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Abstract—Demand response (DR) programs aim to engage dis-
tributed demand-side resources in providing ancillary services for
electric power systems. Previously, aggregated thermostatically
controlled loads (TCLs) have been demonstrated as a technically
viable and economically valuable provider of such services that
can effectively compete with conventional generation resources
in reducing load peaks and smoothing demand fluctuations. Yet,
to provide these services at scale, a large number of TCLs
must be accurately aggregated and operated in sync. This paper
describes a Markov Decision Process (MDP) that aggregates and
models an ensemble of TCLs. Using the MDP framework, we
propose to internalize the exogenous uncertain dynamics of TCLs
by means of stochastic and distributionally robust optimization.
First, under mild assumptions on the underlying uncertainty, we
derive analytical stochastic and distributionally robust control
policies for dispatching a given TCL ensemble. Second, we
further relax these mild assumptions to allow for a more
delicate treatment of uncertainty, which leads to distributionally
robust MDP formulations with moment- and Wasserstein-based
ambiguity sets that can be efficiently solved numerically. The
case study compares the analytical and numerical control policies
using a simulated ensemble of 1,000 air conditioners.

Index Terms—Markov Decision Process (MDP), Linearly Solv-
able MDP, Distributionally Robust MDP, Thermostatically Con-
trolled Loads, Uncertainty

I. INTRODUCTION

Thermal inertia of cooling and heating systems enables
temporarily adjusting power consumption of thermostatically
controlled loads (TCLs) without compromising their primary
functions [1], [2]. In the presence of constantly growing
volatility and uncertainty of nodal power injections in elec-
tric power distribution systems caused by the integration of
distributed energy resources (DERs), thermal flexibility of
TCLs is a valuable control resource, [1]. The ongoing ex-
pansion of grid-edge communication infrastructure also allows
for designing demand response (DR) programs that enroll
distributed small-scale flexible loads to provide various grid
support services, both at the transmission and distribution
levels. The Federal Energy Regulatory Commission (FERC)
reports an increasing trend of DR program participation in
the wholesale markets with a growth of 3% from 2016 to
2017, to a total of 27,541 MW [3]. To a large extent, this
participation is enabled by aggregators that operate a large
portfolio of similar devices [4] (called an ensemble) and act
as mediators between grid operating entities, e.g. distribution
system operators (DSOs), and individual flexible loads. The
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efficiency of these DR programs depends on the ability of
aggregators to accurately model and control their ensembles.

TCLs, such as air conditioners, refrigerators or electric
heaters, have a cycling pattern of energy consumption, i.e.
they switch between on and off states given some user-defined
thresholds (e.g. preferred temperature bands). This property
allows to model TCL ensembles of an unlimited, or sufficiently
large, size as a discrete-time, discrete-space Markov Process
(MP) with relatively high accuracy. Their power consumption
can then be optimized using the Markov Decision Process
(MDP) framework [5]–[13]. The MP approach exploits the
on/off switching behavior of TCLs and discretizes the en-
semble dynamics into a finite number of states with each
possible transition between these states characterized by a
state-dependent probability. By capturing these transitions and
their probabilities, the MP characterizes the interplay between
the TCL temperature settings and electrical consumption based
on external parameters (e.g. quality of refrigerator insulation,
volume of air-conditioned space).

In [5], the authors show that the necessary parameters to
construct such a MP representation can be obtained either
from TCL electrical measurements or system temperature
observations. The MP in [5] then employs a model predictive
control strategy to achieve a desired consumption trajectory
of the ensemble, thus allowing for dispatching TCLs like a
virtual energy storage device. Similarly, [14], [15] developed
methods to represent and dispatch TCL ensembles as virtual
storage devices for providing regulation reserve. In the context
of DR aggregators, the desired load trajectory is the optimal
trade-off between increasing the payoff of the aggregator and
reducing comfort levels of TCL users, e.g. discomfort caused
by deviations from their temperature settings. By penalizing
deviations from user-defined TCL settings, the MDP in [6],
[7] provides a tractable description of the TCL optimiza-
tion by leveraging dynamic programming. MDP-based DR
frameworks similar to [5]–[7] can also accommodate network
constraints to account for AC power flow and voltage limits
in the distribution system [8], [9], as well as to mitigate
the uncertainty of PV generation resources [10]. In addition,
[11] consider the effect of fluctuating electricity prices on
various types of controllable loads and derive a price-taking
control strategy. Unlike [5]–[11], [14], [15], which assume that
TCLs are operated in a centralize manner, [12], [13] develop
a decentralized Markovian control strategy for an individual
TCL resource to provide ancillary services to the power grid.

While [5]–[13] demonstrate the usefulness of the MDP
framework for dispatching TCL ensembles, they assume per-
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fect knowledge of the ensemble transitions and their probabili-
ties. In practice, however, these model parameters are unknown
and must be inferred from historical data. As available data
on TCL ensembles is finite and potentially noisy, the true
values of these model parameters remain unknown. This paper
robustifies the MDP-based optimization of a risk-averse DR
aggregator against uncertainty in the transition probabilities,
thus generalizing the MDP models in [6]–[8], [10]. Leveraging
methods of stochastic and distributionally robust optimization,
we derive analytical and numerical methods to endogenously
model uncertain transition probabilities and explore their po-
tential effects on the optimal dispatch of TCL ensembles.

Parameter uncertainty arising from the inability to accu-
rately estimate transition probabilities of the MP has been
shown to significantly distort the outcomes of MDP solutions
[16]. The most common methods to overcome this caveat
include percentile criteria [17], Kullback-Leibler divergence
bounds [18], nested uncertainty sets [19] or confidence regions
using historical MDP performance metrics [20]. This paper ex-
ploits an alternative approach and aims to internalize statistical
information about the uncertainty on transition probabilities
into the MDP optimization. Specifically, we explore how a
mildly restrictive assumption enables a reformulation of the
MDP optimization for TCLs as a linearly-solvable MDP (LS-
MDP) [21]. Using this LS-MDP framework and building on
the previous work in [7], [8], [10], this paper accounts for
the transition probability uncertainty in the MDP optimization
under different statistical assumptions summarized in Table I.
First, we use stochastic and distributionally robust optimiza-
tion to derive analytical (closed-loop) control policies for
the TCL ensembles under the assumption that the transition
probability uncertainty is normally distributed, either with
known or ambiguous distribution parameters. However, this
assumption may still lead to unnecessarily erroneous TCL
dispatch decisions. Second, we overcome the need for the
normally distributed assumption, by introducing a moment-
based ambiguity set into the MDP optimization that does not
assume any distribution and only requires knowledge about
first- and second-order moments. Although this approach does
not result in a closed-form optimal control policy, we demon-
strate that the MDP optimization under these assumptions can
be solved efficiently with off-the-shelf solvers. To overcome
the requirement on accurately computing the moments, we
introduce a Wasserstein probability distance, [22], [23], in
the distributionally robust MDP optimization and derive a
computationally tractable reformulation. Unlike the moment-
based approach, the Wasserstein allows to capture all dis-
tributions within a pre-defined radius from a given nominal
distribution, which can be drawn from empirical data, thus
reducing data requirements needed to obtain a distributionally
robust solution. Furthermore, the value of this radius can be
used by decision-makers as a tuning parameter that allows
for adjusting the solution conservatism. To demonstrate and
compare the performance of the presented analytical and
numerical approaches, we conduct comprehensive numerical
experiments on a TCL ensemble consisting of air conditioners.

