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A B S T R A C T   

Demand response (DR) programs aim to engage distributed small-scale flexible loads, such as thermostatically 
controllable loads (TCLs), to provide various grid support services. Linearly Solvable Markov Decision Process 
(LS-MDP), a variant of the traditional MDP, is used to model aggregated TCLs. Then, a model-free reinforcement 
learning technique called Z-learning is applied to learn the value function and derive the optimal policy for the 
DR aggregator to control TCLs. The learning process is robust against uncertainty that arises from estimating the 
passive dynamics of the aggregated TCLs. The efficiency of this data-driven learning is demonstrated through 
simulations on Heating, Cooling & Ventilation (HVAC) units in a testbed neighborhood of residential houses.   

1. Introduction 

Distribution grids are undergoing a rapid transition due to the 
massive deployment of distributed energy resources (DERs), e.g., PV 
arrays, electric vehicles, and energy storage units. The main factors 
fueling this expansion include significant decreases in the capital costs 
of DER technologies and incentives for DER installations offered by 
local electric power utilities, as well as by local and state authorities. 
For example, the state of California aims to reduce greenhouse gas 
emissions (GHG) by 40% below its 1990 levels in 2030 by means of 
increasing the share of electricity produced by renewable generation to 
50%, doubling energy efficiency targets, and encouraging widespread 
transportation electrification [1]. Similarly, the state of NY set a target 
of zero-carbon power sector by 2040, along with the goal of reducing 
the 1990 levels of GHG emissions by 85% in 2050 [2]. On the other 
hand, the presence of DERs in distribution grids also imposes additional 
operational challenges, e.g. bidirectional power flows, voltage fluc
tuations, and, as a result, additional wear-and-tear on electric power 
equipment. Dealing with such challenges is crucial to ensure economic 
and reliable distribution grid operations and necessitates more flex
ibility. Demand Response (DR) is one way to provide this additional 
flexibility, which enrolls controllable loads in residential and com
mercial buildings to provide a broad range of distribution-level ancil
lary services (e.g. energy arbitrage, peak shaving, balancing regulation, 
congestion relief, capacity deferral, voltage support, [3]). Our efforts to 
explore this source of flexibility is motivated by the recent statistics that 
the U.S. building sector claims about 40% of the total electricity 

consumption [4] and still remains, to a large extent, unleveraged for 
distribution grid operations. The primary obstacle is in the current in
ability to accurately aggregate and synchronously operate a large en
semble of such small-scale loads, while taking into account their in
herent techno- and socio-economic characteristics (e.g., dispatch limits, 
complex thermodynamics of building environments, and/or comfort 
preferences of building occupants). Therefore, to address these chal
lenges, this paper focuses on mathematical modeling of an ensemble of 
thermostatically controlled loads (TCL), such as heat pumps, air con
ditioners, heating and ventilation systems, for its accurate representa
tion in energy management (dispatch) tools used by DR aggregators or 
local electric power utilities, [3,5]. 

The primary challenge in modeling TCL ensembles is to simulta
neously achieve a high level of accuracy and maintain computational 
tractability. Currently, there are two large groups of methods to model 
and forecast electricity consumption of TCL ensembles: (i) physics- 
based co-simulation of TCLs and building dynamics (e.g. using heat 
transport models, electromechanical considerations, Kirchoff’s laws, 
evaporation, etc) and (ii) data-driven (e.g. statistical analyses and in
ference). The advantage of using the physics-based models is in their 
ability to describe buildings without prior observations. However, the 
performance of these models is highly sensitive to the number and 
accuracy of the underlying modeling choices and assumptions, as well 
as to input parameters. Physics-based models often require more inputs 
than existing data acquisition systems can provide [6], and therefore 
incur significant uncertainties in both model parameters and dynamic 
processes. Using such models for controlling an ensemble of TCLs may 
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lead to computational issues that would prevent their scalability and 
implementation for real-life decision-making. On the other hand, in lieu 
of the physics-based models, one can use machine learning and statis
tical modeling to perform data-driven studies of TCL and building dy
namics using a vast amount of historical data available at the buildings 
equipped with smart meters. These reduced order models are trained 
using the historical energy consumption data and other parameters (e.g. 
weather conditions, daily operational schedules, and control function
ality) [7,8]. This paper develops a data-driven model to accurately re
present a TCL ensemble using historical data and to continuously im
prove the accuracy of model performance via learning. 

