1 Methodology for pH measurement in high alkali cementitious systems 2 Brian Traynor ^a, Hugo Uvegi ^a, Elsa Olivetti ^a, Barbara Lothenbach ^b, Rupert J. Myers ^{c,d,*} 3 4 5 ^a Department of Materials Science and Engineering, Massachusetts Institute of Technology, 6 77 Massachusetts Avenue, Cambridge, Massachusetts, 01239, United States ^b EMPA, Laboratory for Concrete & Construction Chemistry, CH-8600 Dübendorf, 7 8 Switzerland 9 ^c School of Engineering, University of Edinburgh, Edinburgh, EH9 3FB, UK ^d Current address: Department of Civil and Environmental Engineering, Imperial College 10 11 London, Skempton Building, London, SW7 2AZ, UK 12 * Corresponding author. Email: r.myers@imperial.ac.uk 13 14 Keywords: pH, alkalis, pore solution 15 16 **Abstract** 17 A methodology for calibrating pH meters in highly alkaline solutions such as those relevant 18 19 to cementitious systems is presented. This methodology uses an extended form of the Debye-20 Hückel equation to generate a calibration curve of pH vs. the measured electrochemical 21 potential (mV) based on a series of aqueous alkali hydroxide solutions of known 22 concentrations. This methodology is compared with the 'built-in' process of calibration based 23 upon pH 4, 7, and 10 standard solutions. The built-in calibration process underestimates the 24 real pH values by up to 0.3 log units, which is attributed to the alkali error. A spreadsheet for determining the calibration curve and its application to pH meter readings is provided as 25

Supporting Information. The implications of improperly calibrated pH meters on interpreting solution chemistry in cementitious systems are discussed.

28

26

27

1. Introduction

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

29

Measurement of pH is a quick, simple and cost-effective technique that is fundamental to analytical chemistry and widely used in cement science. Fresh Portland cement concrete typically has a pH > 13 [1]. Maintaining such a high pH is essential to ensure passivation of steel in reinforced concrete, thereby preventing structural deterioration [2,3]. The pH of the activator solution in an alkali-activated material plays a critical role in precursor dissolution [4,5], and high pH solutions (> 13) are typically employed for this purpose [6]. In both Portland cement and alkali-activated material systems, the formation of reaction products has also been shown to depend on pH [7–10]. Calibration of a pH meter is necessary for accurate pH measurements. pH meters are typically calibrated using standard solutions with pH values of 4, 7, and 10 – a process we refer to here as the 'built-in' pH meter calibration. Saturated aqueous Ca(OH)₂ solution may be used as a pH 12.45 standard (at 25°C) [11]. However, these pH values are below the pH range of most cementitious systems; therefore, using the built-in calibration in cementitious systems will likely lead to systematic pH measurement errors. Through appropriate selection of solutions of known concentration, pH meters can be accurately calibrated to higher pH. Although versions of this methodology have been used for years in analyses of cementitious systems [1,12–17], it has been poorly explicitly disseminated and there has been relatively little uptake of it among the broader cement science community. This communication is intended to clarify this methodology to the cement science community at large. As such, a pH

- 51 calculator for NaOH and KOH solutions as a function of temperature and concentration is
- 52 included in the Supporting Information and the relevant physical chemistry concepts
- underpinning these calculations are discussed here.

54

2. Background

56

55

- 57 Table 1. Nomenclature of terms
 - a_i Activity of ion i
 - b_i Molality (mol kg⁻¹)
 - b_0 Standard molality, defined as 1 mol kg⁻¹
 - γ_i Activity coefficient of ion i
 - z_i Charge on ion i
 - I Ionic strength, $=\frac{1}{2}\sum_{i}b_{i}z_{i}^{2}$ (mol kg⁻¹)
 - Distance of closest approach parameter of interacting ions in
 Debye-Hückel equation (Å)
 - b_{γ} Semi-empirical parameter in extended Debye-Hückel equation (kg mol⁻¹)
 - A_{γ} Electrostatic parameter in Debye-Hückel equation (kg^{1/2} mol^{-1/2})
 - B_{γ} Electrostatic parameter in Debye-Hückel equation (kg^{1/2} mol^{-1/2} Å⁻¹)
 - x_{jw} Amount of water, parameter in Debye-Hückel equation (mol)
 - X_w Total amount of all species in the aqueous phase, parameter in Debye-Hückel equation (mol)
 - M_i Molarity (mol L⁻¹)

58

59 2.1. Activity of non-ideal solutions

We begin the description of our methodology to calibrate pH meters by expressing the acidity of a solution using pH values (Eq.(1)):

