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Demand response (DR) programs aim to engage distributed small-scale flexible loads, such as thermostatically
controllable loads (TCLs), to provide various grid support services. Linearly Solvable Markov Decision Process
(LS-MDP), a variant of the traditional MDP, is used to model aggregated TCLs. Then, a model-free reinforcement
learning technique called Z-learning is applied to learn the value function and derive the optimal policy for the
DR aggregator to control TCLs. The learning process is robust against uncertainty that arises from estimating the

passive dynamics of the aggregated TCLs. The efficiency of this data-driven learning is demonstrated through
simulations on Heating, Cooling & Ventilation (HVAC) units in a testbed neighborhood of residential houses.

1. Introduction

Distribution grids are undergoing a rapid transition due to the
massive deployment of distributed energy resources (DERs), e.g., PV
arrays, electric vehicles, and energy storage units. The main factors
fueling this expansion include significant decreases in the capital costs
of DER technologies and incentives for DER installations offered by
local electric power utilities, as well as by local and state authorities.
For example, the state of California aims to reduce greenhouse gas
emissions (GHG) by 40% below its 1990 levels in 2030 by means of
increasing the share of electricity produced by renewable generation to
50%, doubling energy efficiency targets, and encouraging widespread
transportation electrification [1]. Similarly, the state of NY set a target
of zero-carbon power sector by 2040, along with the goal of reducing
the 1990 levels of GHG emissions by 85% in 2050 [2]. On the other
hand, the presence of DERs in distribution grids also imposes additional
operational challenges, e.g. bidirectional power flows, voltage fluc-
tuations, and, as a result, additional wear-and-tear on electric power
equipment. Dealing with such challenges is crucial to ensure economic
and reliable distribution grid operations and necessitates more flex-
ibility. Demand Response (DR) is one way to provide this additional
flexibility, which enrolls controllable loads in residential and com-
mercial buildings to provide a broad range of distribution-level ancil-
lary services (e.g. energy arbitrage, peak shaving, balancing regulation,
congestion relief, capacity deferral, voltage support, [3]). Our efforts to
explore this source of flexibility is motivated by the recent statistics that
the U.S. building sector claims about 40% of the total electricity
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consumption [4] and still remains, to a large extent, unleveraged for
distribution grid operations. The primary obstacle is in the current in-
ability to accurately aggregate and synchronously operate a large en-
semble of such small-scale loads, while taking into account their in-
herent techno- and socio-economic characteristics (e.g., dispatch limits,
complex thermodynamics of building environments, and/or comfort
preferences of building occupants). Therefore, to address these chal-
lenges, this paper focuses on mathematical modeling of an ensemble of
thermostatically controlled loads (TCL), such as heat pumps, air con-
ditioners, heating and ventilation systems, for its accurate representa-
tion in energy management (dispatch) tools used by DR aggregators or
local electric power utilities, [3,5].

The primary challenge in modeling TCL ensembles is to simulta-
neously achieve a high level of accuracy and maintain computational
tractability. Currently, there are two large groups of methods to model
and forecast electricity consumption of TCL ensembles: (i) physics-
based co-simulation of TCLs and building dynamics (e.g. using heat
transport models, electromechanical considerations, Kirchoff’s laws,
evaporation, etc) and (ii) data-driven (e.g. statistical analyses and in-
ference). The advantage of using the physics-based models is in their
ability to describe buildings without prior observations. However, the
performance of these models is highly sensitive to the number and
accuracy of the underlying modeling choices and assumptions, as well
as to input parameters. Physics-based models often require more inputs
than existing data acquisition systems can provide [6], and therefore
incur significant uncertainties in both model parameters and dynamic
processes. Using such models for controlling an ensemble of TCLs may
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lead to computational issues that would prevent their scalability and
implementation for real-life decision-making. On the other hand, in lieu
of the physics-based models, one can use machine learning and statis-
tical modeling to perform data-driven studies of TCL and building dy-
namics using a vast amount of historical data available at the buildings
equipped with smart meters. These reduced order models are trained
using the historical energy consumption data and other parameters (e.g.
weather conditions, daily operational schedules, and control function-
ality) [7,8]. This paper develops a data-driven model to accurately re-
present a TCL ensemble using historical data and to continuously im-
prove the accuracy of model performance via learning.

