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A single heat-stress bout induces rapid
and prolonged heat acclimation in the
California mussel, Mytilus californianus
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Climate change is not only causing steady increases in average global
temperatures but also increasing the frequency with which extreme heating
events occur. These extreme events may be pivotal in determining the ability
of organisms to persist in their current habitats. Thus, it is important to
understand how quickly an organism’s heat tolerance can be gained and
lost relative to the frequency with which extreme heating events occur in
the field. We show that the California mussel, Mytilus californianus—a sessile
intertidal species that experiences extreme temperature fluctuations and
cannot behaviourally thermoregulate—can quickly (in 24–48 h) acquire
improved heat tolerance after exposure to a single sublethal heat-stress
bout (2 h at 30 or 35°C) and then maintain this improved tolerance for up
to three weeks without further exposure to elevated temperatures. This
adaptive response improved survival rates by approximately 75% under
extreme heat-stress bouts (2 h at 40°C). To interpret these laboratory findings
in an ecological context, we evaluated 4 years of mussel body temperatures
recorded in the field. The majority (approx. 64%) of consecutive heat-stress
bouts were separated by 24–48 h, but several consecutive heat bouts were
separated by as much as 22 days. Thus, the ability of M. californianus to
maintain improved heat tolerance for up to three weeks after a single sub-
lethal heat-stress bout significantly improves their probability of survival,
as approximately 33% of consecutive heat events are separated by 3–22
days. As a sessile animal, mussels likely evolved the capability to rapidly
gain and slowly lose heat tolerance to survive the intermittent, and often
unpredictable, heat events in the intertidal zone. This adaptive strategy
will likely prove beneficial under the extreme heat events predicted with
climate change.
1. Introduction
Anthropogenic climate change is causing mean air and water temperatures to
rise globally, with a further 1–4°C increase projected by 2100 [1]. Temperature
variability is also increasing, resulting in more frequent extreme temperature
events [1]. Phenotypic changes, like acclimatization, that increase thermal toler-
ance may be critical in enabling organisms to survive under these changing
temperature conditions [2–5]. These adaptive changes in phenotype would ide-
ally occur rapidly during an initial period of heat stress and persist long enough
to allow the organism to withstand subsequent episodes of extreme heating
[6–11]. Improvements in heat tolerance have generally been classified as
either (i) rapid heat hardening from a single heat-stress bout, which confers
transient heat tolerance that typically lasts less than 32 h [12,13] or (ii) slower
heat acclimatization accomplished through repeated heat-stress bouts, which
confers heat tolerance that can last for weeks to months [14–16]. Yet despite a
large literature based on temperature–phenotype interactions, the time-courses
of adaptive physiological changes—both their rate of gain and persistence in
the absence of continued thermal stress—remain largely unknown [5,17,18].
Laboratory thermal acclimation studies have typically maintained animals
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under different constant temperatures for periods of days to
weeks [14,15,19], and little attention has been given to the
minimal time required for the animal to actually acclimate
(i.e. achieve increased heat tolerance [20]) and when this
improved heat tolerance subsequently decays. Moreover, by
maintaining animals at constant laboratory temperatures,
there is a large gap in our understanding of how animals can
gain and lose heat tolerance within a more ecologically valid
context—one that mimics the stochastic and often unpredict-
able nature with which animals experience consecutive
stressful heat events in the field [21,22].

In this study, we addressed these issues about the time-
course of the gain and loss of heat tolerance in the California
mussel,Mytilus californianus, a sessile species that experiences
wide variations in body temperature [23,24]. Intertidal mus-
sels, as sessile ectotherms, lack the ability to behaviourally
thermoregulate and are consequently exposed to intermittent,
and often extreme, temperature fluctuations associated with
the tidal cycle and terrestrial weather [7,24–27]. Mussels
have received substantial investigation in terms of their
physiological responses to environmental change, notably
temperature. Most studies of mussels’ responses to heat
stress have involved either a short heat-hardening bout in
which mussels’ thermal tolerance was transiently improved
for 12 h [9], or longer duration heat acclimation studies
which constantly submerge mussels for periods of several
days to a few weeks which leads to various physiological
changes (e.g. cardiac performance; [14,19]) and biochemical
status (e.g. synthesis of heat-shock proteins; [28]). However,
to date, none of these laboratory studies have evaluated the
rates of gain and loss of heat tolerance within an ecologically
valid context, where consecutive heat events might be separ-
ated by days to weeks [29,30]. We are only aware of one
heat-hardening study in mussels [9], and it did not evaluate
any time periods past 12 h. Thus, it is unclear whether this
brief improvement in thermal tolerance may be extended
to more ecologically relevant periods of time between
heat-stress bouts characteristic of the intertidal zone. Here,
heat-stress bouts are typically separated by at least 24 h due
to a semi-diurnal tidal cycle. Thus, in the context of a semi-
diurnal tidal cycle, the findings of Dunphy et al. [9] may
not be ecologically relevant. Twelve hours after an extreme
heat-stress bout (which likely would occur midday), the
temperatures would probably be much cooler as it would
be nighttime. Given the unpredictability of heat stress in
the intertidal zone, it is important to determine whether a
single heat-stress bout may confer prolonged heat tolerance
(greater than 24 h) that would provide defense against
another heat-stress bout days to weeks later.