64
$$pH = -\log_{10}(a_{H^+}) = -\log_{10}\left(\gamma_{H^+} \frac{b_{H^+}}{b_0}\right)$$
 (1)

where a_{H^+} is the activity of aqueous H⁺, b_{H^+} is the molality of aqueous H⁺ (mol kg⁻¹, i.e., mol of aqueous H⁺ per kg of solvent), b_0 is the standard molality which is defined as 1 mol kg⁻¹ (included to make the activity dimensionless), and γ_{H^+} is the activity coefficient of aqueous H⁺. Activity is a measure of the effective concentration of an ion in solution, accounting for non-idealities that arise in real solutions. Molality is the preferred thermodynamic expression for concentration due to its independence of temperature and pressure, unlike molarity (mol L⁻¹).

Deviations between activity and concentration arise from electrostatic interactions among ions in aqueous ionic solutions. Long range inter-ionic coulombic attractions affect ion activity predominantly at low concentrations, whereas short-range ion-ion and water-ion solvation interactions have additional effects at higher concentrations. Short-range ion-ion interactions (ion association) decrease ion activity through formation of ion-ion pairs, reducing the effective number of ions in solution. Water-ion solvation interactions (ion hydration) increase activity by effectively reducing the amount of solvent. In highly dilute aqueous environments, the difference between concentration and activity is negligible.

Debye-Hückel (DH) theory [18] was developed to calculate the mean activity coefficients of ions as a function of the concentration of ions in aqueous ionic solutions. DH theory as originally developed is applicable to dilute aqueous ionic solutions, in which short range

interactions are ignored by assuming a structureless solvent, and where the primary
interactions between ions are long-range Coulombic forces. The theory results in the DebyeHückel equation (Eq. (2)), which we define here using molalities:

$$\log_{10} \gamma_i = \frac{-A_{\gamma} z_i^2 \sqrt{I}}{1 + \dot{a} B_{\gamma} \sqrt{I}} + \log_{10} \frac{x_{jw}}{X_w}$$
 (2)

where z_i is the charge of ion i in solution, \dot{a} (Å) is the average distance of closest approach of two ions of opposite charge, I (mol kg⁻¹) is the ionic strength (defined in Table 1), and A_γ (kg^{1/2} mol^{-1/2}) and B_γ (kg^{1/2} mol^{-1/2} Å⁻¹) are parameters dependent on the temperature, density, and relative permittivity of the solvent (see Supporting Information). The average distance of closest approach, \dot{a} , does not in reality represent the sum of the ionic radii of the two ions, and in practice is adjusted to provide a best fit for the aqueous ionic solution of interest [19]. The second term in Eq. (2) contains the amount of water, x_{jw} (mol), and the total amount of species in the aqueous phase, X_w (mol) and changes the units of γ_i from molar fraction to molal fraction, aligning with our definition of activity. A more detailed derivation and explanation of this equation and related terms may be found in Wright [20]. The ionic strength is a measure of the molality of fully dissociated ions in solution, noting that only in very dilute solutions can salts be assumed to be completely dissociated. Eq. (2) is accurate in solutions up to moderate ionic strength, $I \leq 0.1$ mol kg⁻¹ [21].

Versions of the Debye-Hückel equation with an extended term have been used by researchers to extend the range of ionic strengths over which Debye-Hückel theory is valid. Helgeson extended the DH equation with a linear term [19];

$$\log_{10} \gamma_i = \frac{-A_{\gamma} z_i^2 \sqrt{I}}{1 + \dot{a} B_{\gamma} \sqrt{I}} + b_{\gamma} I + \log_{10} \frac{x_{jw}}{X_w}$$
 (3)

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

where b_{ν} (kg mol⁻¹) is a semi-empirical parameter, known as the extended term. In his model, a common distance of closest approach was assumed by Helgeson for all ions in a given aqueous ionic solution – values of \dot{a} were calculated for various solutions, with \dot{a} taking a common value for all ions in that solution. This assumption makes the Helgeson extension to the DH equation more accurate in solutions in which the primary salt concentration exceeds that of other aqueous ions. Additionally, the effects of short-range water-ion solvation interactions are captured by the extended term, b_{ν} (kg mol⁻¹). Helgeson described the solvation of an ion in solution using the Born equation [22], as corrected by Bjerrum [23], to calculate values of b_{ν} for various aqueous ionic solutions. The applicability of the Helgeson form of the Debye-Hückel (H-DH) equation at high ionic strengths depends on the aqueous ionic solution of interest. For aqueous NaOH and KOH solutions, the H-DH equation is accurate up to ionic strengths of 4.5 mol kg⁻¹, determined by Helgeson as the range of validity for the extended term, b_{ν} , through comparison of activity coefficients reported in the literature to those computed using the H-DH equation [19]. Two other notable forms of the extended DH equation are the Davies' equation and the Truesdell-Jones equation - these are discussed in the Supporting Information and are applicable at moderate to high ionic strengths, $(I < 0.1 \text{ mol kg}^{-1}, \text{ and } I < 1 \text{ mol kg}^{-1}, \text{ respectively})$ [26,27].