Among data-driven methods, TCL ensembles have been modelled as
virtual storage units with linear dynamics, [9-11], or as a Markov
Decision Process (MDP) with probabilistic transitions, [12-17]. The
MDP framework is particularly suitable for modeling large TCL en-
sembles, without sacrificing modeling accuracy or computational
tractability. Thus, it produces high-quality solutions by means of using
dynamic programming, which are both analytically and computation-
ally tractable. The models in [12-17] model a TCL ensemble as a dis-
crete-time, discrete-space Markov Process characterized by a given
transition probability matrix with deterministic coefficients. However,
in practice, it is hardly possible to estimate these coefficients accurately
due to the imperfection or incompleteness of historical measurements
and behavioral uncertainty of consumers. Therefore, the common ca-
veat of current MDP models in [12-17] is that they ignore uncertainty
on model parameters (e.g. transition probabilities). Since the in-
accuracies stemming from the inability to compute model parameters in
the MDP framework can be significant and can eliminate the benefits of
using these resources for DR flexibility, this paper enhances the MDP
framework with model-free reinforcement learning (RL), where the DR
aggregator' interacts with the TCL ensemble and learns model para-
meters from both historical and streaming data (see Fig. 1). The main
advantage of the model-free RL in the context of dispatch TCLs is in its
ability to eliminate the need for knowing precise model parameters
(e.g. parameters of the transition probability distribution underlying
the MDP) because the optimal control policy can be learned from
“experience”. In the context of real-life DR applications, this “experi-
ence” can be obtained via indirect (passive) observations of the TCL
ensemble or, in some cases, even individual TCLs by means of using
advanced metering infrastructure or data crowdsourcing, [18].

Although there is a number of model-free RL techniques that can be
used under the MDP framework, we exploit the property of TCL en-
sembles that allow for reducing a conventional MDP to a linearly-sol-
vable MDP (LS-MDP). This reduction assumes that devices in the TCL
ensemble are relatively heterogeneous and, therefore, explicit control
actions on each TCL device (e.g. on/off decisions or power consump-
tion) can be replaced by a distribution of potential future states of the
TCL ensemble, [19-21]. Thus, the optimal policy derived from the LS-
MDP is not a mapping of states to action variables, as in a conventional
MDP, but is a mapping of a current state into a next-state distribution,
which minimizes the expected next-state costs and the divergence cost
between the default (e.g., without external control applied) and con-
trolled (e.g. with external control applied) probability distributions
[21,22]. The reduced LS-MDP problem is suitable for the Z-learning
method, which is a modification of the common Q-learning method. In
turn, the Z-learning method is capable of producing an accurate ap-
proximation of the original MDP at a faster convergence rate than the
Q-learning method, [19-22], mainly because Z-learning does not re-
quire state-action values as needed in Q-learning.

This paper uses a LS-MDP to model a TCL ensemble and leverage the
Z-learning method to find the optimal TCL dispatch policy. The Z-
learning method samples transitions passively from the default (e.g.
without external control) behavior of the system, but is able to learn the

! Alternatively, TCL ensembles can be aggregated and operated by utilities.
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Fig. 1. Comparison between the model-based and model-free learning ap-
proaches.

optimal policy by leveraging the specific structure of LS-MDP. Note that
the available state transitions may not accurately reflect the underlying
true distribution due to limited availability of data. Hence, we show
that the Z-learning algorithm is robust to noise in the observed transi-
tions and analyze its convergence in cases with and without noise. The
case study is carried out on aggregated heating, ventilation, and air
conditioning (HVAC) systems in a residential neighborhood with 100
homes, where data is sampled using the Net-Zero Energy Test Facility
[23], operated by the National Institute of Standards and Technology
(NIST).

