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Abstract
Fundamental aspects of brain function, including development, plasticity, learning, and memory, can take place over time 
scales of days to years. Chronic in vivo imaging of neural activity with cellular resolution is a powerful method for tracking 
the long-term activity of neural circuits. We review recent advances in our understanding of neural circuit function from 
diverse brain regions that have been enabled by chronic in vivo cellular imaging. Insight into the neural basis of learning 
and decision-making, in particular, benefit from the ability to acquire longitudinal data from genetically identified neuronal 
populations, deep brain areas, and subcellular structures. We propose that combining chronic imaging with further experi-
mental and computational innovations will advance our understanding of the neural circuit mechanisms of brain function.
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Introduction

A central goal of neuroscience is to achieve a mechanistic 
understanding of the relationship between neural circuits 
and behavior, including how the brain changes adaptively 
during learning. Long-term, repeated optical measurement 
of cellular activity in the living brain (in vivo), referred to 
here as chronic imaging, has become an important method 
for investigating the neural basis of behavior in animal mod-
els because of its ability to track the activity of identified 
types of neurons and glia in various brain areas with cel-
lular resolution (Lütcke et al. 2013; Margolis et al. 2014; 
Crowe and Ellis-Davies 2014; Hamel et al. 2015; Clopath 
et al. 2017). Although other imaging methods exist to meas-
ure brain activation longitudinally, including fMRI and 
emerging technologies such as optoacoustic imaging, these 
methods currently lack the ability to resolve individual neu-
rons, which is crucial for identifying the cellular and circuit 
mechanisms of learning-related neural changes (Jonckers 

et al. 2015; Ovsepian et al. 2017). In recent years, technical 
advances in neural activity sensors and optical microscopy 
have converged with novel behavioral assays and data analy-
sis methods to make chronic in vivo imaging of neural activ-
ity an essential technique for the study of the neural circuitry 
underlying learning and memory formation. Since the initial 
applications that tracked changes in the fine-scale structure 
of neuronal dendritic spines in the mouse cerebral cortex 
(Grutzendler et al. 2002; Trachtenberg et al. 2002; Chen 
and Nedivi 2010), chronic in vivo imaging has been used to 
investigate a number of important problems in neuroscience, 
including synaptic formation (Holtmaat et al. 2006), cell 
fate in neurogenesis (Pilz et al. 2018), genetic activity mark-
ers (Wang et al. 2006), changes in disease, aging, or injury 
models (Hill et al. 2017, 2018; Akassoglou et al. 2017; Eyo 
et al. 2018; Real et al. 2018). Exciting advances in chronic 
imaging have also been made in a number of species from 
flies to non-human primates (Sadakane et al. 2015; Huang 
et al. 2018). In this review, we focus on novel applications of 
chronic in vivo imaging of neuronal activity in mice, where 
it is possible to leverage genetic accessibility, optical acces-
sibility, and behavioral assays, to investigate the neural basis 
of mammalian behavior. One key feature of chronic optical 
imaging is the ability to resolve both active and sparsely 
active or “silent” neurons (Shoham et al. 2006; Margolis 
et al. 2012; Ovsepian 2019), which is critical for identify-
ing how neuronal population activity changes with learning. 
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We first cover the experimental methods that allow optical 
access to brain areas and cellular populations of interest, 
followed by advances in our understanding of the neural 

basis of learning-related activity changes enabled by chronic 
optical imaging, as well as emerging computational methods 
for analyzing the large resulting datasets.
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Methods: imaging wide and deep

The last decade has seen a dramatic increase in the area 
of tool development for neuroscience, or neurotechnology 
(Jorgenson et al. 2015; Alivisatos et al. 2015), including 
advances in both electrophysiological and imaging meth-
ods for chronic recording of neural activity (Lütcke et al. 
2013; Fu et al. 2016; Steinmetz et al. 2018; Piatkevich et al. 
2019). Improved fluorescent sensors for the optical detection 
of neural activity, along with new microscopy techniques, 
are the primary factors that have driven the field forward by 
increasing the capacity for sensitive in vivo measurements 
of large populations of neurons.