129

130

131

132

133

The Pitzer equations are suitable for high ionic strengths and mixed ion aqueous ionic solutions ($I > 1 \text{ mol kg}^{-1}$) [28,29]; however, they require specific interaction parameters between aqueous species to be defined, which are numerous in cementitious systems (Ca^{2+} , $CaOH^+$, $SiO(OH)_3^-$, $SiO_2(OH)_2^{2-}$, etc.). Therefore, the Pitzer equations are less pragmatic for

application in cementitious systems than the extended forms of the DH equation and are not discussed further here.

2.2. pH measurement with a glass combination electrode

While activity cannot be directly measured, electrochemical potential can. pH is most commonly determined indirectly through measurement of an electrochemical potential using a pH meter, which typically consists of a glass combination electrode and a meter. The electrochemical potential of standard solutions with precisely known pH can be measured using a glass combination electrode, and a calibration curve of pH vs. electrochemical potential is generated by the meter. This built-in calibration curve is used to convert electrochemical potentials measured by the glass combination electrode in an analyte to pH. The electrochemical potential measured by the glass combination electrode, E_T , may be written as (Eq. (4)):

$$E_T = \varepsilon + E(a_{H^+}) \tag{4}$$

where ε (mV) is an electrochemical potential due to a combination of smaller potentials that are artifacts of the design of the glass combination electrode, (see Supporting Information), and $E(a_{H^+})$ (mV) is an electrochemical potential that is a function of solution pH. While Eq. (4) is similar to the Nernst equation ($E = E_0 - 2.303 \frac{RT}{F} pH$), Eq. (4) is more appropriate in this context as the measured electrochemical potential, E_T , is not a linear function over the entire pH scale, as is implied by the Nernst equation. Despite this non-linearity, calibrations performed relating $E(a_{H^+})$ to pH are generally assumed to be linear. This is valid over most

of the pH range, but not for highly acidic or alkaline solutions, where linearity between electrochemical potential and pH is lost.

The Ag/AgCl glass combination electrode with ion selective membrane is the most common type of electrode used in pH meters. The potential of interest in this paper is the gel layer potential, $E(a_{H^+})$, which occurs at the ion selective membrane of the glass combination electrode. It arises due to the difference between H⁺ activity in the external analyte electrolyte and the inner buffer electrolyte. The glass membrane is a silicate glass with ion inclusions, typically Ca^{2^+} , Na^+ , and Li^+ , but the exact glass composition depends on the analyte ions towards which the membrane is designed to be selective [30,31]. The gel layer potential, which is generated across the glass membrane when in contact with the analyte, arises through formation of a charged hydrated gel layer produced on either side of the glass membrane [32,33].

Although the gel layer potential, $E(a_{H^+})$, is designed to change only as a function of analyte H^+ ion activity (over a wide range of H^+ activities and analyte chemistries), no glass membrane is ever wholly selective to one specific ion [34]. In highly alkaline solutions the hydrated gel layer has a negative structural charge and is charge-balanced significantly by aqueous alkali metal complexes (e.g., Na^+) in addition to H^+ , as described by Baucke [35]. Cheng described the gel layer potential as a capacitor, in which the surface charge density, caused by adsorbed ions (e.g., H^+ , OH^- , Na^+), yields a potential across the glass membrane [36]. In any case, the presence of positively charged alkali ions in the gel layer artificially lowers the measured pH as alkali ions, rather than H^+ ions, contribute to the gel layer potential. This phenomenon is known as the alkali error [37–39]. It arises when measuring pH of highly alkaline aqueous solutions; the effect is relatively weak in the case of K^+ ,

moderate for Na⁺, and strong for Li⁺. Standard solutions of pH 4, 7, and 10 are thus insufficient to calibrate a pH meter for measurement of highly alkaline aqueous solutions. Calibrating a pH meter with solutions of similar chemistry and ionic strength to the analyte is a means of providing a valid calibration curve by mitigating the systematic errors discussed above, including the alkali error [40].

