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ABSTRACT | Due to proliferation of energy efficiency measures
and availability of the renewable energy resources, tradi-
tional energy infrastructure systems (electricity, heat, gas)
can no longer be operated in a centralized manner under the
assumption that consumer behavior is inflexible, i.e., cannot
be adjusted in return for an adequate incentive. To allow for a
less centralized operating paradigm, consumer-end perspec-
tive and abilities should be integrated in current dispatch
practices and accounted for in switching between different
energy sources not only at the system but also at the individual
consumer level. Since consumers are confined within different
built environments, this article looks into an opportunity to con-
trol energy consumption of an aggregation of many residen-
tial, commercial, and industrial consumers, into an ensemble.
This ensemble control becomes a modern demand response
(DR) contributor to the set of modeling tools for multienergy
infrastructure systems.

KEYWORDS | Demand response (DR), Markov decision process
(MDP), multi-energy systems, smart buidlings, stochastic opti-
mization, robust optimization, reinforcement learning.

Manuscript received November 28, 2019; revised February 6, 2020; accepted
March 16, 2020. This work at NYU was supported in part by the National Science
Foundation (NSF) under Award EECS-1847285 and in part by the U.S.
Department of Energy under Award DE-AC52-07NA27344. (Corresponding
author: Yury Dvorkin.)

Ali Hassan and Samrat Acharya are with the Department of Electrical and
Computer Engineering, Tandon School of Engineering, New York University,

New York, NY 11201 USA.

Michael Chertkov is with the Department of Mathematics, The University of
Arizona, Tucson, AZ 85721 USA.

Deepjyoti Deka is with Theoretical Division (T-5), Los Alamos National
Laboratory, Los Alamos, NM 87544 USA.

Yury Dvorkin is with the Center for Urban Science and Progress, Department of
Electrical and Computer Engineering, Tandon School of Engineering, New York
University, New York, NY 11201 USA (e-mail: dvorkin@nyu.edu).

Digital Object Identifier 10.1109/JPROC.2020.2983388

, SAMRAT ACHARYA, MICHAEL CHERTKOV ",

I. INTRODUCTION

Energy delivery is a key industrial process that spans across
multiple critical infrastructure systems and tightly weaves
in many, if not all, residential, commercial, and industrial
activities. Traditionally, operations of the energy systems—
electricity, gas, heat—are separated. Each of these sys-
tems operates based on domain-specific assumptions and
ad hoc practices. Interactions between the systems were,
and to a large extent still are, minimal, therefore limiting
opportunities for intersystem synergies. This article con-
tributes to the line of research challenging the status quo.
We identify potential for coupling interfaces between the
three major energy infrastructures and seek to coordinate
their operations in order to improve energy efficiency,
reliability, and resiliency. Thus far, these efforts commonly
take an aggregated, system-centric view on operations
and therefore often sacrifice details, e.g., spatio-temporal
granularity and decision-making hierarchy. As a result
of these simplifications, the multisystem couplings are
exploited at the very top (system) level and their benefits
are acquired and subsequently appropriated only on behalf
of the entire system. However, this paradigm runs into
a conflict with the current push toward decentralizing
infrastructure operations, proliferation of control, moni-
toring and communication technologies, and cost-effective
local energy supply means.

Motivated by the proliferation of demand response (DR)
programs in the electric power distribution sector, this
article seeks multisystem synergistic effects in the context
of the hierarchical decision-making structure of the elec-
tricity, gas, and heat infrastructure systems. Due to the
techno-economic similarities between these infrastructure
systems, the DR experience obtained in the electricity
context, as well as the modeling methods, can support the
development of similar customer engagement frameworks
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in gas and heat infrastructure systems. In particular,
we suggest to delineate the three common levels in each
infrastructure—correspondent to utility, aggregator, and
consumer, respectively. In turn, this delineation motivated
by the real-life practice allows to select a sufficiently
accurate spatio—-temporal granularity for each level and
to design level-specific couplings. The top/utility level
represents infrastructure operations from the system per-
spective, i.e., as currently adopted by local electricity, gas,
and heat utilities, and is customized to account for ubig-
uitous infrastructure constraints and techno-economic and
policy objectives. The middle level is designed to accom-
modate third-party service providers, e.g., energy retail-
ers or aggregators, that can arbitrage between the utility
and customers to leverage emerging information and com-
munication technologies that intend to harvest additional
economy-of-scope benefits in addition to economy-of-scale
benefits pursued by utilities. The bottom level accounts for
the decision-making process of individual customers based
on their needs, preferences, and often subrational choices.
However, due to the diversity of customers and their
techno—economic features, modeling individual consumers
in utility and aggregator operations has proven to be chal-
lenging in the current practice. Therefore, it is imperative
to create an accurate representation of the aggregated
behavior of customers that would adequately capture their
individual features and correlations among them. Taken
together, these three levels make it possible to thoroughly
trace and analyze electricity, gas, and heat flows from
local utilities to customers across domains and thus unlock
opportunities to seek synergistic operations among and
within levels of the critical infrastructure systems involved.

The success of the proposed hierarchical approach

hinges on the ability to coherently integrate all three levels
in one decision-making framework that can accurately rep-
resent each perspective with a sufficient level of operating
detail and ensure compatible modeling choices for each
level. To this end, the approach builds on the Markov
process (MP) and Markov decision process (MDP) theory
that has been shown in the past as an efficient framework
to operationalize distributed energy resources (DERs) and
energy delivery in a network-constrained environment.
The MDP theory is also well-suited to account for model
and parameter uncertainty observed by utilities, third-
party providers and customers, and to seek consensus
decision strategies under different assumptions on com-
munication interfaces between each level. The resulting
MDP-based decision-making framework incorporating all
three levels will create new and refine existing couplings
between interdependent heat, electricity, gas infrastruc-
tures and inform on the appropriate spatio-temporal gran-
ularity for multisystem aggregation at each level.

This article makes the following contributions.

1) We generalize the use of the MDP for accurately
representing dynamics of energy customers at the
utility and aggregate level. This representation makes
it possible to accommodate the uncertain customer
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dynamics using stochastic and robust optimization
methods. Furthermore, we enhance this MDP frame-
work to learn the optimal control policy for effectively
dispatching thermostatically controlled load (TCL)
ensembles using the so-called Z-learning algorithm.
This MDP framework is applicable to all energy
infrastructure systems.

2) The proposed MDP formulations are then integrated
with the optimal power flow (OPF) problem used by
electric power utilities to optimally dispatch available
energy resources, while ensuring that all asset and
network limits are securely met. The OPF problem
accommodates the uncertainty of stochastic genera-
tion resources using chance constraints (CCs). The
integrated problem combining the MDP and CC-OPF
optimization is then solved using an iterative algo-
rithm based on the dual decomposition, which allows
for co-optimizing the MDP and CC-OPF decisions.
While the integrated problem is formulated for the
electric power distribution network, it can also be
applied for gas and heat networks as noted in this
article. However, we do not present these models due
to a lack of real-life data.

3) The usefulness of the proposed approach is demon-
strated on real-life data for both residential and com-
mercial consumers. The presented data-driven use
cases are primarily focused on electric power distribu-
tion systems but a similar procedure can be extended
to the other energy systems if data is available.

4) Finally, we outline future extensions that can
improve and customize the proposed MDP frame-
work for applications in multienergy systems, includ-
ing resiliency enhancements, model reductions, and
usage beyond electric power distribution networks.

The rest of this article is organized as follows. Section II

describes current practices to model built environments
using physics- and data-based approaches. Section III
summarizes modeling practices for multienergy infrastruc-
ture systems and motivates their enhancement to include
built environments from the perspective of utilities, cus-
tomers, and aggregators using a hierarchical modeling
approach. Sections IV and V describe the proposed hierar-
chical modeling approach, which uses the MP to character-
ize the electricity, gas, and heat consumption of buildings
and the MDP to optimally dispatch this flexibility in coor-
dination with infrastructure systems. Section VI discusses
the opportunities for learning methods to improve the MDP
performance for real-life applications. Section VII discusses
further extensions of the proposed MDP framework.