The remainder of this paper is organized as follows. Section 2 pre-
sents a LS-MDP model for optimally dispatching a given TCL ensemble.
Section 3 solves the LS-MDP model using dynamic programming and
leverages the Z-learning approach to improve the solution accuracy.
Section 4 presents the case study using real-life data from the NIST Test
Facility to demonstrate the usefulness of the proposed approach.
Section 5 concludes the paper.

2. Formulation

Similarly to [14-17], the MDP framework is leveraged to build the
model for the control of the TCL ensemble. We define a LS-MDP for
modeling a given TCL ensemble as a 5-tuple {7, A, UF, P¥, P}, where
7 is the set of time intervals, which constitute a planning horizon, A is
the set of possible states, Uf is the utility of the aggregator in state
B EA at timet € T, P and P are default (i.e. without control ac-
tions of the DR aggregator) and controlled (with control actions of the
DR aggregator) transition probabilities from state § € A toa € A. The
states in set A = {a, B, ...} are obtained by discretizing the range of
power consumption for each TCL ensemble given the operating range of
TCL devices in the ensemble. For any given state § € A at time t € 7,
the probability of the transition of the TCL ensemble to the next state
o« €A at time t + 1 € 7 is characterized by P¥*. Fig. 2 displays all
possible transitions from the current state § at time ¢ to all possible next
states a at time ¢ + 1. Note that the ensemble can remain in the same
state 8 at time ¢t + 1 such that a = f. The default transition prob-
abilities, represented by parameter ?**, corresponds to the internal
dynamics of the TCL ensemble without actions of the aggregator and
are typically estimated from historical data (see [15]). The TCL en-
semble is then optimized as:

. P
mink, > ) (—U:“H+ )y yloggj—;,;)

te7—1 a€A peA (1a)
pii= 2 PPf, VaeA teT
peA (1b)

Y PF=1 VBeA teT-1,

aeA (lc)
where p, > 0 and ,o,ﬁ > 0 are decision variables, which characterize
the probability that the TCL ensemble is operated in states a and f3 at
time t+ 1 and t, and are related via transition probabilities pb.
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Fig. 2. A schematic representation of the Markov Process displaying transitions
from a current state () at time t to the possible future next states (a) at time
t + 1. Note that the ensemble can remain in the same state f3 at time ¢ + 1 such
that a = .

Eq. (1a) represents the objective function of the DR aggregator that
controls the TCL ensemble and aims to maximize its expected utility or
minimize its expected cost of energy (— Uf,) and to minimize the
discomfort cost for the TCL ensemble. The discomfort cost is computed
using the Kullback-Leibler (KL) divergence, weighted by parameter v.
This divergence penalizes the difference between the transition deci-
sions made by the DR aggregator (P$) and the default transitions of the
TCL ensemble (P*), under the assumption that the latter represents
first-choice preferences of TCL users. Parameter y can influence the KL
divergence and thus encourage or discourage deviations from the de-
fault behavior of the TCL ensemble. The choice of the KL divergence for
the penalty cost is motivated by its extensive use for modeling ran-
domness of discrete and continuous time-series [24]. Eq. (1b) describes
the temporal evolution of the TCL ensemble from time t to ¢t + 1 over
time horizon 7 . Eq. (1c) imposes the integrality constraint on the
transition decisions optimized by the DR aggregator such that their
total probability is equal to one.

After solving (1) as described later in Section 3.1, the active power
(po) consumed by the TCL ensemble can be computed using optimized
decisions pf and rated active power pP d at each state, e.g.

E;; Pﬁ ratedpﬁ VtieT.

2.1. Relation to Other Methods

The LS-MDP in (1) can be related to linear dynamical TCL models in
other data-driven methods, [9,10]. Consider the following linear dy-
namics for the TCL ensemble, [11]:

Sty1= S + (u + B)AL, 2

where S, is the energy state of the TCL ensemble, P, is the normal power
consumed and u, is the power change sought by control actions. Let
B ~ N (up,, op) and consider the KL divergence between 5%, (without
control) and S;;; (with control). Using [25] leads to:

u*()

KL(S% 1S40 = —5 5
(SelISe+1) 202000 @

which is the quadratic cost for control used in linear systems, i.e. the
quadratic discomfort cost for control in linear dynamics with Gaussian
uncertainties is equivalent to the discrete-time KL cost in the LS-MDP.
However, the discrete nature of LS-MDP transitions simplifies mod-
eling, even for complex state transitions and non-Gaussian un-
certainties.