Table I. OVERVIEW OF THE EXISTING AND PROPOSED METHODS

Method Eq. Uncertainty on
transition probability Solution

Previous work, [7],
[8], [10] (1) None Analytical

Stochastic (7) Normally distributed
Analytical

Distributionally robust (13) Normally distributed with
ambiguous parameters

Moment-based
distributionally robust (20) Any distribution with

constraints on moments
Numerical

Wasserstein-based
distributionally robust (23)

Any distribution within a
fixed distance of
empirical distribution

II. MDP FOR TCL ENSEMBLES

Building on our prior work in [7], [8], [10], we represent
a homogeneous ensemble of sufficiently many TCLs as a
discrete-time, discrete-space MDP. From the perspective of
the DR aggregator, the optimization problem for operating the
TCL ensemble is:

min
ρ,Pt

Eρ
∑
t∈T

∑
α∈A

(
− Uαt+1 +

∑
β∈A

γ log
Pαβt
Pαβ

)
(1a)

s.t. ραt+1 =
∑
β∈A

Pαβt ρβt , ∀α ∈ A, t ∈ T (1b)∑
α∈A
Pαβt = 1, ∀β ∈ A, t ∈ T (1c)

where ρ ∈ Rn, n = |A|, is a vector with entries ραt+1 ≥ 0 and
ρβt ≥ 0 representing the probabilities that the TCL ensemble
is in states α, β ∈ A at times t + 1 and t, respectively, A
is the set of all possible states, and operator Eρ denotes the
expectation over ρ. Set A is obtained by discretizing the range
of aggregated power consumption of the ensemble given the
operating range of each TCL [7]. Probabilities ραt+1 and ρβt are
related via the transition probability matrix Pt ∈ Rnxn, with
n = |A|, and where entry Pαβt of matrix Pt characterizes
the probability of the transition of the TCL ensemble from
state β at time t to state α at time t + 1. Note that the
TCL ensemble can also remain in the same state such that
α = β. On the other hand, matrix P ∈ Rnxn with entries Pαβ

represents the default transition probability, i.e. the steady state
behavior of the ensemble without any control actions of the
aggregator. Additionally, internal control actions such as user-
defined settings and their on-demand adjustments can still be
applied to the individual TCLs in the ensemble, which will
modify and will be reflected in default transitions and the
probability matrix. (The inability to perfectly forecast these
internal control actions introduce the uncertainty that we deal
with in Sections III-IV.) In the following, we treat the vector ρ
and matrix Pt as decision variables, which can be achieved by
suitable TCL control actions [5]. In contrast, entries Pαβ of
matrix P are treated as parameters of the MDP optimization
in (1). Although matrix P is modeled as time-independent,
unlike Pt, this modeling choice can be revisited, if sufficient
historical data about the TCL ensemble is available. As more
empirical data on the TCL dispatch is collected over time,
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the more temporal fidelity can be achieved in representing
default transitions. All methods to account for the uncertainty
presented below will hold if P is modeled as time-dependent.

Eq. (1a) is the objective function of the aggregator that
operates the TCL ensemble and tries to maximize its expected
utility Uαt+1 at future state α at time t + 1 and to minimize
the discomfort cost of the TCL ensemble, which is modeled as
the logarithmic difference between the uncontrolled transitions
of the TCL ensemble (Pαβ) and the resulting transition
probabilities due to the control decisions of the aggregator
(Pαβt ). 1 This discomfort cost in the second term of (1a)
can be interpreted as the Kullback-Leibler (KL) divergence
weighed by cost penalty γ, [24]. The KL divergence is widely
used for modeling discrepancies in discrete- and continuous-
time series, [25], and makes it possible to derive closed-form
optimal control policies. Parameter γ can influence the KL
divergence and thus encourage or discourage deviations from
the default behavior of the TCL ensemble. Furthermore, if
Pαβ = 0, i.e. a transition from state β to α has not been
observed in the past, the model in (1) restricts Pαβt = 0 and
excludes such transitions when optimizing it for the rest of
the values. Eq. (1b) describes the temporal evolution of the
TCL ensemble from time t to t + 1 over time horizon T .
Eq. (1c) imposes the integrality constraint on the transition
decisions optimized by the aggregator such that their total
probability is equal to one. After solving (1), the active power
(pt) consumed by the TCL ensemble can be computed using
decisions ρβt and rated active power pβ,rated at each state as
pt =

∑
β∈A p

βρβ,ratedt , ∀t ∈ T . Since (1) is formulated for
a discrete-time MP, the resulting dispatch does not capture
power fluctuations between discrete time instances. However,
since the TCL ensemble is assumed to be sufficiently large,
random fluctuations of TCL loads neutralize one another at the
ensemble level, [26]. Furthermore, the residual effects of such
fluctuations between discrete time instances can be mitigated
if one uses a more fine-grained temporal resolution. However,
the latter may increase computing times.

