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Abstract—The ability to make optimal decisions under uncer-
tainty remains important across a variety of disciplines from
portfolio management to power engineering. This generally
implies applying some safety margins on uncertain parameters
that may only be observable through a finite set of historical
samples. Nevertheless, the optimized decisions must be resilient
to all probable outcomes, while ideally providing some measure of
severity of any potential violations in the less probable outcomes.
It is known that the conditional value-at-risk (CVaR) can be used
to quantify risk in an optimization task, though may also impose
overly conservative margins. Therefore, this paper develops a
means of co-optimizing the value-at-risk (VaR) level associated
with the CVaR to guarantee resilience in probable cases while
providing a measure of the average violation in less probable
cases. To further combat uncertainty, the CVaR and VaR co-
optimization is extended in a distributionally robust manner
using the Wasserstein metric to establish an ambiguity set
constructed from finite samples, which is guaranteed to contain
the true distribution with a certain confidence.

Index Terms—Conditional value-at-risk, Demand Response,
Distributionally robust optimization, Optimization, Wasserstein
metric

I. INTRODUCTION
HANCE-CONSTRAINED (CC) [1] and Distributionally
Robust Optimization (DRO) [2], [3] both offer a means

of optimal decision making under uncertainty that considers
risk associated with stochastic parameters and can provide
guarantees on constraint satisfaction with a high confidence,
while reducing solution conservativeness of deterministic
methods with exogenous safety margins. By solving over an
ambiguity set, DRO solutions may be less prone to errors
arising from inaccurate parameter estimation and incorrect
assumptions on the underlying distribution of the uncertain
stochastic parameters than CC problems, but DRO requires
constructing a proper ambiguity set over which the problem
is solved. In turn, ambiguity sets can be formulated either in
a moment-based manner, i.e. characterized by all distributions
with a given empirical mean and variance [4], and in a metric-
based manner, i.e. all distributions within a certain “distance”
according to some metric such as the Kullback-Leibler diver-
gence or Wasserstein metric [5]. Metric-based sets, however,
may outperform moment-based sets by incorporating more
information than provided by statistical moments, [5]. In this
paper, we bridge the gap between modeling risk associated
with stochastic parameters and metric-based DRO methods.

In most stochastic optimization methods decision-
dependent, uncertain (random), outcomes are replaced with
a deterministic equivalent that evaluates the underlying
stochastic processes using a measure of risk. Most
prominently, the expectation operator replaces the uncertain
outcome of a decision (e.g. future cost) with the average
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Fig. 1. Probability density of an llmcertlalin lfl)lsls fulr\llctimy for two different
probability distributions, in purple (Q) and green (P), and their respective
VaR, and CVaR,. The shaded area is the probability of events beyond the
VaR. . The acceptability threshold is denoted by b and the distance between
b and the VaR is p. While the VaR,, of both beliefs lies below b, only the
CVaRg of the purple distribution is below b. As such, if the true distribution
follows the green curve, the value of the uncertain variable may be much
larger than expected because the CVaR of the green curve is greater than
that of the purple, motivating the use of a distributionally robust approach
incorporating the co-optimization of VaR and CVaR.
outcome of infinite repetitions of the decision with respect
to some underlying probability distribution. Alternatively,
the value-at-risk (VaR) evaluates the uncertain outcome in
terms of the probability that it will not exceed a predefined
threshold. Leveraging this property, the VaR also allows
enforcing probabilistic (chance) constraints of the form
P(X < b) > a by requiring VaR,(X) < b, where here and
following a bolded symbol denotes an uncertain quantity
such that the expression P(X < b) denotes the probability
that random variable X € R is less than a scalar value b.

Among large-scale, real-life applications, tractable closed
form expressions exist for example in the context of optimal
power flow (OPF) formulations, [1], and have become a
popular tool in power systems due to the close relation of
such chance constraints with existing reliability measures.