Among data-driven methods, TCL ensembles have been modelled as 
virtual storage units with linear dynamics, [9–11], or as a Markov 
Decision Process (MDP) with probabilistic transitions, [12–17]. The 
MDP framework is particularly suitable for modeling large TCL en
sembles, without sacrificing modeling accuracy or computational 
tractability. Thus, it produces high-quality solutions by means of using 
dynamic programming, which are both analytically and computation
ally tractable. The models in [12–17] model a TCL ensemble as a dis
crete-time, discrete-space Markov Process characterized by a given 
transition probability matrix with deterministic coefficients. However, 
in practice, it is hardly possible to estimate these coefficients accurately 
due to the imperfection or incompleteness of historical measurements 
and behavioral uncertainty of consumers. Therefore, the common ca
veat of current MDP models in [12–17] is that they ignore uncertainty 
on model parameters (e.g. transition probabilities). Since the in
accuracies stemming from the inability to compute model parameters in 
the MDP framework can be significant and can eliminate the benefits of 
using these resources for DR flexibility, this paper enhances the MDP 
framework with model-free reinforcement learning (RL), where the DR 
aggregator1 interacts with the TCL ensemble and learns model para
meters from both historical and streaming data (see Fig. 1). The main 
advantage of the model-free RL in the context of dispatch TCLs is in its 
ability to eliminate the need for knowing precise model parameters 
(e.g. parameters of the transition probability distribution underlying 
the MDP) because the optimal control policy can be learned from 
“experience”. In the context of real-life DR applications, this “experi
ence” can be obtained via indirect (passive) observations of the TCL 
ensemble or, in some cases, even individual TCLs by means of using 
advanced metering infrastructure or data crowdsourcing, [18]. 

Although there is a number of model-free RL techniques that can be 
used under the MDP framework, we exploit the property of TCL en
sembles that allow for reducing a conventional MDP to a linearly-sol
vable MDP (LS-MDP). This reduction assumes that devices in the TCL 
ensemble are relatively heterogeneous and, therefore, explicit control 
actions on each TCL device (e.g. on/off decisions or power consump
tion) can be replaced by a distribution of potential future states of the 
TCL ensemble, [19–21]. Thus, the optimal policy derived from the LS- 
MDP is not a mapping of states to action variables, as in a conventional 
MDP, but is a mapping of a current state into a next-state distribution, 
which minimizes the expected next-state costs and the divergence cost 
between the default (e.g., without external control applied) and con
trolled (e.g. with external control applied) probability distributions  
[21,22]. The reduced LS-MDP problem is suitable for the Z-learning 
method, which is a modification of the common Q-learning method. In 
turn, the Z-learning method is capable of producing an accurate ap
proximation of the original MDP at a faster convergence rate than the 
Q-learning method, [19–22], mainly because Z-learning does not re
quire state-action values as needed in Q-learning. 

This paper uses a LS-MDP to model a TCL ensemble and leverage the 
Z-learning method to find the optimal TCL dispatch policy. The Z- 
learning method samples transitions passively from the default (e.g. 
without external control) behavior of the system, but is able to learn the 

optimal policy by leveraging the specific structure of LS-MDP. Note that 
the available state transitions may not accurately reflect the underlying 
true distribution due to limited availability of data. Hence, we show 
that the Z-learning algorithm is robust to noise in the observed transi
tions and analyze its convergence in cases with and without noise. The 
case study is carried out on aggregated heating, ventilation, and air 
conditioning (HVAC) systems in a residential neighborhood with 100 
homes, where data is sampled using the Net-Zero Energy Test Facility  
[23], operated by the National Institute of Standards and Technology 
(NIST). 