Our prior work in [8], [10] shows that the optimization in
(1) is a LS-MDP as introduced by [21]. The LS-MDP has
no explicit actions, is controlled by modifying a predefined
(uncontrolled) probability distribution over subsequent states
as modeled by decisions Pαβt . The optimal policy obtained
from (1) is a next-state distribution, which minimizes the
accumulated state costs of the agent traversing state space A,
while minimizing the divergence cost between the controlled
(Pαβt ) and uncontrolled (Pαβ) probability distributions. This
optimal policy can be computed as:

Theorem 1. Let (1) model a TCL ensemble as a LS-MDP.
Then the optimal control policy is:

Pαβt =
Pαβzαt+1∑
α∈A P

αβ
zαt+1

, (2)

1The discomfort cost of TCLs can be interpreted as a change in their
temperature settings from user-defined comfort/convenience levels, e.g. for
freezers, air-conditioners, hot-water tanks, heat pumps, and swimming pool
pumps.

where zαt+1 = exp(−ϕαt+1/γ) and value function ϕαt+1 is de-
fined as ϕαt+1=−Uαt+1−γlog

(∑
υ∈A exp

(−ϕυt+2

γ

)
Pυα

)
, where

υ ∈ A is a state at time t+ 2.

Proof. See proof in Appendix A.

Theorem 1 implies that computing the optimal control pol-
icy depends on the uncontrolled transition probability (Pαβ)
and the value function of the next state (ϕαt+1). However,
this requires the default transition probabilities to be perfectly
known, which does not hold in real-world applications, where
the TCL ensemble is subject to unknown external influences
and uncertain human behavior. We model this parameter un-
certainty by representing default transition probabilities Pαβ

as random variables Pαβ
, indicated by the bold font. As

summarized in Table I, we derive and study methods to
internalize Pαβ

in the optimal MDP control policy using
different assumptions and statistical information on Pαβ

.

Remark. Although the MDP in (1) is developed for a homoge-
nous TCL ensemble, it can be extended to modeling heteroge-
nous TCL ensembles. For instance, one can classify TCL loads
in a given heterogenous ensemble and represent it as a set
of homogeneous subensembles. Then, each subensemble can
be operated separately using the proposed MDP framework.
Similarly, the models proposed in Sections III and IV can be
extended to operating heterogenous TCL ensembles.

III. ANALYTICAL CONTROL POLICIES

The standard MDP formulation in (1) allows the derivation
of a closed-form optimal control policy as shown by Theo-
rem 1. The goal of this section is to show that this useful
property can be maintained if Pαβ

is normally distributed.

A. Stochastic Formulation

Assume that Pαβ
follows a normal distribution with mean

Pαβ and variance σ2, i.e. Pαβ ∼ N(Pαβ , σ2). The mean
and variance can be calculated from a set of N historical
observations of Pαβ

that can be retrieved by the aggregator
from operating data of a given TCL ensemble2. We denote
this set of observations as {Pαβj,obs}j∈N and use it to infer
distribution parameters such as empirical mean (Pαβ) and
variance (σ2) as follows:

Pαβ =
1

N

∑
j∈N
Pαβj,obs, σ2 =

1

N − 1

∑
j∈N

(Pαβj,obs − P
αβ

)2 (3)

Then, we reformulate (1) as:

min
ρ,P

OE := EPαβEρ
∑
t∈T

∑
α∈A

(
− Uαt+1+

∑
β∈A

γ log
Pαβt
Pαβ

)
(4a)

s.t. Eq. (1b)− (1c), (4b)

2We ensure
∑
α∈A Pαβ

= 1. In other words, the probability of moving
from present state β to all possible next states α is equal to one.
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where EPαβ denotes the expectation over Pαβ
and Eρ is

identical to (1a). Eq. (4a) can further be simplified as:

OE=Eρ
∑
t∈T

∑
α∈A

{
−Uαt+1+γ

∑
β∈A

(
logPαβt −EPαβ[logPαβ

]
)}

(5)

where the last term can be approximated by the second-order
Taylor expansion as, [27, Eq. (17)]:

EPαβ [log(Pαβ
)] ≈ logEPαβ [Pαβ

]− Var(Pαβ
)

2(EPαβ [Pαβ
])2

= log(Pαβ)− σ2

2(Pαβ)2
. (6)

Given (6), the optimization in (4) is rewritten as:

min
ρ,P

OE := Eρ
∑
t∈T

∑
α∈A

{
− Uαt+1 + γ

∑
β∈A

(
log
Pαβt
Pαβ

+
σ2

2(Pαβ)2

)}
(7a)

s.t. Eq. (1b)− (1c) (7b)

Given the stochastic formulation in (7), we prove:

Theorem 2. Let (7) model a TCL ensemble as a LS-MDP
with uncertain transition probabilities defined as Pαβ ∼
N(Pαβ , σ2). Then the optimal control policy is:

PEt := Pαβt =
Pαβzαt+1exp

( −σ2

2(Pαβ)2

)
∑
α P

αβ
zαt+1exp

( −σ2

2(Pαβ)2

) , (8)

where zαt+1 = exp(−ϕαt+1/γ) and value function ϕαt+1

is defined as ϕαt+1=−Uαt+1 − γlog
(∑

υ∈A exp
(−ϕυt+2

γ

)
Pυα

exp
( −σ2

2(Pυα)2

))
, where υ ∈ A is a state at time t+ 2.

Proof. See proof in Appendix A.

Similarly to Theorem 1, the optimal control policy obtained
from Theorem 2 depends on the mean values of uncontrolled
transition probabilities (Pαβ), the next-state value function
(ϕat+1) and variance (σ2). However, term exp

(
−σ2

2(Pαβ)2

)
distin-

guishes the control policy in Theorem 2 from Theorem 1 and
internalizes the uncertainty on uncontrolled transition proba-
bilities into the optimal control policy. Hence, the stochastic
solution in Theorem 2 is anticipated to improve the optimal
control policy formulated in Theorem 1 for an average per-
formance of the TCL ensemble. However, Theorem 2 still
exploits the assumption that parameters of the uncertainty
distribution, i.e. Pαβ and σ2, are perfectly known.

