute the first metric S1, the system finds all
the correlational features f ck and non-correlational features f c

′
k

that describes each cluster (k = 0 to g clusters). Here, f ck and f c
′
k

defines how the user characterises each cluster. Next, when M is
computed the system computes the correlational features f cik and
f c
′
ik. The system compares f ck with f cik (and f c

′
k with f c

′
ik) for

each model in M to derive the clustering metric S1, that describes
how closely the cluster model Mi adheres to the clusters defined by
the user (S1 is normalized between 0−1, higher is a better model).
The second metric S2 is based on the labels assigned to data items
by users for I. The system finds other data instances J = N− I (N
is all data instances) that are similar to the user interacted data
instances using cosine similarity distance metric based on their
attribute values (categorical variables are one-hot encoded). We ap-
ply a similarity threshold β to find a satisfactory number of similar
data instances, the value of which is set empirically with multiple
trials on the GWAS data. The current prototype does not allow
users to interactively control this threshold. However, in future on
users request it can be interactively specified using a slider widget.
The system automatically assigns to these similar data instances (J)
the same class assignments that the users assigned to I. Next using
this labelled data, the system applies Homogeneity index score [50]
to compute S2. This metric uses true labels and assigned labels
by the system (when a cluster model Mi is applied to the data) to
give a score to each model in M. The final score S is defined as the
weighted linear combination: S = λ1 ∗S1+λ2 ∗S2. Here the weights
λ1 and λ2 are hyperparameters that are assigned based on how well
the clustering outputs satisfied the biologists’ expectations.
User driven feature selection: A cluster model Mi is driven by a
set of features F = fi1, fi2, fi3, fi4 ....... fik as input to compute
the distance function which assigns a set of data items D to
individual clusters C. In Geono-Cluster, the set of features F
is either computed using feature selection methods e.g., “select K
Best” [51], “PCA” [52] or can be retrieved from users if they specify
a set of features and their relative weights (from the Attribute Panel
supporting the task T3). When users specify a set of k features Fu
= fi1, fi2, fi3, fi4 ... fik with respective weights for each feature (Wu
= wi1, wi2,wi3,wi4 ... wik, the system updates the distance function
in the clustering algorithm. The distance function is represented as

∑
k
i=1 ∑

n
j=1

∥∥∥x( j)
i ∗w( j)

i − c j

∥∥∥2
, where c j, is the jth cluster centroid

and w( j)
i is the user assigned feature weight.

Sub Clustering: When triggered by users, the system builds a
sub-cluster model Msi, for data instances E, member of a selected
cluster Ci. Unlike the set of main cluster models M, only a single
sub-cluster model is generated per cluster (T2). For sub-clustering
we relied on the parameterization of the best-recommended cluster
model for the entire data i.e, best-found parameterization of the
K-Means cluster model. To avoid further compute times that may
impact real-time interactions, we did not construct and test multiple
cluster models for sub-clustering. However, clicking on the ”add
subcluster” button again for the same selected cluster Ci, the system
recomputes the sub-cluster model Msi, by randomly choosing a
new set of a learning algorithm ω and hyperparameters φ ; e.g., it
picks a new ”k” on the ”K-Means" cluster model. This technique
allows users to rapidly browse a large set of sub-cluster models.

Similar item selection: Users click on a cell (q j) of a quantitative
attribute on the Table View to select a value v j of the data item

di. Geono-Cluster finds a set of r data instances, U = da,db,dc
... dr, each of whose value v j falls within a threshold range,
say [+eps,−eps]. The parameter eps is set for each quantitative
attribute Q by heuristics and can be adjusted. This technique
allows users to pick data instances which are similar, based on the
selected quantitative attribute q j. Further, users can select another
quantitative attribute cell qk. Next, from the set of selected data
instances U , the system finds all instances V which fall within a
threshold range of the value selected for attribute qk. Here the size
of V is less than that of U . This technique allow users to filter
and select a subset of data instances V from the Table View. For
categorical features X , Geono-Cluster performs exact feature value
matching instead of matching data items based on a predefined
range. Users can drag-drop these V data items to the Cluster View
as a single cluster (C =C1). They can continue selecting another
set of data items, then add them to the cluster view as a new
cluster (C =C1,C2). Users complete the data exploration or they
can request the system to find a model Mi iteratively (T3).