While certain distributions may have convex reformulations,
in general the VaR has tractability issues. For example, if
the underlying probability distribution must be inferred via
sampling, attaining a global optimal solution is obstructed by
nonconvexity and nondifferentiability, [6], [7]. Alternatively,
enabled by the work of Rockafellar et al., [7]-[9], the con-
ditional value-at-risk (CVaR) may be calculated using convex
optimization techniques. Notably, optimizing the CVaR im-
plies an optimization of the VaR, i.e. as VaR,, (X)) determines
an upper bound on X with probability o, CVaR, (X)) is the
expected value of X such that X > VaR, [7], [9], as shown
for two different distributions in Fig. 1. This property can be
leveraged as a means of providing a convex approximate upper
bound on chance constraints, e.g. as shown in Dall’ Anese et
al. [10] for a distributed chance-constrained OPF.

The VaR and CVaR, however, may provide more than
a bound on constraints, and offer an additional tool to
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handling uncertainty in the system. Naively enforcing that
CVaR,(X) < b may lead to an overly conservative solution
since VaR, < CVaRy, [7], [9], as shown in Fig. 1. Thus,
if one only requires constraints to hold with probability «,
a feasible solution may exist in which VaR,(X) = b that
improves upon the solution in which VaR,(X) < b, i.e. one
in which p, the gap between VaR,, (X)) and b, is equal to zero
(see Fig. 1). This still enforces the desired chance constraints
without accruing extra costs of added security. As such, we
would like to control the VaR from being lower than b, while
minimizing the CVaR, i.e. co-optimizing the VaR and CVaR
with the superior mathematical properties of the CVaR, which
will prevent excessive conservativeness of solutions, thereby
increasing the utility of the decision maker.

This paper synthesizes the most desirable properties of
the VaR and CVaR by presenting a model that endogenizes
considerations of risk and cost by co-optimizing VaR/CVaR.
The solution thus provides insights into how severely con-
straints may be violated via constrained minimization of the
CVaR, while ensuring that the corresponding VaR does not
produce an overly conservative solution, and still guarantees
that the corresponding chance constraint holds with a desired
probability. Relative to [7], we not only constrain the VaR, but
do so in a distributionally robust manner that hedges against
over-specifying the distribution by means of the Wasserstein
metric which is guaranteed to contain the true distribution
under certain conditions [11], [12]. Using results of [5], [13]
the model scales well, and, due to the convexity of CVaR
calculations, preserves the convexity of problems allowing for
solutions with off-the-shelf solvers.

We demonstrate the usefulness of this model on a stochastic
reverse auction to procure demand response (DR) in a power
system. Here a DR service provider (aggregator) tries to select
bids from DR participants to provide a target amount of DR
capacity at minimal cost. This is a particularly challenging
task as the actual response of DR participants is subject to
uncertainty and may differ from the initial bid.

II. DATA-DRIVEN VAR/CVAR C0O-OPTIMIZATION

A. Preliminaries

Let us first define the «a-Value-at-Risk (VaR,) of a random
X as the smallest possible = for which the probability that X
is less than or equal to z is at least «, i.e.

VaR,, (X) = min{z|P(X < z) > a}, (1)

where P is the probability measure of X. Notice then that by
(1), when P is continuous and strictly increasing, the VaR,,
is the unique value satisfying P(X < z) = a, [9]. We then
define the CVaR, of X as the mean of the «-tail distribution
of X asin [9], i.e.