II. BUILT ENVIRONMENT IN
MULTIENERGY INFRASTRUCTURE
SYSTEMS

Previously, multienergy infrastructure systems have been
studied from the perspective of a single or multiple
centralized planners or operators [1], [2]. Accordingly,
existing modeling and algorithmic solutions focus on a
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system-centric representation of energy flows, thus only
allowing for coordinating respective infrastructure systems
at a bulk resource level. This bulk resource level, also
known as the energy hub [3], aims to store or convert
different energy types prior to distributing it to consumers
with the main intention of meeting operating limits in
each infrastructure and reducing their respective operating
costs. Notably, the conversion within an energy hub can
be either uni- or multi-directional, which is often imple-
mentation specific. To a large extent, previous propositions
to jointly operate multienergy infrastructure have ignored
customer-end dynamics, i.e., there was no equivalent of
the energy hub within a given built environment. On the
contrary, recent advances in the deployment of DER and
energy efficiency technologies in commercial, industrial,
retail, and residential buildings make it possible to inter-
nalize the user-end perspective in multienergy power flow
computations, and thus enable a better accounting of
edge dynamics in each infrastructure. The opportunity to
include edge dynamics in multienergy flow modeling and
operating practices calls for a holistic modeling framework
that can represent electricity, gas, and heat consumption
within built environment and allow for energy conversion
beyond system-level energy hubs.

Although methods to evaluate energy dynamics of built
environments buildings are scarce, decentralized energy
supply systems having distributed control capabilities are
found advantageous over centralized systems to satisfy
preferences on end users during normal and contingency
operations [4]-[6]. However, these previous studies view
built environment as a whole on an infrastructure level,
deeming individual buildings as black boxes, or only
focused on individual buildings, ignoring the connec-
tion of buildings through infrastructures. However, since
cyber-physical interfaces among individual buildings have
become more ubiquitous, it is now possible to explore
characteristics and energy flexibility of connected buildings
(e.g., an ensemble of relatively homogeneous buildings) in
urban environments.

However, modeling such ensembles is challenging due
to the need to acquire, process, aggregate, and actuate
building-specific data. Although one can leverage building
information models (BIMs), which are typically available
for urban buildings, there is a number of well-recognized
and salient challenges. BIMs provide 3-D and computer
interpretable representation of physical and functional
characteristics of building elements (e.g., exterior enclo-
sure, structural columns, material type, geometry, dimen-
sions, connections to other building elements, location,
etc.) when queried. Hence, these models have been heavily
used in the current practice as well as in research to
extract, transform, and build off building data for various
practical and research problems. These areas include con-
struction scheduling [5], cost estimation [7]-[10], design
improvement [11], facility operations [12], [13], and
model and code checking [14]. Although these models
have been effective in providing the required data in

these application areas, their potential has not been fully
explored for multienergy dispatch. The effectiveness of the
models for multienergy dispatch applications will heavily
depend on the data representation and level of detail of
the stored data. What data to store, how to represent it
and the granularity of storing the data are factors that will
change the decision-making procedures at the building and
system levels.

Furthermore, assessing the flexibility that each build-
ing in the ensemble can provide requires accounting
for electric power, gas, and heat dynamics, which are
driven by comfort and behavioral preferences of occupants
and exogenous conditions (e.g., temperature, humidity,
etc.). Currently, there are two large groups of methods
to model and forecast building electricity, gas, and heat
consumption: 1) modeling relevant physical processes
(e.g., heat transport, electromechanical considerations,
Kirchoff’s laws, evaporation, etc.) and 2) data-driven
(e.g., statistical analyses and inference). Physical models
not only use available measurements and static building
parameters from BIMs, e.g., location, floor area, number
of stories, detailed information on the heating, ventila-
tion, and air conditioning (HVAC) system, lights, coils,
doors, and windows, but also operate with specific mod-
els that govern dynamics of relevant characteristics [15].
EnergyPlus, for example, is a popular simulation tool
for modeling energy needs of buildings using detailed
thermo- and mass-modeling of energy flows inside the
building [16]. EnergyPlus can also be used for an offline
and off-site analyses to determine set-point adjustments
of the energy consumption [17]. The advantage of using
the physics-based models is in their ability to describe
buildings without prior observations. However, the perfor-
mance of these models is highly sensitive to the number
and accuracy of the underlying modeling choices and
assumptions, as well as to input parameters. Physics-
based models often require more inputs than existing data
acquisition systems can provide [15], and therefore incur
significant uncertainties in both model parameters and
dynamic processes. Using such models for controlling an
ensemble of buildings may lead to computational issues
that would prevent their scalability and implementation
for real-life decision-making. Due to these shortcomings,
it is common to sacrifice modeling accuracy of the physics-
based models, which may lead to a loss of their predictive
power. On the other hand, in lieu of the physics-based
models, one can use machine learning and statistical mod-
eling to perform data-driven studies of buildings using a
vast amount of historical data available at the buildings
equipped with smart meters (SMs). These models are
trained using the historical energy consumption data and
other parameters (e.g., weather conditions, daily oper-
ational schedules, and control functionality) [17], [18].
Then, the models can be used continuously to learn and
predict energy usage from previously observed conditions.
Availability of data is crucial for such approaches, espe-
cially when attempting to predict consumption with a
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minimum set of required inputs [18]. Notably, such data is
publicly available at an urban scale. For example, New York
City’s Local Law 84 (LL84) requires that all commercial
(including multifamily) buildings of 50000 square feet
or more must report energy and water consumption on
an annual basis. Although this data is very coarse, it has
been used in a combination with other building infor-
mation (e.g., year built, floor area, property-use type,
occupancy) to develop more accurate data-driven building
models [19]. On the other hand, the data-driven mod-
els are data-intensive and building specific and require
large amounts of data for retraining or recalibration, even
when minor changes are made to the buildings. This
hinders scalability of the data-driven models and their
ability to represent an ensemble of buildings with vary-
ing characteristics. Furthermore, numerous studies have
revealed that data-driven models may yield discrepan-
cies (up to 100%) between the model outputs and the
observed data [19], [20]. To reduce the gap between the
prediction and the actual performance, researchers have
conducted calibration studies to tune the various inputs
to match the observations [21]-[23]. Nonetheless, calibra-
tion is still an over-specified and under-determined prob-
lem due to a relatively large number of inputs and a few
measurable outputs [18].

Alternatively, machine learning and data-driven tech-
niques can be leveraged to inform physics-based building
models. In this article, we construct an MP to represent
the energy consumption of building appliances to assess
the building flexibility for various applications in electric
power, gas, and heat distribution systems. First, the physi-
cal building model is used to characterize the MP using the
probability transition matrix. Based on this MB we formu-
late the MDP that can in turn be used to optimally control
electric and heat appliances within buildings either by the
local utility, third-party aggregators, or building managers.
The ultimate objective of this article is to combine the
scalability of the MDP with the accuracy of the physics-
based models, and to co-optimize dispatch of the ensemble
with multienergy infrastructure networks.

III. MULTIENERGY INFRASTRUCTURE

The development of a modeling framework to jointly oper-
ate multienergy infrastructure systems has been investi-
gated over the past decade to pursue a broad range of
economic and physical performance goals. To this end,
the typical objective is to select steady-state settings of
controllable infrastructure assets to minimize the joint
operating cost, while accounting for various engineering
constraints on infrastructure elements. These modeling
frameworks have been used for energy flow, reliabil-
ity, cross-system optimization, and investment evaluation
applications. The energy flow models, which vary in under-
lying assumptions, modeling accuracy and computational
performance, are typically steady state and allow for com-
puting the flows across infrastructure to ensure that energy
supply is sufficient to meet the expected energy demand
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[11, [2], [24], [25]. The reliability applications [26], [27]
are based on energy flow models and account for poten-
tial failures of infrastructure elements. Such reliability-
motivated models are often probabilistic and account for
different likelihoods of failures, repair times and budgets,
and risk imposed by each element on the infrastructure
systems (e.g., likelihood times impact). Cross-system opti-
mization [24] utilizes energy flows and reliability models
to evaluate how much flexibility (if any) each infrastruc-
ture system can provide on different time scale, varying
from several minutes to several weeks, and how this
flexibility can be efficiently converted between different
energy carriers with minimal losses. Finally, the investment
evaluation applications use simplified models described
above to inform decision makers on economically and
technically sound investment decisions to support joint
operations of multienergy systems. Often these models for
investment evaluation must account for a number of uncer-
tain externalities and, therefore, render computationally
demanding optimization problem.