5 EVALUATION

To evaluate Geono-Cluster, we performed a qualitative assessment
with six biologists to collect subjective feedback and observational
data. Our study had two main goals: (1) collect qualitative feedback
on Geono-Cluster’s features and design, and (2) observe how
experts perform visual clustering analysis using Geono-Cluster. In
particular, our study indicates how Geono-Cluster helps domain
experts gain insights into data by interactively building clusters.

5.1 Participants and Setting
We recruited 6 biologists (2 female, 4 male), all with graduate
degrees related to Biology, Bio-Statistics or Bio-Informatics. They
had 1−2 years of experiences working with Gene related datasets.
They had not participated in our preliminary evaluation of Geono-
Cluster and were also not involved in the design of Geono-Cluster.
All participants were familiar with the concept of data clustering
and had previous experience with data grouping with at least
one data analysis tool (e.g., SAS, R, etc.). Further, as they had
previously worked with GWAS catalogue data, they were familiar
with all the data attributes in the dataset. During the entire study
participants used a computer with 17-inch screen and used a mouse
to interact with the system. The study took approximately 50
minutes and we rewarded each participant with a $20 gift card.

5.2 Procedure
Introduction and Training: Participants were briefed about the
purpose of the study and their rights. After filling out the study
consent form and a questionnaire on demographics, we asked partic-
ipants to watch a tutorial video of Geono-Cluster. The video walked
the participants through different features and interactions provided
by the tool. After watching the video, we asked participants to
work with the tool for 10 minutes. We encouraged the participants
to ask as many questions as they want during this stage.
Main Study: The participants were asked to explore the GWAS
Cataloge [43] data that includes published SNPs and association
studies. In particular, we asked the participants to imagine their
colleagues asked them to analyze the dataset using the visualization
tool for 30 minutes and report their findings. Participants were
instructed to verbalize analytical questions they have about the
data, the tasks they perform to answer those questions, and their
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answers to those questions in a think-aloud manner. In addition, we
instructed them to come up with data-driven findings rather than
making preconceived assumptions about the data. The interviewer
played a role of ’active listener’ during the think-aloud protocol.
Follow-up Interview: After each participant completed the task,
the experimenters asked participants to explain major obstacles of
the tool and describe what they liked or disliked about the tool.

5.3 Data Collection and Method of Analysis
We screen and audio-recorded the whole study. During the main
study, the experimenter took notes while participants interact with
the system. We also collected feedback from a semi-structured
interview with open-ended questions at the end of the study.
We analyzed around 300 minutes of screen-capture videos from
six participants. First, one of the authors transcribed the audio
recording of the study. Then, two coders (first and second authors)
read the transcribed data (including the think-aloud sessions and
the interview responses) to parse a set of meaningful text snippets.
After reading the data, each of the coders independently assigned
codes (a word or phrase) to best describe the text snippets. Finally
we consolidated the codes from the two authors by focusing on
the aspects of the responses which highlighted positive or negative
feedback with respect to usability of the system, easy of use,
learning curve, future feature requests or strategies pertaining to
exploratory data analysis using clustering models. In the following
section, we use P1 to P6 to respectively denote the participants
one to six who participated in the evaluation.

5.4 Results and Feedback
Overall, all participants found Geono-Cluster easy to use and
effective in performing cluster analysis tasks. Below, we categorize
and discuss the findings of our qualitative study in more details.
System usability: All participants found Geono-Cluster’s workflow
easy to use, intuitive, and engaging. P2 remarked “I can keep trying
new ideas to quickly test different ways to cluster this data.” P4 said