The experiments we describe below were designed to
determine, firstly, how exposure to short bouts of heating at
different sublethal temperatures affected subsequent tolerance
to an extreme, potentially lethal heat event. We then deter-
mined the time-course over which this improved heat
tolerance would last relative to the initial sublethal heat-
stress temperature. Our laboratory findings were then placed
in the context of an analysis of 4 years of mussel field body
temperatures. Our findings offer new insights into heat-
stress relationships under field conditions. We show that, in
mussels, heat acclimation occurs after a single, brief exposure
to heat stress, and that this improved heat tolerance is main-
tained for up to three weeks. However, the rate with which
heat tolerance is gained and lost is dependent on the initial
heat-stress temperature. Importantly, when placed in the
context of the field data, we found that mussels’ adaptive strat-
egy to cope with heat stress—to quickly gain and slowly lose
heat tolerance—protects them from the vast majority of
intermittent heat-stress bouts in the intertidal zone.
2. Methods
Specimens of M. californianus (Conrad 1837, n = 711) were col-
lected January through May 2020 from the mussel bed of a
moderately wave-exposed shore at Hopkins Marine Station in
Pacific Grove, California, USA (36.6216°N, 121.9042°W). Intertidal
height of sampledmussels ranged from 0.95 to 1.22 m abovemean
lower low water. To minimize other factors that might affect ther-
mal tolerance (e.g. variation in thermal inertia due to differences
in body mass), only adult mussels with shell lengths within an
approximately 30 mm range (range: 51–82 mm) were collected.
Body mass (digital scale) and shell length (digital callipers) were
measured for each individual. The body mass and shell length
of the mussels were 29.17 ± 7.87 g and 63.84 ± 5.95 mm (mean ±
s.d.), respectively (electronic supplementary material, table S1).

After collection, mussels were kept in a flow-through
aquarium system supplied with sand-filtered seawater from
Monterey Bay; water temperature in the aquaria matched that of
the Bay. During the course of the six-month study, mean ± s.d.
water temperature was 13.8 ± 1.0°C (range: 11.9–16.3°C; see elec-
tronic supplementary material, table S2 for water temperature
data by month). Except for the heating bouts (see below), mussels
were not subjected to any other type of abiotic stress (e.g. tempera-
ture, pH, dissolved oxygen, or salinity) during the experiments.
Under all treatments, mussels were fed a commercial shellfish
diet (Shellfish Diet 1800, Reed Mariculture, Campbell, CA, USA)
three to four times per week according to the manufacturer’s
instructions [31].

(a) Survival tests
A schematic of the experimental design is given in figure 1. To
determine whether a single sublethal heat-stress bout would
confer improved heat tolerance during a subsequent more
extreme (potentially lethal) heat-stress exposure, mussels were
given a sublethal heat-stress bout of either 25, 30 or 35°C for
2 h, and then were placed in aquaria (at approximately 14°C)
for 1 to 28 days before undergoing an extreme heat-stress bout
at 40°C for 2 h. In order to minimize the effects of seasonality
on results, mussels from each of the experimental (i.e. 25, 30
and 35°C) and control groups were collected at the same time,
and then tested within the same week for each experimental
day 1–28. For example, all mussels that were tested for recovery
day 2 were collected on the same day and then tested within the
same week of each other. Moreover, for each trial, a group of con-
trol mussels (not subjected to sublethal heat stress) were tested
alongside the experimental groups—and these control mussels
were also collected on the same day as the experimental mussels
for that testing period. After being collected, mussels were hap-
hazardly assigned to each of the experimental and control
groups. After the extreme heat-stress bout, all mussels were
placed back into the flow-through aquaria, and mussel survival
was monitored every 2–3 days for four weeks [32]. Mussels
that exhibited continuous gaping and were unresponsive to
several strong squeezes of the valves were considered dead [9].