We consider these applications of multienergy models
for infrastructure systems from the perspective of utilities,
customers, and aggregators below.

A. Utility’s Perspective

From the utility! perspective, which are likely to
be the only real-life entities positioned to operate
multienergy systems in a centralized manner, the main
value proposition for adopting multienergy operating
practice stems from improving energy efficiency, reliability,
and cost savings.

1) Electricity Supply: The current electricity supply
architecture has evolved as a result of the restructuring and
deregulation process [28] and the introduction of whole-
sale competition among electricity producers [29], [30].
The current architecture allows for wholesale competition
over the transmission network between large generation
companies (Genco), whose objective is to sell electricity at
the highest price, and distribution utilities, whose objective
is to purchase electricity at the lowest price. The utilities
supply the purchased or self-produced electricity to con-
sumers using the distribution network. With a few notable
exceptions (e.g., CA, NY, TX [31]), U.S. electricity con-
sumers are bounded to receive their electricity supply from
the utility at a tariff/rate regulated by local authorities.

Both the transmission- and distribution-level electricity
supply rely on operating and planning tools-based OPF
models, which optimize dispatch settings of controllable
generation and transmission assets given their operating
limits, forecast operating conditions, power flow and nodal

IThe term utility usually denotes a centralized supply organiza-
tion that provides a regulated service in a given area. In the United
States, utilities can be either investor-owned, publicly owned, coopera-
tives, or federal. In the following, we use the term utility in a generic
notion of the service provider and do not assume a particular ownership
structure. The modeling developments presented below are uniformly
applicable to all utilities.
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voltage constraints, and security margins. In general, OPF
refers to a family of decision support tools that seek
to optimize a given objective function (e.g., generation
cost, total power losses, profit, utility), while ensuring
that optimized operations meet the limits imposed by
electrical laws for a power network, as well as stability
and capacity constraints on bus voltages, generation assets,
and line flows [32]. The recent push toward integrating
renewable energy resources with intermittent outputs has
introduced a new degree of uncertainty and complex-
ity in transmission operations. First, it requires dealing
with nonconvex and nonlinear alternating current (ac)
power flow equations (based on the power flow constraints
given by the Kirchhoff’s laws), which make even the
deterministic OPF problem NP-hard [33], i.e., it cannot
be solved in polynomial time. Second, it is difficult to
model uncertainty propagation throughout the network.
One approach to circumvent those challenges is to replace
the ac power flow equations with the linear direct current
(dc) approximation, which neglects power losses, assumes
small angle differences, and parameterizes the voltage
magnitudes. The linearity and convexity of the dc approx-
imation enable the application of scenario-based [34],
chance-constrained [35], and robust [36]-[38] optimiza-
tion techniques to deal with the uncertainty of renewable
generation resources in a tractable manner but reduces the
accuracy of the model. Alternatively, one can use linearized
ac power flow approximations, e.g., [39], [40], or convex
(second-order) relaxations [41] that improve the model
accuracy at a modest increase in computing times. Notably,
models for distribution power flows can take advantage
of typically radial distribution network structures, which
allow for linear LindDistFlow and second-order DistFlow
formulations [42] that are capable of providing more
accurate tractable solutions then dc approximation. Finally,
the coordination between transmission and distribution
systems has previously been studied in the operating con-
text with the primary focus on steady-state conditions
[43], [44]. Sun et al. [45] formulate a global power
flow problem for the unified transmission and distribution
system and solve it using a master—slave-splitting iterative
algorithm. Li et al. [46], [47] propose a decomposition
approach for the coordinated economic dispatch of the
transmission and distribution systems that can capture
heterogeneous technical characteristics of these systems
and reasonably model information flows between them.
In [48], the decomposition algorithm from [46] and [47] is
improved to handle ac power flow constraints for both the
transmission and distribution systems. Although such coor-
dination schemes as in [48] make it possible to improve
energy efficiency of the power grid, they do not account for
the flexibility available at the edge of distribution systems.

2) Gas Supply: To deliver gas, one needs to maintain
a sufficiently high pressure along the pipe. Pressure is
kept at 200-1500-psi range in the transmission part of
the system which is achieved by placing pump stations

every 50-70 miles to compensate for the pressure drop.
Traditional consumers of gas at this high pressure (trans-
mission) level are city gates. There are also natural gas
plants, typically run in cogeneration mode, that extract gas
from the system. Pipes, pumps, city gates (local distribu-
tion companies), and also gas reservoirs (underground and
more modern compressed gas units) form the transmission
level network. Network topology at this level contains a
very few loops, that is, the transmission network is largely
tree-like. On the contrary, distribution network, which
starts at the city gates and goes down to house-holds and
mid-to-small size businesses, is typically loopy to guaran-
tee resilience (restarting the gas system is expansive, as it
requires an expansive manual manipulations by a crew to
meet safety standards). Pressure at the distribution level is
lower (0.5-200 psi), and the reduction from high to lower
pressure is achieved in a number of steps at the gate sta-
tions. Natural gas system is built to allow significant varia-
tions in pressure, with the allowed window often covering
up to 50% of the nominal level. This arrangement allows to
run the system in a relatively loose way, i.e., with much less
frequent (than in the power system) changes/adjustments.
As a result, injection of gas into the system and extraction
of gas from the system are not balanced at the time
scales of minutes and hours. The balance is restored (in
average) at the scale of a day and sometimes multiple days.
In this traditional legacy set up, automatic controls are
largely local, e.g., seeking to maintain predefined pressure
at the pump stations, with periodic manual corrections
by the operator. Modern systems are characterized by an
increased level of fluctuations in consumption originating
from: 1) gas-fired power plants which are often used as
the first responders on the power system side to mitigate
fluctuations caused by renewables, i.e., wind and solar
and 2) multiple small and medium size active consumers
responding not only to external temperature (easy to mon-
itor) but also engaged in an arbitrage of multiple energy
resources to meet their heating/cooling needs. Modeling of
the gas system operations has been the subject of extensive
research over the last 40 years [49]-[55]. Optimization
and optimal control of the natural gas operations are
also discussed extensively in the literature, both in the
stationary (planning) [56]-[63] and more recently in the
operational (dynamic, accounting for line packing) con-
texts [64], [65]. However, these studies remain largely
academic, i.e., not yet implemented in practical operation
and planning of the natural gas systems.

3) Heat Supply: District heating systems (DHSs) are
built to resolve heating needs of many geographically
collocated residential consumers in a centralized way.
DHSs are widespread in European and some American
cities in the northern hemisphere that experience sig-
nificant seasonal variations. While the first DHSs, built
in NYC, Chicago, Seattle, and Paris, operated on steam,
DHSs of the third generation, largely adopted in Nordic
and other European countries, are much more efficient
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(run under 70 °C), use plastic pipes (no corrosion), and
are operated at slower velocities (thus leading to longer
delays in the heat delivery from the sources to consumers).
Even though modern DHSs utilize automatic controls at
the heat sources, pumps and some consumers, system-wide
adjustments are set in action by human operators. The con-
trols are either hydraulic, changing mass flow, or thermal,
achieved through heating/cooling at the sources. When
compared with other energy infrastructures, DHSs show
much stronger dependence on external conditions (out-
side temperature, wind, cloud coverage) and thus show
more significant variations in the operational conditions.
Slower flows and active response of consumers are other
contributors to the growth of DHS variability as it becomes
modern. In terms of the temporal scale of operation, DHSs
are roughly as inertial as the natural gas systems, thus
they provide a significant DR balancing potential to the
power system operated at the same district/distribution
level (see [66] for further details on the network modeling,
parameter identification, control, and optimization aspects
of the DHS technology).