B. Distributionally Robust Formulation

To internalize potential parameter misestimation due to the
finite number of available observations, we leverage distri-
butionally robust optimization that allows for modeling the
inferred distribution parameters via an ambiguity set. In this
setting, the objective of the DR aggregator is to maximize

their expected performance under the worst-case distribution
of Pαβ

drawn from a given ambiguity set denoted as D:

min
ρ,P

OWC := sup
P∈D

Eρ
∑
t∈T

∑
α∈A

{
− Uαt+1

+ γ
∑
β∈A

(
log
Pαβt
Pαβ

+
σ2

2(Pαβ)2

)} (9a)

s.t. Eq. (1b)− (1c), (9b)

The ambiguity set in (9) is defined as D = [Γ ≤ Pαβ≤
Γ, ζ̂≤ σ2≤ ζ̂], where Γ, Γ, ζ̂ and ζ̂ are confidence bounds on

the empirical mean and variance. Since Pαβ and σ2 can be
respectively modeled by t- and Chi-Square (X 2) distributions
[28], we compute these bounds as:

Γ = Pαβ− t(1−ς/2)
σ√
N

and Γ = Pαβ+ t(1−ς/2)
σ√
N
, (10)

ζ̂ =
(N − 1)σ2

X 2
(1−ξ)/2

and ζ̂ =
(N − 1)σ2

X 2
ξ/2

, (11)

where we denote t(1−ς/2) in (10) as the (1− ς/2)-quantile of
the t-distribution and X 2

ξ in (11) as the ξ-quantile of the Chi-
Square distribution. Given D, the objective function in (9a)
can be reformulated as:

sup
P∈D

∑
t∈T

∑
α∈A

{
− Uαt+1+γ

∑
β∈A

(
log
Pαβt
Pαβ

+
σ2

2(Pαβ)2

)}

=
∑
t∈T

∑
α∈A

{
− Uαt+1 +γ

∑
β∈A

(
log
Pαβt

Γ
+

ζ̂

2(Γ)2

)}
,

(12)

leading to the following optimization problem:

min
ρ,P

OWC := Eρ
∑
t∈T

∑
α∈A

{
− Uαt+1 +γ

∑
β∈A

(
log
Pαβt

Γ

+
ζ̂

2(Γ)2

)} (13a)

s.t. Eq. (1b)− (1c). (13b)

Given the reformulation of (9) presented in (13), we prove:

Theorem 3. Let (13) model a TCL ensemble as a LS-MDP
with Pαβ ∼ N(Pαβ , σ2) and Pαβ , σ2 ∈ D, where D = [Γ ≤
Pαβ ≤ Γ, ζ̂ ≤ σ2 ≤ ζ̂]. Then the optimal control policy is:

PWC
t := Pαβt =

Γzαt+1exp
( −ζ̂

2(Γ)2

)
∑
α Γzαt+1exp

( −ζ̂
2(Γ)2

) (14)

where zαt+1 = exp(−ϕαt+1/γ) and value function ϕαt+1 is de-
fined as ϕαt+1=−Uαt+1−γlog

(∑
υ∈A exp

(−ϕυt+2

γ

)
Γexp

( −ζ̂
2(Γ)2

))
,

where υ ∈ A is a state at time t+ 2.

Proof. See proof in Appendix A.

Similarly to Theorems 1 and 2, Theorem 3 computes the
optimal control policy using the mean values of the default
transition probabilities (Pαβ) and the next-state value function
(ϕαt+1). However, it additionally internalizes the information
about set D and immunize the optimal control policy for the
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worst-case realization of distribution parameters drawn from
this set. This overcomes the need to perfectly know distribution
parameters as in Theorem 2, thus improving the goodness of
fit between the LS-MDP model and empirical data.

C. Hybrid Model

Relative to the stochastic formulation in (7), the distri-
butional robustness of (13) imposes additional conservatism
on the optimal control policy, which may lead to a greater
solution cost. To trade-off the robustness and cost performance
of the optimal policy, we seek the hybrid formulation that can
weigh the stochastic and distributionally robust formulations
via parameter η:

min
ρ,P

(1− η)OWC + ηOE (15a)

s.t. Eq. (1b)− (1c) (15b)

where 0 ≤ η ≤ 1.

Theorem 4. Let (15) model a TCL ensemble as a LS-
MDP with uncertainty defined as Pαβ ∼ N(Pαβ , σ2) and
Pαβ ,σ2 ∈ D, where D = [Γ ≤ Pαβ ≤ Γ, ζ̂ ≤ σ2 ≤ ζ̂]. Then
the optimal control policy is given as:

Pαβt = (1− η)PWC
t + ηPEt (16)

where 0 ≤ η ≤ 1 is a parameter characterizing risk tolerance
of the aggregator and PEt and PWC

t are given by (8) and (14).

Proof. See proof in Appendix A.

Theorem 4 yields the optimal control policy that balances
the stochastic and distributionally robust models weighted by
parameter η, which can be set by the DR aggregator based on
its risk tolerance.

IV. NUMERICAL CONTROL POLICIES

The analytical control policies derived in the previous
Section III assume that Pαβ

is normally distributed, even if
distribution parameters are not precisely known and drawn
from the ambiguity set. However, these assumptions may still
limit the performance and applicability of the analytical poli-
cies. This caveat motivates a further investigation of methods
that allow for more generic control policies.

A. Moment-based Ambiguity Set

Instead of assuming a specific (e.g. normal) uncertainty
distribution, we define Pαβ

solely in terms of its statisti-
cal moments (e.g. mean and variance). In other words, this
approach achieves distributional robustness by defining an
ambiguity set that captures all distributions with statistical
moments satisfying given confidence parameters. Hence, we
redefine uncertainty set D:

D := {P ∈M(R)|P(W ) = 1 : (ν),

− b ≤ EPαβ∼µ[Pαβ
]−m ≤ b : (λ, λ),

[EPαβ∼µ(Pαβ −m)2] ≤ cσ2 : (Λ)},

(17)

where EPαβ∼P is the expectation over empirical probability

distribution P supported by samples {Pαβy }y∈N , M is the set
of all distributions, W is the support set, and m and σ2 are
the nominal mean and variance with confidence parameters b
and c. Given the nominal values and confidence parameters,
the uncertainty set in (17) allows for the worst-case mean and
variance be drawn from a range of values. Note that in (17)
we introduce dual variables ν, λ, λ, and Λ for each constraint,
which are given after a colon. Given the ambiguity set in (17),
we define the following optimization problem:

min
ρ,P

sup
P∈D

EPαβ∼PEρ
∑
t∈T

∑
α∈A

(
− Uαt+1 +γ

∑
β∈A

log
Pαβt
Pαβ

)
(18a)

s.t. Eq. (1b)− (1c). (18b)

Solving (18) is challenging because the optimization is
performed over infinite dimensional set D. To the best of
our knowledge, such problems cannot be solved analytically
and there are also no efficient computational tools [29].
However, one way to tackle such problems is to leverage
convex duality theory that transforms the original problem
over an infinite dimensional set into a dual problem over
finite dimensional Lagrange multipliers with the same value
as the original problem [30]–[32]. The duality approach in
an infinite dimensional setting is developed by Rockafellar in
[30] and is based on pairing locally convex topological vector
spaces. The requirement of the existence of a feasible interior
point (Karush-Kuhn-Tucker point) for the implicit constraint
set is relaxed to require only continuity of the optimal value
function. After transforming the original problem to its dual
form, we can use finite optimization computational tools to
obtain a solution. Therefore, we take the dual of the inner
maximization problem and reformulate the objective function
(18a) as follows:

min
λ,λ,Λ,ν

Eρ
∑
t∈T

∑
α∈A

{
− Uαt+1 + γ

∑
β∈A

[
logPαβt

+ (b−m)λ+ (b+m)λ+ cσ2Λ + ν
]} (19a)

s.t.