CVaR, of X == E{X|X > VaR, }. )

Naturally then, we have that CVaR, > VaR,, and that
P(X < VaR,) > « from the definition of the VaR,.
Following [7], in order to practically calculate the CVaR,,
and VaR,, we use the following minimization rule:

A — 1 Lt
CVaRa(X;2) = min{z + —E{[X —2]*}} ()

where [t]T := max{0,t}. We make the minimization over z
explicit such that CVaR, (X z) implies a minimization over
z. By [9, Theorem 10], the minimization in (3) is convex as a
function of z, and further, (3) is equivalent to (2). Intuitively
the CVaR,, is a weighted average of all values beyond the
VaR,, which in (3) is equal to the optimizer z* as per [8,
Theorem 1]. Further, (3) can be rewritten as

CVaRy(X;2) = min E{ Ijnga§< Li(X,2)}, 4)

where [;(X,2) = a; X +bjzfor J =2,a1 =0,b; =1,a2 =
1/(1—a),bs =1—-1/(1 — a).

Consider now a more general case in which the random
variable is also dependent on some other deterministic decision
variable(s) i/ € R” (where henceforth we adopt an overarrow
() to denote vectors), i.e. X (%) : RY — R. We are no longer
interested in just the calculation of CVaR,, but would like to
find such g that minimizes our CVaR,. To do so, we note
that function E{ max;<;1;(X (%), 2)} is jointly convex over
both z and any convex functions of X (%), such that by [9,
Theorem 14], minimizing CVaR, of X (¢) with respect to
7 € Y is equivalent to minimizing E{ max;<; ;(X (9), z) }
over all (X (7),2) €Y xR, ie.

min CVaR, of X () = min E{ méi;(lj (X(@),2)}. &)
7 4.z i<

Provided the expectation over X (¢) is convex, (5) is convex
and easily solved by many off-the-shelf solvers.

B. VaR/CVaR Co-Optimization in Stochastic Optimization
Consider a general stochastic optimization problem:

mgin Fo{ fo(¥, X'O(?j))}

for some mapping, F;, : R — R,s = 0,1,..., M, of an
uncertain variable f; € R to a real number, which may differ
for the evaluation of the objective in (6a) and each constraint
in (6b). While (6) is primarily concerned with the uncertain
fi which are in R, these f; may be functions of other random
variables in R” . For example, in an optimal power flow (OPF)
problem, f; may be the uncertain total cost of generation,
which is the sum of the uncertain costs of the individual N
generators. Implicit here is the assumption that each individual
fi has arguments of at most RP+Y and maps to R, and we
omit f;’s dependence when it is unambiguous. The choice of
F, will affect the solution to (6), and will depend on the needs
of the decision maker. Note here by affixing the subscript
7 on each uncertain X"Z(gj') we allow for the possibility that
the uncertainty in each term may arise from distinct random
vectors not necessarily related to one another. To allow for
more general results, X +(7) denotes the random vector present
in the i expression. In an optimal power flow (OPF) problem,
for example, 'y may be the expectancy operator (i.e. Fy = E)
such that the objective is to minimize the expected cost,
whereas [F; is commonly some VaR, or chance constraint
that aims to maintain uncertain physical states f; within their
feasible limits with high probability.

Choosing [F; as a chance constraint or the VaR, may be
difficult to work with in practical solutions as only a relatively

(6a)

;M (6b)
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few number of distributions offer exact deterministic reformu-
lations, and the formulation for most distributions destroys
convexity that may otherwise be available, [7]. Furthermore,
merely imposing a bound on the VaR, only provides a
probabilistic guarantee on f; not exceeding a certain value,
with no measure of the expected loss if f; exceeds that bound.
Although choosing F; = CVaR,, provides both a probabilistic
bound through the associated VaR,, as well as a sense of the
risk of potential constraint violations, the CVaR on its own
has some limitations.

If the CVaRy of fi(7, X:(77))) is < b;, then because
CVaR,, > VaR,, this implies that ]P’(fi(gj', X (7)) < bi) > o
also holds as per (1). Consequently, if we only want (6b) to
hold with probability « (i.e. a chance constraint on (6b)),
then replacing this with a constraint such that CVaR, of
fi(7, Xi(¥))) is < b; will actually over-ensure the original
constraint holds. Hence, there may be a solution for some
B < « at which ensuring the CVaRg of f;(¥/, X;(¥))) is < b;
leads to VaR,, = b; such that we can relax the CVaR constraint
and still ensure that the chance constraint holds, which may
reduce the solution conservativeness.

