Infusing Computational Thinking into Middle Grade Science
Classrooms: Lessons Learned

Veronica Cateté!, Nicholas Lytle!, Yihuan Dong!, Danielle Boulden!, Bita Akram!, Jennifer
Houchins!, Tiffany Barnes!, Eric Wiebe!, James Lester!, Bradford Mott!, Kristy Boyer2
INorth Carolina State University, Raleigh, North Carolina
2University of Florida, Gainesville, Florida
{vmcatete,nalytle,ydong2,dmboulde,bakram,jkhouci,tmbarnes, wiebe,lester,bwmott}@ncsu.edu,keboyer@ufl.edu

ABSTRACT

There is a growing need to present all students with an opportu-
nity to learn computer science and computational thinking (CT)
skills during their primary and secondary education. Traditionally,
these opportunities are available outside of the core curriculum as
stand-alone courses often taken by those with preparatory privi-
lege. Researchers have identified the need to integrate CT into core
classes to provide equitable access to these critical skills. We have
worked in a research-practice partnership with two magnet mid-
dle schools focused on digital sciences to develop and implement
computational thinking into life sciences classes. In this report, we
present initial lessons learned while conducting our design-based
implementation research on integrating computational thinking
into middle school science classes. These case studies suggest that
several factors including teacher engagement, teacher attitudes,
student prior experience with CS/CT, and curriculum design can
all impact student engagement in integrated science-CT lessons.

CCS CONCEPTS

« Social and professional topics — K-12 education; Compu-
tational thinking;

KEYWORDS
Professional Development; STEM+C; Computational Thinking

ACM Reference Format:

Veronica Cateté, Nicholas Lytle, Yihuan Dong, Danielle Boulden, Bita
Akram, Jennifer Houchins, Tiffany Barnes, Eric Wiebe, James Lester,
Bradford Mott, Kristy Boyer. 2018. Infusing Computational Thinking into
Middle Grade Science Classrooms: Lessons Learned. In Proceedings of the

13th Workshop in Primary and Secondary Computing Education (WiPSCE ’18),

October 4-6, 2018, Potsdam, Germany. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3265757.3265778

1 INTRODUCTION

Global economic challenges and the changing context of high-value
employment in the U.S. has meant strong policy pressure to prepare
a workforce that is computationally literate. This has resulted in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WIPSCE 18, October 4—6, 2018, Potsdam, Germany

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6588-8/18/10...$15.00
https://doi.org/10.1145/3265757.3265778

increased interest in how best to integrate computer science (CS) in
K-12 education. Until recently, a primary approach has been to posi-
tion CS as out-of-class experiences or as stand-alone units [26, 31].
However, there has been emerging recognition for the need to inte-
grate foundational CS skills (e.g. designing an algorithm, generating
abstractions, etc.) into core academic Science, Technology, Engi-
neering, and Mathematics (STEM) classes[13]. These foundational
elements have been termed computational thinking (CT) [20].

Through integrating CT into the regular K-12 school day, all stu-
dents can gain access and the playing field can be leveled for those
with less programming experience [11, 21]. In order to create and
pilot a series of CT activities for the core classroom, we partnered
with two local middle schools (student ages 11-13), one recently
designated as a “Center for the Digital Sciences Magnet School”
We worked in partnership with school leadership and teachers to
integrate CS/CT concepts into math and science classes.

In this paper we discuss our design-based implementation re-
search in collaboration with middle school Science teachers. Through
multiple cycles of inspection, prototyping, and piloting our team
developed and tested two sets of week-long CT activities for life
science. After a brief introduction to the STEM+Computing field,
we present our case study, followed by a set of lessons learned and
recommendations for infusing CT lessons into core content areas.

2 BACKGROUND

Historically, computing education disproportionately engages stu-
dents with access to the “preparatory privilege" of extra experience
in STEM and computer science [23]. The equity issues of a stan-
dalone computing course are compounded by additional systemic
issues within the K-12 school structure. Few teachers have available
room in their schedules to teach an additional computing course,
there are limited classroom resources available within the schools,
and there are a limited number of computing-certified teachers
available. To truly address under-representation and equal access,
efforts must be made to integrate computational thinking (CT) and
computer science into the required K-12 curriculum [4] where all
students will have access, and the playing field can be leveled for
those with less experience [28].