B. Consumer’s Perspective

Motivated by the rollout of smart grid technologies,
which includes communication and control means allow-
ing for alternating standard consumption patterns, con-
sumers can be incentivized to consume energy of different
types in a way that alleviates bottlenecks in operating
infrastructure systems. In return, consumers can expect a
certain renumeration that would compensate for any dis-
comfort incurred by reducing, shifting, or eliminating their
consumption. However, several challenges exist that limit
participation levels of customers in DR program [67]. First,
massive enrollment of demand-side participants in such
programs is only possible if their premises are equipped
with proper metering and automatic control units that can
seamlessly communicate with the utility and on-demand
execution of desired commands. Although these units are
commercially available, their upfront cost is still pro-
hibitively expensive and their wide deployment is limited
to large metropolitan areas. For instance, Consolidated
Edison (ConEd)—a distribution company in New York
has began installation of SMs in 2017 in Staten Island,
which is expected to continue through 2022 until it covers
Brooklyn, Manhattan, the Bronx, and Queens. However,
even if the smart metering and automatic control systems
are available, there are a number of issues that may lead
to low participation rates. First, among potential demand-
side participation, the perception is that the value propo-
sition of such programs is relatively small as compared
to electricity tariffs, self-valuation of comfort, and rent
(mortgage) rates. Second, customers typically have low
awareness of their potential to improve energy efficiency
and associated benefits to the environment and society as
a whole.

Extending these customer-end challenges to the multi-
energy context renders, it difficult to seamlessly exchange
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energy of different types at the customer level, which
motivates the use of aggregation techniques and control
methods described as follows.

C. Aggregator’s Perspective

Due to the complexity of aggregating small-scale gener-
ation and demand-side resources, power utilities may not
fully harvest benefits of these resources since their business
models and practices seek the economy of scale bene-
fits. As a result, there is an opportunity for demand-side
aggregators to act as a mediator between the utility and
consumers with demand-side and generation resources,
thus collecting the benefits of the economy of scale
(e.g., by reducing transaction costs, providing better infor-
mation, and other services that are prohibitively expensive
for individual DERs) and economy of scope (e.g., via pro-
viding multiple services to the utility) [68]. From the utility
perspective, the advantage of engaging in interactions
with aggregators is in replacing the need to interface and
support continuous communication with each demand-
side and generation resource. Instead, the utility has to
deal with a rather small number of aggregators that in
turn coordinate their DER portfolios based on the utility’s
instructions and accumulate risks on the performance of
individual consumers. Thus, in addition to streamlining
communication, aggregators can hedge financial risks for
both utilities and DERs, as well as multiple competing
aggregators may reduce volatility in electricity prices [68].
However, even though competitive forces should theo-
retically encourage aggregators to deliver cost-effective
services to DERs and utilities, there is a concern that
existing imperfections (e.g., metering systems or reliability
requirements [68], [69]) will reduce, if not completely
eliminate, the benefits of the aggregators. Hence, it is
important to equip aggregators with decision-making tools
that are capable of accurately representing electricity, gas,
and heat dynamics in built environments.

Current aggregation techniques use overly conservative
methods to estimate the flexibility that can be extracted
from demand-side participants. Typically, this flexibil-
ity is estimated with respect to its electricity baseline,
i.e., expected electricity consumption before the DR event,
and curtailment, i.e., the expected reduction in electric-
ity consumption during the DR event. These aggregation
techniques however neglect the complex dynamics among
correlated electricity, heat, and gas consumption within a
given built environment, which leads to a great discrep-
ancy between the expected and actual performance of DR
programs. Fig. 1 compares the accuracy of baseline and
curtailment estimations for the DR program operated by
ConEd of New York on 12 buildings of the New York
University (NYU) campus, where baseline errors can be
as great as +£40% and the curtailment errors vary from
—140% to 20%. Notably, the baseline error distribution
in Fig. 1(a) is nearly zero-mean and symmetric, while the
curtailment error distribution in Fig. 1(b) is skewed toward
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Fig. 1. Relative error of (a) baseline against real time and (b)

enrollment against baseline during ConEd DR events. The baseline
for ConEd is calculated by averaging the usage of each hourly
interval of the top five days out of last ten eligible weekdays. Each
line denotes a building before/during the DR events with colors
differentiating buildings and events (12 buildings during historical
DR events from 2016 to 2018).

negative errors, i.e., the enrollment is over-estimated and
less capacity is delivered in real time during the DR event
than anticipated.

D. Hierarchical Approach

To improve energy efficiency of multienergy infrastruc-
ture systems, this article proposes a hierarchical approach
that makes it possible to aggregate the energy flexibility
of electric, heating, and gas appliances at the customer
level and coordinate their usage with infrastructure oper-
ations. In practice, however, aggregation programs have
become particularly widespread in electric power systems
and, to a large extent, remain in their infancy in other
energy infrastructure systems. Nevertheless, due to techno-
economic similarities among electric, gas and heat systems,
such aggregation techniques will become relevant as more
gas and heat customers engage in bidirectional interactions
with their gas and heat utilities. Fig. 2 illustrates the
proposed hierarchical approach for three actors (utility,
aggregator, DR participant) and two decision-making lev-
els. The top decision-making level includes either the util-
ity or aggregator decision maker that needs to estimate the

amount of flexibility that can be extracted from demand-
side resources. The low decision-making level includes an
array of demand-side participants that occupy various built
environments and are engaged in two interactions with
either the utility or aggregator at the top level.

The hierarchical approach in Fig. 2 is motivated by
two key factors. First, it is supported by the available
and foreseeable communication infrastructure that can be
used toward aggregating distributed energy and demand
resources at scale. Second, it fits the regulatory framework
currently dominating in the majority of U.S. states, where
regulated tariffs with a coarse spatio—temporal resolution
(e.g., time-of-use tariffs with peak and off-peak steps)
make it possible for profit-seeking aggregators to arbitrage
between fine-tuned knowledge of customers’ self-valuation
of their energy consumption and regulated electricity, gas,
and heat tariffs in the system.

1) Communication Infrastructure for Aggregation: The
schematic for the automated DR (ADR) is shown in Fig. 2.
The utility acquires DR participant’s real-time energy usage
from SMs installed at the end of DR participants. This
energy usage data acquaintance is done via wide area
network (WAN). The utility server or DR automated server
(DRAS) executes DR scheduling and DR pricing algorithm
(e.g., online learning-based pricing for DR; see Fig. 3)
using the data collected from the SMs. The DR pricing
signals and schedules are sent to the DR participants
using OpenADR 2.0, a nonproprietary, open standardized
information exchange model for DR. This model has been
recently recognized as an IEC standard 62746-10-1 for the
interface between the DR participants and the utility.

The OpenADR communication protocol has virtual top
node (VIN), which transmits the DR schedules and pricing
signals to virtual end node (VEN) and receives response
to the DR event from VENs. The VEN coordinates with
the local building energy management system (BEMS)
and automatically control the high-wattage power appli-
ances such as TCLs, plug-in electric vehicles, and wash-
ing machines that are registered in DR programs. The
interaction between the utility and DR participants can be

: —DR without third-party aggregator DR with third-party aggregator

Utility

Customer
Interface

VTN/VEN Enabled |
Aggregator :

i OpenADR Communication

Fig. 2.
in DR framework.

Interaction among utility, aggregator, and DR participants
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Fig. 3. Exploration of DR price in an online fashion using historical

data on DR participants’ response (x kW) and DR price (\ $/kWh).

with or without the third-party aggregators in between.
In the ADR framework with the aggregators, the aggrega-
tors combine the DR resources from various customers and
use proprietary communication protocols to communicate
with the customers’ VEN and SMs. However, the aggre-
gators communicate with the utility using OpenADR 2.0
communication protocol. The aggregators provide the DR
services to the utility for sharing certain percentage of
profit generated by the utility from the DR program.
In both the schemes of the ADR (with or without aggre-
gators), customers can get notifications about DR events,
track their participation in DR and possible improvements
using customer interfaces such as proprietary websites and
smartphone applications.