The remainder of this paper is organized as follows. Section 2 pre
sents a LS-MDP model for optimally dispatching a given TCL ensemble. 
Section 3 solves the LS-MDP model using dynamic programming and 
leverages the Z-learning approach to improve the solution accuracy. 
Section 4 presents the case study using real-life data from the NIST Test 
Facility to demonstrate the usefulness of the proposed approach. 
Section 5 concludes the paper. 

2. Formulation 

Similarly to [14–17], the MDP framework is leveraged to build the 
model for the control of the TCL ensemble. We define a LS-MDP for 
modeling a given TCL ensemble as a 5-tuple { , ,U ,t ,t }, where 

is the set of time intervals, which constitute a planning horizon, is 
the set of possible states, Ut is the utility of the aggregator in state 

at time t , and t are default (i.e. without control ac
tions of the DR aggregator) and controlled (with control actions of the 
DR aggregator) transition probabilities from state to . The 
states in set = { , , ...} are obtained by discretizing the range of 
power consumption for each TCL ensemble given the operating range of 
TCL devices in the ensemble. For any given state at time t ,
the probability of the transition of the TCL ensemble to the next state 

at time +t 1 is characterized by t . Fig. 2 displays all 
possible transitions from the current state β at time t to all possible next 
states α at time +t 1. Note that the ensemble can remain in the same 
state β at time +t 1 such that α = β. The default transition prob
abilities, represented by parameter , corresponds to the internal 
dynamics of the TCL ensemble without actions of the aggregator and 
are typically estimated from historical data (see [15]). The TCL en
semble is then optimized as: 

++Umin log
t

t
t

, 1
1

(1a)  

=+ t, ,t t t1
(1b)  

= t1, , 1,t
(1c) 

where + 0t 1 and 0t are decision variables, which characterize 
the probability that the TCL ensemble is operated in states α and β at 
time +t 1 and t, and are related via transition probabilities t .  

Fig. 1. Comparison between the model-based and model-free learning ap
proaches. 

1 Alternatively, TCL ensembles can be aggregated and operated by utilities. 
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Eq. (1a) represents the objective function of the DR aggregator that 
controls the TCL ensemble and aims to maximize its expected utility or 
minimize its expected cost of energy ( +Ut 1) and to minimize the 
discomfort cost for the TCL ensemble. The discomfort cost is computed 
using the Kullback-Leibler (KL) divergence, weighted by parameter γ. 
This divergence penalizes the difference between the transition deci
sions made by the DR aggregator ( t ) and the default transitions of the 
TCL ensemble ( ), under the assumption that the latter represents 
first-choice preferences of TCL users. Parameter γ can influence the KL 
divergence and thus encourage or discourage deviations from the de
fault behavior of the TCL ensemble. The choice of the KL divergence for 
the penalty cost is motivated by its extensive use for modeling ran
domness of discrete and continuous time-series [24]. Eq. (1b) describes 
the temporal evolution of the TCL ensemble from time t to +t 1 over 
time horizon . Eq. (1c) imposes the integrality constraint on the 
transition decisions optimized by the DR aggregator such that their 
total probability is equal to one. 

After solving (1) as described later in Section 3.1, the active power 
(pt) consumed by the TCL ensemble can be computed using optimized 
decisions t and rated active power pβ,rated at each state, e.g. 

=p p t,t
rated

t
, . 