Recognizing that this integration will take a different form than
standalone courses, the framing of CT as a set of practices has been
codified [8, 29] into Decomposition, Pattern Recognition, Abstrac-
tion, and Algorithmic Design (discussed further in Table 1).

The CT framework can be used as a guide for CT integration
into STEM disciplinary courses [4, 5, 16, 22, 27]. CT and the use of
computational tools has been shown to enable deeper learning of
STEM content areas for students [10, 18, 32]. These foundational

https://doi.org/10.1145/3265757.3265778
https://doi.org/10.1145/3265757.3265778

Infusing CT into Middle Grade Science Classrooms: Lessons Learned

Table 1: Elements of Computational Thinking [8]

Element of CT
Decomposition

Expanded Explanation

Breaking down data, processes, or
problems into smaller, manageable parts
Pattern Recognition Observing patterns, trends, and
regularities in data

Abstraction Identifying the general principles that
generate these patterns
Algorithmic Design Developing the step by step instructions

for solving this and similar problems

computing and CT abilities have also increased student retention
and learning performance in computing courses and outreach pro-
grams [6, 14, 19]. Middle grades has been identified as a critical
age range to study the potential for developing CT. Some attempts
have designed curricula using block-based programming languages
[12, 17], as visual programming environments have been shown to
improve student performance and affect [24]. However, as not every
classroom has access to computers, other research has focused on
developing unplugged CS [2]. Through designing STEM-oriented
block-based programming and unplugged activities we can further
integrate CT into the K-12 school day.

This new approach is critical as there is a growing need to edu-
cate students in computational methods and techniques to support
the rapidly changing landscape of research across mathematics and
scientific disciplines [30]. Today, biological and environmental data,
for example, is multivariate, multidimensional, and multi-causal,
and it exists at multiple scales in enormous volume (increasing at
terabytes of data per day) [10]. These non-linear problems require
computationally powered solutions envisioned by CT.

Infusing CT directly into a STEM course provides the teacher
with improved mastery of their disciplinary concepts with new
instructional approaches [29]. In courses where students pose and
solve open-ended integrated STEM+C problems, teachers lose much
of the control they traditionally have over the learning process and
may become uncomfortable [10]. They need new skills to guide
individual learners. Supporting students engaging in self-directed
collaborative processes requires an ability to diagnose difficulties
and give hints, rather than supplying solutions. Research shows
that targeted professional development (PD) on facilitating CT and
creative problem solving, can increase teachers confidence in ability
to teach content and guide students [25].

Our work at this middle school is modeled as a research practice
partnership [7]. We observe teachers in their natural classrooms,
collaborate together to develop CT enriched curricula, provide
scaffolded PD, and conduct field observations and data collection
to improve the materials, and reiterate the cycle.

3 INTEGRATING CT AND SCIENCE
3.1 Curricula

In this case study we describe implementations of two CT-integrated
life science curricula. The Epidemics curriculum focused on model-
ing the spread of epidemic diseases such as the flu and the Invasive
Species curriculum focused on data manipulation and predicting
the presence of invasive species in a given area. Each of these curric-
ula was developed by a multidisciplinary team of computer science

V. Cateté, N. Lytle, et al.

researchers, educational psychology researchers, and classroom
teachers. Individual activities are described as “plugged" if students
programmed or used a computer modeling tool, or “unplugged” if
students were learning CT/STEM topics without a computer. Ad-
ditionally, tutorials on block-based programming were given to
students as part of the developed curricula. Both curricula were
developed to be standard aligned with Essential Science Standards
and the k12cs.org Computational Thinking Framework.

3.1.1 Epidemics. This curriculum features 2 unplugged days
focused on modeling agent-host relations in the transmission of
diseases and 4 plugged days where students developed a simula-
tor using the block-based programming environment, Cellular [1].
This culminated in students using their simulator to answer re-
search questions on what environmental factors influence the rate
of infection across a population. An overview of the day’s topics,
assignments, and aligned CT curricula are shown in Table 3.