3. Z-learning in LS-MDP
3.1. Solving LS-MDP

The optimization in Eq. (1) is a Linearly Solvable MDP (LS-MDP) as
introduced by [19]. The optimal policy for Eq. (1) is computed using
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1: Initialize zf 1VBe A, teT
2: zﬁ = exp(T”) where |7]:=final time
3: Set t=|T-1|
4: fort « |T— 1|t0 1 do
5: zB = exp( )Z(,P z0
6: end for
7: forallte T—1 do
8: forallge A d0
9: ptaﬁ — P Z;Yn
Z(l
10: end for
11: end for

Algorithm 1. Solving a LS-MDP

techniques from dynamic programming [26]. The Bellman equation for
the LS-MDP in (4) can be derived from the Bellman equation for the
traditional MDP explained in Appendix A and leads to:

1 1. Pk
~¢f = “min Uﬁ +E, lo +
y(ﬂ, , 14 g¢ B

4

where qof is the value function of the TCL ensemble at present state f at
time t and @7}, is the value function at next state a at time ¢ + 1. By

introducing desirability function z exp( ) in (4) we obtain:

—log(zf) = lmln( -UF + vE, ﬁ[logp— 10g(zfi])])
y P P
o
= lmin Uﬁ + yEy;aﬁ[IOg_Z)T]
v P2 5)
After introducing a normalization term defined as
GP(2) =3, P¥z5%,, (5) can be recast as:

- IOg(Zzﬁ)

P61 )
1 ¢ Gi
8 _aﬁzﬁi—lg (Z)

P
gf()l] - loggf(z))

lInll{ l]t + }/IE ,aﬁ
Yy P

— Uﬁ ps o8
14 P

The KL divergence provides the expectation of the log-difference
between the two distributions such that KL |[p, ||p,] = E , [log 5—;]. It is
zero if and only if the two distributions are same. Therefore, it follows
from Eq. (6) that the optimal policy is achieved when the KL divergence
term in Eq. (6) is minimal, i.e. it is equal to zero. Hence, by equating the
two distributions in the KL divergence, the optimal policy follows as:

(6)

B _ ﬁaﬁztﬁ—l _ ﬁaﬁzzﬁ-l
t - - Ut )
6l@) X PP, %)

The optimal policy in Eq. (7) depends on the uncontrolled transition
probability (P%) and the desirability function of the TCL ensemble at
the next state (z7,). The optimal policy reduces the Bellman equation
in (6) to the following form:

— log6f(2)}

®

UF
log(zf) = {— + log
14

2

Exponentiating Eq. (9) converts the Bellman equation to the fol-
lowing reduced form:

©)
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L: Initializezf =

h

1VBe A, teT
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L= exp( 7') where |7]:=final time

Ul v )
: repeat

Set k = current sample at state @ from passive dynamics P

for t — |T—1|to 1 do
EARE (!

end for
: until convergence

2
3
4
5: Starting with time ¢ = |T— 1|
6
7
8
9

U\,
- ’lk)sz p t ”keXp(7)27+1,k—1

Algorithm 2. Z-learning

zf = exp( ) z P 241

Given the Bellman equation in (10) and optimal policy in (7), the
LS-MDP is solved as described in Algorithm 1. Eq. (10) is linear and thus
can be represented in a matrix form as z, = U;Pz,,1, where 2, is a vector
with elements z#, P is a matrix with entries P, and U, is a diagonal

(10)

B
matrix with elements exp(T’] along its main diagonal [19-22,27,28].