Finding (8 such that 8 < « is not trivial, since it is not
clear how « and [ are related, which this paper addresses.
Ultimately, we do not want the resulting VaR that comes from
our calculation of the CVaR to be too conservative on our
chance constraints, because it will affect our objective value.
As such, we want to not only minimize this CVaR at some
level (i.e. control the CVaR), but since the z defined in (3)
in that minimization is the VaR at that level, we also want
to keep z as close as possible to the critical value b; while
ensuring we will not exceed it (i.e. co-optimize the VaR).
In order to accomplish this, while minimizing the CVaR of
the constraints in (6b), we also constrain the VaR of each by
penalizing deviations from limit b; without exceeding it. This
will control the VaR while simultaneously minimizing over
the CVaR, i.e. co-optimizing both quantities.

Thus we can choose measures [Fy and IF; in (6) to incorpo-
rate the CVaR of each term as in the optimization problem of
[7, Eq. (5.14)] and modify it to contain an additional constraint
on z; of each chance constraint as follows:

min
Y,p>0

M M
> CVaRo, (fi(7, Xi(@);2) + > _mipi (Ta)
=0 =1

st. zi+pi=b; Vi, (7b)

where g > 0 holds for each component of p =
{p1,p2,---,pm} € RM  a vector of positive slack variables
penalized by parameters 7); to ensure that the resulting VaR
of each constraint is as close as possible to the critical
value b; without being greater than that. Whereas [7, Eq.
(5.14)] minimizes the CVaR,, of an uncertain quantity while
simultaneously minimizing the VaR, the addition of (7b) in (7)
and the penalty term in (7a) differentiates this work from that
of [7, Eq. (5.14)], and allows for constrained minimization
of the CVaR by constraining the VaR to be as close to
some specified value as possible. Doing so can reduce the
conservativeness of the solution, and offers more options for
tuning risk preferences. Furthermore, due to the relationship

between the VaR and CVaR and the formulation of the
problem, we have the following theorem:

Theorem 1. The optimal p} in (7) is the exact amount by

which the upper limit b; exceeds the optimal VaR,.
Proof. This comes from direct inspection of (7b) and that p; >

0, noting that these constitute a reformulation of the inequality
z; < b; with positive slack variable p;, and that z; is the VaR,,
of each f; from (4). O

Furthermore, since Theorem 1 allows for exactly calculating
the difference between VaR of an uncertain value and the
upper bound of that value, and the VaR is by definition the
probability that the uncertain value is less than the VaR with
probability «, then for f; with continuous, strictly increasing
probability measures, which occurs for any f; that has no
probability masses like the normal or exponentially distributed
random variable, we show:

Corollary 1. For a problem of the form of (7), the optimal
p; can be used to find the exact amount of added security for
constraint f; beyond the «; tolerance level at the optimum,
i.e. the amount by which P(f} < b;) > «;.

Proof. In the minimization of CVaR,, as defined in [7], z; is
the resulting VaR,,, which from (1) implies P(f; < z;) > «;.
For f; with continuous, strictly increasing probability mea-
sures, the VaR,, is the unique value, z; for which, [9]:

P(fi < zi) = a. ®)

fi < z; + p;). Substituting in (8), we have that

P(fi <b)=o0; +P(zi < fi <z + pi), )

i.e. solving (7) ensures f; < b; with probability «; + P(z; <
fi < zi+pi), and P(z; < f; < z; + p;) represents the exact
amount of added security in the system. U

We remark that, if the underlying distribution of f; is known
exactly, then one may correspondingly exactly calculate how
much added security is in the system. In cases where P
is not known for f;, this quantity provides an estimate of
added security, thereby offering a metric that compares the
conservativeness of different solutions.