Figure 1: Epidemics: A run of the simulation is shown (left)
with graphical output showing the rate of infection (right)

s @ ® © < s

3.1.2 Invasive Species. Students learned about invasive species
in ecosystems integrated with learning concepts of data science.
Students investigated feature data for each state in the United States
(average annual temperature, average rainfall, etc.) to make models
for predicting whether an invasive species, Kudzu, is likely to be
present in that state. Students completed this through unplugged
activities designed to learn about properties and relationships of
data and how to calculate error; a data modeling tool, CODAP [9];
and a block-based programming tool, Netsblox [3]. The sequence
of activities for this assignment is shown in Table 5.

4 METHODS
4.1 Context

The case study took place within two local area magnet middle
schools, which provide innovative and/or expanded educational
opportunities while promoting diverse populations and reducing
high concentrations of poverty. Demographics for these schools are
provided in Table 2. For both schools, over 50% of the population
are racially and ethnically underrepresented minorities in STEM
and nearly half are on a Free or Reduced Payment Lunch (FRPL)
program (a financial aid program for low SES American families).

Table 2: Demographics for case study locations.

Location | White Asian Black Hispanic FRPL
School 1 | 22.0% 2.6% 42.3% 28.1% 62.2%
School 2 | 39.5% 5.9% 22.5% 25.8% 47.1%

Infusing CT into Middle Grade Science Classrooms: Lessons Learned

WiPSCE *18, October 4-6, 2018, Potsdam, Germany

Table 3: Epidemics curricula outline, P: programming, U: unplugged

Day Lab Description Science Outcomes CS Outcomes CT Outcomes

1 U: Simulate epidemics in-person Model real life factors in epidemics. Understand Hosts and Agents share Abstraction
and create agent diagrams properties with modified values.

(healthy/sick)

2 P: Animate healthy and infected Define Infection and infection rate; Demonstrate understanding of Decomposition,
agents including basic Reinforce day 1. agent properties. Use loops and Algorithm
transmission conditionals to automate life cycles.

3 P: Extend Day 2 to track how Understand disease spread and rate ~ Use variables to maintain count. Pattern
populations get sick over time; of transmission/infection. Analyze trends in data to identify Recognition
generate graphs based on initial patterns. Demonstrate an
conditions understanding of how interaction

properties can affect simulations.

4 U: Use a transition diagram to Understand Morbidity/Mortality Understand and use Finite State Abstraction,
model interactions and variable rates and their influence on spread. = Machines to model complex logic Algorithm
changes with 4 health states flow. Model algorithmic thinking

through transition modeling.

5 P: Use given simulation to Understand how environmental Data visualization; Using Pattern
explore effect of environmental factors affect disease spread; Learn simulations to test hypothesis Recognition,
factors on disease spread. experimental procedure for Decomposition

hypothesis testing

The breakdown of curriculum implementation is shown in Table
4; each class contained 20-25 students. All teachers led instruction
on days where computers weren’t needed. Each teacher at School
2 led instruction on computer days for 4 of their afternoon classes.

Table 4: Implementation profile of activities and teachers.

Topic Teachers Classes PD Personality
School1 Epidemics 3 6 (7th) No Disinterest

Epidemics 2 12 (8th) Yes Proactive
School 2 Invasive 2 10 (7th) Yes Disinterest

4.2 Teachers

Teachers self-enrolled their classes for a programming study ran by
a subset of the research team. After that study, teachers were offered
several other computing activities for their students. Teachers were
able to choose which activities they wanted to implement in their
classroom; School 1 teachers took a vote based on which seemed
most interesting, School 2 teachers choose those that aligned with
the pre-existing science learning objectives for their grade level.

Researchers offered a short professional development before-
hand to all classroom teachers for each of the plugged activities.
PD occurred during two of the teachers’ 1-hour planning periods.
The PD covered activity content, teacher instruction guides, and
scaffolded student instructions. The four School 2 teachers eagerly
opted to partake in PD for the activities. The three School 1 teachers
declined PD, citing limited time availability and uncertainty in if
they would reimplement the activity the following semester.