2.1. Relation to Other Methods 

The LS-MDP in (1) can be related to linear dynamical TCL models in 
other data-driven methods, [9,10]. Consider the following linear dy
namics for the TCL ensemble, [11]: 

= + ++S S u P t( ) ,t t t t1 (2) 

where St is the energy state of the TCL ensemble, Pt is the normal power 
consumed and ut is the power change sought by control actions. Let 
P N µ( , )t P Pt t and consider the KL divergence between +St 1

0 (without 
control) and +St 1 (with control). Using [25] leads to: 

=+ +KL S S u t
t

( ) ( )
2

,t t
P

1
0

1
2

2 2 (3) 

which is the quadratic cost for control used in linear systems, i.e. the 
quadratic discomfort cost for control in linear dynamics with Gaussian 
uncertainties is equivalent to the discrete-time KL cost in the LS-MDP. 
However, the discrete nature of LS-MDP transitions simplifies mod
eling, even for complex state transitions and non-Gaussian un
certainties. 

3. Z-learning in LS-MDP 

3.1. Solving LS-MDP 

The optimization in Eq. (1) is a Linearly Solvable MDP (LS-MDP) as 
introduced by [19]. The optimal policy for Eq. (1) is computed using 

techniques from dynamic programming [26]. The Bellman equation for 
the LS-MDP in (4) can be derived from the Bellman equation for the 
traditional MDP explained in Appendix A and leads to: 

= + + +U1 1 min log ,t t
t

t 1t (4) 

where t is the value function of the TCL ensemble at present state β at 
time t and +t 1 is the value function at next state α at time +t 1. By 

introducing desirability function =z exp( )t
t in (4) we obtain: 

= +

= +

+

+

z U z

U
z

log( ) 1 min log log( )

1 min log

t t
t

t

t
t

t

1

1

t

t
(5)  

After introducing a normalization term defined as 
= +z z( ) ,t t 1 (5) can be recast as: 

= +

= +

+

+

z U z
z z

U KL z
z

z

log( ) 1 min log ( )
( )

min
( )

log ( )

t t
t t

t t

t
t

t

t
t

1

1

t

(6)  

The KL divergence provides the expectation of the log-difference 
between the two distributions such that =KL p p[ ] [log ]p

p
p1 2 1

1
2

. It is 
zero if and only if the two distributions are same. Therefore, it follows 
from Eq. (6) that the optimal policy is achieved when the KL divergence 
term in Eq. (6) is minimal, i.e. it is equal to zero. Hence, by equating the 
two distributions in the KL divergence, the optimal policy follows as: 

= =+ +

+

z
z

z
z( )

,t
t

t

t

t

1 1

1 (7)  

The optimal policy in Eq. (7) depends on the uncontrolled transition 
probability ( ) and the desirability function of the TCL ensemble at 
the next state ( +zt 1). The optimal policy reduces the Bellman equation 
in (6) to the following form: 

=z U zlog( ) { log ( )}t
t

t (8)  

= + +z U zlog( ) logt
t

t 1
(9)  

Exponentiating Eq. (9) converts the Bellman equation to the fol
lowing reduced form: 

Fig. 2. A schematic representation of the Markov Process displaying transitions 
from a current state (β) at time t to the possible future next states (α) at time 

+t 1. Note that the ensemble can remain in the same state β at time +t 1 such 
that α = β. 

1: Initialize zβt = 1 ∀β ∈ , t ∈ 
2: zβ|| = exp

(Uβ||
γ

)
, where ||:=final time

3: Set t = | − 1|
4: for t ← | − 1| to 1 do
5: zβt = exp

(Uβt
γ

)∑
α αβzαt+1

6: end for
7: for all t ∈  − 1 do
8: for all β ∈  do

9: αβt =
αβzαt+1∑
α αβzαt+1

10: end for
11: end for

Algorithm 1. Solving a LS-MDP  
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= +z U zexpt
t

t 1
(10)  

Given the Bellman equation in (10) and optimal policy in (7), the 
LS-MDP is solved as described in Algorithm 1. Eq. (10) is linear and thus 
can be represented in a matrix form as = +z U z ,t t t 1 where zt is a vector 
with elements z ,t is a matrix with entries , and Ut is a diagonal 

matrix with elements exp Ut along its main diagonal [19–22,27,28]. 