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

183

184

185

186

187

In the context of cement science, the observed discrepancies between measured and actual pH can significantly alter interpretation of experimental results. As discussed in the introduction, the evolution of a (solid/liquid) cementitious system depends on the OH⁻ concentration in its aqueous phase. Dissolution rates of a wide range of minerals and cement hydration products have shown strong dependences on pH, with small differences in pH potentially corresponding to large changes in rates of dissolution [41–46]. Similarly, the rates and distributions of reaction products vary with pH [4,7]. For example, pH affects silicate speciation in aqueous alkali silicate solutions [47], and the relative stabilities of calcium (alkali) (alumino)silicate hydrate (C-(N-)A-S-H) and portlandite [48], and zeolites and alkali aluminosilicate (hydrate) gel [7,49–51]. We draw attention to the fact that misinterpretation of pore solution chemistry of a cementitious system can lead to mis-characterization of its solid phases due to the intrinsic link between solid and liquid phases (e.g., equilibrium phenomena), which is relevant to systems involving pure solid phases, binders, mortar, and concrete. Aqueous solutions of NaOH and KOH are of interest in cementitious systems due to their use in AAMs and the relatively high concentrations of these alkali metals (K especially) in hydrated Portland cement.

205

206

207

The H-DH equation allows calculation of the activity of OH⁻, and hence pH, up to ionic strengths of 4.5 mol kg⁻¹ for single component aqueous systems [19] or 1-3 mol kg⁻¹ in

multi-component cementitious systems [48]. For solutions of known molarity, a calibration curve can be constructed through the electrochemical response of the pH meter in solution and the pH determined using the H-DH equation for each solution. By accounting for the alkali error in this way, the pH of an analyte can be accurately determined. We demonstrate the use of this methodology in the following sections of this paper.

3. Experimental procedures

3.1. NaOH and KOH standards, and LiOH solutions

NaOH and KOH standards were prepared with the following concentrations: 0.0001 M (mol L^{-1}), 0.0005 M, 0.001 M, 0.005 M, 0.01 M, 0.05 M, 0.1 M, 0.2 M, 0.5 M, 1 M, 2 M, and 3 M. NaOH and KOH standards were made by diluting commercial solutions of 3 (\pm 0.005) M NaOH (BDH Chemicals) and 8 (\pm 0.005) M KOH (Ricca), respectively. Dilutions were performed by transferring quantities of Na(K)OH commercial solution into volumetric flasks and filling to their marks with high purity water (18.2 M Ω cm, Millipore). The as-ordered Na(K)OH commercial solutions were stored in high-density polyethylene (HDPE) bottles. All prepared solutions were stored in clean HDPE bottles upon preparation.

LiOH solutions (concentrations of 0.0001 M (mol L^{-1}), 0.0005 M, 0.001 M, 0.005 M, 0.01 M, 0.05 M, 0.1 M, 0.2 M, 0.5 M, 1 M, 2 M, and 3 M) were prepared by addition of appropriate quantities of reagent grade lithium hydroxide monohydrate flakes (> 98%, Alfa Aesar) to a 500 mL volumetric flask and filling to the mark with high purity water (18.2 M Ω

solutions to mitigate effects of carbonation of alkalis. The use of analytical grade salts in the

cm, Millipore) once flakes had completely dissolved. Calibrations used freshly prepared

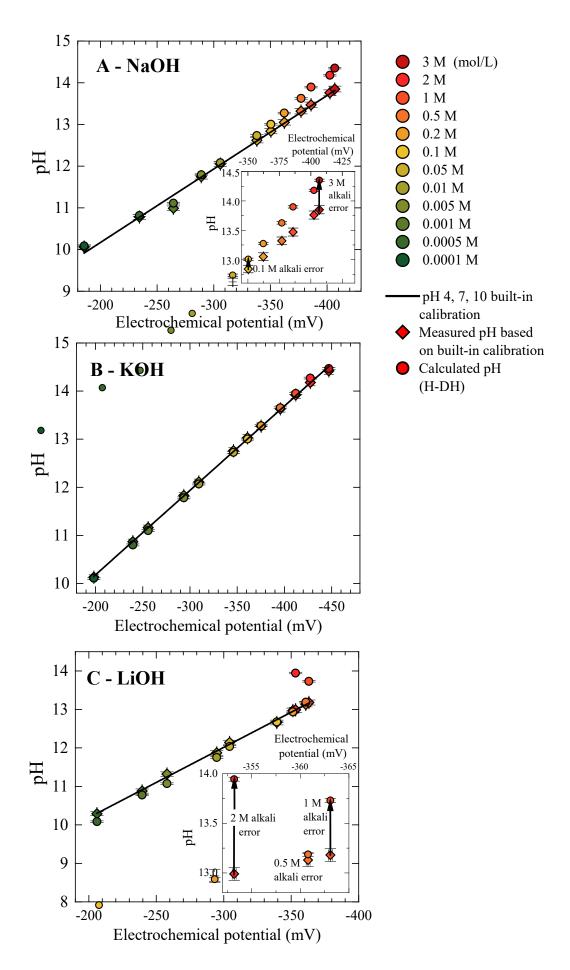
case of LiOH can lead to higher deviations ($\pm 2\%$) from the target concentrations than the use of standard solutions in the cases of KOH and NaOH. This has been taken into account in the calculated uncertainties of pH values reported here, resulting in a deviation of <0.001 pH units for the LiOH solutions.