4.3 Classroom Implementation

Each of the teachers’ classes were presented the same curriculum ac-
tivity on the same day. The teachers primarily taught all unplugged

activities as they were strongly oriented in the science domain. For
plugged activities, the research team provided each classroom with
an instructional assistant to help lead the topic. Additionally, when
a teacher indicated less confidence, a third support person attended
the session to help answer student questions.

For all School 2 implementations of Epidemics (and one imple-
mentation of Invasive species), a faded scaffolding teaching ap-
proach was carried out. In order to help strengthen the teachers, a
member of the research team with former middle school teaching
experience, led the first class period in the activity while the science
teacher observed. In the second class period, the teacher co-taught
with our team member to get supported hands-on teaching expe-
rience for the CT activities. By the third class period, the teacher
would lead the full activity while the researcher moved into an
observation-only role. The teacher then taught the remaining three
afternoon class periods on their own.

4.4 Data Collection

Data was collected in a variety of forms. During the run of the activ-
ities, a member of the research team acted as an observer recording
classroom behavior. These observers also conducted cognitive in-
terviews with select students based on observed proficiency level
and performance on the activity. These interviews typically con-
sisted of 2 - 3 questions that helped elicit student thinking processes
when approaching an assigned problem. We also collected student
interaction data with the programming environments, which we
will elaborate more on in further research.

After each implementation cycle was complete, the full research
team discussed the findings from the in-class observations, debrief-
ings with teachers, and cognitive interviews. The findings were
then translated into actionable changes to the curriculum for later
iterations. We present several of our key findings below.

Infusing CT into Middle Grade Science Classrooms: Lessons Learned

V. Cateté, N. Lytle, et al.

Table 5: Invasive Species Curricula outline. P: programming, U: Unplugged

Day Lab Description Science Outcomes CS Outcomes CT Outcomes

1 U: Inspect/Compare State Define invasive species and how they ~Data Representation, Data Abstraction,
environmental data to find patterns are established. Define Abiotic Analysis. Pattern
for presence of Invasive Species factors and their influence on Recognition

invasive species. Understand
dependent/ independent variables.

2 P: Visualize data to find relationships Visualize relationships between Modeling, Simulation. Abstraction,
between variables and use decision =~ dependent and independent Pattern
trees to create predictive models. variables. Recognition

3 P: Implement the prediction model Reinforce and Transfer Day 2 Simulation, Automation, Algorithm,
from day 2 in NetsBlox and test the ~ Concepts. Prediction, Problem Abstraction
model. Representation.

4 U: Calculate the precision of Learn to calculate error, inspect Prediction, Validation, Algorithm
prediction models against the dataset. complex relationships b/t variables. Modeling, Simulation.

5 LESSONS LEARNED

5.1 Professional Development

Teacher engagement is critical. As noted in the case studies, not
all teachers were receptive to the offered professional development.
We found teachers fell into three main categories: (1) Proactive:
wanting to learn CS/CT skills and concepts, (2) Willing: wanting to
incorporate CT but needing help, and (3) Disinterested: only want-
ing the research team to teach their class. The 8th grade science
teachers fell into the first two categories, engaging fully in the PD
and more fully in leading the integrated curricula. The 7th grade
science teachers from School 2 and the three elective teachers from
School 1, were in categories 2 and 3, with even “Willing" teach-
ers being hesitant to lead the planned lessons and “Disinterested”
teachers unwilling to attend even our lightweight PD. Based on our
classroom observations, we found that the level of teacher buy-in
seemed to be strongly related to overall student engagement, with
students in “Proactive teacher classrooms" having much higher
on-task than off-task behavior.

Teachers should experience new CT-integrated lessons as
learners. We conducted our short professional development (PD)
sessions by giving a brief overview of the planned lessons and
provided teachers with links to the curricula and solutions to each
activity. Nearly all teachers felt comfortable leading unplugged
sections; as domain experts, science teachers already have devel-
oped schema for the scientific concepts. However, several were
uncomfortable leading plugged activities. Teachers did learn CT
and programming while following along with students, and their
understanding of the activities became deeper as they co-taught
the second class and lead the third class. However, disinterested
teachers never engaged in learning, and the researchers had to lead
all of the plugged activities.