3.2. Z-learning 

Although the LS-MDP solves the optimization problem for the TCL 
ensemble efficiently, it requires knowledge about the model of the 
environment. Since the model is estimated from the historical data (e.g. 
values of the default transitions in ), which is limited and imperfect, 
it may introduce inaccuracies. This motivates the use of model-free 
learning techniques to robustly solve the optimization problem in (1). 
Using Z-learning, a model-free learning method, returns stochastic ap
proximations ẑ of the optimal value function in Eq. (10). Thus, ẑ is 
updated as 

+ +z z U z^ (1 ) ^ exp ^t k k t k k
t

t k, , 1 1, 1
(11) 

where ηk is a decaying learning rate and α is the state observed at 
sample k by transitioning from previous state β. Z-learning updates the 
value function at the present state based on the sample providing next- 
state information instead of averaging over all the future possible states 
as in the LS-MDP. Unlike in Q-learning, there is no optimization of 
actions during the iterations in Z-learning. Instead, the samples for Z- 
learning are passively collected from the underlying distribution dis
cretized in . Then, ẑt k, are updated by using the specific KL diver
gence form of the optimal policy, which enables faster computations. 

The proposed application of the Z-learning algorithm to dispatching 
TCLs is detailed in Algorithm 2. First, the algorithm is initialized with 

=z 1t for all states and time periods t . Next, it computes 
the desirability function for the final time | |. Then, it iteratively 
computes the desirability function for the remaining time intervals 
(from =t 1 to =t | 1|) using samples generated from the passive 
dynamics and updates the desirability function until a chosen con
vergence criterion is achieved. In this paper, the convergence criterion 
is defined as the difference between two successive values of the de
sirability function. 

Note that the state transitions in the samples used in Z-learning may 
be corrupted by noise as well. The noise in the passive dynamics is 
modelled as the error term ,n nx where =n | | : 

= + (12) 

where ϵαβ can be modelled by a zero-mean, normal distribution with 
variance ,n

2 i.e. ϵαβ ~ N(0, σ2) (other parametric distributions are also 
suitable). To ensure that every row in the transition probability matrix 

remains equal to one i.e. = 1, , every row in ϵαβ must 
be equal to zero, i.e. = 0, 2. can be extended to 
capture noise scenarios by defining a set of N probability distributions 
as n N, [1, ],n such that n is characterized as: 

+ + +
N
1 ( [ ] [ ] [ )] ,N1 2 (13) 

where Eq. (13) ensures that the expected value of all N distributions is 
close to the passive dynamics of the TCL ensemble given by . At 
each Z-learning iteration, one out of N distributions is selected with 
probability to update the value function. Note that despite the noise in 
the transition probability matrix, the same Algorithm 2 for Z-learning is 
used and, as shown in Section 4, performs efficiently and robustly. 

3.3. Convergence of Z-learning 

The convergence of Z-learning can be assessed using the optimal LS- 
MDP policy in (7) by proving that the Z-update in (11) asymptotically 
converges to (10). Let =z z zt̂ k t t k, , be the optimality at the kth 

iteration of Z-learning. Using (10)-(11) leads to: 

=

+ + = +( )
z z

U z z

^ (1 ) ^

exp [ ] ^ ,

t k k t k

k
t

t t k

, , 1

1 1, 1k

where the indicator function is 1, if state α is observed in the kth 

iteration, and 0 otherwise. Consider =t | | 1, the final time-interval 
for updating z-values. =z z^ is of course directly determined using 

. It is clear that =z z[ ] k,k is a random variable with 
mean 0 and a finite variance. Then, if learning rates ηk are selected such 
that =k k and < ,k k

2 it follows that zlim ^ 0,k k1, see  

[30]. Following similarly for = …t | | 2, ,1, it returns zlim ^ 0k t k, . 
Thus Z-update (11) converges to the solution of (10). Note that the 
convergence also holds if a finite variance noise is allowed in the 
transition probability matrix (see Eq. (12)). 