For the sublethal and extreme heat-stress bouts, mussels were
heated in an insulated chamber while exposed to air, as would
occur during low tide. Air temperature inside the chamber was
increased at a specific rate using temperature control circuitry
(Newport Electronics, iSeries Temperature Controller, Omega
Engineering, Santa Ana, CA, USA) that regulated a heating
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Figure 1. Schematic of the experimental design for the survival tests. Mussels first underwent a sublethal heat-stress bout for 2 h (temperature according to the
treatment group: 25, 30 or 35°C, or no sublethal heat-stress control), and then recovered in an aquarium for a certain number of days (i.e. recovery time, 1–28 days),
before being subjected to an extreme heat-stress bout (40°C for 2 h). After the extreme heat-stress bout, mussels were placed back into the flow-through aquaria for
four weeks, and survival was assessed every 2–3 days throughout that period. The colours after the number of recovery days indicate which groups were tested for
each condition. Note that control mussel groups were tested for all conditions (but there are no grey boxes noted on the diagram). The 25°C group was only tested
for recovery days 1–4 since we found no differences between the control and 25°C groups; see ‘Methods’ for details.
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element inside the chamber, which in turn received feedback
from a resistance temperature detector in the chamber. A small
fan circulated air inside the chamber to provide uniform heating.
After all mussels were placed inside the chamber and the lid was
secured, there was a 10 min equilibration period during which
air temperature inside the chamber was held at 22°C. Air temp-
erature was then increased at a rate of 9.0°C h−1 (a heating rate
typical of their habitat [24,33]) until reaching the experimental
temperature (25, 30, 35 or 40°C) and then was held at that
temperature for 2 h. At the conclusion of the trials, mussels
were immediately transferred back to the flow-through aquaria
(approx. 14°C) where they remained either until their next
heat-stress bout (for specimens given sublethal heat-stress
treatment) or, if they had been given the extreme (40°C) heat-
stress bout, until they died or reached the end of the four-week
survival-monitoring period.

The sublethal heat-stress temperatures (25, 30 and 35°C) were
selected to span the range over which different types of
responses to heat stress have been observed in M. californianus.
The lowest temperature, 25°C, is the minimum temperature at
which heat-shock proteins have been reported to be upregulated
in this species [34]. The highest sublethal heat-stress temperature,
35°C, is approximately 1°C below this species’ average critical
temperature of cardiac function [33] and approximates the temp-
erature at which massive upregulation occurs for genes that
encode several classes of stress-related proteins [35]. However,
after the first few rounds of testing, we found that the 25°C
group survived similarly to the control group, suggesting that
a sublethal heat-stress bout at 25°C does not improve heat toler-
ance over extended time periods, even though the heat-shock
response may be initially induced (see ‘Results’). Consequently,
the 25°C group was tested only for trials with 1–4 recovery
days between heat-stress bouts. The extreme heat-stress tempera-
ture (40°C) was selected because it is the average temperature at
which cardiac activity ceases, coinciding with mussels’ lethal
temperature (i.e. flatline temperature, mean ± s.d. = 40.4 ± 1.3°C;
[36]). Moreover, through a pilot study using control mussels
that were not subjected to any sublethal heat-stress bout, 2 h at
40°C led to approximately 75–90% mortality within three to
four weeks (data not shown). As each experimental group com-
prised 20 mussels, if one mussel died, it accounted for a 5%
change in overall survival. By using an extreme temperature
(40°C) that on average only approximately 13% control mussels
survived, it allowed for more sensitive quantification of the sur-
vival effects of the various combinations of sublethal heat-stress
bouts and recovery durations.

A total of 38 groups were tested (25°C = 5 groups; control,
30 and 35°C = 11 groups each). Each sublethal heat group
comprised 16–20 mussels, while each control group comprised
9–20 mussels (see electronic supplementary material, table S1
for details). Note that the ‘none’ recovery groups (figure 1) indi-
cate that mussels were given only the sublethal heat-stress bout
without a subsequent extreme heat-stress bout, after which
mortality was monitored for four weeks to ensure that these sub-
lethal heat-stress bouts were indeed not lethal. Only one mussel
(out of 20) died from the 35°C sublethal heat-stress bout, and no
mussels died from the other sublethal heat-stress bouts.