Teachers need help becoming facilitators for CT. Observers
found the teaching quality to be varied, even among highly engaged
proactive teachers. The proactive teachers intentionally inserted
their own errors and had students problem solve to in order to debug
their algorithms for solutions. Instead of trying to be a person who
knew everything about the curriculum, these teachers identified as
students learning the curriculum together. In early development,
teachers expressed the need for a solution key in the teaching guide

to make them more comfortable teaching. This key then became
a gold-standard for all the activities to make sure nothing went
wrong in the following activities. However, even our most engaged,
proactive teacher once stated, ‘if your code doesn’t look like mine,
it is wrong’ This means that the research team did not effectively
communicate that student solutions could and should vary. Several
instances of this issue occurred when determining the order of
setting variables or the order of simple conditional statements. For
a teacher new to CT and programming, it is not obvious when the
ordering of tasks doesn’t matter. This is understandable, as that the
lack of previous programming experience makes it difficult for the
teachers to identify alternative solutions. Teachers feared that one
difference between the student solution and the teacher solution
might lead to errors or further differences in the subsequent activi-
ties. We believe that teacher preparation should focus on helping
teachers become facilitators rather than CT experts. This could be
realized through adopting strategies from POGIL (process-oriented
guided inquiry learning) or problem-based learning, that focus on
helping teachers learn to provide process feedback and ask good
questions to help students learn.

5.2 Curricular Materials

Teachers need explicit direction and help to identify compu-
tational thinking elements. When designing the curricula, the
research team initially considered computational thinking as an
integral mindset and set of practices to be embedded implicitly
into the activities. However, the teachers seemed to view computa-
tional thinking as a set of discrete concepts based on their school
or district definitions. For example, School 2 utilized the framework
for computational thinking as Pattern Recognition, Abstraction,
Decomposition, and Algorithms (PRADA). The teachers tended to
explain and emphasize these keywords repeatedly during the ac-
tivities. School 2 teachers expected these keywords to be explicitly
identified in the teacher guide, and asked us to help them map the
integrated activities to their PRADA CT concepts. This suggests
that explicitly identifying the targeted, and even localized, compu-
tational thinking concepts within the curricular materials may help
teachers become more confident and effective in helping students
learn computational thinking in integrated settings.

Infusing CT into Middle Grade Science Classrooms: Lessons Learned

Offer extensions and support to engage learners at differ-
ent levels. Observations showed that students who moved quickly
through the tasks in the activities would use their extra time to go
off-task or distract other students. In order to keep the materials
engaging for these more experienced/advanced students, we built
extension activities with questions to guide deeper exploration of
both science and CT concepts. To aid students with lower prior
experience, we provided a self-paced student instruction guide with
scaffolded coding segments, visual gif depictions, and text-based
think-it-through activities. These multifaceted support tools al-
lowed most students to stay on task and arrive similarly prepared
for the next day’s learning objectives. While the curriculum success-
fully built concepts up over multiple days of instruction, activities
that build on previous days can prove difficult if students miss
days in the sequence or are unable to complete some of a given
day’s activities. In the future, we should explicitly provide pre-made
starting points for each day to help with this.

Scaffold and minimize switching between computer tools.
Integrating STEM and CT with authentic activities for both is likely
to require switching between text, paper-based activities, and mul-
tiple computer-based tools. Keeping track of where to find each tool
is extraneous cognitive load that wastes valuable class time. Both
teachers and students need a single place to find links for the lesson
plans, online tools, and programming environments. In addition,
teachers and students need enough time to feel comfortable using
each tool/software. Limiting the number of tools needed for each
lesson is important, and the each new tool should be carefully con-
sidered to ensure that the benefits for its use should outweigh the
time and effort needed to switch contexts and learn a new interface.

Our observations showed strong student engagement in the Epi-
demics curriculum, with few students going off task. We provided
three supports that were important in making the Epidemics cur-
riculum effective: (1) teacher PD on the curriculum during two
planning periods, (2) an in-class tutorial on block-based program-
ming prior to the curriculum, and (3) extensions we made to the
Cellular programming environment to minimize the number of
new things students had to learn to achieve the targeted goals. We
believe these allowed students enough time and support to learn
just enough about the tools, and also helped teachers learn along
with them. Teachers benefited from the same task and environ-
ment, and were comfortable with switching over to teaching by
themselves by the 3rd period. We were able to fade scaffolding for
both unplugged and plugged Epidemics activities. Teacher feedback
was strongly positive, and the teachers agreed that they would feel
comfortable doing the task again, and wished to implement it in
their classrooms again next year.