4. Case Study 

4.1. Data 

We use data from the Net-Zero Energy Test Facility, [23], which is a 
single-family, three-floor, net-zero-energy house, with the total area of 
386 (4156) m2 (ft2), located in Gaithersburg, MD. To create an en
semble, this case study considers a neighbourhood with 100 houses 
with parameters and historical data obtained based on adding random 
noise to the data obtained from the Net-Zero Energy Test Facility. The 
random noise is limited in its magnitude by 20% of the original values 
because 100 houses are assumed to be located in close proximity and 

1: Initialize zβt = 1 ∀β ∈ , t ∈ 
2: zβ|| = exp

(Uβ||
γ

)
, where ||:=final time

3: repeat
4: Set k = current sample at state α from passive dynamics 
5: Starting with time t = | − 1|
6: for t ← | − 1| to 1 do
7: ẑβt,k ← (1 − ηk)ẑβt,k−1 + ηkexp

(
Uβt
γ

)
ẑαt+1,k−1

8: end for
9: until convergence

Algorithm 2. Z-learning  

2 Other methods can be used to capture noise, such as Interval Markov 
Chains, where actual transition probabilities lie in intervals [29]. 
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function similarly. For these 100 houses, we extract HVAC data and 
assume that all HVACs are operated by the same DR aggregator. Fig 3 
shows the aggregated HVAC power consumption for both summer and 
winter seasons in the period from July 1, 2013 to June 30, 2014. These 
profiles were discretized in 12 Markovian states and Fig. 4 displays the 
resulting transition probability matrices ( ). These transition prob
ability matrices are used to dispatch the TCL ensemble over the time 
horizon of 10 hourly intervals. 

The case study solves the TCL optimization problem in Eq. (1) using  
Algorithms 1 and 2 and compare their performance in terms of the 
value function using the error metric: 

=Error
| |

( )
,t t

t

LS-MDP Z-learning

LS-MDP (14) 

which computes the relative difference between the Z-learning and LS- 
MDP values. Moreover, the Z-learning algorithm is run for two cases: 
(a) without noise added to the passive dynamics and (b) with noise. The 
learning rate for the Z-learning algorithms is set to decay as = + ,k k

1000
1000

where k is a sample number. 

4.2. Results 

Fig. 5 describes the error convergence of the Z-learning algorithm 
with and without noise for each hourly time period. As the number of 
learning iterations increases, the resulting error reduces. The rate of 
convergence differs for the winter and summer seasons. For instance, 
the 10% error for all time period is achieved within 225 and 245 
learning iterations. Similarly, the effect of noise on the learning rate is 
more visible during the winter season, where the number of learning 
iterations required to achieve the 10% error increases from 245 to 290 

iterations. In contrast, in the summer case, adding noise does not affect 
the convergence rate and Z-learning achieve the 10% error in 225 
learning iterations. The slower convergence rate in the winter case is 
explained by the fact that a greater power consumption being ap
proximated using the same number of discrete states in the transition 
probability matrix, which requires more exploration of the model en
vironment, especially when noise samples noticeably deviate from the 
default behavior defined by the passive dynamics. 

Given the outcomes of Z-learning, the estimated transition prob
abilities are obtained as shown in Fig. 6. The estimated matrices for the 
cases with and without noise do not differ significantly. Thus, the Root- 
mean-square difference of elements between is 0.0101% and 0.0068% 
for the summer and winter seasons. Notably, this difference changes 
only slightly when compared to the default transition matrices in Fig. 2. 
In the case of winter season shown in Fig. 6 (c) and (d), the difference is 
0.0017% and 0.0055% for the case without noise and with noise. The 
difference for the summer season in Fig. 6 (a) and (b) increases relative 
to the winter season and is 0.0023% and 0.01% for the case without 
noise and with noise. The result of using Z-learning is that as the 
number of iterations and samples increases, its outcomes will converge 
to the LS-MDP values. 