3.2. Z-learning

Although the LS-MDP solves the optimization problem for the TCL
ensemble efficiently, it requires knowledge about the model of the
environment. Since the model is estimated from the historical data (e.g.
values of the default transitions in P ), which is limited and imperfect,
it may introduce inaccuracies. This motivates the use of model-free
learning techniques to robustly solve the optimization problem in (1).
Using Z-learning, a model-free learning method, returns stochastic ap-
proximations Z of the optimal value function in Eq. (10). Thus, £ is
updated as

ﬁ
Zzﬁk <@1- Uk)zt k-1 F nkeXp( )Zz+1 k-1
14 an

where 7 is a decaying learning rate and a is the state observed at
sample k by transitioning from previous state f. Z-learning updates the
value function at the present state based on the sample providing next-
state information instead of averaging over all the future possible states
as in the LS-MDP. Unlike in Q-learning, there is no optimization of
actions during the iterations in Z-learning. Instead, the samples for Z-
learning are passively collected from the underlying distribution dis-
cretized in P**. Then, é\fk are updated by using the specific KL diver-
gence form of the optimal policy, which enables faster computations.

The proposed application of the Z-learning algorithm to dispatching
TCLs is detailed in Algorithm 2. First, the algorithm is initialized with
zf =1 for all states B € A and time periods t € 7. Next, it computes
the desirability function for the final time I71. Then, it iteratively
computes the desirability function for the remaining time intervals
(from t =1 to t = |7 — 1) using samples generated from the passive
dynamics and updates the desirability function until a chosen con-
vergence criterion is achieved. In this paper, the convergence criterion
is defined as the difference between two successive values of the de-
sirability function.

Note that the state transitions in the samples used in Z-learning may
be corrupted by noise as well. The noise in the passive dynamics is
modelled as the error term €% € R™", where n = |4 :

Pk = P 4 e (12)

where ¢ can be modelled by a zero-mean, normal distribution with
variance o2, i.e. e ~ N(0, 0®) (other parametric distributions are also
suitable). To ensure that every row in the transition probability matrix

wea P P =1,V B € A, every row in ¢* must
be equal to zero, i.e. ), _,€¥=0,Vfe A P* can be extended to
capture noise scenarios by defining a set of N probability distributions
as P,V n € [1, N, such that P is characterized as:

remains equal to one i.e. ),

SEPPL 4 EPTL+ B[P ~ P, a3
where Eq. (13) ensures that the expected value of all N distributions is
close to the passive dynamics of the TCL ensemble given by P. At
each Z-learning iteration, one out of N distributions is selected with
probability to update the value function. Note that despite the noise in
the transition probability matrix, the same Algorithm 2 for Z-learning is
used and, as shown in Section 4, performs efficiently and robustly.

3.3. Convergence of Z-learning

The convergence of Z-learning can be assessed using the optimal LS-
MDP policy in (7) by proving that the Z-update in (11) asymptotically
converges to (10). Let Aé\fk =zf - z,k be the optimality at the k™
iteration of Z-learning. Using (10)-(11) leads to:

B B
Aé\r,k:(l - Uk)Aé\t k—1

+ UkeXP( )(E? [zt+1] z Jlak:aé\til,k—l)’
a

where the indicator function 1 is 1, if state a is observed in the k™
iteration, and O otherwise. Consider ¢t = |71 — 1, the final time-interval
for updating z-values. 2 = zs is of course directly determined using
Uy . Tt is clear that Ep(zf] — X I =a2f is a random variable with
mean 0 and a finite variance. Then, if learning rates 5 are selected such
that Y, 7, = o0 and Y, 77 < oo, it follows that limkAé\ﬁ_Lk - 0, see

[30]. Following similarly for t = |71 — 2, ..., 1, it returns limkAffk - 0.
Thus Z-update (11) converges to the solution of (10). Note that the
convergence also holds if a finite variance noise is allowed in the
transition probability matrix (see Eq. (12)).