The Invasive Species curriculum implementation was not as suc-
cessful. Similar to Epidemics, we provided just-in-time PD during
teacher planning periods, asked teachers to provide in-class time
for the block-based programming tutorial, and developed scaffolds
in the Netsblox environment for the activities. However, we were
unable to fade the researcher classroom support completely for the
plugged activities. Several factors contributed to this result. The
7th grade science teachers (either Disinterested or Willing) entered
the PD with much more hesitation towards using computational
tools. Not enough classroom time was provided for the block-based
programming tutorial, and our curriculum included the use of two

WiPSCE *18, October 4-6, 2018, Potsdam, Germany

computational tools (CODAP and Netsblox). The short tutorial left
some students without prior experience struggling, and the teachers
felt uncomfortable teaching the plugged activities. Consequently,
we could only implement gradual fading of teaching for the un-
plugged activities in the Invasive Species curriculum. Though it
is unclear what the most important factor is, the combination of
low teacher confidence, frequent switching between multiple envi-
ronments, and the short duration of the block-based programming
tutorial made it unlikely that teachers will implement this lesson
again without researcher support.

6 DISCUSSION & CONCLUSIONS

We found that the largest differentiator in both teacher and student
engagement in our integrated science-CT curricula was the degree
to which teachers embraced a learner and facilitator role. Teachers
who became comfortable with open-ended assignments with di-
verse solutions, and who acted as questioners, were able to promote
student engagement in the curricula. Accepting that there are many
ways that people can use computers to achieve the same results is
central to computational thinking and computer science. This may
be natural for computer science and education researchers comfort-
able with technology, but it cannot be assumed that teachers will
readily adopt a facilitator role without explicit help and support to
do so. As development environments and languages are constantly
changing, teachers cannot be expected to become experts in all pos-
sible computational tools or programming environments. Teachers
need to be able to act as facilitators for open-ended computational
thinking, able to address and scaffold learning without a definitive
solution guide. This might run counter to domains with specific
correct solutions or styles of teaching that are more teacher-led
rather than student-focused, but we believe that people must learn
computational thinking by making and doing, breaking things and
fixing them, through problem solving and creativity.

6.1 Limitations

Though we were able to provide instructional assistance on pro-
gramming days, we did not have consistent researcher instructors
in the classroom during these multi-day activities. Nuances in teach-
ing style among these researchers could have created differences
in both student and teacher engagement, as well as student and
teacher learning of the material. While our scaffolded teaching
model in the classroom was effective for some teachers, it is not
feasible for large-scale implementation, so more work needs to be
done to create scalable training strategies.

There are also limitations in the chosen schools for our pilot im-
plementation. Both schools are magnet schools specifically focused
on integrating digital sciences and CT. Integrating CT will likely be
even more challenging in general classrooms. We only report on
the integration of CT in the context of a life science class. However,
we have piloted additional curricula with both Mathematics and
Art classes and have found that these classrooms and topics present
different challenges and considerations. Math teachers also wanted
help identifying CT concepts, but this is more difficult because of
the considerable overlap between math and CT concepts. The art
teacher was used to open-ended tasks and connecting concepts to

Infusing CT into Middle Grade Science Classrooms: Lessons Learned

diverse student artifacts, so she already had the facilitator mindset
important for integrating CT.