(λ−λ)Pαβ
+Λ(Pαβ−m)2+ν≥−logPαβ

, ∀Pαβ∈W, (19b)

where {λ, λ,Λ ≥ 0; ν :free} are dual variables defined for
the constraints in ambiguity set D given by (17). Eq. (19)
represents an upper bound of the inner maximization in (18)
because (18a) essentially maximizes over a convex function
(sup− logPαβ

). By substituting (19) in (18), we obtain the
following single-level optimization problem:

min
ρ,P,λ,λ,Λ,ν

Eρ
∑
t∈T

∑
α∈A

{
− Uαt+1 + γ

∑
β∈A

[
logPαβt

+ (b−m)λ+ (b+m)λ+ cσ2Λ + ν
]} (20a)

s.t. Eq. (1b)− (1c) (20b)
Eq. (19b). (20c)
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The optimization problem in (20) can be solved numerically
with off-the-shelf solvers by discretizing W in (19b). Note
that relative to the analytical control policies developed in
Section III, (20) yields a numerical solution, yet with opti-
mality guarantees. Although this numerical solution is less
generalizable than the analytical solutions, it is obtained under
less restrictive assumptions on the underlying uncertainty,
which is more suitable for practical needs and allows one to
avoid unnecessary conservatism of the optimal solution.

B. Wasserstein-based Ambiguity Set

Although the moment-based ambiguity set in (17) avoids
assuming a particular distribution, it still restricts the first-
and second-order moments within given ranges determined
by the confidence parameters, which is shown to produce
overly conservative solutions for certain problems [23]. Hence,
to alleviate the need to invoke these restrictions, we define
an ambiguity set using the Wasserstein metric, which makes
it possible to immunize the optimal solution against any
distribution that lies within fixed radius ψ > 0 around a
given nominal distribution. Accordingly, we formulate this
ambiguity set as:

Cτ := {P ∈M : Wp(P, P̂) ≤ ψ}, (21)

where Wp is the Wasserstein metric of order p evaluating
the distance between distribution P and nominal distribution
P̂. Given empirical distribution Pαβ

t based on observations
{Pαβy }y∈N , the nominal distribution in (21) can be defined
as P̂ = 1

N

∑
y∈N δPαβy

, where δPαβy
is a Dirac distribution for

Pαβ

y . Hence, the Wasserstein distance between distributions P
and P̂ defines the minimum cost of redistributing mass from P
to P̂. Hence, using (21), we can reformulate the distributionally
robust objective function as follows:

min
ρ,P

sup
P∈Cτ

EPαβEρ
∑
t∈T

(∑
α∈A
−Uαt+1 +γ

∑
α∈A

∑
β∈A

log
Pαβt
Pαβ

)
. (22)

Using Definition 3.1 and reformulation steps in Section 4.1
from [22], (22) can be reformulated as:

min
ρ,P,λ,s

Eρ
∑
t∈T

{∑
α∈A
−Uαt+1 +γ

∑
β∈A

(∑
α∈A

logPαβt

+ λψ +
1

N

∑
y∈N

sy

)} (23a)

s.t.

sup
Pαβ,min≤Pαβ≤Pαβ,max∑

α∈A Pαβ
=1

∑
α∈A

{
−logPαβ− λ|Pαβ−Pαβy |

}
≤sy, ∀β ∈ A, y ∈ N

(23b)

Eq. (1b)− (1c), (23c)

where sy is an auxiliary variable and range [Pαβ,min
,Pαβ,max

]

defines the support for Pαβ
, where parameters Pαβ,min

and
Pαβ,max

are drawn from observations {Pαβy }y∈N . Similarly
to the relationship between (18) and (19), (23) represents
an upper bound of (22) because it also maximizes over

Figure 1. (a) Temperature evolution of the ensemble with 1000 TCLs and (b)
their aggregated power consumption.
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Figure 2. Default transition probability matrix (Pαβ ) with 8 states constructed
from the power profile in Fig. 1(b), where the color density indicates the
probability value in the sidebar.

a convex function (sup− logPαβ
). Since (23b) is convex,

the supremum of (23b) can be obtained by an exhaustive
search over extreme points. The extreme points are generated
by the intersection of hyper-boxes, representing the range
[Pαβ,min

,Pαβ,max
], and a hyper-plane, ensuring that the proba-

bility of moving from present state β to all possible next states
α is equal to one (

∑
α∈APαβ

= 1). This allows us to solve
(23) using off-the-shelf solvers.

V. CASE STUDY

The case study is carried out for a TCL ensemble with 1,000
residential air conditioner units. The discrete-time model for
an individual residential air conditioner is based on [5], [33],
[34] and given as:

θt+1 = %θt + (1− %)(θa − ℵRPut) + κt, (24)

where % = exp(−h/RC), θt represents the indoor temperature
of the room, θa is the ambient temperature, R is the thermal
resistance, C is the thermal capacitance, P is the electrical
power consumption, ut ∈ {0, 1} determines whether the
device is on or off, and ℵ is the thermal efficiency. Parameter
κt represents noise, which is ignored in the construction of the
MP, and instead is accounted for by randomizing the default
transition probabilities and solve it using different methods
as given in Table I. Fig. 1 displays simulated temperature
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Table II. COST PERFORMANCE OF ANALYTICAL CONTROL POLICIES.