3.2. pH measurements

A typical pH meter offers the possibility to read out i) the pH values directly based on the built-in calibration using pH 4, 7, and 10 standard solutions ('built-in calibration') or ii) the mV electrochemical potential (mV). All pH measurements were performed with a Thermo Orion Ag/AgCl combination triode stored in KCl solution with Automatic Thermal Correction probe at 22°C. Between measurement of each analyte, the pH meter was rinsed using water purified by reverse osmosis (18 M Ω cm) (Millipore) and gently dabbed dry using delicate wipes (Kimtech). Approximately 10 mL of prepared aqueous Na(K)OH solution was transferred to a 15 mL polypropylene (PP) centrifuge tube. The solution was gently agitated for a few seconds, and the electrochemical potential was recorded after 2 minutes (when the reading had stabilized). Samples were not stirred during pH measurements [52]. The main sources of error in this study were the accuracy of the pH meter and glass combination electrode in measuring the electrochemical potential (\pm 0.2 mV), and the error in the built-in calibration slope recorded (\pm 0.5 %). Errors in the calculated pH values are based on the standard deviation of recorded temperatures (\pm 0.5 °C) during measurement of the pH of solutions. Error propagation calculations are included in the Supporting Information.

3.3. Fitted calibration curve calculations

The pH of the solution was calculated from the solution concentrations using the H-DH equation for aqueous NaOH and KOH solutions and known equilibrium constants for Na(K)OH dissociation at the measurement (laboratory) temperature (22°C) from [53]. The calculated pH values were then plotted against the measured electrochemical potentials of prepared Na(K)OH solutions using the pH meter, and the data fitted using a calibration curve ('fitted calibration'). The use of NaOH or KOH solutions for the fitted calibration directly takes into account the alkali error, as the same alkali error occurs both during the calibration and the measurement accounting for the systematic error. Electrochemical potentials of analytes are also measured using electrochemical potential (mV) readings from the pH meter, and the fitted calibration curve is used to convert the readings to pH. We provide a spreadsheet for the determination of this calibration curve and application to pH meter readings of sample solutions as Supporting Information.


3.4. Preparation of alkali-activated biomass ash samples

Application of this methodology to a real cementitious system is also demonstrated here. Alkali-activated biomass ash experiments were prepared using 0.5 and 1 molal aqueous NaOH solutions (ACS Reagent grade water, RICCA Chemical Company; NaOH ≥97%, Sigma Aldrich) as activators at a constant liquid/solid ratio of 25 (i.e. 2 g of solid in 50 mL of solution). Solids consisted of highly siliceous biomass ash (sourced from Silverton Pulp & Papers Pvt. Ltd. In Muzzafarnagar, Uttar Pradesh, India) and Ca(OH)₂ (≥98%, Macron Fine Chemicals), mixed at a ratio of 1.75 g ash : 0.25 g Ca(OH)₂. The composition of the biomass ash, determined by X-ray fluorescence and loss on ignition tests, showed siliceous ash (61 mass% SiO₂) with high unburnt carbon (26 mass%). The phase composition (determined by X-ray diffraction) showed a primarily amorphous ash (90 mass%) with presence of quartz,

albite, cristobalite, sylvite and arcanite. The materials and conditions of reaction were chosen to mimic a masonry product previously developed in [54]. Samples were mixed continuously in a tube rotator (FisherbrandTM Multi-Purpose Tube Rotator, Fisher Scientific) to ages of 3 and 28 days to explore dissolution and reaction kinetics.