(b) Field body temperature analyses
To interpret the laboratory results in the context of heat-stress
events in the field, we reviewed a 4-year record of mussel body
temperatures at our study site [37]. These data were obtained in
2005, 2007, 2009 and 2014 using ‘Robomussels’, fabricated from
valves of mussels filled with silicon sealant in which iButton
temperature loggers were embedded. Each year had at least six
months of temperature data, which were acquired every 10 min
[37]. To match our laboratory experimental protocol, we used a
peak detector function (python scipy.signal.find_peaks) to
screen the field body temperature data and identify periods
when temperatures fell into the range of 28–41°C for at least 2 h.
We defined these occurrences as heat-stress events. We chose
28°C as the lowest temperature (to represent the 30°C sublethal
heat-stress bout) because we have previously reported that there
is an approximately 2°C temporal lag in mussel body tempera-
tures at a 9°C h−1 heating rate; at the same heating rate, 40°C
can be overestimated by approximately 1°C (hence, the 41°C
upper limit [33]). For each heat-stress bout detected, we then
searched for the next heat-stress bout occurring at least 24 h
later, to simulate the minimal time between daytime lower low
tides. For each year, we summarized the frequency with which
there were a given number of days between any two consecutive
heat-stress bouts, relative to the total number of heat-stress bouts
in that given year.

(c) Statistical analysis
R 3.5.2 (https://cran.r-project.org/) and R studio (https://www.
rstudio.com/)were used for all statistical analyses. To testwhether
the sublethal heat-stress bouts improved survival under the
extreme heat-stress bout, we used two statistical approaches.
First, we compared final survival counts at the end of the four-
week monitoring period. For each recovery day (i.e. days 1–28
between the sublethal and lethal heat-stress bouts), we used Pear-
son chi-square tests to compare the sublethal heat-stress groups’
final survival versus the control group’s final survival. We also
compared final survival between each heat-stress treatment (i.e.
35°C versus 30°C group, 35°C versus 25°C group (if applicable)
and 30°C versus 25°C group (if applicable)) for each recovery
day. To account for conducting repeated chi-square tests, all
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Figure 2. Mussel survival based on sublethal heat-stress temperature and number of recovery days between consecutive heat-stress bouts. (a) Kaplan–Meier survival
curves for each of the experimental (sublethal heat exposure) and control groups over the four-week monitoring period after mussels underwent the extreme heat-
stress bout. The number at the top of each panel indicates the recovery time (in days) between the sublethal and extreme heat-stress bouts. Survival probability is
indicated on the y-axis, where 1.0 is 100% survival. A separate control group was used for each recovery day. The ‘no extreme heat’ subplot shows mussel survival
for four weeks after the sublethal heat-stress bouts alone; only one mussel died after the 35°C sublethal heat-stress bout. (b) Percent survival across the four-week
monitoring period ( y-axis) based on the number of recovery days between the sublethal and extreme heat-stress bouts (x-axis), separated by experimental groups
(25°C in blue, 30°C in yellow and 35°C in red). Each bar on the plot was corrected for by subtracting the control group’s final percent survival from each of the
experimental group’s final percent survival. Superscript symbols indicate significant differences: from the control group*, the 30°C group‡ or the 35°C group† (all
p < 0.05) based on the Pearson chi-square tests (see ‘Results’ and electronic supplementary material, table S3 for further details).
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p-values were corrected with the false discovery rate (FDR; [38]),
after which a p < 0.05 was deemed significant.