“It’s so easy to use, I can quickly iterate and learn about the data
much faster, than using packages in R to cluster data.” Further,
many other participants found visualization to be a very good
medium to learn about the data by exploring different clustering
results. P5 said “I never knew that I can use visual methods to
explore clustering result. Currently I use R to cluster my data, then
export a CSV file to my team-mates.”
Consistency with user mental model: Participants found the
design and workflow of Geono-Cluster consistent with their
mental model and expectations. In particular, participants found
that it is intuitive to visually demonstrate tasks such as creating,
merging, and splitting clusters by demonstration. For example, P3
mentioned: “it feels intuitive to merge clusters by dragging and
dropping one cluster over another one. [...] this is what I would
expect to happen.” P5 stated: “I liked the idea of creating a cluster
of items by moving the data items from this table to the empty
space [dragging the data items from the Table View and dropping
them on the Cluster View to create a cluster].” Further P2 added:

“Compared to programming, using this kind of tool is more straight
forward and faster.” Consistency and natural mapping between
user’s intent and the actions required for performing the intent is
important in designing new interactions.
Perceived control over data analysis process: While using
Geono-Cluster, P1, P4, and P5 commented on their level of control
over the data analysis that resulted from their freedom in interacting

with visualizations instead of going through layers of menu items.
For example, P1 mentioned: “This is great because I can construct
my own cluster and tell the system how I want my clustering
outcome looks like.” P4 stated: “It is a powerful idea to enable
analysts to use their knowledge about the data items to interactively
create clusters [visually demonstrate their expected clustering
outcome]. I specifically like how this allows merging and splitting
clusters.” The level of interaction directness [53] with the visual
representation contributes towards increasing the perceived control
of the participants over the data analysis process.
Difficulty in splitting a cluster: Participants found the lasso
interaction intuitive and easy to use. However, with lasso selection
participants were not very exact about the data items that they
wanted to select. For example, after selecting a subset of data items,
P3 noted: “It is hard to be exact with this selection. I don’t want
this specific point to be selected.” In such cases, participants had to
either deselect the items that were selected incorrectly by clicking
on them or try to lasso select again. Going forward, we envision
designing advanced interaction techniques for easier selection of
data items that are located in a close distance from one another.
Interpretability of recommendations: Although some partici-
pants liked how the recommendations were presented, two partici-
pants could not immediately understand why specific recommen-
dations are suggested. For example, P2 mentioned: “I understand
what each cluster represents which is good, but I am not sure
why these recommendations.” and P3 stated: “I am curious how
these recommendations are added.”. Going forward, we suggest
systems to explore design alternatives to explain the reasoning
behind recommendations. In situations when the system does not
find any cluster recommendations that matches user’s demonstrated
changes, Geono-Cluster shows the nearest best clustering layout.
In such scenarios, users may be surprised to see the abrupt or
strikingly different recommendations. In the future, we are thinking
of explicitly communicating this conflict in textual description. At
the same time, we want to introduce a more variety of models so
that the system can perform deeper search to find desirable results.

6 OBSERVATIONS

Our user study reveals that participants usually began exploring
the data by framing a hypothesis, asking the questions they want
to know, and then performing a set of tasks (as described in
section 3.2) through Geono-Cluster’s interface to find the answers.
Interestingly, we observed that participants often took two different
approaches to perform visual data clustering: Top-down and
Bottom-up. Below, we describe each approach in more details.

6.1 Top-down Visual Data Clustering Approach
P1 started his data analysis process by asking “How does the gene
samples differ in disease risk factor by regions and chromosome
factors?” To that end, P1 clustered data items by selecting a set
of features from the Attribute Panel and then pressed the Cluster
button. Next, he checked the recommended cluster layouts from the
Recommendation Panel to explore other clustering results based on
another set of features. In response, he updated the list of features
to cluster the data by and triggered Geono-Cluster to generate a new
cluster layout. P4 also followed the same approach; however, he
did not have any question to begin with. He initialized the process
by pressing the cluster button to start with an initial clustering.
Next, he hovered over data items in each cluster to familiarize
himself with the data items and find similarity or dissimilarity. He
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also checked the Table View to compare different data items from
various clusters. If the clusters did not match his mental model, he
would adjust the features from the Attribute panel. He would then
preview the recommended clustering options to further explore a
wide range of cluster outputs. This process continued until he was
satisfied with the clusters and had a better sense of the data.