4. pH meter calibration

The linear calibration curve fittings for prepared aqueous NaOH and KOH solutions are respectively shown in Figure 1 (A) and (B). The alkali error associated with measuring the pH of LiOH solutions is also demonstrated (Figure 1 (C)). The pH is calculated using the H-DH equation (Eq. (3)) and methodology presented here and in the Supporting Information. The measured built-in pH is based on an extrapolated calibration curve using pH 4, 7, and 10 standard solutions. The divergence at high pH (Figure 1A, inset) demonstrates the alkali error and the need to apply the methodology presented here when measuring highly alkaline solutions, i.e., in analysis of cementitious systems.

300 Figure 1. Calibration curves for aqueous NaOH (A), KOH (B), and LiOH (C) solutions of 301 known concentration up to 3 M based upon pH values calculated using the H-DH equation (circles) and those measured by the pH meter using standard solutions of pH 4, 7, and 10 302 303 (triangles) at 22 °C. The deviation between the calculated pH and the uncorrected, extrapolated built-in calibration curve from pH 4, 7, 10 standards (black line) is a result of the 304 alkali error at high pH, which is more pronounced for Li⁺ and Na⁺ than K⁺. The solution 305 306 molarities at which the alkali error is significant are shown in the inset graphs. For LiOH 307 solutions, the pH was calculated using the Davies' equation, as the H-DH equation is not 308 valid for LiOH solutions. 309 310 While the calculated pH (H-DH) does trend above the measured pH, the alkali error for pH 311 measurement in aqueous KOH solutions is not statistically significant. In contrast, the alkali 312 error for NaOH is up to 0.5 pH units in 3 M NaOH. The alkali error for LiOH solutions is 313 even greater – the alkali error for 2 M LiOH solutions is 1 pH unit. The extent of the alkali 314 error in LiOH solutions precludes any meaningful direct pH measurements above concentrations of 0.5 M LiOH [55]. This trend is explained in terms of ion size: K⁺ ions 315 316 (internuclear radius in aqueous solution of 2.8 Å [56]) are significantly less mobile through 317 the glass membrane than Na⁺ ions (internuclear radius in aqueous solution of 2.3 Å [56]) and 318 Li⁺ ions (internuclear radius in aqueous solution of 2.1 Å [56]), due to their smaller ion size 319 [38,57]. 320 321 The H-DH equation used above is designed for aqueous NaOH and KOH solutions [19] up to ionic strengths of 4.5 mol kg⁻¹ [19], but in multi-component cementitious systems this range 322 is typically taken as 1-3 mol kg⁻¹ [48]. Parameters for the H-DH equation have also been 323 324 calculated for other aqueous ionic solutions (HCl, LiCl, MgCl₂, SrCl₂, CaCl₂, BaCl₂, AlCl₃, 325 HBr, LiBr, NaBr, MgBr₂, SrBr₂, CaBr₂, BaBr₂, HI, NaI, MgI₂, SrI₂, CaI₂, BaI₂, KF) [19]. The 326 temperature at which the pH is recorded is important for H-DH calculations – the dissociation constants of NaOH, KOH, and H₂O change with temperature (see Supporting Information) 327 328 [58], affecting the OH⁻ concentration.

5. Application to cementitious systems

To demonstrate the utility of the methodology presented, pH values of filtrates taken from a series of alkali-activated biomass ash samples were measured. In each case, we use the NaOH fitted calibration curve (Figure 1A) to convert the measured electrochemical potential to pH. Details on how these samples were made are given in the Section 3.4. The results of the pH measurements and calculations using the methodology presented here are shown in Table 2.

Table 2. OH⁻ concentrations and pH of samples measured using calibration curve (calculated from H-DH equation, Figure 1A, circles) at 22 °C.

Initial b _{NaOH} (mol kg ⁻¹)	Biomass Ash Mass (g)	Ca(OH) ₂ Mass (g)	Curing time (days)	Electro- chemical potential (mV)	Built-in ¹ pH (-)	b[OH-] ² (mol kg ⁻¹)	Fitted ² pH (-)
0.5	0	0	3	-372.4	13.33±0.07	0.406	13.62±0.02
			28	-371.3	13.31 ± 0.07	0.385	13.60 ± 0.02
	2	0	3	-361.9	13.15 ± 0.07	0.244	13.41 ± 0.02
			28	-352.4	12.97 ± 0.06	0.153	13.22 ± 0.02
	1.75	0.25	3	-365.2	13.21 ± 0.07	0.287	13.48 ± 0.02
			28	-356.4	13.04 ± 0.07	0.186	13.30 ± 0.02
1	0	0	3	-381.4	13.49 ± 0.07	0.617	13.80±0.02
			28	-380.1	13.46 ± 0.07	0.582	13.77 ± 0.02
	2	0	3	-372.6	13.32 ± 0.07	0.410	13.62 ± 0.02
			28	-369.4	13.26 ± 0.07	0.352	13.56 ± 0.02
	1.75	0.25	3	-374.9	13.37 ± 0.07	0.457	13.67 ± 0.02
			28	-372.3	13.31 ± 0.07	0.404	13.62 ± 0.02