Secondly, in addition to comparing final survival, we com-
pared the overall survival curves, which describe not just
survival at the end of the four weeks, but the responses across
time (i.e. survival across the entire four-week monitoring period).
We used Kaplan–Meier survival curves to describe the survival
function (figure 2a). Comparing across the same groups as above,
we tested whether Kaplan–Meier survival curves were statistically
different from each other using logrank tests. A significant
chi-square statistic ( p < 0.05) for the logrank test indicated that
there was a difference between two survival curves.
3. Results
(a) Survival tests
The three temperatures used to provide the initial sublethal
heat-stress bout yielded different effects on survival (figure 2
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and electronic supplementary material, table S3). Consider-
ing first the final survival counts, the 25°C sublethal heat-
stress bout did not confer improved heat tolerance (all
p > 0.05 versus control group; electronic supplementary
material, table S3). The 30°C sublethal heat-stress bout led
to improved survival, starting 24 h later (i.e. 1 day of recovery
between heat-stress bouts); this improved heat tolerance was
maintained for at least 14 days (all p < 0.05 versus control
group) but was completely lost after 21 days (p > 0.05
versus control group). The 30°C sublethal heat-stress bout
also led to significantly higher survival compared to the
25°C group on days 2 and 4 (both p < 0.05). The 35°C sub-
lethal heat-stress bout improved heat tolerance beginning
48 h later, and this enhanced tolerance was maintained for
at least 21 days (all p < 0.05 versus control group) but was
lost by day 28 ( p > 0.05 versus control group). The 35°C
group’s survival was significantly higher than the 25°C
group’s survival from days 2–4 of recovery (all p < 0.05),
but only significantly different from the 30°C group on day
21, when the 30°C group’s heat tolerance was lost, while
the 35°C group’s heat tolerance was maintained ( p = 0.006).

When looking not just at final survival but also at the sur-
vival curves across the entire four-week monitoring period,
all of the above significant differences were still significant
(for chi-square values, see electronic supplementary material,
table S3). Furthermore, there were three instances where the
survival curves were significantly different, but the final sur-
vival counts had not differed significantly after the FDR
correction. Specifically, the 30°C group’s survival curve was
significantly different from the 25°C group at day 1 (as well
as days 2 and 4), and the 35°C group’s survival curve was
significantly different from the 30°C group’s survival curve
on days 3 and 4 in addition to day 21 (all p < 0.05; figure 2
and electronic supplementary material, table S3).
(b) Field body temperature analyses
The spacing of heat-stress events varied widely across the
4 years of field body temperature data. We found that
approximately 64% of consecutive heat-stress events were
separated by 24–48 h, approximately 33% were separated
by 3–22 days and approximately 3% were separated by
greater than 28 days (figure 3).
4. Discussion
In this study, we determined the rates at which heat tolerance
is gained and lost in M. californianus in response to different
intensities of environmentally realistic sublethal heat-stress
bouts and interpreted these data in the context of an extensive
set of mussel field body temperature data gathered at our
study site. This is the first study that we are aware of to
show that mussels can heat acclimate within 24–48 h after a
single (short) heat-stress bout, and then maintain this elev-
ated tolerance for two to three weeks in the absence of heat
stress. Furthermore, we show that the gain and persistence
of heat tolerance is dependent on the initial sublethal heat-
stress temperature. Initial heat stress at 35°C led to a slower
gain and loss of heat tolerance relative to heat stress at
30°C, while the lowest sublethal heat-stress temperature
examined, 25°C, did not enhance heat tolerance.
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Although these findings might be characterized as a long-
lasting heat-hardening response, we believe that it is more
appropriate to view these adaptive responses as rapid heat
acclimation. Heat hardening has typically been defined as a
transient response that confers improved heat tolerance
immediately after the initial heat-stress bout for up to 32 h
[9,12,13,39,40], while longer-lasting improvements in heat
tolerance are termed as heat acclimation. The fact that the
35°C group did not experience improved survival until 48 h
after the initial sublethal heat-stress bout would indicate
that this is not a heat-hardening response, but instead is
‘rapid heat acclimation’. The rapid heat acclimation response
that we found in our study is contrary to previous work in
mussels that assumed heat acclimation (in the sense of
improved heat tolerance) takes upwards of two weeks to be
completed [14,15,19,41,42]. However, this disparity among
studies is likely a reflection of the fact that, to our knowledge,
no studies have tested shorter acclimation periods, nor have
studies explored the decay in mussels’ acquired heat toler-
ance in the absence of continued heat stress. More research
is required to better understand the differences on a cellular
and molecular level between heat hardening and heat acclim-
ation, and whether the definition pertains to how quickly the
heat tolerance is gained, or also accounts for how long the
improved tolerance is maintained.