4. Case Study
4.1. Data

We use data from the Net-Zero Energy Test Facility, [23], which is a
single-family, three-floor, net-zero-energy house, with the total area of
386 (4156) m? (ft?), located in Gaithersburg, MD. To create an en-
semble, this case study considers a neighbourhood with 100 houses
with parameters and historical data obtained based on adding random
noise to the data obtained from the Net-Zero Energy Test Facility. The
random noise is limited in its magnitude by 20% of the original values
because 100 houses are assumed to be located in close proximity and

20Other methods can be used to capture noise, such as Interval Markov
Chains, where actual transition probabilities lie in intervals [29].
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Fig. 3. Aggregated HVAC power consumption of 100 houses.
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Fig. 4. Default transition probability matrix with 12 states constructed from the
power profiles in Fig. 3, where color density indicates the probability value in
the sidebar.

function similarly. For these 100 houses, we extract HVAC data and
assume that all HVACs are operated by the same DR aggregator. Fig 3
shows the aggregated HVAC power consumption for both summer and
winter seasons in the period from July 1, 2013 to June 30, 2014. These
profiles were discretized in 12 Markovian states and Fig. 4 displays the
resulting transition probability matrices (P*). These transition prob-
ability matrices are used to dispatch the TCL ensemble over the time
horizon of 10 hourly intervals.

The case study solves the TCL optimization problem in Eq. (1) using
Algorithms 1 and 2 and compare their performance in terms of the
value function using the error metric:

E[;’Eﬂ |¢tﬁLS-MDP _ @tﬁz-leamingl

Error =

Eﬁeﬂ ((prerDP) (14)

which computes the relative difference between the Z-learning and LS-
MDP values. Moreover, the Z-learning algorithm is run for two cases:
(a) without noise added to the passive dynamics and (b) with noise. The
learning rate for the Z-learning algorithms is set to decay as 7, = 0
where k is a sample number.

1000 + k*

4.2. Results

Fig. 5 describes the error convergence of the Z-learning algorithm
with and without noise for each hourly time period. As the number of
learning iterations increases, the resulting error reduces. The rate of
convergence differs for the winter and summer seasons. For instance,
the 10% error for all time period is achieved within 225 and 245
learning iterations. Similarly, the effect of noise on the learning rate is
more visible during the winter season, where the number of learning
iterations required to achieve the 10% error increases from 245 to 290
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Fig. 5. Comparing Z-learning performance with and without noise during the
summer and winter seasons for hourly time periods T1-T10.

iterations. In contrast, in the summer case, adding noise does not affect
the convergence rate and Z-learning achieve the 10% error in 225
learning iterations. The slower convergence rate in the winter case is
explained by the fact that a greater power consumption being ap-
proximated using the same number of discrete states in the transition
probability matrix, which requires more exploration of the model en-
vironment, especially when noise samples noticeably deviate from the
default behavior defined by the passive dynamics.

Given the outcomes of Z-learning, the estimated transition prob-
abilities are obtained as shown in Fig. 6. The estimated matrices for the
cases with and without noise do not differ significantly. Thus, the Root-
mean-square difference of elements between is 0.0101% and 0.0068%
for the summer and winter seasons. Notably, this difference changes
only slightly when compared to the default transition matrices in Fig. 2.
In the case of winter season shown in Fig. 6 (c) and (d), the difference is
0.0017% and 0.0055% for the case without noise and with noise. The
difference for the summer season in Fig. 6 (a) and (b) increases relative
to the winter season and is 0.0023% and 0.01% for the case without
noise and with noise. The result of using Z-learning is that as the
number of iterations and samples increases, its outcomes will converge
to the LS-MDP values.