Genetically encoded calcium indicators (GECIs) are the 
most commonly used class of fluorescent protein-based neu-
ral activity sensors because of the large relative change in 
intracellular calcium concentration that occurs with action 
potential firing and the resulting high signal-to-noise of the 
detected signals (Grienberger and Konnerth 2012). GECIs 
with improved sensitivity, brightness, kinetics, and expres-
sion properties have revolutionized the field, allowing many 
new applications for measuring neural activity in vivo (Kerr 
and Denk 2008; Hires et al. 2008; Margolis et al. 2011; Tian 
et al. 2012; Lin and Schnitzer 2016; Yang and Yuste 2017). 
The GCaMP family of GECIs, based on green fluorescent 
protein (GFP), has been widely adopted because of the large 
calcium-dependent fluorescence changes, photostability and 
capacity for imaging calcium signals in subcellular struc-
tures such as axons and dendrites (Chen et al. 2013b; Dana 
et al. 2019). Red-shifted GECIs have also undergone major 
improvements and now rival green GECIs in their ability to 
detect neuronal activity (Dana et al. 2016). This is important 
because the longer wavelength excitation and emission light 
used for red GECIs scatters less in tissue, allowing cellular 
imaging deeper in the intact brain. Calcium indicators have 
two main caveats. First, calcium signals are a relatively slow 
readout of neuronal activity because calcium entry during 

a single action potential lasts approximately 100 ms, with 
GECI fluorescence emission typically taking hundreds of ms 
to return to baseline, limiting the measurement of detailed 
temporal activity patterns during trains of action potentials. 
Second, calcium indicators buffer intracellular calcium, 
potentially influencing natural intracellular calcium dynam-
ics (Steinmetz et al. 2017; Bootman et al. 2018; McMahon 
and Jackson 2018). In spite of these limitations, GECIs have 
become an essential tool for in vivo cellular imaging, and 
currently remain the most popular neural activity sensors 
among a growing number of promising voltage and neu-
rotransmitter indicators (discussed further in the Outlook 
section).

While the first chronic imaging studies using GECIs in 
visual, motor, and somatosensory cortex tracked popula-
tion activity over an impressively long time period (Fig. 1a) 
(Mank et al. 2008; Margolis et al. 2012), it has remained an 
important goal to increase the number of imaged neurons to 
understand the nature of neuronal population activity across 
widespread brain areas. To achieve this, advanced versions 
of two-photon microscopes have been developed with larger 
or multiple fields of view laterally (across the brain surface) 
(Lecoq et al. 2014; Chen et al. 2016; Sofroniew et al. 2016; 
Stirman et al. 2016), or rapid scanning of volumes axially 
(through the depth of the brain) (Song et al. 2017a; Lu et al. 
2017; Nöbauer et al. 2017). In addition, newly developed 
optical implants have enabled hugely expanded views of 
neural tissue, rendering up to ~ 36 mm2 of the cortical sur-
face optically accessible compared to ~ 1 mm2 in original 
glass coverslip-based windows (Fig. 1b). Removable or pen-
etrable windows have also been developed that allow access 
for drug application or introduction of recording electrodes 
(Goldey et al. 2014; Roome and Kuhn 2014). The combined 
advances in microscopy and optical implants have allowed 
an astonishing increase in the number of neurons possible 
to image in a single mouse, from a few in pioneering studies 
(Mank et al. 2008; Andermann et al. 2013) to an estimated 
one million with the recently developed Crystal Skull and 
See-Shell methods (Kim et al. 2016; Ghanbari et al. 2019).

Neurons within deep brain structures have been essen-
tially hidden from view since the fluorescence excitation 
light needed to reach them is heavily scattered within brain 
tissue, especially at shorter wavelengths. Typical two-pho-
ton imaging (820-980 nm wavelength) is limited to less 
than 1 mm below the brain surface (Denk and Svoboda 
1997; Helmchen and Denk 2005). Red fluorescent probes 
improve imaging depth using longer wavelength excitation 
(1000–1100 nm) (Dana et al. 2016). Recently established 
three-photon excitation (1300 nm wavelength) (Ouzou-
nov et al. 2017) can visualize neurons through all layers of 
mouse cortex to the hippocampus, more than 1 mm below 
the brain surface. However, even with these developments, 
optical access to many regions of the intact mammalian 

Fig. 1   Chronic imaging approaches for tracking neuronal activity 
using two-photon imaging of genetically encoded calcium indica-
tors (GECIs). a Left: top view of the cerebral cortex through a cra-
nial window implanted above the dura mater. Right: layer 2/3 cortical 
neurons expressing YC3.60 followed over 111 days. b Left: top view 
of cortex through a large-scale “Crystal Skull” cranial window. Right: 
chronic imaging of one of many optically accessible cortical neu-
ronal populations expressing GCaMP6s. c Left: deep brain structures 
can be imaged through an implanted GRIN lens. Right: neurons in 
striatum expressing GCaMP6s. Note that neurons were followed for 
a longer time period than shown here. d Left: axially oriented brain 
structures can be imaged through a prism implanted facing the side 
of the area of interest. A microprism can also be used for deeper brain 
structures. Right: neurons in neocortex expressing GCaMP3 imaged 
over multiple weeks. Apical dendrites are visible in the x–z plane. 
Note that the original image was cropped for display a Adapted from 
Margolis et al. (2012), b Adapted from Kim et al. (2016), c Adapted 
from Bocarsly et al. (2015), Adapted from Andermann et al. (2013)