C. Wasserstein Metric in Stochastic Optimization

Calculating (7a) requires solving expectations with respect to a
certain probability distribution of each of the uncertain f;, see
(4). If the form of the distribution is known, then there may
exist exact reformulations of the expectations (e.g for a nor-
mally distributed variable), however generally we do not know
the true distribution and can only infer it from a finite set of
historical samples. Consequently, solutions of (7) that assume
a specific distribution based on the available observation may
exhibit poor out-of-sample performance. With this in mind,
we seek to employ a distributionally robust solution to (7)
that accounts for all distributions that could have generated the
available observations to further immunize against uncertainty.
Specifically, for a set of such candidate distributions (i.e.
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ambiguity set) P, we minimize over the worst case distribution
such that

M
min su CVaRQ 5 ); zi) + ip: (10a
i, s> Z (f:(7, X () ;n pi (10a)

st. zi+p;=b; Vi, (10b)

where CVaR(gi (X;z) denotes the CVaR,, of random X
with respect to probability measure QQ of X . Without proper
construction of the ambiguity set, however, there is the
possibility that the ambiguity set does not contain the true
distribution, and inadequately accounts for uncertainty, or that
the ambiguity set is too large, containing distributions that are
not representative of the true underlying distribution, and thus
yield an overly conservative solution. Ideally we would like
an ambiguity set that is just big enough to ensure that the
true distribution is contained within, but not too big as to also
contain many excess distributions. To accomplish this, recent
works have shown that a data-driven paradigm of constructing
the ambiguity set using the Wasserstein metric leads to dis-
tributionally robust solutions that perform better than single
distribution problems. Furthermore, these solutions guarantee
that the chance constraints with respect to the underlying true
probability distribution can be robustly guaranteed based on a
limited number of historical data points [5], [13], [14]. For the
set, P, the Wasserstein metric for any two distributions Q1,
Q9o € P can be defined as, [5]:

W(Qh(@g) = 1I1_1[f /Q2 le — (4)2” H(dwl,dwg), (11)

where II is a joint distribution of w; and wo with marginal
distributions @Q; and Qo, support €2, and ||-|| can be any norm.

For a collection of historical observations of a random
variable, denoted by a hat ("), we can construct an optimal
ambiguity set with the Wasserstein metric. Given the K-
dimensional historical sample set {&1, @9, ...,k }, the best
estimate of the true distribution is the empirical distribution
]@K(t) = %Zfil 1¢o,<ty, where 1y, <4y is the indicator
function. Furthermore, [11], [12] have shown that the un-
known data-generating distribution belongs to the Wasserstein
ambiguity set centered around Py with confidence 1 — § if
the corresponding Wasserstein radius grows sublinearly as a
function of log(1/8)/K.

Thus for empirical distribution Py and true distribution
P we have W (Pg,P) < e(K) for some sample-dependent
monotone function £(-) that decreases to zero as its argument
tends to infinity. Accordingly, for a historical data set with
K samples, the true distribution P lies within the Wasserstein
ball of radius ¢(K) centered at empirical distribution Py such
that data-driven ambiguity set P is given by

Pr = {P e P(Q)|W(P,Py) < c(K)}

and represents the reliable information about the true distribu-
tion [P observed from the K historical samples. To solve (10),
we follow [5] and set P = 75;( as given by (12).

With CVaR,, defined in (4) as the expectancy of the point-
wise maximum of loss function I( (¢, X;(¥)), z) we extend
[5, Theorem 6.1 and 4.2] in the context of our problem as:

(12)