2) Real-Life Aggregation Programs: There is an increas-
ing number of utilities and third-party aggregators
enabling DR programs. For instance, ConEd has launched
the SmartAC program in New York City (NYC), NY. The
program allows its customers to participate in DR pro-
grams and reduce the power consumption of their air-
conditioners (ACs) during peak hours in summer (typically
from May through September). Currently, residential and
small business customers are enrolled in the SmartAC
program. With over 7 million ACs in the NYC area, this
program is anticipated to expand substantially shortly.
ConEd enables existing window AC to participate in the
SmartAC program by installing a home WiFi connected
SmartAC kit in the AC. Furthermore, the program accepts
various WiFi-enabled ACs that have an in-built SmartAC
kit. The kit establishes communication among ConEd, DR
participants, BEMS, and AC unit, which is of a similar
architecture as shown in Fig. 2 (SmartAC kit as VEN
installed in the AC). The SmartAC program has a dedicated
smartphone application that interfaces ConEd and the DR
participants. ConEd sends signals on DR event time, dura-
tion, and incentives to the participants via the smartphone
application. In return, the participants can respond to
ConEd conforming to their participation and can track
their DR performance. Furthermore, the participants can
control their AC remotely via the smartphone application,
even when the DR events are not called. Receiving the
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consent of the participants, ConEd increases the operat-
ing temperature of the AC unit or turns it OFE Based
on the participation in the DR events, the participants
earn incentives in the form of cool points, which can be
redeemed (1000 cool points = $1). Currently, the SmartAC
program has static approach to incentives, unlike the one
presented in Fig. 3. Customers get flat rebates during the
DR enrollment and participation in the called DR events.
For instance, customers will get $10 per AC unit if they
allow installing a free SmartAC kit in an existing window
AC, $11 per AC unit on reenroll, and $100 per AC unit
on enrolling with WiFi-enabled AC. During the DR events,
a participant gets $2.5 per hour per AC unit, while gets
$5 per hour per AC unit if participates for all DR events
called by ConEd. There are more advanced DR programs
than that ConEd currently practices. For example, ADR
programs in California also allow DR via third-party aggre-
gators besides direct interaction with individual DR partic-
ipants. The aggregators manage multiple DR participants
and interact with both DR participants and utilities, and
hence, provide competitive DR in scale.

Note that providing solely economic incentives might
not be sufficient to persuade customers with bounded
rationality [70] to change their consumption behavior.
In addition to the economic incentives, the utilities can
persuade customers with increasing awareness regarding
environmental and climate change mitigation impacts to
convince more customers to enroll in energy saving pro-
grams. For example, the case study carried out among the
University of California, Los Angeles (UCLA) students [71]
reveals that the group of students who received messages
about their energy consumption paired with negative envi-
ronmental and health impacts consumed less electricity
(by 8.9%) than the group of students who only received
messages about their electricity consumption and its cost.
Other forms of nonmonetary incentives can include mag-
azine subscription, movie, and lottery tickets which are
offered to customers in return to reducing their peak
consumption [72]. In the future, as more energy customers
become flexible, considering social values will play a more
important role in accurately aggregating TCL customers.
Finally, incentive programs similar to [71] and [72] can
also be extended to other network energy and transporta-
tion infrastructure systems (e.g., for road traffic manage-
ment [73], [74]).

3) Learning Arbitrage Opportunities: An online learning
framework of the DR is presented in Fig. 3. The utility or an
aggregator sends a pricing signal \; for a DR event sched-
uled at time ¢. Upon receiving A; (Vi = 1,..., N, where N
is the total number of DR participants), the DR participant
modifies its electricity usage by z;: kW, either automati-
cally using a preprogrammed algorithm in BEMS or man-
ually via human intervention. It is noteworthy that a DR
participant enrolled in DR program can opt out from
providing the response, however, incurs a penalty. Because
of idiosyncratic behavior of DR participants, the electricity
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! Dispatch range !

Fig. 4. MP representation of the TCL ensemble with eight discrete
states displaying all possible transitions from state 1 [78].

demand reduced by a DR participant 7 during a DR event
at time ¢, x; ¢, is a linear function of A\, with DR participant
specific coefficients given by [75]-[77]

Zit(Ae) = Bt + Boyi (D

where 31 ,; and f3o,; refer to the parameters of the cost func-
tion of a DR participant 7. These parameters are unknown
to a utility or an aggregator. Hence, the utility learns these
parameters using historical data (H) on price signals and
DR provided, ie., H = {\r, zi-},V7 = 1,...¢t — 1,
¢ = 1,...,N. Then the utility explores an optimal \;
for the DR event at current time ¢ and broadcasts to the
DR participants.

Successfully implementing DR programs in practice
requires modeling solutions that support resource aggre-
gation with low communication overheads and options for
performance improvements via learning. In the rest of this
article, we show that the MP and MDP frameworks are well
positioned to meet these requirements.

IV. MP AND DATA

We represent the built environment at the edge of energy
infrastructure systems via an ensemble of TCLs. In turn,
using the TCL ensemble makes it possible to leverage an
MP to represent the electricity, gas, and heat consumption
via a given number of discrete states, where each state has
an associated energy level. This MP is considered over a
finite time horizon with discrete time periods such that the
duration of the horizon and time periods coalign with typ-
ical time scales of infrastructure operations (week-, day-,
hour-ahead). The states are obtained by discretizing the
given operating range, which vary for each ensemble based
on the operating characteristics of TCLs included, and can
be done either uniformly or nonuniformly. Note that such
an MP can be constructed for electricity, gas, and heat
consumption individually or combined, if one accounts
for interdependence between electricity, heat, and gas
consumption patterns in each built environment. Fig. 4
illustrates an MP with eight states with possible transitions

from state 1 to other states. Note that the ensemble can
remain in the same state.

A. Construction of the MP

Given the physically accurate building energy and infor-
mation models discussed in Section II, we describe a pro-
cedure to construct the MP that can be used to formulate
and solve the MDP in [79, eqgs. (1)-(5)]. The procedure is
illustrated in Fig. 5 and includes the following three steps:
1) building data generation and aggregation; 2) state—
space definition and reduction; and 3) construction and
validation of the resulting MP These steps are further
detailed as follows.

1) Building Data Generation and Aggregation: The
ensemble is developed by aggregating homogeneous
buildings in close proximity, where each building is
subjected to some external gains that are stochastic
in nature such as outside temperature and wind.
The physical building model in [79, egs. (6)-(14)]
is applied to the set of buildings to develop building
energy models.

2) State-Space Definition and Reduction: After devel-
oping building energy models, a multidimensional
State-Space model is developed for the buildings
where state represents dynamics of the building. The
state-space is then reduced to a low-dimensional
model based on those parameters that have a mean-
ingful physical process between them and are con-
trollable such as indoor temperature and power
consumption. The parameters in the reduced state—
space model are also mutually dependent and impor-
tant to the consumers in the form of comfort (indoor
temperature) and electricity bill (power consump-
tion). Given a reduced state-space model, the authors
choose power consumption as a parameter to deal
with and translate other parameters into power since
building provides services to the grid by shifting its
power consumption pattern. The state is then defined
in terms of power and discretized into numerically
ordered ranges to represent its dispatch ranges and
move toward a discrete space MDP

3) Construction of the MP: Based on the reduced
state—space model and their dispatch ranges, MP is
constructed describing the steady-state evolution of
the system. The normal transition probabilities are
computed by tracing and normalizing all the transi-
tions between different discretized states.

Stochastic Full state- Reduced finite

external gains space stata-space
BUILDING STATE-SPACE MARKOV PROCESS —aB
ENERGY DEFINITION/ CONSTRUCTION/ P
MODELS REDUCTION VALIDATION

Internal states
fluctuations

Fig. 5.
ensemble control of buildings [79].

Proposed three-step procedure to construct MP for optimal
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Fig. 6. Transition probability matrix for case 1 with (a) 10 states
and (b) 17 states.

B. Application to Residential Households

Using the three-step procedure described in Section IV-A
and illustrated in Fig. 5, we construct the MP for a portfolio
of residential households in Belgium, where each house-
hold is an “average” low-energy building, in which the day
and night zones have a surface area of 132 and 138 m?,
respectively [79]. In this built environment, individual
heating systems consist of an air-coupled heat pump and a
back-up electric resistance heater, which supply heat to the
floor heating system in the day and night zones, i.e., space
heating, and to the storage tank for domestic hot water.
Since different operating principles and low-level controls
are available for the heat pumps and auxiliary heaters,
we consider two cases specific for residential households.
In case 1, MP represents the power consumption of the
heat pump and ignores the auxiliary heater, while in case 2,
MP represents the power consumption of the auxiliary
heater and ignores the heat pump. Based on our experi-
ments calibrating the accuracy of the resulting MP relative
to the original physical model, we find that either 10 or
17 states are required to represent the MP in case 1
(see Fig. 6). Note that considering more states in the MP
leads to a sparse matrix, which inhibits further computa-
tions. Similarly, the MP in case 2 requires either 14 or
32 states as shown in Fig. 7. Comparing Figs. 6 and 7 shows
the difference in the consumption patterns of heat pumps
and auxiliary heaters.