◂
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brain cannot be achieved. The introduction of chronically 
implanted optical relay lenses (e.g., GRIN lenses) and opti-
cal chambers (created from a glass coverslip fused to a 
guide tube or cannula) has been a major advance for deep 
brain imaging (Barretto et al. 2009; Dombeck et al. 2010). 
Although invasive, requiring removal or displacement of the 
overlying neural tissue, such implants are currently the only 
available method to optically access deep brain areas beyond 
the light penetration depth of multiphoton excitation. Opti-
cal chambers have better optical quality than GRIN lenses 
and have provided high-resolution data from hippocampus 
and striatum (Sato et al. 2016; Bloem et al. 2017), but are 
also more invasive because of their typically three times 
larger diameter. Transcortical GRIN lenses have been suc-
cessfully used to perform chronic optical imaging of neurons 
within structures such as hypothalamus, hippocampus, and 
amygdala (Ziv et al. 2013; Bocarsly et al. 2015; Grewe et al. 
2017), several mm below the brain surface (Fig. 1c), and 
can be used with either two-photon or one-photon fluores-
cence excitation (Jung et al. 2004). Microprisms can also be 
used for specialized applications (Fig. 1d), allowing an en 
bloc view of neuronal populations across different cortical 
layers, vertically oriented apical dendrites, or hard to reach 
locations such as insular or entorhinal cortex (Andermann 
et al. 2013; Low et al. 2014; Livneh et al. 2017). Together, 
the parallel improvements in fluorescent activity indicators, 
microscopes, and optical implants represent major advances 
for the study of in vivo neural function using chronic optical 
imaging techniques.

Stability and plasticity

How has chronic in vivo imaging of cellular activity been 
used to investigate unanswered questions in neuroscience? 
One fundamental question is the degree of stability of sin-
gle neuron versus population activity over extended time 
periods. The balance between stability and plasticity could 
relate to the capacity of neural circuits to faithfully encode 
and store information, yet also adapt to a changing envi-
ronment and learn new information (Lütcke et al. 2013; 
Margolis et al. 2014; Clopath et al. 2017). A number of 

longitudinal studies have provided insight into the nature 
of stability of neural function on many levels, from syn-
apses (Ziv and Brenner 2018) to whole-brain representa-
tions (Kolasinski et al. 2016).

Chronic imaging of GECIs examines this question on 
the neuronal population-level. One emerging view from 
studies of visual, somatosensory, motor, and association 
areas of the cerebral cortex is that neuronal population 
activity is largely stable over days even though the activ-
ity of individual neurons that comprise these populations 
is variable (Mank et al. 2008; Margolis et al. 2012; May-
rhofer et al. 2015; Clopath et al. 2017) (but see counter-
examples, below). For example, the overall proportion of 
neurons active in response to touch in primary sensory 
cortex (S1) of behaving mice is stable, but the identities 
of the individual neurons that are active can change from 
day to day (Peron et al. 2015; Chen et al. 2015a). Similar 
results have been found in visual and motor cortex (Huber 
et al. 2012; Peters et al. 2014; Poort et al. 2015). The same 
is true of neurons in posterior parietal cortex during per-
formance of a visually-guided virtual reality navigation 
task, even after learning, when behavioral performance 
had stabilized and the neural representation had become 
more refined (Driscoll et al. 2017). These data suggest 
that the activity of individual neurons is more variable or 
flexible over time than the population as a whole, imply-
ing that unknown population-level homeostatic mecha-
nisms normalize overall population activity (LeMessurier 
and Feldman 2018). There are also open questions about 
the distribution of activity within neuronal populations. 
In superficial layers of sensory cortex, for example, a 
small fraction of neurons responds to stimuli reliably and 
robustly, while most other neurons are more variable and 
less excitable (Shoham et al. 2006; Barth and Poulet 2012; 
Margolis et al. 2012; Ovsepian 2019). In general, the role 
of individual neurons versus populations in neural signal-
ing is an important question for understanding both local 
circuit computations and how information is transmitted 
between brain areas.