Solution Cost (Objective function), $
γ($) η=0.00 η=0.25 η=0.50 η=0.75 η=1.00
0.05 2787.04 2786.63 2786.22 2785.81 2785.40
0.10 2805.10 2804.43 2803.76 2803.09 2802.42
1.00 2884.72 2879.16 2873.59 2867.99 2862.38
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Figure 3. Optimal power dispatch under the standard MDP in (1) (blue) and
the difference (denoted as ∆P ) in the power consumption under analytical
stochastic and distributionally robust control policies for different values
of cost penalty γ. The stochastic and distributionally robust policies are
computed using the hybrid model in (15) with η = 1 and η = 0, respectively.

trajectories and the resulting aggregated power consumption.
The aggregated power consumption is discretized into 8 states
with uniform power intervals and the associated probability
transitions are shown in Fig. 2. These transitions are defined
as the default transition probabilities (P) in our models. Next,
we generate 1,000 random samples representing the set of
observations by varying default transition probabilities within
15% of their nominal values in Fig. 2, while ensuring that
the sum of probabilities remains equal to one. Then this set is
used to estimate the empirical mean (Pαβ) and variance (σ2)
values. All simulations are performed using the Julia JuMP
[35] package on an Intel Core i5 2.3 GHz processor with 8 GB
of RAM and the Ipopt solver.

A. Analytical Control Policies

This section studies the performance and solution quality
attained with the analytical control policies derived in The-
orems 2–4. We implement the hybrid model and use it to
obtain the stochastic and distributionally robust solutions by
setting η = 1.00 and η = 0.00, respectively. For the mean
and variance bounds in (10) and (11), we set the values of
parameters ξ = 0.001 and ς = 0.1. Table II summarizes the
cost performance of all control policies for different values
of η and γ and Fig. 3 itemizes the TCL ensemble power

Table III. COST PERFORMANCE OF ANALYTICAL CONTROL POLICIES IN
THE DISTRIBUTIONALLY ROBUST CASE (η = 0).

Objective function, $

γ($) Parameter ς Parameter ξ
0.1 0.01 0.001

0.1 2785.34∗ 2786.25
(0.035% ↑)

2787.04
(0.061% ↑)

0.05 0.10 2785.88
(0.019% ↑)

2786.88
(0.055% ↑)

2787.75
(0.086% ↑)

0.001 2786.35
(0.036% ↑)

2787.42
(0.074% ↑)

2788.36
(0.108% ↑)

0.1 2802.34∗ 2803.81
(0.052% ↑)

2805.10
(0.098% ↑)

0.10 0.01 2803.16
(0.029% ↑)

2804.77
(0.086% ↑)

2806.17
(0.136% ↑)

0.001 2803.87
(0.054% ↑)

2805.59
(0.115% ↑)

2807.09
(0.169% ↑)

0.1 2861.87∗ 2874.05
(0.425% ↑)

2884.72
(0.798% ↑)

1.00 0.01 2868.21
(0.221% ↑)

2881.42
(0.683% ↑)

2892.97
(1.086% ↑)

0.001 2873.63
(0.410% ↑)

2887.71
(0.902% ↑)

2900.01
(1.332% ↑)

∗ Bold numbers are reference values.

dispatch3 for selected values of η. As expected, the solution
cost decreases as the value of parameter η increases, i.e.
distributional robustness and the ability to accommodate high-
fidelity assumptions on the underlying uncertainty come at
a modest increase in the operating cost. However, the cost
increases also depend on the value of chosen cost penalty γ. As
γ increases, so does the cost difference between the stochastic
and distributionally robust solutions. In terms of the power
dispatch displayed in Fig. 3, internalizing the uncertainty on
transition probabilities tends to increase the flexibility of the
TCL ensemble4 relative to the flexibility that can be extracted
from the TCL ensemble relative to the standard MDP solution.
In turn, the amount of this extra flexibility (∆P in Fig. 3)
depends on the time period and on the value of cost penalty
γ. The greater this cost penalty, the less flexibility can be
extracted from the TCL ensemble. We further evaluate the
cost performance of the analytical control policies in the
distributionally robust case (η = 0) for different mean and
variance bounds by varying parameters ξ and ς in Table III
and Fig. 4. It is observed that the solution cost increases
with a decrease in values of ξ and ς , and the magnitude of
this increase is greater for greater values of cost penalty γ.
This is expected because decreasing the values of ξ and ς
expands the confidence bounds around the mean and variance,
which increases the robustness of the solution and immunizes
it against a more extreme worst-case distribution.

Notably, the computational time for the analytical control
policies in Theorems 2–4 is less than 0.013 seconds in all
numerical experiments discussed above.

B. Numerical Control Policies

This section compares the cost and dispatch performance
of distributionally robust solutions obtained using numerical

3Here and in the following discussions, the power dispatch is recovered
from the MDP solution as pt =

∑
β∈A pβ,ratedρβt , ∀t ∈ T , where pβ,rated

is the rated power at each state and ρβt is the MDP solution.
4In this case study, the term flexibility refers to the difference between

the default power consumption and the power consumption with one of the
proposed MDP solutions.
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Figure 4. Optimal power dispatch under the standard MDP in (1) (blue) and
the difference (denoted as ∆P ) in the power consumption under the hybrid
model (η = 0) in (15) for different values of cost penalty γ.

Table IV. COST PERFORMANCE OF THE MOMENT-BASED MDP.

Objective function, $

γ($) Parameter c Parameter b
0.05 0.10 0.20

1.5 2766.81∗ 2840.93
(2.67% ↑)

2843.35
(2.76% ↑)

0.05 2.0 2805.83
(1.41% ↑)

2883.15
(4.20% ↑)

2886.11
(4.31% ↑)

3.0 2812.71
(1.65% ↑)

2891.76
(4.51% ↑)

2895.53
(4.65% ↑)

1.5 2976.63∗ 3074.05
(3.27% ↑)

3077.51
(3.38% ↑)

0.10 2.0 3021.09
(1.49% ↑)

3121.05
(4.85% ↑)

3126.17
(5.02% ↑)

3.0 3032.11
(1.86% ↑)

3133.77
(5.27% ↑)

3139.94
(5.48% ↑)

1.5 3179.43∗ 3295.54
(3.65% ↑)

3303.64
(3.90% ↑)

1.00 2.0 3262.48
(2.61% ↑)

3382.84
(6.39% ↑)

3391.76
(6.67% ↑)

3.0 3279.11
(3.13% ↑)

3401.34
(6.97% ↑)

3411.03
(7.28% ↑)

∗ Bold numbers are reference values.

Table V. COST PERFORMANCE OF THE WASSERSTEIN-BASED MDP.