Based on the transition probability matrices obtained with the LS-
MDP and Z-learning, Fig. 7 compares the power dispatch of the TCL
ensemble. Both Z-learning results with and without noise accurately
approximate the benchmark LS-MDP solution. The maximum difference
observed for the case with noise is 4.17 kW for the summer season and
13.7 kW for the winter season, and for the case without noise is 13.7 kW
for the summer season and 13.9 kW for the winter season. These dif-
ferences are relatively small given the summer and winter peaks of
287.4 kW and 1412.3 kW. The power dispatch of the TCL ensemble at



A. Hassan, et al.

Z-Learning Z-Learning with noise
(Summer) (Summer) 06
8.3 [T 06 8.3 ] :
16.5 1T 16.5 [ 05
25.4 0.5 25.4 :
< 50.3 < 50.3
2 Te0 04 £ 60 04
T 753 T 753 03
g 90.1 H 03 °g> 90.1 [ | :
3 110.2 3 110.2
o 125 02 @ 125 02
140.2 | | 01 140.2 04
165.4 . 165.4 .
287.4 [ o 287.4 o
MUOTNMOM— NN < MOTOOM— NN <
vowowooNSGN wowoCvooNoun
o ~oZTIeR 0 reZTIOR
Power (kW) Power (kW)
(@) (b)
Z-Learning Z-Learning with noise
(Winter) (Winter)
5.6 5.6 0.5
18.7 05 18.7
24.1 24.1 04
s 4 ! 04 o 45
~ 653 < 653
T 851 || Nos T esi | o
g 105 g 105
3 130.2 02 g 130.2 0.2
o 160.1 a 160.1
180 0.1 180 0.1
210.4 210.4
1412.3 o 1412.3 0
ONT~OOMO-OVN—-OST ™ ONT~LOMO-~LON—O T M
BIFYwElosRoal vt YWYl osRon
- © o ™o - —Qq © © ™ © -
Power (kW) Power (kW)
(© (@)

Fig. 6. Estimated transition probabilities for the summer and winter seasons
with and without noise.
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Fig. 7. Comparison of the TCL ensemble dispatch decisions for the LS-MDP and
Z-learning solutions.

every iteration during Z-learning is shown in Fig. 8, where values sta-
bilize as the number of iterations continues to increase. Similarly, Fig. 9
compares the value function of each method that represents the oper-
ating cost of the TCL ensemble. The values of the operating cost for both
Z-learning with and without noise are slightly greater than the optimal
value provided by the LS-MDP, because Z-learning approximates the
optimal solution for the optimization problem that minimizes the ob-
jective function (i.e. the operating cost). Notably, the operating cost is
comparatively high when P% = $% (no control taken), which shows
the importance of controlling the TCL ensemble to lower the cost.

5. Conclusion

This paper presents a data-driven learning method for the control of
TCL ensemble using the MDP and Z-learning approaches. The results
show the importance of moving from model-based methods to model-
free methods to bridge the gap between real environment and its model.
The importance of modelling uncertainty to provide more robust
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Fig. 8. Dispatch decisions for the TCL ensemble obtained with Z-learning for
hourly time periods T1-T10.
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Fig. 9. Comparison of the solution cost for the LS-MDP and Z-learning solu-
tions.

solutions is demonstrated by comparing the TCL ensemble injections
and cost of the solution. In future, we will also consider the related
problem of TCL optimization under uncertain energy prices and analyze
the regret associated with online learning based schemes [31].
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Appendix A. Bellman Equation Derivation for LS-MDP

The Bellman equation for a finite-horizon MDP is [32]:
1 1 . 8 o
¢ = Jmin (1P @) + Epes 05,1} .
where I (u) represents the immediate cost that the agent pays at time ¢ for taking action u at state f and E PG [7 1] is the expectation of ¢7 ; taken
with respect to P& (u):

— B

Epgsial#il = KPP0, a6

Eq. (15) implicate the search over all actions u for each new state a. However, this can be time consuming due to the exponential growth of future
states. The LS-MDP offers a solution for this problem, which uses the transition probabilities instead of the symbolic actions, where the agent can
directly specify the probability of transition from the current state to any possible future state. The Bellman equation for choosing P by the agent is:
1 1 P

B — i B t a
—@f = —min{ UF + yE | log—= | + E ,a8[@% ,] .
v t v P { t Py SDa’B Py 41 a7
where UF represents the state cost and E pas means the statistical expectation of a taken with respect to the controlled transition distribution P%.
Eq. (17) represents the Bellman equation for LS-MDP.
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