There are also striking examples of long-term stability 
of neuronal activity, indicating that not all single neurons 
are variable. Chronic two-photon imaging data from neu-
rons in the singing-related area HVC of the songbird show 
maintenance of the precise sequence of population activity 
across several weeks (Katlowitz et al. 2018) (Fig. 2a–c). A 
high degree of stability was also found in chronic electro-
physiological recordings of cortical and subcortical neu-
rons in rats performing natural behaviors and motor tasks 
(Dhawale et al. 2017). It will be important to determine 
whether certain subsets of neurons are more stable than oth-
ers using high density electrical recordings (Steinmetz et al. 
2018) or large field-of-view neuronal population imaging 
(Lecoq et al. 2014; Chen et al. 2016; Sofroniew et al. 2016; 

Fig. 2   Stability and flexibility of behavior-related neuronal popula-
tion activity measured with chronic imaging. a Example of stability 
in songbird experiment. Two-photon images of neurons expressing 
GCaMP6f tracked over 49 days. b Comparison of song timing maps 
for a population of neurons. c Stability of burst index measures. d 
Subregion-specific stability in hippocampus. Chronic imaging of 
CA1, DG, and CA3 sub-regions. e Heat maps of neuronal calcium 
signals across 3 days showing higher stability for DG than CA1. f 
Schematic of differences in stability, width, and generalization for 
CA1, DG, and CA3. a–c Adapted from Katlowitz et al. (2018), d–e 
Adapted from Hainmueller and Bartos (2018)

◂
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Stirman et al. 2016), and to gain information from various 
brain regions during both learning and stable behavioral 
performance.

The determinants of neuronal stability and flexibility are 
still unknown. One possibility is that the inherent dynamics 
of a given neural circuit, and its modulation during behavior, 
determines its degree of stability. A chronic calcium imaging 
study of hippocampus in behaving mice addresses whether 
different hippocampal subregions in the same animal show 
different degrees of stability (Hainmueller and Bartos 2018). 
The authors used an optical cannula to access three regions 
of hippocampus, CA1, DG and CA3 and imaged neuronal 
activity during performance of a visually guided task in 
virtual reality. Remarkably, DG was the only one of the 3 
hippocampal subregions to show stability of spatial coding 
across 3 days (Fig. 2d–f), while CA1 and CA3 were more 
variable [similar to (Ziv et al. 2013)]. These results indicate 
that even closely connected sub-regions of a larger intercon-
nected neural structure can show varying degrees of stabil-
ity. Whether the differences in flexibility relate to the role 
of these sub-circuits in cognitive flexibility or the capacity 
for learning remains to be determined. It is reasonable to 
posit that stability and flexibility both play important roles 
for brain function.

Neural circuit changes during learning

How the brain changes with learning is another fundamen-
tal question that chronic optical imaging is uniquely suited 
to investigate. As behavioral tasks are learned and refined, 
multiple brain areas participate in adaptive synaptic and 
population-level changes in neuronal function (Romo and 
de Lafuente 2013; Le Merre et al. 2018; Crochet et al. 2018). 
Many learning paradigms in mouse models, especially those 
combined with imaging, involve presentation of a sensory 
stimulus followed by a response generated by the subject 
that produces a reward (usually food or water). This broad 
categorization of sensorimotor learning can be conceptu-
alized as three phases of learning: perceptual, sensorimo-
tor association, and skill learning (Makino et al. 2016). 
By tracking changes in functional properties of population 
activity over time, chronic imaging experiments can investi-
gate the progression of neural changes within targeted brain 
regions through these distinct phases of learned behavior. 
Recent chronic imaging studies in mice have begun to make 
insights into longstanding issues in neuroscience, including 
the extent of plasticity that takes place in primary sensory 
areas of the cerebral cortex, how information is routed from 
one brain area to downstream target areas during learn-
ing, and how subsets of neurons undergo learning-related 
changes in selectivity for sensory, behavioral, and cognitive 
or reward-related features of task performance. For further 

consideration of data from in both non-human primates and 
mice, we refer the reader to (Makino et al. 2016).

Major efforts have been made to optimize experimen-
tal approaches in head-restrained mice that combine cel-
lular resolution optical imaging with behavioral paradigms 
implemented around a stationary microscope, allowing 
high-resolution imaging during locomotion and sensory-
guided decision-making tasks (Komiyama et al. 2010; Guo 
et al. 2014; Dombeck and Tank 2014). In a complemen-
tary approach, miniaturized head-mounted microscopes 
allow chronic imaging of population activity during more 
naturalistic behaviors (Flusberg et al. 2008; Cai et al. 2016; 
Jacob et al. 2018), albeit with lower optical resolution, and 
therefore more challenging cell identification across days 
(Ziv et al. 2013). The following examples illustrate key 
features of changes in cortical and subcortical neuronal 
population activity during learning, measured using either 
head-restrained or miniature head-mounted chronic cellular 
imaging techniques.