6.2 Future Work

We plan to address these lessons learned through multiple strate-
gies moving forward. First, we plan to redesign our professional
development to provide teachers with experience as CT learners, ob-
servers, and teachers [15]. The faded structure of our initial model
allowed teachers to observe teaching by the research team, and
to act as teachers in their disciplinary area first and later in CT.
However, only those teachers who actively engaged in the PD and
helped students during the CT activities could actually experience
the materials as “learners". In a week-long summer PD, we plan
to provide teachers time to experience these lessons with peers
as learners, and build in sufficient time for them to discuss what
aspects of each activity relate to disciplinary concepts and which
relate to CT. There is no pre-set right answer to this question -
many CT concepts can apply at once to a single activity. However,
we believe that through discussion, the research team and teach-
ers together can discover ways to identify productive instances of
CT and highlight how they are different from, but contribute to,
meaningful learning both for CT and for STEM disciplines. The
focus of the summer PD will also differ from the PD sessions prior
to the implementations, as we will not be training these teachers
in specific content. Instead, we plan to train teachers to facilitate
learning in various CT lessons and teach strategies for integration,
teaching, and development of their own lessons, learning how to
match CT concepts to their own content. Through this, we hope to
develop ways that help teachers become fluent in computational
thinking and in integrating computing ideas into their specific
domains, classrooms, and lessons.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation under grant numbers 1640141 and 1742351. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] Bernd Meyer Aidan Lane and Jonathan Mullins. 2012. Simulation with Cellular A
Project Based Introduction to Programming (first ed.). Monash University. Online:
https://github.com/MonashAlexandria/snapapps.

Tim Bell, Jason Alexander, Isaac Freeman, and Mick Grimley. 2009. Computer

science unplugged: School students doing real computing without computers.

The New Zealand Journal of Applied Computing and Information Technology 13, 1

(2009), 20-29.

[3] Brian Broll, Akos Lédeczi, Peter Volgyesi, Janos Sallai, Miklos Maroti, Alexia Car-
rillo, Stephanie L Weeden-Wright, Chris Vanags, Joshua D Swartz, and Melvin Lu.
2017. A visual programming environment for learning distributed programming.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. ACM, 81-86.

[4] Philip S. Buffum, Megan Hardy Frankosky, Kristy Elizabeth Boyer, Eric N Wiebe,
Bradford W Mott, and James C Lester. 2016. Empowering All Students: Closing
the CS Confidence Gap with an In-School Initiative for Middle School Students. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education.
ACM, 382-387.

[5] Philip S. Buffum, Allison G Martinez-Arocho, Megan Hardy Frankosky, Fernando J
Rodriguez, Eric N Wiebe, and Kristy Elizabeth Boyer. 2014. CS principles goes to
middle school: learning how to teach Big Data. In Proceedings of the 45th ACM
technical symposium on Computer science education. ACM, 151-156.

[2

G

=
&

=
&

(17

[18

[19

[20

[21

[22

[23

[24

™~
2

[26

[27

(28]

(30]

(31

[32

V. Cateté, N. Lytle, et al.

Veronica Cateté, Kathleen Wassell, and Tiffany Barnes. 2014. Use and develop-
ment of entertainment technologies in after school STEM program. In Proc. of the
45th ACM technical symposium on Computer science education. ACM, 163-168.
CE Coburn, WR Penuel, and K Geil. 2013. Research-practice partnerships at the
district level: A new strategy for leveraging research for educational improvement.
Berkeley, CA and Boulder, CO: Univ. of California and Univ. of Colorado (2013).
K-12 Computer Science Framework Steering Committee et al. 2016. K-12 com-
puter science framework. (2016).

The Concord Consortium. 2014. Common online data analysis platform. @Con-
cord 18, 1 (apr 2014), 16.

National Research Council et al. 2011. Successful K-12 STEM education: Identifying
effective approaches in science, technology, engineering, and mathematics. National
Academies Press.

Jan Cuny, Larry Snyder, and M Jeannette. 2010. Wing. Demystifying Computa-
tional Thinking for Non-Computer Scientists, work in progress (2010).

Jill Denner, Linda Werner, and Eloy Ortiz. 2012. Computer games created by
middle school girls: Can they be used to measure understanding of computer
science concepts? Computers & Education 58, 1 (2012), 240-249.

Google (Firm) Gallup (Firm). 2016. Diversity gaps in computer science: exploring
the underrepresentation of girls, Blacks and Hispanics. (2016).

Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of
computing. ACM Inroads 6, 4 (2015), 71-79.

Joanna Goode, Jane Margolis, and Gail Chapman. 2014. Curriculum is not enough:
The educational theory and research foundation of the exploring computer
science professional development model. In Proceedings of the 45th ACM technical
symposium on Computer science education. ACM, 493-498.