C. Application to a Commercial NYU Building

Similar to the application of the three-step procedure
described in Section IV-A and illustrated in Fig. 5 to

13 ||

123 45678 091011121316

(a) (b)

Fig. 7.
and (b) 32 states.

Transition probability matrix for case 2 with (a) 14 states
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Fig. 8. One-year power consumption data for NYU building 12.

residential households as explained above, we demon-
strate the ability to construct the MP for a commercial
building in an urban environment. As a demonstration site,
we use the NYU campus building, abbreviated below as
Building #12, which is located in Manhattan, NY. This
eight-story building has ~70000 square feet of mostly
classrooms, meeting rooms, and faculty offices. The build-
ing also has a basement, which is mainly used for storage.
The HVAC system of the building consists of one roof top
unit (RTU), two chillers, two air handling units (AHUs),
two fan coil units (FCUs), and 79 variable air volume boxes
(VAVs). The electric power consumption data is available
for this building since 2016 and we display a year-long
sample used to construct the MP in Fig. 8. The year-long
pattern in Fig. 8 is then used to develop the MP with
10 and 25 states, which are illustrated in Fig. 9. Relative
to the residential households in Figs. 6 and 7, we observe
that the case study with the single NYU building produces
more diagonal matrices (see Fig. 9), which means that the
building can be gradually controlled from one power state
to another, i.e., the net electric power consumption of this
building is more on a par with affine control policies used
for conventional generators.

Using the MPs for residential and commercial buildings
constructed above, Section V will develop a suitable MDP
to optimally control the built environments in multienergy
infrastructure systems.

1016 07
1283
155
S 1817
2
<2084
$ 25
o
& 261.7

Power (kW)

2884
315.1
s ‘

© .0 H A K H A K N
A @7 N A @7 T AT @ o W
ST VR A o

Power (kW)

(@) (b)

T

Power (kW,

Fig. 9. Transition probability matrix for NYU building 12 with (a)
10 states and (b) 25 states.
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Table 1 Comparison of MDP Solutions for Different Methods

Hierarchical Approach to Multienergy DR: From Electricity to Multienergy Applications

Uncertainty on
Method Transition Policy Value Function
Probability
Standard pob o oy —var
MDP None Pl = — = PR1=—Ud —Mog( L, eaexp(—2)P )
YacaP 211
Stochastic - PP exp(—=2o — oY o\ Sva e
Extension Normally distributed 73;15 = a/:“ (2(7’ ﬁ)g) 1= U — Yog(X,ca exp(%)? exp(ﬁ»
o Pzt ()
Normally distributed
Robust q o Lz exp =G
Extension with ambiguous peb — w e=—U — VIOg(Zue.A exp( )Fexp( z(rc)2))
parameters t —_ ( ) =
Lo L=t gz

V. MARKOV DECISION PROCESS
The MDP optimization problem operating the TCL ensem-
ble can be stated as

mln ZO“ = ]Erpz Z —Ugp + Z ’YIOgﬁaﬁ

teT a€A BeA

2

stpin =Y Pip] VaeAteT A3)
BeA

D PP =1 VBeA teT “4)

acA

where p € R™ with n = |A| describes the dynamic state
of the TCL ensemble such that its probability in state 3
at time ¢ is given by p? and probability in state a at
time ¢ + 1 is given by pg ;. A = {a,(,...} is the set
of all possible states, which is obtained by discretizing
the range of power consumption for each TCL ensemble.
PP characterizes the probability of transitioning from a
given state ( at time ¢ to a next state « at time ¢ + 1.
Equation (2) represents the objective function of the DR
aggregator that controls the TCL ensemble and aims to
maximize its expected utility (U¢} ;) and to minimize the
discomfort cost for the TCL ensemble. The discomfort
cost is computed using the Kullback-Leibler (KL) diver-
gence, weighted by parameter . This divergence penalizes
the difference between the transition decisions made by
the DR aggregator (P”) and the default transitions of the
TCL ensemble? (faﬁ), under the assumption that the latter
represents first-choice preferences of TCL users. The choice
of the KL divergence for the penalty cost is motivated
by its extensive use for modeling randomness of discrete
and continuous time series. Equation (3) describes the
temporal evolution of the TCL ensemble from time ¢ to ¢t+1
over time horizon 7. Equation (4) imposes the integrality
constraint on the transition decisions optimized by the DR
aggregator such that their total probability is equal to one.

ZNote that although ﬁa’g is defined as time-independent, one can
model it as time-dependent if there is enough observation data to
construct a multiperiod MP. As more empirical data on the TCL dispatch
is collected over time, the more temporal fidelity can be achieved in
representing default transitions.

The active power (p;) consumed by the TCL ensemble is
computed using decisions pg* and rated active power p®
at each state as p: = > ., p®p¢,Vt € T. Thus, the active
power consumed can be controlled by means of optimizing
decisions pf*, which in turn can be parameterized using
DR protocols of a given building (e.g., dimming certain
lights, changing HVAC settings, or shutting down some of
the elevators in the building).

The MDP optimization formulated in (2)-(4) is an
LS-MDP as introduced in [80]-[82] and discussed in
[78], [79], [83], and [84]. LS-MDP problems can be
solved analytically and the optimal policy derived from
the LS-MDP is not a mapping of states to action vari-
ables, as in a conventional MDE but is a mapping of a
current state into a next-state distribution, which mini-
mizes the expected next-state costs and the divergence
cost between the default and controlled probability distri-
butions. The LS-MDP in (2)-(4) can be efficiently solved
at scale using dynamic programming. As shown in [83,
Appendix 1.9], the optlmal policy obtained from (2)-(4)
can be expressed as P? (PQBzHl)/(EaeA Paﬁztﬂ)
as shown in Table 1, where the value function ¢, for
state « at time ¢ + 1 is encoded in the control through

zi1 = exp(—@iy1 /7). )

We refer interested readers to [83, App. 1.9] for more
details on the derivation.

A. Uncertainty Management

The default transition probabilities in the standard MDP
formulation in (2)—(4) are assumed to be perfectly known,
which does not hold in real-world applications, where the
TCL ensemble is subject to unknown external influences
and uncertain human behavior. We model this parameter
uncertainty by representing default transition probablhtles
7 as random variables P” and assume that P" fol-
lows a normal distribution with perfectly known mean P’
and variance 02, i.e., P’ ~ N(P*’, 52). Under this fairly
mild assumption on the uncertainty of ﬁaﬁ, we can still
use our prior work in [85] to derive the analytical optimal
control policy shown in Table 1. Relative to the optimal

PROCEEDINGS OF THE IEEE 11

Authorized licensed use limited to: University of Canberra. Downloaded on April 28,2020 at 08:08:20 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Hassan et al.: Hierarchical Approach to Multienergy DR: From Electricity to Multienergy Applications

policy in the standard MDB the stochastic extension differs
in the term exp(—o?/(2(P*")?)), which internalizes the
uncertainty on uncontrolled transition probabilities into
the stochastic control policy.

Since the parameters of the uncertainty distribution are
not exactly known and are informed by a finite number
of historical observations, the distribution is ambiguous
over the available data. Hence, assuming a single dis-
tribution as in Section V-A may not capture the actual
uncertainty on the MP matrix accurately. To overcome
this limitation, we define the ambiguity set as D =
r< P¥< T,{ < o < (], where I, T, ¢, and ¢
are confidence bounds on the empirical mean and vari-
ance. Since P*” and o2 can be, respectively, modeled by
t- and chi-square (X?) distributions [86], we compute
these bounds as

—af o = —af o
=P " —t_ —— and I'=P "+t — (6
L (1 §/2)\/N (1 </2)\/N (6)
. N —1)62 = (N -=1)62

(1-8)/2 £/2

where ¢ and ¢ are confidence parameters on the bounds.
As derived in our prior work in [85], in this robust case
we can also derive an analytical optimal control policy
as given in Table 1. This robust extension internalizes
the information about set D and immunizes the optimal
control policy for the worst case realization of distribution
parameters drawn from this set.