Theorem 2. Let each f; in (10a) be the inner product
(7. X)) of 7 € RN and X;(§) € RN, ie. fi : RN —
R and f; is convex in both y and X,(g) Accordingly,
the loss ]:unctions l; are _’then affine functions of the form
Li(fi(7, Xi), 2i) = a;(, Xo)+b;zi, and max;< j (a; (7, Xi)+
bjz;) is convex over X;(y), where a1 = 0,b1 = l,as =
1/( @;),by = 1 —1/(1 — ;) as in Section II-A for the
CVaR.. Further, let the support Q; of random vectors X, )
be polytopes, i.e. Q; = {X,(7) € RN : C; X;(§) < d;}, where
C; is a matrix and az; a vector of appropriate dimensions Vi
such that the Q; are closed and convex. Let || - || be any norm
on RY, dual norm ||-||, = sup|j¢1<1(+ &), and inner product
of two vectors, a,b € RN (a,b) := aTb. For ambiguity set
751{ defined via the Wasserstein metric as in (12) with radius
e(K) > 0, the problem in (10) must be smaller or equal to

K M
;in, )+ —ZZszk +Zmpz (13a)
A,Sik,Vikj k=11i=0
s.1. zi + pi =b; Vi (13b)
bizi + (Fikj» di — C@ﬂ
+ a]<ya ¥y <si Vijk,j (13¢)
ICT Firs — a;glls < A Vi k,j o (13d)
where (f)'f is the k™ historical observation of the ™ random

vector X:l(gj’), and X, s, Yik; are auxiliary and epigraphical
decision variables.

Proof. Consider the CVaR term in objective (10a), where
we rewrite it using the formulation in (5). Namely, we have
mlnyzbuerpK IE{Z —omaxj<sl; (7, X: (7)), 2 )}. Since
(77, X:(7)) is convex, then I; is convex in X (7), and
this term is equivalent to ming -, . = o - Ae(K) +

LS oM six subject to constraints (14c) and (14d) for
auxiliary and epigraphical decision variables A, Sik,t_;'kj, Uik
by [5, Theorem 6.1 and 4.2].

The second term in (10a), Zi\il 1;Pi, 1S convex by construc-
tion. Thus adding this to the convex reformulation above pre-
serves the overall convexity of the problem. Further, constraint
(7b) is affine, merely restricting the feasible set of values, and
similarly for the convex constraint that p; > 0, which restricts
the feasible set to a half space.

Define the conjugate of a function as [g]*(-) =
SUPz g (-, €)= g(-) and the support function of closed, convex
Q; as 0, (+) = supgeq, (-, @). Then by using [5, Theorem 6.1

and 4.2]', (10) is equivalent to
| KoM M
PN e D sty mpi (14a)

k=1 1i=0 i=1

sﬂwtzkj 1'Utk]

'For brevity, we direct the reader to the proofs of [5, Theorem 6.1 and 4.2]
for the full details and further insightﬁ, and note that (14) extends [5, Theorem
4.2] for multiple random vectors X; by including an additional objective
term and constraint. As noted, the inclusion of these does not invalidate the
reformulation in [5]. Thus we have that (10) with (12) is equivalent to (14).
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s.t. zi+pi =b; Vi (14b)
(=1 (Fikj — Tikj) + o0, (Tiny)

— (Ling, @i < sin Vi,k,j  (l4c)

ik« < A Vi k.. (14d)

Since the feasible set of (10) and (14) are equivalently re-
stricted, the reformulation from [5] remains valid.

Finally, using [5, Corollary 5.1] and details therein we refor-
mulate constraints (14c¢) and (14d) into (13c¢) — (13e), which is
valid for the given assumptions such that f; = (7, X;(%)) and
that suppports 2; are polytopes. As before, the full details of
this part of the proof are beyond the scope of this paper, and
we direct the reader to [5, Corollary 5.1] for further insights
into the reformulation of (14c¢) and (14d) into (13c) — (13e).