The mechanistic basis of the different responses to 25, 30
and 35°C was not examined, but the different responses
among these three groups may reflect the extent of cellular
damage caused by the three sublethal heat-stress temperatures
and, thus, the extent towhich the cellular stress response (CSR)
was activated [43,44]. Studies of the effects of field body temp-
erature on gene expression in M. californianus have shown a
strong temperature-dependence of the expression of stress-
related genes, e.g. those encoding heat-shock proteins and pro-
teins involved in control of the cell cycle and programmed cell
death [35]. These studies suggest that heat-shock protein 70
(HSP70) expression would have increased markedly over the
range of sublethal heat-stress temperatures used in the present
study. Our finding of a temperature-dependent time-course for
the gain and loss of heat tolerance suggests that the intensity of
initial temperature stress dictates the recovery time (through
activation of the CSR), along with the duration of the changes
(i.e. a highly activated CSR may have led to more permanent
changes within the cells that led to a longer-lasting heat toler-
ance [43,44]). This is supported by the fact that the animals in
the 35°C sublethal heat-stress bout took double the time
(48 versus 24 h) to heat acclimate compared to the 30°C
group, but then maintained this improved heat tolerance for
7 days longer.

It may be that mussels have developed superior adaptive
capacities (i.e. physiological plasticity) compared to more
mobile animals as a result of their inability to behaviourally
thermoregulate [5]. Previous research in mussels has found
that physiological changes in the initial stages of heat acclim-
ation predominantly occur within the nervous system [9,45],
whereas longer-term changes that occur with heat acclima-
tion typically involve cellular, cardiovascular, respiratory,
and metabolic changes (or other organ systems that have been
largely unexplored to this point) [14,15,19,28,36,41,46,47].
Regardless of the sequence with which these physiological
changes occur, it seems that the physiological changes that con-
ferred long-lasting heat tolerance (from this sublethal heat bout)
weremaximized at 2 and 5days after the 30 and35°Cheat-stress
bouts, respectively, as this is when survival peaked in each
group (figure 2). Further research is required to uncover the bio-
chemical and organ-level processes that lead to this rapid heat
acclimation, and alsowhether cessation of these same processes
underlies the loss of heat tolerance that occurred over time (in
the absence of heat stress).

Lastly, through comparing field temperature data with the
laboratory-based findings (figure 3), it is clear that an ability
to quickly gain heat tolerance (i.e. within 24–48 h), is crucial
for mussel survival in the intertidal zone, as approximately
64% of consecutive heat events occur within this short
time frame. Additionally, mussels’ ability to maintain this
improved heat tolerance for at least 21 days after the initial
heat-stress bout is also important in terms of survival, as
over one-third (approx. 33%) of consecutive heat events are
separated by longer periods of time (3–22 days). In summary,
based on these data, it appears that mussels’ rapid gain, and
slow loss, of heat tolerance is an advantageous strategy for
coping with the intermittent, and often extreme temperatures
they experience in the intertidal zone. It is likely that mussels
have evolved this adaptive capacity to the heat due to their
sessile nature, which precludes escape from heat stress
through locomotory behaviour. Further research is needed
to determine whether this highly adaptive response is only
present in sessile species like mussels or whether mobile
marine ectotherms also exhibit this adaptive capability.
5. Conclusion
Understanding organisms’ responses to temperature in situ
requires complementary analysis of laboratory-based thermal
tolerance tests in conjunction with field temperature data. In
the present study, we combined these two modes of analysis
and found that the time-course with which heat tolerance is
gained and lost is dependent on the sublethal heat-stress
temperature, whereby a higher heat-stress temperature
leads to a slower gain and loss of heat tolerance. We show
that mussels’ adaptive strategy to the heat—whereby they
rapidly gain, and slowly lose, heat tolerance—is aligned
with the frequency in which consecutive heat-stress bouts
occur in the intertidal zone. This adaptive strategy may
allow mussels to survive the majority of the increased num-
bers of intermittent and extreme heat events predicted with
climate change. Thus, the data we present can be used to fore-
cast mussel survival under the increasingly hotter and more
variable temperatures predicted with climate change. Impor-
tantly, these findings highlight the importance of accounting
not only for rate with which heat tolerance is gained but
also for the rate with which it is lost, as both of these com-
ponents of heat acclimation are important when forecasting
animal survival. To our knowledge, this is the first study to
show, in any animal, that heat acclimation can be rapidly
acquired from a single heat-stress bout, and then maintained
for weeks in the absence of heat stress. It may be that this
phenotype is present in other animals, and researchers are
encouraged to explore the decay of heat acclimation in
future work to better understand how animals gain and
lose heat tolerance in an ecologically relevant context.

Data accessibility. Field temperature data are available at: https://helmuth
lab.cos.northeastern.edu/databases/robomussel/ [37]. Laboratory
dataset and code are available from the Dryad Digital Repository at:
https://dx.doi.org/10.5061/dryad.0k6djh9z6 [48].
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