B. Coupling the MDP and Infrastructure
Constraints

Although the standard, stochastic, and robust MDP opti-
mizations for dispatching the TCL ensembles in a given
built environment allow to compute the flexibility that
can be extracted for infrastructure operations, the MDP
does not account for the deliver ability of this flexibility
given network constraints. Hence, we propose to design
an integrated optimization problem that includes the MDP
and network flows. For the sake of illustration, we con-
sider the coordination between the MDP and electric
power distribution model, which can be modeled using the
OPF framework.

Among multiple techniques available to implement
an OPF problem, we select the chance-constrained OPF
(CC-OPF) because it can accommodate ac power flows
accurately and can robustly treat uncertain behavior
imposed by volatile demand and photovoltaic resources.
The choice of the CC-OPF over other methods is moti-
vated by several advantages. First, CCs do not require
discretizing a probability space, as required for scenario-
based stochastic programming methods, and internalize
continuous probability distributions of uncertain para-
meters [87]. Additionally, CCs can be enforced over an
ambiguity set that can better fit non-Gaussian empirical
data [88]-[90]. Furthermore, the CC-OPF scales well for
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large networks, especially relative to scenario-based sto-
chastic programming [88], and can be implemented in a
decentralized manner [91], [92]. Finally, recent studies
demonstrate that CCs are well-suited for electricity pric-
ing under uncertainty at the wholesale and distribution
levels due to their ability to ensure market design prop-
erties (e.g., revenue adequacy, cost recovery, and incentive
compatibility) [93].
The integrated MDP and CC-OPF are formulated as

min > 0f +M 07 ®)
0,P:0,p,q ~~ ~~
eT |beNT Aggregator Utility,
s.t. (3) and (4) ©)
po= Y pipiy V€T, beN (10)
acA
G = @pt VET, bEN (11)
acA
CC-OFPF constraints; see [78, egs. (19)-(26)] (12)

where O{,‘ft and Of, represent the objective function of
the aggregator [see (2)] and utility (e.g., power loss min-
imization as in [78]) and parameter A. is a tariff that
monetizes the power losses. Note that the other choices
of the objective function can be used in (8). For simplic-
ity, all CC-OPF constraints are concentrated in (8)-(11)
(see [78] for details), and set ©® denotes CC-OPF deci-
sion variables. The active and reactive power injections
of the TCL ensemble at bus & € A of the distribution
system, where A/ is the set of all buses in the distribution
system, are computed in (10) and (11) based on the
rated active (py’) and reactive (g;') power at state « and
its probability pf',.

To solve the integrated optimization problem above,
we propose a decomposition-based algorithm that divides
the optimization tasks between the utility and aggre-
gator, i.e., replicates the decentralized decision-making
structure and minimizes communication needs among
them. The proposed decomposition is based on the
dual decomposition algorithm [94] that allows the inte-
grated problem to be decomposed into two separate
MDP and CC-OPF subproblems that are solved itera-
tively until convergence and, in particular, allows for
using different solution techniques for each subproblem
(e.g., the MDP and CC-OPF are solved using dynamic
and SOC programming methods, respectively). The algo-
rithm inherits the properties of the dual decomposi-
tion, including convergence properties and the ability to
deal with nonconvex decisions. Notably, the decomposed
algorithm makes it possible to achieve the separation
between spatial and temporal variables, which acceler-
ates its iterative performance. The decomposed problem
is then solved as illustrated in Fig. 10 and described
as follows.
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Fig. 10. Iterative approach to decompose and solve the integrated

MDP and CC-OPF optimization.

1) Solve the following MDP optimization for each TCL
ensemble to determine the optimal TCL dispatch:

Yo e N min} 05" (13)
PP T
egs. (3), (4), (10), (11) (14)
U, = U + X008 + A a5 Vae A teT
(15)

where v is an iteration counter and /\f’(b”) and
)\f’(g’ ) are the Lagrange multipliers of (10) and
(11), respectively, obtained at the previous itera-
tion of the algorithm. Hence, /\f,(b”:l) = )\f’(b” =D —p
during the first iteration. Note that while (13) and
(14) solve the original MDP problem as presented
above, (15) updates the next-step utility function
of the aggregator [(2)], using the most recently
updated values of Lagrange multipliers A}, ) and
)\f’(g’ ). The optimization in (13)-(15) can be solved
using either traditional dynamic programming meth-
ods (e.g., backward-forward algorithm that we used
in [78]) or derived policies presented in Table 1.

2) Solve the CC-OPF problem, where each TCL ensemble
is parameterized using the values of Lagrange multi-
pliers )\i”(b”)

Vte T :
min Y- 407 =37 (Wbl A al))  a6)
teT beN
s.t. CC-OPF constraints; see [78, eqs (19)-(26)]
(7
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where the CC-OPF problems for all time intervals are
solved in parallel using off-the-shelf convex solvers
(e.g., CPLEX, Gurobi, MOSEK). When all subproblems
are solved, Step 2 produces the optimal dispatch deci-
sions for the distribution system given the TCL dis-
patch optimized at Step 1. The Lagrange multipliers
produced at Step 2 are then used to trade off the TCL
dispatch among the MDP and CC-OPF optimization
using the dual update in Step 3.

3) Update the Lagrange multipliers to seek consensus
decisions among the MDP and CC-OPF optimization
problems

)\Z(bzﬂrl) )\P(V) 45 (Z paptaglu) _piu}))) (18)

acA

)\;I’(g”rl) - )‘t,b 46 ( a(’/)pa(’/) qi?) (19)

acA

where § is an exogenous parameter that can be tuned
to improve computational performance.

C. Application to Building #12 and NYU Microgrid

Using the integrated MDP and CC-OPF optimization and
decomposition algorithm described above, we analyze the
dispatch flexibility of the NYU campus building #12, which
is a part of the NYU microgrid. Fig. 11 displays the NYU
microgrid located in Manhattan, NY, which features one
combined heat and power (CHP) plant, supplying electric-
ity to 22 buildings and heat to 37 buildings. We model
this microgrid as a four-bus system (the buses are denoted
in Fig. 11 by letters A, B, C, and D), which are connected
by distribution lines. The NYU microgrid is connected to
ConEd at 4.16-kV point of common coupling (PCC) and
can be islanded if needed. The islanding has been success-
fully demonstrated during Hurricane Sandy in 2012, when
the microgrid islanded and continued to supply power and

"’ [ Consilidated Edison Distribution ]

Olher
cor % Bldgs
N n
4.16 kV
PCC A B C
. o——o—o@ Bldg#12
D
©)
GTG#1 GTG#2 STG
5.5MW, 0.8 5.5MW, 0.8 2.4 MW, 0.8
PF,4.16kV, PF,4.16kV, PF 4.16kV, E E
60 Hz 60 Hz 60 Hz
Legend Chiller#1 Chiller#2
PCC: Point of common coupling 1200 Ton, 1200 Ton,
GTG: Gas turbine generator IMVA IMVA
STG: Steam turbine generator
Bldg: Building
Fig. 11. Schematic of NYU microgrid depicting CHP generation

[95], where AB, BC, and BD are distribution lines modeled in the
CC-OPF implementation.
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heat to critical NYU campus loads [96]. We implement the
CC-OPF for the NYU microgrid under the assumption that
it is voltage constrained and the allowed voltage fluctua-
tion range is +5% from nominal voltages at nodes A, B, C,
and D as shown in Fig. 11. Since this microgrid does not
have flow constraints, we do not impose power flow limits
in the CC-OPF implementation (which is typical for low-
voltage distribution systems). The electricity is generated
by two 5.5 MW (0.8 pE 4.16 kV, 3-phase, 60 Hz) gas
turbine generators (GTGs) and a 2.4-MW (0.8 pE 4.16 kV,
3-phase, 60 Hz) steam turbine generator (STG). The STG
is driven by the steam generated by the hot exhaust
produced as a byproduct of gas turbines. After the steam
is passed through the STG, it is used again to produce hot
water for the campus in two high-temperature hot water
exchangers and to operate chillers that provide cool water
for air-conditioning. The microgrid has two 1-MVA chillers,
which get electricity supply from both the CHP plant and
ConEd’s network.

Fig. 12(a) demonstrates the improvement in extracting
the demand-side flexibility from NYU building #12 using
the proposed MDP approach as compared to the current
practice used by ConEd for a historical DR event that
occurred from 11:00 to 15:00 h on November 26, 2016.