0
Naturally then, ¢(K) is crucial to the quality and conserva-

tiveness of the result of (13). As shown in [13], following the
derivations in [3], [15], the radius can be expressed as

15)

for some confidence level 8 such that we may control the
radius to be optimal size given the available data via the value
of C. Further shown in [13], we may safely estimate C' as

1 LS ellamil?
~2inf [ —(1 1(7 5“1‘*“1)
C éI>10 25( +In K;e

where ﬁ is the sample mean of the data, and the minimization
over ¢ can be performed by the bisection search method.
Before proceeding, we highlight that Theorem 2 allows one
to co-optimize the CVaR and VaR of an uncertain value
in a distributionally robust manner for an interesting class
of problems important to a wide range of fields, such as
a portfolio optimization or knapsack problem. Along with
Theorem 1 and Corollary 1, Theorem 2 offers one both a
means of co-optimizing the CVaR and VaR, as well as a
metric to compare conservativeness of solutions via the size
of p, the gap between the VaR of a value and its upper limit.

1/2

(16)

ITII. STOCHASTIC REVERSE AUCTION
We turn now to a specific application of the above in which
an aggregator operates a reverse auction for demand response
(DR) as depicted in Fig. 2. The aggregator looks to receive
an amount of DR D; determined by the system operator, as
in [16], and receives a penalty proportional to the amount
by which they fail to meet D;. The aggregator procures DR

Aggregator
min «aCVaR

s.t. VaR ~ Dy
[ J

Customers
s

Determine Cost and Notify Winners : ;
Risk Minimizing Set of Determine Reductions
and Rates

Winning Bids

Submit Bids {T’n, 7Tn}

Fig. 2. A schematic representation of the reverse auction.

consumption from their base level before the call for DR r,
as well as a price 7, for each unit of reduced energy.
Furthermore, while customers submit bids of how much
they are willing to reduce their consumption, they may not
need to reduce their consumption to this full amount, and
are paid based on a realized reduction. Because of either
inaccuracy in the initial forecast of pre-DR call consumption
levels or inability to actually deliver the scheduled amount of
load consumption (voluntary or otherwise), the actual amount
of delivered demand response of each customer is itself
uncertain, rendering this a stochastic optimization problem.
Appropriately, we will model the actual reduction of each
customer as the submitted bid 7,, plus an additional term to
represent their unknown deviation from the bid A, which
can be positive (over reduction), or negative (under reduction).
We assume that the aggregator will also have access to some
historical record of each customer’s bidding and actual past
consumption levels for the k™ DR call #¥, i.e. the true amount
of energy consumed at the time of past DR calls, as well as
to the amount each customer has been scheduled to consume
&% Accordingly, the aggregator will be able to calculate a
performance measure for each single DR call as 6% = &% — 2
for each customer ¢, which can be viewed as a realization of

the random variable A,,.
Hence, the loss function of the aggregator is the sum of all

realized reduction levels &,, .= r,+A,, multiplied by price 7,
from all accepted bids. For ease of notation we define &g :=
{&171, ..., EnTN} to be the N-dimensional vector of uncer-
tain customer reductions multiplied by the price at which they
wish to be compensated such that w,, = &,7,, the uncertain
reduction of customer n multiplied by customer n’s desired
compensation, Similarly, we define &y = {&;,...,&n} to be
the /N-dimensional vector of uncertain customer reductions.
The aggregator therefore tries to optimally select the bids in
order to minimize this loss function. However, the aggregator
must also ensure that the sum of all actual reduction levels
(i.e. the DR deliverable to the system operator) is greater than
their target goal, D,, i.e. for the vector of binary decisions

= {uy,ug,...,un}
min (i, Qo) (17a)
sot. — (d,@) < —Dy (17b)
un € {0,1}. (17¢)

We now recast (17) in the context of Section II, i.e. to
ensure (17b) holds with a given probability while minimizing
the harmful tail costs (CVaR,,) of (17a) and (I7b) in a data-
driven distributionally robust manner. We define &% as the the
k™ observation of the uncertain vector &g, and similarly for
W¥. Now, we reformulate the problem from (17) to co-optimize
the CVaR and VaR in a distributionally robust manner using
the ambiguity set defined via the Wasserstein metric and K
historical observations of each customer using our results from
Sections II-B and II-C as follows:

min
U, Z,pN, 8k Vikj

K 1
1
Ae(K) + ?I;;Sik +np (18a)
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st. (13c) - (13e) (18b)
s+ p=—D; (18¢)
up, € {0,1}. (18d)