¹ Obtained directly from the built-in pH meter calibration using pH 4, 7, and 10 standard solutions. The differences from the calculated pH values are due to the alkali error

Differences between the calculated and measured pH, i.e., the alkali error, are consistently on the order of 0.3 pH units, corresponding to an underestimation of b_{OH^-} by 0.25 mol kg^{-1} if the built-in calibration is used. Samples with higher pH values differ more greatly from the actual pH, as expected. For context, at 22 °C the calculated (H-DH) pH values of 1 and 0.5 mol kg^{-1} aqueous NaOH solutions are 13.86 and 13.59, respectively. The difference of 0.27 pH units is

² OH⁻ concentration and fitted pH calculated from fitted calibration curve derived using the H-DH equation

similar to the discrepancy caused by the alkali error (0.3 pH units), demonstrating the effect of this phenomenon in analysis of cementitious systems.

6. Conclusions

A methodology for calibrating pH meters in solutions of high alkali content (pH >13) has been presented. The Helgeson extension to the Debye-Hückel (H-DH) equation was used to calculate the pH of aqueous ionic solutions of known molarity. The H-DH equation was chosen because of its practicality and accuracy at high ionic strengths (approaching 4.5 mol kg⁻¹). We provide a spreadsheet for the determination of this calibration curve and application to pH meter readings of sample solutions as Supporting Information. The value of this methodology was demonstrated for a binder consisting of biomass ash, Ca(OH)₂ and aqueous NaOH activator. The discrepancies, caused by the alkali error, between the actual, fitted pH (calculated using the H-DH) and the measured pH (based on the built-in pH 4, 7, 10 standards calibration) were highlighted. The built-in calibration underestimated the real pH values by up to 0.3 pH units in aqueous NaOH solution, which illustrates the importance of a properly calibrated pH meter to prevent erroneous interpretations of the pH of cementitious systems. Discrepancies between built-in calibration and real, fitted pH values were more pronounced for aqueous LiOH solutions compared to aqueous NaOH solutions, but less so for aqueous KOH solutions.

7. Supporting information

Two files are provided as supporting information: (1) a document containing additional descriptions of (S1) other forms of the extended Debye-Hückel equation, (S2)

375 electrochemical potentials in glass combination electrodes, and (S3) the error analysis 376 performed here; and (2) a spreadsheet embedded with calculations and a step-by-step 377 procedure to use the method described here, to measure pH in high alkali cementitious 378 systems. 379 380 8. Acknowledgments 381 382 We would like to acknowledge the financial support for this research through the 383 Environmental Solutions Initiative at Massachusetts Institute of Technology (MIT), 384 Cambridge. We also acknowledge support from NSF CAREER #1751925. Funding provided 385 by the Scottish Research Partnership in Engineering Grant #PECRE1718/02 is gratefully 386 acknowledged. The research leading to this publication benefitted from EPSRC funding 387 under grant No. EP/R010161/1 and from support from the UKCRIC Coordination Node, EPSRC grant number EP/R017727/1, which funds UKCRIC's ongoing coordination. 388 389 390 9. Conflicts of interest 391 392 The authors declare no conflicts of interest. 393 394 10. References 395 396 [1] B. Lothenbach, F. Winnefeld, Thermodynamic modelling of the hydration of Portland 397 cement, Cem. Concr. Res. 36 (2006) 209-226. doi:10.1016/j.cemconres.2005.03.001. 398 [2] A.M. Vaysburd, P.H. Emmons, Corrosion inhibitors and other protective systems in

concrete repair: Concepts or misconcepts, Cem. Concr. Compos. 26 (2004) 255–263.