150 (40P Méthod ‘ ‘
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(b)
Fig. 12. DR of NYU building #12 using the MDP method.

(a) Simulation of the DR event. (b) NYU building #12 indoor
temperature profile.
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Fig. 13. Improvement in real-time DR performance of NYU

building #12.

Based on the current practice, ConEd estimates the cur-
tailment at 50 kW relative to the baseline of 299-306 kW.
On the other hand, using the proposed MDP makes it possi-
ble to extract additional flexibility, which can be delivered
via the NYU microgrid to the distribution network operated
by ConEd. In contrast, we also display uncertainty limits
on the DR flexibility using the maximum and minimum
responses provided in other historical events. Notably,
under the DR participation decided by the MDB the indoor
temperature of the building is within a predefined comfort
range as shown in Fig. 12(b). Similarly, Fig. 13 displays
the improvement in the real-time performance of the NYU
building #12 during the DR event. As a reference, ConEd
estimated a static enrollment of 50 kW during the DR event
from the baseline of 299-306 kW.?

VI. LEARNING USING MDPs

While the distributed optimization with central coordina-
tion for network-aware multienergy systems is promising,
it requires information of system parameters, aggregator’s
utility functions for optimal operation. Such information
varies over different time scales and may not be avail-
able in near-real time, due to nonubiquitous metering
equipment. For example, power distribution grids, where
controllable TCLs are located, have low observability over
line-flows and structure. Similarly, consumer utility func-
tions used in the MDP framework may not be appropriately
known, unless through the use of consumer surveys, etc.
Recently, statistical learning of distribution grid state and
parameters using real-time bus voltage measurements in
the regime of partial observability has been discussed
[97]1, [98]. In this section, we discuss active and passive
approaches to efficiently estimate the utility function as
well as optimal MDP policies using measurement data.

3ConEd calculates the baseline by averaging the usage of each hourly
interval of the top five days out of last ten eligible weekdays (except
the day before, holidays, low usage days—Iless than 25% of the average
usage level, and event days).
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A. Model-Free Environment

The MDP approach [see (2)] utilizes knowledge of the
uncontrolled transition probability matrix 7. While that
may not be immediately available, by discretizing observed
sample trajectories into bins, an empirical estimate f‘;ﬁp
can be estimated. Interestingly, 7 estimation can be by-
passed and the optimal control directly estimated from
samples. This is done by exploiting the specific structure
in the optimal control law, described in Table 1. Plugging
the control law and (5) into the MDP cost function, we get
a fixed point equation for z, given as follows:

(20)

Uy —
zf = exp (Tt> ZP ﬁztﬂ.

Using available samples, this can be solved by the following
iterative procedure known as Z-learning [80], which is
guaranteed to converge to the true solution for decaying
weights 7y

. . U\ Lo
Ztﬁk —(@1- nk)ztﬁ,k,l + NkeXp (7’5) Zirk—1- (2D

It is worth noting that passive state transitions are suf-
ficient to learn the control policy in Z-learning, and no
user-intervention is required. Furthermore, the control law
learnt can be robustified using the robust counterparts
mentioned in Table 1.

B. Customized Prices/Penalties

While the Z-learning algorithm mentioned previously is
able to learn the optimal control rule, it still depends on the
parameter ~ that affects the cost associated with changing
the transition probability. In a more general setting, v may
vary from state to state and hence complicate the utility
function associated with the aggregator. In such a setting,
we advocate an “active” approach to estimate the associ-
ated cost function by calibrating the aggregator’s response.
For example, customized fluctuations in the active power
cost U may be used to identify the changes in aggregator
response to identify which specific transitions are more
flexible for affecting a change in the MDP control, and
which are more restrictive. On a related setting, random-
ness in uncontrolled price signals and attempted actions
can be internalized in the formulation as well to ensure
price-robust operation of the MDP control following the
learning step.

VI. FURTHER EXTENSIONS
A. Resiliency Application

Multienergy infrastructure systems and built environ-
ments face natural and anthropogenic (i.e., originating
from human activity) cyber-physical threats that incur
billions of dollars in losses and casualties. A dramatic

increase has been observed with $2.9 trillion in direct
economic losses due to natural disasters (i.e., geo-physical
and climate-related) during the past 20 years, with 77%
due to climate change. The United States has suffered the
greatest economic losses, nearly $1 trillion [99]. Coastal
states (e.g., New York, California, and Florida) are par-
ticularly vulnerable to increased risk from natural disas-
ters [100]. Cyber-attacks, on the other hand, not only
resulted in vital infrastructure failures [101], but also in
data losses and privacy breaches [102]. Cyber attacks on
critical infrastructure systems are only increasing in fre-
quency and severity as reported by the Center for Strategic
and International Studies [103]. For example, Kaspersky
Security Network (KSN), an antivirus network company,
revealed that 42.7% of industrial control systems for
multienergy infrastructures that it protects were attacked
in 2018 [104].

The current practice of resiliency assessment on
building and energy infrastructure is ad hoc. It fails to
leverage or marginalize the ability of in-building resources
to provide on-demand service for alleviating stress and
disturbances caused by extreme events. The uniqueness
of the building and energy infrastructure systems is that,
unlike other aging infrastructure systems, they have
a lot of small-scale distributed resources that can be
leveraged toward improving their joint resiliency. There
is no consensus on a single metric or a set of metrics
for defining and quantifying resiliency of multienergy
infrastructure systems that would internalize building
dynamics. The proposed MDP framework can be leveraged
to support building operations during extreme events,
whether natural or anthropogenic, and assist multienergy
infrastructures by providing back-up flexibility to improve
infrastructure preparedness and recovery.

B. Beyond Electricity Network

Aggregation of consumers into an ensemble can be
extended to consumers drawing energy from the multi-
energy system considered as a whole, i.e., including district
heating and natural gas systems and their interdependen-
cies with the power system. Furthermore, as consumer-
end automation tools proliferate, it will become possible
to design ensemble controls that account for the ability of
consumers to switch between these three energy sources
to satisfy their energy needs in the most efficient man-
ner (e.g., least cost, energy conversation, environmentally
responsible). From the multienergy system perspective,
a particular challenge will arise to account for the ability
to use these consumer-end controls for storing and arbi-
traging energy between multienergy systems. Among such
consumer-end storage resources, heating, electric vehicles,
and gas-to-electricity equipment have been proven viable.

Although modeling such multienergy consumers with
the complex control and storage capabilities described
above can be done similar to modeling a single-energy
consumer in the proposed MDP framework, there are
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several technical gaps that need to be addressed. First,
it will be required to identify parameters that charac-
terize state and actions spaces of advanced multienergy
appliances. This, for example, should account not only for
instant energy consumption (i.e., in terms of electricity,
gas, and heat) but also correlations among them and
complex transitions from one energy source to another.
This additional information should be internalized in the
transition probability matrix and cost function to meet
energy needs of consumers economically. Second, similar
to the integration of the MDP framework with the CC-
OPF as described above, it will be useful to couple the
MDP framework to decision support tools used for oper-
ating natural gas and heating systems, at the distribution
and, possibly, transmission level. This multienergy system
optimization can, in turn, be extended to account for
their inherent dynamics, including delays, mutual desyn-
chronization, and temporal transients. For example, heat
delivery (especially, in the modern setting of the third
generation DHS) is a relatively slow process leading to
significant delays. To mitigate these delays, one may take
advantage of the ability of consumers to temporarily switch
off their heat appliances and replace them with energy
provided by the gas or electricity systems.

C. MDP Enhancements

The developed MDP framework is flexible and can be
adopted as per the task at hand, with varying compu-
tational, communication, control, and cyber-security con-
straints. Depending on all of these requirements and, pos-
sibly others, the operator of the multienergy system (or the
aggregator of multienergy resources) is expected to choose
appropriate levels of “data resolution,” i.e., a number
of units included in the ensemble, a number of states,
a number of time steps and their duration, that will allow
for trading off performance and accuracy of the ensemble
control. These choices are many and particulars will vary
for different settings, optimization formulations, and other
considerations (e.g., engineering judgment or human-in-
the-loop considerations).

In turn, the model design can also be hierarchical,
i.e., one may use already available models of energy appli-
ances or of their aggregation (e.g., in buildings or ensem-
bles of buildings) to obtain a single model. For example,
this single model can be a building ensemble within a given
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