Similar to Section II-C, all «; are the tolerance to risk, i.e. the
probability with which one desires a certain constraint to hold.
Additionally all z; are the VaR, controlled for the constraint
given by (17b) via (18c), n is some number characterizing the
decision maker’s preference of added security in the system,
and p is a positive slack variable that allows for control. Thus
solving (18) allows us to find the least cost set of winners of
the DR reverse auction that ensures the target DR is met, while
simultaneously controlling the VaR and CVaR in a data-driven
distributionally robust manner.

I'V. NUMERICAL RESULTS

This case study considers a stochastic reverse auction in
Fig. 2 as modeled in (18) with 10 customers using the Pecan
Street data [17] from the New York area. Each customer is
allowed to bid up to « of their average energy consumption,
for v ranging from 10% to 30%, at the unitary price m,, = 1.
The penalty factor n is set as a fraction ™ of m and the
total amount of DR to be collected (D;) is set to 50% of
the collected bids. To solve (18), we generated 100 random
samples in §2; with variance of samples p of the bid, with p
varying from 10% to 30%. In other words, customers with
a smaller bid had a smaller variance, and customers with a
larger bid had a larger variance, which allows for studying
a trade-off between low-risk, low-return customers (i.e. small
bid, small variance) and higher-risk, higher-return customers
(i.e. those with a larger bid but also a larger variance). All
simulations were conducted using Julia/JuMP and the Gurobi
solver [18], [19].

Table I compares the performance of (18) for different
penalty values. We use the case with no penalty (n™ = 0),
i.e. CVaR is minimized with no co-optimization on VaR, to
establish the base case. As ™ increases, so does the relative
decrease (in %, relative to the base case with 7, = 0) in p for
all combinations of v and . In other words, penalty 1 reduces
a gap between the VaR and a desired target goal D;. While
Table I shows that co-optimization enabling constraint (18c)
reduces the gap between the VaR and target goal, the size of
the gap depends on the variance and a larger variance yields
a lower gap reduction.

TABLE 1
RELATIVE DIFFERENCES OF p FOR VARIOUS 7}, 7y, AND o (IN %,
RELATIVE TO THE BASE CASE WITH 1 = 0)

v =10% v =20% v = 30%
s
o n 00| 05 1.0 | 00| 05 1.0 | 00| 05 1.0
10% 0.0 | 99.8 | 100 | 0.0 | 994 | 100 | 0.0 | 29.7 | 100
20% 0.0 |1 99.9 | 100 | 0.0 | 98.2 | 100 | 0.0 | 59.9 | 100
30% 0.0 | 86.5 | 100 | 0.0 | 93.7 | 100 | 0.0 | 73.0 | 100

V. CONCLUSION

This paper has presented a method to calculate the CVaR
of a constraint from a finite number of samples, while simul-
taneously controlling the VaR level to be as close as possible

without exceeding the upper bound of a constraint. This co-
optimization method has also been extended to accommodate
the underlying uncertainty in a distributionally robust manner.
Building on the existing result in [5], we proved that the CVaR
and VaR co-optimization over an ambiguous uncertainty set
can be implemented in a computationally tractable manner.
The proposed CVaR and VaR co-optimization has been applied
to a stochastic reverse auction, in which an aggregator seeks
to procure uncertain amounts of DR from a pool of customers
at the lowest cost, similar to a portfolio optimization problem.
Our results demonstrate that the proposed control scheme
effectively reduces the gap between the VaR and the upper
bound of a constraint. Future efforts will investigate the effects
of this co-optimization model on revenue adequacy and cost
recovery properties of the reverse auction with distribution
power flow constraints.
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