Objective function, $
γ($) ψ=0.5 ψ=1.0 ψ=2.0
0.05 2808.13∗ 2818.60 (0.37% ↑) 2836.59 (1.01% ↑)
0.10 2814.84∗ 2826.33 (0.40% ↑) 2845.51 (1.08% ↑)
1.00 2852.42∗ 2871.03 (0.65% ↑) 2902.16 (1.74% ↑)

∗ Bold numbers are reference values.

control polices described in Section IV. Tables IV and V
present the solution cost for different values of parameter γ
and Figures 5 and 6 compare the power dispatch of the TCL
ensembles under moment- and Wasserstein-based ambiguity
sets relative to the standard MDP formulation for different
values of parameters b and c in (17) and ψ in (21). Naturally,
the solution cost increases for greater values of cost penalty
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Figure 5. Optimal power dispatch under the standard MDP in (1) (blue) and
the difference (denoted as ∆P ) in the power consumption under the moment-
based distributionally robust MDP in (20) (red) for different values of cost
penalty γ.

γ. Under both the moment- and Wasserstein-based ambiguity
sets, the solution cost increases relative to the standard MDP
and analytical control policies in Table II. These operating
cost increases are expected, because using the ambiguous
uncertainty sets makes it possible to better accommodate
empirical observations, i.e. without assuming normally dis-
tributed errors on transition probabilities. In terms of the power
dispatch, the moment-based approach leads to more volatile
dispatch decisions for all values of cost penalty γ than in the
Wasserstein-based case. Relative to the standard case, both
the moment- and Wasserstein-based cases tend to increase the
overall power flexibility (∆P in Fig. 5 and 6) extracted from
the TCL ensemble over 24 hours. Similar to the analytical
control policies in Section V.A, we analyze the effects of
confidence parameters on the cost performance of moment-
based and Wasserstein-based methods. For the moment-based
method, as presented in Table IV, the solution cost increases
as the confidence region around the first and second-order
moments widens by changing the values of parameters b and
c. Fig. 5 displays the effect of varying b and c on the power
dispatch of the TCL ensembles, where more inter-temporal
fluctuations are observed for greater values of parameters b and
c. In addition, in the Wasserstein-based method, we observe
an increase in solution costs, see Table V, and power dispatch
fluctuations, see Fig. 6, as radius ψ around the nominal
distribution increases.

The average computational times for the moment- and
Wasserstein-based cases are 18.2 and 44.5 seconds, which is
significantly greater than for the analytical control policies.
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Figure 6. Optimal power dispatch under the standard MDP in (1) (blue) and the
difference (denoted as ∆P ) in the power consumption under the Wasserstein-
based distributionally robust MDP in (23) (red) for different values of cost
penalty γ.

VI. CONCLUSION

This paper describes analytical and numerical approaches to
internalize the uncertainty dynamics of TCL ensembles in the
Markov Decision Problem using stochastic and distribution-
ally robust optimization. The stochastic and distributionally
robust control policies are derived under mild assumptions
on the underlying uncertainty and can be implemented in a
computationally efficient manner. On the other hand, allowing
for computationally demanding numerical control policies
allows for better fitting empirical data, thus producing more
accurate control policies and reducing data requirements for
MDP problems. Our case study demonstrates that both the
analytical and numerical control policies improve the accuracy
of computing dispatch flexibility that can be extracted from
the TCL ensemble relative to the standard MDP optimiza-
tion, while minimizing the level of discomfort incurred to
TCL users. Among different methods to accommodate the
uncertainty in empirical measurements of TCL ensemble, we
find that robust methods have more exogenous parameters that
can be leveraged to intelligently trade-off solution cost and
robustness. Although these exogenous parameters vary for the
moment- and Wasserstein-based approaches, our numerical
results demonstrate that they can be tuned in each case to
achieve a comparable cost performance, thus allowing for
distributionally robust decision-making in applications with
different data availability.

APPENDIX A
PROOFS OF THEOREMS 1–4

We follow a similar procedure to prove all Theorems 1–4,
where theorem-specific terms are denoted as Z . The value of

Z for each theorem is derived at the end of this appendix. For
each theorem, given its respective MDP optimization, we can
write the following Bellman equation ∀t and ∀β:

1

γ
ϕβt =

1

γ
min
P

(
− Uβt + EPαβ

[
γ log

Pαβt
Pαβ

+ Z + ϕαt+1

])
, (25)

where ϕβt is the value function at the present state β, ϕαt+1 is
the value function from the next state α and Z represents a
theorem-specific term for any possible transition probability
uncertainty. Introducing the auxiliary (desirability) function
zβt = exp(−ϕβt /γ) in (25) leads to:

−log(zβt )=
1

γ
min
P

(
−Uβt +γEPαβ

[
log
Pαβt
Pαβ

+Z−log(zαt+1)
])

=

1

γ
min
P

(
− Uβt + γEPαβ

[
log

Pαβt
Pαβzαt+1exp(−Z)

])
. (26)

Next, the right-hand side of (26) is normalized using Gβ(z) =∑
α P

αβ
zαt+1exp(−Z), which results in:

− log(zβt ) =
1

γ
min
P

(
− Uβt + γEPαβ

[
log

Pαβt Gβ(z)∑
α P

αβ
zαt+1exp(−Z)Gβ(z)

])
=

(
−Uβt
γ

+ min
P

KL

[
Pαβt

∥∥∥∥∑α P
αβ
zαt+1exp(−Z)

Gβ(z)

]
− logGβ(z)

)
, (27)

where KL
[
· || ·

]
denotes the KL-divergence. The optimal

policy is achieved when KL term in (27) is minimal, i.e. equal
to zero. Since the zero value of the KL divergence is achieved
when both distributions are identical, we obtain the condition
for the optimal policy as:

Pαβt =
Pαβzαt+1exp(−Z)

Gβ(z)
(28)

Using the optimal policy in (28) and recalling that Gβ(z) =∑
α P

αβ
zαt+1exp(−Z), the Bellman equation in (27) can be

recast as:

− log(zβt ) = {−Uβt /γ − logGβ(z)} (29)

log(zβt ) =
{
Uβt /γ + log

[∑
α

Pαβzαt+1exp(−Z)
]}

(30)

Exponentiating (30) leads to:

zβt = exp
(
Uβt /γ

)∑
α

Pαβzαt+1exp(−Z). (31)

Since the value of Z varies for Theorems 1-4, we derive
theorem-specific results for each case below.