Shuchi Grover and Roy Pea. 2013. Computational thinking in K-12: A review of
the state of the field. Educational Researcher 42, 1 (2013), 38-43.

Shuchi Grover, Roy Pea, and Stephen Cooper. 2016. Factors influencing computer
science learning in middle school. In Proceedings of the 47th ACM technical
symposium on computing science education. ACM, 552-557.

Mark Guzdial. 1994. Software-realized scaffolding to facilitate programming for
science learning. Interactive Learning Environments 4, 1 (1994), 001-044.

Mark Guzdial and Barbara Ericson. 2012. Listening to linked lists: Using multime-
dia to learn data structures. In Proceedings of the 43rd ACM technical symposium
on Computer Science Education. ACM, 663-663.

Peter B Henderson, Thomas] Cortina, and Jeannette M Wing. 2007. Computa-
tional thinking. ACM SIGCSE Bulletin 39, 1 (2007), 195-196.

ILee. 2016. Reclaiming the roots of CT. CSTA Voice: The Voice of KiA$S12 Computer
Science Education and Its Educators 12, 1 (mar 2016), 3-4.

Irene Lee, Fred Martin, and Katie Apone. 2014. Integrating computational thinking
across the K-8 curriculum. Acm Inroads 5, 4 (2014), 64-71.

Jane Margolis. 2010. Stuck in the shallow end: Education, race, and computing.
MIT Press.

Thomas W Price, Jennifer Albert, Veronica Catete, and Tiffany Barnes. 2015.
BJC in action: Comparison of student perceptions of a computer science prin-
ciples course. In Research in Equity and Sustained Participation in Engineering,
Computing, and Technology (RESPECT), 2015. IEEE, 1-4.

Thomas W Price, Veronica Cateté, Jennifer Albert, Tiffany Barnes, and Daniel D
Garcia. 2016. Lessons Learned from BJC CS Principles Professional Develop-
ment. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education. ACM, 467-472.

Susan H Rodger, Jenna Hayes, Gaetjens Lezin, Henry Qin, Deborah Nelson, Ruth
Tucker, Mercedes Lopez, Stephen Cooper, Wanda Dann, and Don Slater. 2009.
Engaging middle school teachers and students with alice in a diverse set of
subjects. In ACM SIGCSE Bulletin, Vol. 41. ACM, 271-275.

Cary Sneider, Chris Stephenson, Bruce Schafer, and Larry Flick. 2014. Compu-
tational thinking in high school science classrooms. The Science Teacher 81, 5
(2014), 53.

Jennifer Tsan, Kristy Elizabeth Boyer, and Collin F Lynch. 2016. How Early Does
the CS Gender Gap Emerge?: A Study of Collaborative Problem Solving in 5th
Grade Computer Science. In Proceedings of the 47th ACM technical symposium on
computing science education. ACM, 388-393.

David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2014. Defining computational thinking for science,
technology, engineering, and math. In American Educational Research Association
Annual Meeting, Philadelphia, Pennsylvania.

David Weintrop and Uri Wilensky. 2015. To block or not to block, that is the
question: students’ perceptions of blocks-based programming. In Proceedings
of the 14th International Conference on Interaction Design and Children. ACM,
199-208.

Linda Werner, Jill Denner, Shannon Campe, Eloy Ortiz, Dawn DeLay, Amy C
Hartl, and Brett Laursen. 2013. Pair programming for middle school students:
does friendship influence academic outcomes?. In Proceeding of the 44th ACM
technical symposium on Computer science education. ACM, 421-426.

Uri Wilensky and Kenneth Reisman. 2006. Thinking like a wolf, a sheep, or a
firefly: Learning biology through constructing and testing computational theories-
an embodied modeling approach. Cognition and instruction 24, 2 (2006), 171-209.

	Abstract
	1 Introduction
	2 Background
	3 Integrating CT and Science
	3.1 Curricula

	4 Methods
	4.1 Context
	4.2 Teachers
	4.3 Classroom Implementation
	4.4 Data Collection

	5 Lessons Learned
	5.1 Professional Development
	5.2 Curricular Materials

	6 Discussion & Conclusions
	6.1 Limitations
	6.2 Future Work

	Acknowledgments
	References