Based on the transition probability matrices obtained with the LS- 
MDP and Z-learning, Fig. 7 compares the power dispatch of the TCL 
ensemble. Both Z-learning results with and without noise accurately 
approximate the benchmark LS-MDP solution. The maximum difference 
observed for the case with noise is 4.17 kW for the summer season and 
13.7 kW for the winter season, and for the case without noise is 13.7 kW 
for the summer season and 13.9 kW for the winter season. These dif
ferences are relatively small given the summer and winter peaks of 
287.4 kW and 1412.3 kW. The power dispatch of the TCL ensemble at 

Fig. 3. Aggregated HVAC power consumption of 100 houses.  

Fig. 4. Default transition probability matrix with 12 states constructed from the 
power profiles in Fig. 3, where color density indicates the probability value in 
the sidebar. Fig. 5. Comparing Z-learning performance with and without noise during the 

summer and winter seasons for hourly time periods T1-T10. 
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every iteration during Z-learning is shown in Fig. 8, where values sta
bilize as the number of iterations continues to increase. Similarly, Fig. 9 
compares the value function of each method that represents the oper
ating cost of the TCL ensemble. The values of the operating cost for both 
Z-learning with and without noise are slightly greater than the optimal 
value provided by the LS-MDP, because Z-learning approximates the 
optimal solution for the optimization problem that minimizes the ob
jective function (i.e. the operating cost). Notably, the operating cost is 
comparatively high when =t (no control taken), which shows 
the importance of controlling the TCL ensemble to lower the cost. 

5. Conclusion 

This paper presents a data-driven learning method for the control of 
TCL ensemble using the MDP and Z-learning approaches. The results 
show the importance of moving from model-based methods to model- 
free methods to bridge the gap between real environment and its model. 
The importance of modelling uncertainty to provide more robust 

solutions is demonstrated by comparing the TCL ensemble injections 
and cost of the solution. In future, we will also consider the related 
problem of TCL optimization under uncertain energy prices and analyze 
the regret associated with online learning based schemes [31]. 
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Fig. 6. Estimated transition probabilities for the summer and winter seasons 
with and without noise. 

Fig. 7. Comparison of the TCL ensemble dispatch decisions for the LS-MDP and 
Z-learning solutions. 

Fig. 8. Dispatch decisions for the TCL ensemble obtained with Z-learning for 
hourly time periods T1-T10. 

Fig. 9. Comparison of the solution cost for the LS-MDP and Z-learning solu
tions. 
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Appendix A. Bellman Equation Derivation for LS-MDP 

The Bellman equation for a finite-horizon MDP is [32]: 

= + +{ }l u1 1 min ( ) [ ] ,t u
t u t( ) 1t (15) 

where l u( )t represents the immediate cost that the agent pays at time t for taking action u at state β and +[ ]u t( ) 1t
is the expectation of +t 1 taken 

with respect to u( )t : 

=+ +u[ ] ( ) ,u t t t( ) 1 1t (16)  

Eq. (15) implicate the search over all actions u for each new state α. However, this can be time consuming due to the exponential growth of future 
states. The LS-MDP offers a solution for this problem, which uses the transition probabilities instead of the symbolic actions, where the agent can 
directly specify the probability of transition from the current state to any possible future state. The Bellman equation for choosing t by the agent is: 

= + + +U1 1 min log [ ] ,t t
t

t 1t t (17) 

where Ut represents the state cost and 
t

means the statistical expectation of α taken with respect to the controlled transition distribution t .  
Eq. (17) represents the Bellman equation for LS-MDP.  
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