Early sensory areas of the cerebral cortex send axonal 
projections to many downstream target areas, and also 
receive feedback inputs from “higher order” areas, but it has 
remained unclear if certain pathways are particularly impor-
tant for learning-related neural processing. In the primary 
somatosensory cortex (S1) of mice, intermingled popula-
tions of layer 2/3 neurons project to either S2 or M1, and can 
be distinguished using retrograde tracers (Chen et al. 2013a, 
2015a; Yamashita et al. 2013; Tervo et al. 2016; Chatterjee 
et al. 2018). When mice learn to discriminate between tex-
tures with their whiskers, S2- and M1-projecting neurons 
undergo different types of functional changes: the frac-
tion of M1-projecting neurons sensitive to touch increases, 
while the S2-projecting neurons remain the same in num-
ber but become more discriminative between stimuli (Chen 
et al. 2015a) (Fig. 3a). Strikingly, learning-related activity 
changes persist outside of the behavioral task for M1-pro-
jecting neurons, while the activity of S2-projecting neurons 
is discriminative only during task performance, highlight-
ing the specificity of behavior-related neural dynamics for 
distinct populations of projection neurons within S1. These 
findings indicate that learning-related plasticity can occur 
within specific types of projection neurons, even at primary 
cortical stages of the sensory pathway. However, the rela-
tive contribution of the encoding of sensory stimuli versus 
changes in the learned behavioral strategy (i.e., stronger or 
more efficient whisker movements toward target objects) to 
S1 plasticity remains to be determined (Peron et al. 2015; 
Chen et al. 2015a).

A striking example of learning-related changes in early 
sensory encoding comes from work in mouse primary visual 
cortex (V1). When mice are trained to discriminate visual 
stimuli of different orientation for water rewards, indi-
vidual V1 neurons show prominent changes in orientation 
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Fig. 3   Learning-related changes in neuronal population activity 
measured with chronic cellular imaging. a Projection neurons in pri-
mary somatosensory cortex (S1) show distinct learning-related activ-
ity during performance of a tactile discrimination task. Left: Identi-
fication of M1-projecting (M1P) and S2-projecting (S2P) neurons 
via retrograde tracers. Middle: the fraction of neurons classified as 
touch or non-touch as a function of naive, learning, and expert behav-
ioral phases. Right: the change in discrimination accuracy of M1P 
and S2P neurons for Go and NoGo tactile stimuli (P100 vs. P1200 
textures) through learning. b Neurons in primary visual cortex (V1) 
show diverse learning-related activity during performance of a visual 
discrimination task. Left: example calcium signals from four neurons 
across four imaging sessions in response to a vertical, rewarded stim-

ulus (blue) or an angled, non-rewarded stimulus (red). Middle: selec-
tivity of neurons across the first three and last three training sessions. 
Right: neuronal population selectivity as a function of learning. Each 
curve depicts the time course of selectivity at a range of behavioral d’. 
c Neurons in basolateral amygdala change selectivity with auditory 
fear conditioning. Calcium signals of cells responsive to two different 
auditory tones (CS+ or CS−) before pairing the conditioned stimulus 
(CS+) with a foot shock using a fear conditioning paradigm. Right, 
Cell population responses in an example mouse to the CS+ tone 
before and after fear conditioning. A anterior, L lateral, M medial, P 
posterior. a Adapted from Chen et al. (2015a), b Adapted from Poort 
et al. (2015), c Adapted from Grewe et al. (2017)
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selectivity with learning (Fig. 3b) (Poort et al. 2015). Sub-
sets of neurons become selective for either the rewarded or 
non-rewarded visual stimuli (with many still visually respon-
sive but non-selective). Neuronal populations as a whole 
show progressive improvement in neural discriminability 
that parallel the increased behavioral performance with 
learning (Fig. 3b, right). These results, and those of stud-
ies in other sensory modalities (Shuler and Bear 2006; Hui 
et al. 2009; Gdalyahu et al. 2012; Kato et al. 2012; Lacefield 
et al. 2019), support the concept that neuronal selectivity 
for sensory stimuli can change dramatically depending on 
the stimuli’s behavioral salience (rewarded or unrewarded).

Such results indicate that cognitive aspects such as reward 
or salience can strongly influence neural plasticity that takes 
place during learning. Indeed, reward may even be repre-
sented by dedicated neuronal subpopulations, as recently 
found with in vivo imaging in hippocampus (Gauthier and 
Tank 2018). In a noteworthy example from mouse visual 
association cortex, (Ramesh et al. 2018) found that neurons 
recruited to become active during learning were part of 
reward-related (value-coding) rather than stimulus-related 
neuronal subpopulations (ensembles). Imaging studies have 
also revealed extensive learning-related changes in neuronal 
population activity in subcortical brain areas with key roles 
in valence encoding, such as the amygdala. Here, pairing an 
auditory tone with an aversive foot shock led to a near-total 
switch in auditory-responsive neurons, with neurons initially 
activated by the conditioned tone losing responsiveness, and 
previously inactive neurons becoming active (Grewe et al. 
2017) (Fig. 3c). These results emphasize the importance of 
behavioral salience for learning-related neural signaling and 
population-level functional plasticity.