A main point here is that in the top-down approach participants
mostly avoided interaction at the data item level, but instead they
dealt with the full range of features from the Attribute Panel. P1
also verified this point by saying: “I relied on cluster button to
cluster the data, as I do not specifically know much about the data
items, so did not use the table’s drag-drop feature. Similarly, I
did not customize the clusters by using lasso or drag-drop feature
initially. I rather re-computed the clusters based on a new set
of features that I specify.” However, P1 later confirmed that over
iterations when he was more confident about the data, he started
using the split and merge operations to customize shown clusters.

6.2 Bottom-up Visual Data Clustering Approach
Remaining participants (P2, P3, P5, and P6) followed the Bottom-
up approach, in which they mainly relied on interaction at the data
item level. They first created a customized cluster by dragging data
items from the Table View and dropping them on the Main view as
opposed to relying on the cluster button. These participants often
interacted with data items to demonstrate their expected outcome.

P2 started her clustering analaysis by asking “How does the
gene samples derived from humans/monkeys (ANC) vary from gene
samples derived from mixing humans and monkeys (DER) with
respect to various diseases?” To answer the question, P2 placed
all the ANC gene samples into one cluster and a few DER gene
samples into another cluster from the Table View. P2 remarked:

“my strategy is to select a set of data points [items] based on
the gene’s ancestry, then drag-drop to create a cluster”. P2 then
previewed the recommendations to explore other options to cluster
the data based on his specification of clusters. In this process,
P2 did merge/split clusters to test different ideas to cluster the
data using the lasso-selection and the cluster drag-drop feature. P2
said: “I also rely on the lasso tool to define other clusters from
this, if the cluster appears too big”. Using Geono-Cluster, many
participants were able to customise clusters in this fashion to find
interesting insights from the data, that they found needed further
analytical investigations/research with their peers or mentors. For
example, one participant was able to find a significant difference
in Average-risk-allele-frequency between two sets of clusters by
iteratively following this bottom-up visual clustering approach.

P6 also followed the same approach. P6: “I want to know if the
gene with chromosome factor higher than 6 sampled from America,
have higher cancer risk factor? To seek an answer, I find the Table
View’s data item selection feature quite useful, as I can define my
own clusters based on chromosome value or the region the gene
was sampled from.” We noticed that when P6 explored the initial
set of cluster layouts, he paid attention to the suggested features
(in the Recommendation Panel) to understand how the cluster is
defined. In some cases, P6 did not agree with the recommendations
or the features that were used to derive the results. To provide
his feedback for updated results, he customized the best-perceived
cluster layout by splitting the existing clusters using the lasso tool
and merging smaller clusters into one. P6 added: I am using the
lasso feature to take out all the data items which have chromosome
value less than 6. Also, the smaller clusters with 5 or fewer data
samples are confusing, so I merge them into one.