A. Standard Formulation in Theorem 1

The standard model ignores the uncertainty of transition
probabilities, which leads to:

ZS := Z = 0. (32)
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Accordingly, using (32) returns the following optimal policy:

Pαβt =
Pαβzαt+1∑
α P

αβ
zαt+1

. (33)

B. Stochastic Formulation in Theorem 2

The value of Z for the stochastic model follows from (7a)
as:

ZE := Z =
(γσ2)

2(Pαβ)2
(34)

Accordingly, using (34) returns the following optimal policy:

Pαβt =
Pαβzαt+1exp

(
−γσ2

2(Pαβ)2

)
∑
α P

αβ
zαt+1exp

(
−γσ2

2(Pαβ)2

) . (35)

C. Distributionally Robust Formulation in Theorem 3

The value of Z for the distributionally robust formulation
follows from (13a) as:

ZWC := Z =
(γζ̂)

2(Γ)2
(36)

Accordingly, using (36) returns the following optimal policy:

Pαβt =
Γzαt+1exp

(
−γζ̂
2(Γ)2

)
∑
α Γzαt+1exp

(
−γζ̂
2(Γ)2

) . (37)

where Pαβ is replaced by its bound Γ from the set D to obtain
the worst-case distribution.

D. Hybrid Model in Theorem 4

Using (35) and (37), the hybrid optimal policy follows as:

Pαβt = (1− η)
Γzαt+1exp

(
−γζ̂
2(Γ)2

)
∑
α Γzαt+1exp

(
−γζ̂
2(Γ)2

)
+ η

Pαβzαt+1exp
(
−γσ2

2(Pαβ)2

)
∑
α P

αβ
zαt+1exp

(
−γσ2

2(Pαβ)2

)
(38)

where 0 ≤ η ≤ 1.
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[13] S. Meyn, P. Barooah, A. Bušić, and J. Ehren, “Ancillary service to
the grid from deferrable loads: The case for intelligent pool pumps in
florida,” in 52nd IEEE Conference on Decision and Control, 2013, pp.
6946–6953.

[14] M. Vrakopoulou, B. Li, and J. L. Mathieu, “Chance constrained reserve
scheduling using uncertain controllable loads part i: Formulation and
scenario-based analysis,” IEEE Transactions on Smart Grid, vol. 10,
no. 2, pp. 1608–1617, March 2019.

[15] D. S. Callaway, “Tapping the energy storage potential in electric loads
to deliver load following and regulation,” Energy Conversion and
Management, vol. 50, no. 5, pp. 1389–1400, 2009.

[16] S. Mannor et al., “Bias and variance approximation in value function
estimates,” Management Science, vol. 53, no. 2, pp. 308–322, 2007.

[17] E. Delage and S. Mannor, “Percentile optimization for markov decision
processes with parameter uncertainty,” Op. Res., vol. 58, 2010.

[18] A. Nilim and L. El Ghaoui, “Robustness in markov decision problems
with uncertain transition matrices,” in Adv. in NIPS, 2004, pp. 839–846.

[19] H. Xu and S. Mannor, “Distributionally robust markov decision pro-
cesses,” in Advances in NIPS, 2010, pp. 2505–2513.

[20] W. Wiesemann, D. Kuhn, and B. Rustem, “Robust markov decision
processes,” Math. of Oper. Res., vol. 38, no. 1, pp. 153–183, 2013.

[21] E. Todorov, “Linearly-solvable markov decision problems,” in Advances
in Neural Information Processing Systems 19, B. Schölkopf, J. C. Platt,
and T. Hoffman, Eds. MIT Press, 2007, pp. 1369–1376.

[22] P. Esfahani and D. Kuhn, “Data-driven distributionally robust optimiza-
tion using the wasserstein metric: Performance guarantees and tractable
reformulations,” Math. Program., vol. 171, pp. 115–166, Sep. 2018.

[23] R. Gao and A. J. Kleywegt, “Distributionally robust stochastic optimiza-
tion with wasserstein distance,” 2016.

[24] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York, NY, USA: Wiley-Interscience, 1991.

[25] T. Warren Liao, “Clustering of time series data-a survey,” Pattern
Recogn., vol. 38, no. 11, pp. 1857–1874, Nov. 2005.

[26] D. Métivier and M. Chertkov, “Mean-field control for efficient mixing
of energy loads,” Phys. Rev. E, vol. 101, p. 022115, Feb 2020. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevE.101.022115

[27] Y.W Teh et al., “A collapsed variational bayesian inference algorithm
for latent dirichlet allocation,” in Proceedings of the 19th International
Conference on Neural Information Processing Systems, ser. NIPS’06.
Cambridge, MA, USA: MIT Press, 2006, pp. 1353–1360.

[28] C. Walck, Hand-book on statistical distributions for experimentalists,
1996.

[29] P. M. Young and M. A. Dahleh, “Infinite-dimensional convex opti-
mization in optimal and robust control theory,” IEEE Transactions on
Automatic Control, vol. 42, no. 10, pp. 1370–1381, Oct 1997.

[30] R. Rockafellar, Conjugate Duality and Optimization. Society for
Industrial and Applied Mathematics, 1974.

[31] S. K. Mitter, “Convex optimization in infinite dimensional spaces,” in
Recent Advances in Learning and Control, V. D. Blondel, S. P. Boyd,
and H. Kimura, Eds. London: Springer London, 2008, pp. 161–179.

[32] A. Shapiro, On Duality Theory of Conic Linear Problems. Boston,
MA: Springer US, 2001, pp. 135–165.

Authorized licensed use limited to: University of Exeter. Downloaded on July 15,2020 at 12:32:48 UTC from IEEE Xplore.  Restrictions apply. 

shorturl.at/beP06
shorturl.at/gwzBC
https://link.aps.org/doi/10.1103/PhysRevE.101.022115


0885-8950 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.2992268, IEEE
Transactions on Power Systems

11

[33] R. E. Mortensen and K. P. Haggerty, “A stochastic computer model for
heating and cooling loads,” IEEE Tran. Power Syst., vol. 3, no. 3, pp.
1213–1219, Aug 1988.

[34] S. Acharya et al., “Coordinated frequency control strategy for an
islanded microgrid with demand side management capability,” IEEE
Tran. Energy Conv., vol. 33, no. 2, pp. 639–651, June 2018.

[35] I. Dunning, J. Huchette, and M. Lubin, “Jump: A modeling language
for mathematical optimization,” SIAM Rev., vol. 59, pp. 295–320, 2017.

Authorized licensed use limited to: University of Exeter. Downloaded on July 15,2020 at 12:32:48 UTC from IEEE Xplore.  Restrictions apply. 