While we have largely focused on functional studies 
of neural activity, structural plasticity of neurons, espe-
cially on the level of dendritic spines, is another type of 
experience-dependent and learning-related plasticity that 
has been extensively studied using chronic two-photon 
imaging (Trachtenberg et al. 2002; Holtmaat and Svo-
boda 2009; Berry and Nedivi 2017). Motor learning affects 
spine formation and maintenance in motor cortex but not 
in other cortical areas, while spines in sensory cortex 
undergo plasticity after sensory discrimination training 
(Yang et al. 2009; Fu et al. 2012; Kuhlman et al. 2014). 
Auditory fear conditioning leads to increased spine forma-
tion in primary auditory cortex (A1) and extinction leads 
to elimination of the newly formed spines (Lai et al. 2018). 
Notably, the opposite effects are seen in frontal association 
cortex, where extinction of learned associations causes 
spine formation (Lai et al. 2012). Learning-related changes 
in spines have been shown to be influenced by inhibitory 
interneuron activity in motor cortex, suggesting an inter-
play between excitatory and inhibitory neurotransmission 

in dendritic spine plasticity (Chen et al. 2015b). However, 
while it is likely that structural spine dynamics relate to 
neural activity during learning, the exact relationship has 
yet to be determined. Fewer in vivo studies have investi-
gated the functional properties of dendritic spines because 
of the high level of mechanical stability needed to image 
these micron-scale structures. Thus, most data on spine 
function has been acquired in anesthetized animals or 
in ex vivo preparations (Yasuda et al. 2004; Chen et al. 
2013b; Berry and Nedivi 2017). However, newer head 
fixation methods such as using an air supported platform 
has achieved stability necessary to resolve spines in awake 
behaving animals (Pryazhnikov et al. 2018), suggesting 
that functional imaging of dendritic spines will be an 
active area of future research.

Chronic optical imaging of axonal calcium signals 
in behaving mice has been performed in several studies 
(Glickfeld et al. 2013; Broussard et al. 2018; Dana et al. 
2019), which has revealed progressive, circuit-specific 
changes during learning (Burgess et al. 2016; Kupfer-
schmidt et al. 2017). In the future, it may be possible to 
combine cellular resolution presynaptic axonal and post-
synaptic dendritic imaging (Takahashi et al. 2016; Lace-
field et al. 2019) to define changes in the learning-related 
input–output properties of neural circuits. This could 
enable novel investigations of many outstanding ques-
tions related to how brain areas interact during learning 
and decision-making, including the influence of feedback 
signals from higher-order cortical areas, or subcortical 
structures such as thalamus and amygdala, and the effects 
of neuromodulator signals on neuronal population activity.

It is important to mention that in vivo imaging, in par-
ticular studies of dendritic spine structural dynamics, have 
provided valuable information on potential mechanisms of 
neural dysfunction. Alterations in dendritic spines have 
been associated with neurodevelopmental, neurodegen-
erative, and neuropsychiatric disorders, as reviewed else-
where (Knobloch and Mansuy 2008; Glausier and Lewis 
2013; Martínez-Cerdeño 2017). In Alzheimer’s disease, 
for example, there is a decrease in spine density that 
becomes more pronounced near plaques that are charac-
teristic of the disease (Spires et al. 2005). Furthermore, 
whisker stimulation-related plasticity is impaired in aged 
compared to young mice, suggesting impairments in spine 
dynamics during normal aging as well (Voglewede et al. 
2019). Further experiments designed to simultaneously 
acquire in vivo functional and structural data, in addition 
to further chronic neuronal population imaging studies in 
mouse disease models, would provide important informa-
tion on the relationship between structural and functional 
neural circuit plasticity in both the healthy and diseased 
brain.
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Analysis of chronic imaging data 
for understanding neural coding 
and behavior