7 DISCUSSION

Generalizability of the approach: The methodology for this
work stems from a design study [54] in biology. This inherently
makes our contribution domain-specific, and solves a very specific
problem that we discovered through working with biologists.
However, the underlying interaction technique behind Geono-
Cluster is generalizable and can be applied in other domains and on
other tabular datasets. Our demonstration-based interaction design
is a bottom-up approach where users provide demonstrations by
interacting with data items. As such, this technique works whenever
users can bring their knowledge by interacting with data points and
provide demonstrations. For instance, another dataset that biologists
use is cancer dataset to cluster patients based on the likelihood to
be diagnosed with cancer. In this case, the domain experts may
know patients with certain chromosome value or blood count level.
Human bias in interactive clustering: The human-in-the-loop
nature of Geono-Cluster introduces potential user biases in visual
data exploration. In fact, some amount of human bias exists in most
interactive systems (e.g., control panel style interfaces). However,
the key goal of Geono-Cluster is to help users explore different
aspects of data while testing their hypotheses using clustering
models. More importantly, the goal of our tool is not to help users
build the most accurate cluster model, but rather to: (1) explore
alternate models and their outputs, and (2) validate these models
based on metrics that are meaningful to them (instead of relying on
conventional metrics). The results of our user studies also show that
biologists using Geono-Cluster successfully gleaned insights from
the data and learned about their data at the end of their exploration
process, and not just construct a set of clustering models.
Extending current interactive clustering approaches: Previous
interactive clustering tools (e.g., Clusterophile [17] etc.) follow a
top-down approach, where users define cluster parameters through
control panels to build cluster models. To interact with these
tools, users should know various cluster parameters and how to
adjust them. Instead, GeonoCluster follows a bottom-up approach
in which it enables users to apply their domain knowledge by
interacting at the data instance level (without having to learn
model parameters or metrics), and the system infers users’ intent
from the given demonstrations to recommend cluster models. Also,
unlike other interactive clustering tools, our work solves a specific
problem in a domain that we discovered through working with
biologists. That being said, with this work we tried our best to
provide as many affordances as possible empowering the biologists’
to perform the desired set of tasks to rapidly ideate many clustering
models. However, we acknowledge that there may be other useful
methods and guidance that can make the current workflow easier
and intuitive for users to better support their analysis process.
Model Feedback and Interpretation: Periodic discussion and
informal inputs from the biologists clarified that model inter-
pretation and feedback (to the model) is of critical value to
them. For example, when Geono-Cluster shows a set of clustering
recommendations, users may need to know how they differ from
each other, or what logic was implanted to define the displayed
clusters. There are many ways to explain this to the user; however,
we only selected methods which do not require any technical
expertise from the user. Our final design explains a cluster by
using a natural language-based approach to communicate the
features that were used to compute the clustering distance function.
In particular, we avoid showing technical information such as
silhouette coefficient or exact feature weights to provide a high-
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level model explanation that does not overwhelm the users with
a bag of information that might not be easy to interpret. Our
qualitative feedback hints that our approach made Geono-Cluster
not only easy to use but also an engaging tool to continue data
exploration by rapidly testing different ideas to cluster the data.
Cluster Model Comparison: While representing multiple clus-
tering results show different ways to partition the data, model
comparison to understand trade-offs between these clustering
options is critical. However, in our current prototype we do not
support explicit cluster model comparison. For example, users
cannot perform a pairwise comparison of two cluster models side
by side [55], or they cannot select a few chosen cluster models to
see the results in a way which facilitates direct comparison. Based
on our interviews with the biologists, comparing cluster models
was not posed as a requirement to us. Therefore, we deliberately
did not include cluster model comparison as one of the design
goals of the system. However, as visual analytics researchers, we
understand that being able to compare multiple cluster models, may
positively aid model selection and enhance the tools use case.
Limited Model Explanation: Geono-Cluster explains a cluster
model by highlighting the top k features that were used to
compute the underlying distance function using a natural language
expression. Though the simplicity of the explanation is helpful
for non-experts, in certain cases this may pose as a very limited
explanation of a clustering model. For example, two cluster models
may be based on the same set of features, but the defined clusters
are strikingly different. In this case, users may get confused to
interpret the difference between these models.
Scalability: The current interface and the supported interactions
(i.e., split and merge technique) is tested with 3000 (approximately)
data items. However, we understand that as the size of the data
grows, the interaction techniques such as drag-and-drop interaction
and lasso-selection tool may be less responsive. In the user study,
P6 noted that the lasso-selection was less effective for large clusters
when the data items became too small to select or notice (often
partially obscured by neighboring data items). We envision multiple
ways to enhance scalability in future iterations of this tool.

8 CONCLUSION

In this paper, we introduce Geono-Cluster that is designed to help
biologists visually cluster their data for exploratory analysis. The
proposed technique leverage the domain knowledge of the users by
allowing a demonstration based interaction methodology, which rec-
ommends multiple cluster models according to users’ intent. Based
on collaborative studies with biologists, we built a set of task re-
quirements and design guidelines for our prototype. The technique
shown exemplifies a model of interaction which allows non-experts
in data science interactively construct clustering models by specify-
ing their preferences. This spares them the burden of going through
layers of menus and control panels to transform their expectations to
outputs or to comprehend complex model parameters or metrics to
find the right clustering model. Our study provides valuable lessons
for researchers who design visual clustering tools for biologists.
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