Chronic cellular imaging experiments can produce mas-
sive datasets, including hours of movies from thousands of 
neurons measured repeatedly in multiple imaging sessions. 
Thus, optimizing data analysis is critical to avoid major 
bottlenecks for such experiments (Paninski and Cunning-
ham 2018). Beyond measuring first-order features, such as 
the fraction of active neurons or their tuning properties, 
sophisticated analysis methods are essential for inferring 
the dynamic properties of neuronal population activity 
from calcium imaging data. A key first step is to estimate 
the underlying neural activity from the fluorescence sig-
nal, which is not trivial since calcium fluorescence signals 
are relatively slow and noisy compared to action poten-
tial firing, and optical signals from individual cells can be 
obscured by their neighbors. A number of computational 
methods based on template matching, deconvolution, 
approximate Bayesian inference, and matrix factorization 
have been developed to infer spiking activity of neurons 
from calcium imaging data. For further information, the 
reader is referred to recent reviews on the topic of cal-
cium imaging analysis methods and pipelines (Stringer 
and Pachitariu 2019; Pnevmatikakis 2019). One popular 
analysis framework (Pnevmatikakis et al. 2016) uses a 
constrained nonnegative matrix factorization approach to 
identify the locations of neurons and demix the ones that 
are spatially overlapping, while simultaneously deconvolv-
ing their spiking activity from the spatiotemporal structure 
of the population calcium recordings. A limitation of these 
methods is the requirement of user intervention (e.g., set-
ting parameters), and certain assumptions imposed on the 
model of calcium signal generation, or on the dynamics of 
fluorescence measurements. Such limitations can present 
particular challenges for analysis of chronic cellular imag-
ing data, because the same cells must be correctly iden-
tified and tracked, and calcium signals extracted, across 
multiple days to provide meaningful measurements of 
long-term stability or plasticity. Newly developed analy-
sis frameworks have started to take these specific issues 
related to chronic imaging into account (Giovannucci 
et al. 2019), and will undoubtedly be a topic of further 
development.

Data-driven methods, supervised learning techniques, 
and machine-learning have great potential for improving 
analysis of chronic cellular imaging data by minimizing 
user intervention and increasing the scalability and flex-
ibility of the frameworks (Sasaki et al. 2008; Patel et al. 
2015; Speiser et al. 2017; Theis et al. 2016). One study 
that compared the performance of various generative and 

supervised spike inference algorithms (including deep 
neural networks) applied to specific datasets, concluded 
that many algorithms yield similar performance for infer-
ring spike rates, but that each offers unique advantages and 
disadvantages in terms of speed and generalizability (Ber-
ens et al. 2018). Other recent work has argued that spike 
inference using simple non-negative deconvolution meets 
the performance of supervised methods, and recommended 
this as the preferred choice due to its simplicity and effi-
ciency (Pachitariu et al. 2018). Regardless of the specific 
algorithm used, a key issue for chronic cellular imaging 
datasets is the accuracy and robustness of the analysis 
of the same cells across multiple imaging sessions. One 
study found that an algorithm first trained on simultaneous 
recordings of spikes and calcium data performed well on 
inferring spike rate when applied to new datasets (Theis 
et al. 2016). The same approach could be used to analyze 
data from the same neuronal populations from one day to 
the next, enhancing the efficiency and power of chronic 
imaging data throughput, thereby speeding insights into 
mechanisms of neural plasticity.

Calcium imaging can also be performed across large-
scale, spatially separated brain areas. Spatiotemporal fea-
tures of such widefield calcium signals are generally ana-
lyzed directly (without spike inference). Network analysis 
methods originally developed for human neuroimaging 
experiments (Bassett and Sporns 2017; Khambhati et al. 
2018) have been applied to imaging data from various opti-
cal sensors in mice, including calcium indicators, to make 
insights into dynamic interactions between brain regions on 
the mesoscale level (Xie et al. 2016; McVea et al. 2016). 
For example, spectral analysis of resting-state cortical 
networks, constructed based on wide-field calcium imag-
ing data, found frequency-dependent activity clusters in 
specific cortical regions (Vanni et al. 2017). Other studies 
applied visibility graph (Lacasa et al. 2008) in combination 
with machine-learning techniques to investigate the tempo-
ral characteristics of wide-field cortical calcium dynamics 
related to behavioral state (Zhu et al. 2018). An emerging 
view from these and other studies (McGinley et al. 2015; 
Musall et al. 2019; Stringer et al. 2019) is the importance of 
global modulatory influences driven by arousal and move-
ment on behavior-related neural dynamics. However, lit-
tle is still known about how large-scale networks change 
during learning (Makino et al. 2017), or how such large-
scale changes are related to changes in individual neurons 
or tractable neuronal populations. Artificial intelligence 
(AI) and deep learning techniques capable of automatically 
learning patterns and representations in data may be par-
ticularly well-suited for investigating neural mechanisms 
of behavior across the multiple spatial and temporal scales 
available in chronic imaging experiments, perhaps by gen-
erating models that are predictive of learning rate. To reach 
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this stage, however, machine-learning approaches will have 
to establish their robustness for the analysis of neural data 
(Vogt 2018). It remains an active goal to bridge gaps in our 
understanding of how neural circuits operate on multiple 
levels of brain function, on the temporal scale between short-
term (milliseconds or seconds scale) and long-term (days or 
weeks scale) changes in neuronal activity, and on the spatial 
scale between brain regions and local neuronal populations. 
Chronic imaging, combined with experimental and compu-
tational advances, has great potential for further mechanistic 
discovery of neural circuit function.

Outlook: multimodal interrogation of neural 
circuits

Rapid progress in the development of additional neural sen-
sors has been an exciting area of advance. High-performance 
genetically encoded voltage indicators (GEVIs) have been a 
long-sought goal as a more direct and faster readout of neu-
ronal activity (Knöpfel et al. 2003). Recent improvements 
in GEVIs have been dramatic, including the capacity for 
in vivo imaging, and their sensitivity is beginning to rival 
that of GECIs for detecting single action potentials (Hoch-
baum et al. 2014; Gong et al. 2015; Song et al. 2017b; Piatk-
evich et al. 2019). Imaging the millisecond kinetics of GEVI 
signals from neuronal populations requires fast frame rates 
generally beyond the capacity of two-photon laser-scanning 
microscopy, and the high light levels needed for fluorescence 
excitation can lead to photobleaching and photodamage 
(Yang and St-Pierre 2016; Xu et al. 2017; Bando et al. 2019). 
Despite these challenges, chronic cellular resolution imag-
ing of GEVIs has the potential to provide unprecedented 
information on plasticity- or learning-related changes in the 
temporal patterns of neuronal firing. GEVIs, like the most 
sensitive GECIs, are also capable of detecting slower sub-
threshold voltage changes, although most population imag-
ing studies have focused on the faster signal associated with 
action potential firing.

Additionally, new classes of genetically encoded indi-
cators for detecting neurotransmitters [e.g., glutamate, 
GABA (Marvin et al. 2013, 2019)] and neuromodulators 
[e.g., dopamine, acetylcholine, or norepinephrine (Patri-
archi et al. 2018; Jing et al. 2018; Feng et al. 2019)] rep-
resent major advances with potential for further circuit 
discovery. In future chronic imaging experiments, it may 
be feasible to investigate multiple aspects of neural cir-
cuit activity simultaneously by imaging different color 
indicators expressed in distinct cell types or cellular com-
partments. For example, simultaneous imaging of axons 
and dendrites or cell bodies could be performed using 
green and red GECIs, respectively, to distinguish pre- 
and postsynaptic sites of plasticity. Neuromodulation of 

neuronal population activity could be investigated with 
co-expression of GECIs or GEVIs and neuromodulator 
sensors in neurons [for example, GCaMP6 and dLight1 
(Patriarchi et al. 2018)]. Novel applications of viral vec-
tors (Bedbrook et al. 2018) and a large repertoire of trans-
genic reporter mice (Dana et al. 2014, 2018; Madisen et al. 
2015; Wekselblatt et al. 2016; Daigle et al. 2018) allow 
flexibility in restricting expression of genetically encoded 
indicators to specific cell types, subcellular structures, 
and brain regions (Broussard et  al. 2018; Dana et  al. 
2019). Employed together with sophisticated behavioral 
paradigms in both head-fixed and freely moving mice, the 
growing toolkit of genetically encoded indicators holds 
great potential for extending our knowledge of neural cir-
cuit function and plasticity both on a fast time scale of 
single behavioral trials and over longer time scales dur-
ing learning and memory formation. Many previously 
intractable questions in neuroscience are now addressable, 
from the functional architecture of memory, neural circuit 
mechanisms of injury or disease, and even undiscovered 
functional cell populations and projections, which will in 
turn lead to new insights into the functioning of the brain 
and open up new areas of inquiry.

All-optical circuit interrogation using optogenetics to 
manipulate neuronal activity combined with functional 
imaging to simultaneously monitor activity has become an 
achievable goal (Prakash et al. 2012; Carrillo-Reid et al. 
2019; Marshel et al. 2019). Optogenetics can be used to 
selectively modulate the activity of neurons embedded 
within neural circuits (Deisseroth 2015). Combining optoge-
netics with two-photon imaging has recently been used to 
recapitulate activity in neuronal ensembles that can mimic 
visual input (Carrillo-Reid et al. 2019; Marshel et al. 2019). 
Future experiments combining optogenetics with GEVIs 
will certainly lead to additional understanding of how neu-
ral networks encode stimuli and integrate synaptic input.

Ongoing and future experiments aim to achieve an 
expanded view of large-scale neuronal population activity 
with cellular resolution, and a fine-scale view of activity 
within subcellular compartments, such as axons and den-
drites. Combined imaging of voltage, calcium, neurotrans-
mitters, and neuromodulator indicators could be performed 
on both the cellular and subcellular levels during innate 
and learned behaviors. Together, neurotechnology develop-
ments for chronic optical imaging, including new indicators 
and next-generation optical systems, have great promise 
for providing novel insight into neural circuit function and 
plasticity.
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