- 400 doi:10.1016/S0958-9465(03)00044-1.
- 401 [3] C.L. Page, K.W.J. Treadaway, Aspects of the electrochemistry of steel in concrete,
- 402 Nature. 297 (1982) 109–115.
- 403 [4] S. Song, H.M. Jennings, Pore solution chemistry of alkali-activated ground granulated
- 404 blast-furnace slag, Cem. Concr. Res. 29 (1999) 159–170. doi:10.1016/S0008-
- 405 8846(98)00212-9.
- 406 [5] S. Goto, K. Akawaza, M. Daimon, Solubility of silica-alumina gels in different pH
- 407 solutions, Cem. Concr. Res. 22 (1992) 1216–1223.
- 408 [6] J.L. Provis, S.A. Bernal, RILEM State of the Art Report, 2014. doi:10.1007/978-94-
- 409 007-7672-2_5.
- 410 [7] C.K. Yip, G.C. Lukey, J.S.J. Van Deventer, The coexistence of geopolymeric gel and
- 411 calcium silicate hydrate at the early stage of alkaline activation, Cem. Concr. Res. 35
- 412 (2005) 1688–1697. doi:10.1016/j.cemconres.2004.10.042.
- 413 [8] J.G.S. Van Jaarsveld, J.S.J. Van Deventer, Effect of the alkali metal activator on the
- properties of fly ash-based geopolymers, Ind. Eng. Chem. Res. 38 (1999) 3932–3941.
- 415 doi:10.1021/ie980804b.
- 416 [9] B. Mota, T. Matschei, K. Scrivener, Impact of NaOH and Na2SO4 on the kinetics and
- 417 microstructural development of white cement hydration, Cem. Concr. Res. 108 (2018)
- 418 172–185. doi:10.1016/j.cemconres.2018.03.017.
- 419 [10] E. L'Hôpital, B. Lothenbach, K. Scrivener, D.A. Kulik, Alkali uptake in calcium
- alumina silicate hydrate (C-A-S-H), Cem. Concr. Res. 85 (2016) 122–136.
- 421 doi:10.1016/j.cemconres.2016.03.009.
- 422 [11] R.G. Bates, V.E. Bower, E.R. Smith, Calcium hydroxide as a highly alkaline pH
- 423 standard, J. Res. Natl. Bur. Stand. (1934). 56 (1956) 305–312.
- 424 doi:10.6028/jres.056.040.

- 425 [12] R.J. Myers, E. L'Hôpital, J.L. Provis, B. Lothenbach, Effect of temperature and
- aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium
- 427 conditions, Cem. Concr. Res. 68 (2015) 83–93. doi:10.1016/j.cemconres.2014.10.015.
- 428 [13] D.E. MacPhee, K. Luke, F.P. Glasser, E.E. Lachowski, Solubility and aging of calcium
- silicate hydrates in alkaline solutions at 25°C, J. Am. Ceram. Soc. 72 (1989) 646–654.
- 430 [14] D. Rothstein, J.J. Thomas, B.J. Christensen, H.M. Jennings, Solubility behavior of Ca-,
- S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of
- 432 hydration time, Cem. Concr. Res. 32 (2002) 1663–1671.
- 433 [15] A. Kumar, S. Bishnoi, K.L. Scrivener, Modelling early age hydration kinetics of alite,
- 434 Cem. Concr. Res. 42 (2012) 903–918. doi:10.1016/j.cemconres.2012.03.003.
- 435 [16] Gartner, F.J. Tang, S.J. Weiss, Saturation factors for calcium hydroxide and calcium
- sulfates in fresh Portland cement pastes, J. Am. Ceram. Soc. 68 (1985) 667–673.
- 437 doi:10.1111/j.1151-2916.1985.tb10122.x.
- 438 [17] G. Plusquellec, M.R. Geiker, J. Lindgård, J. Duchesne, B. Fournier, K. De Weerdt,
- Determination of the pH and the free alkali metal content in the pore solution of
- 440 concrete: Review and experimental comparison, Cem. Concr. Res. 96 (2017) 13–26.
- 441 doi:10.1016/j.cemconres.2017.03.002.
- 442 [18] P. Debye, E. Huckel, Zur Theorie der Elektrolyte, Z. Phys. 24 (1923) 185–206.
- 443 [19] H.C. Helgeson, D.H. Kirkham, G.C. Flowers, Theoretical prediction of the
- thermodynamic behavior of-aqueous electrolytes at high pressures and temperatures:
- 445 IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and
- standard and relative partial molal properties to 600C, Am. J. Sci. 281 (1981) 1249–
- 447 1516.
- 448 [20] M. Robson Wright, Chapter 10: Concepts and Theory of Non-Ideality, in: An Introd.
- to Aqueous Electrolyte Solut., Wiley, 2007: pp. 349–420.

- 450 [21] J.F. Zemaitis, D.M. Clark, M. Rafal, N.C. Scrivner, Handbook of Aqueous Electrolyte
- Thermodynamics, 1986.
- 452 [22] M. Born, Volumen und hydratationswärme der ionen, Zeitschrift Für Phys. 1 (1920)
- 453 45–48.
- 454 [23] N. Bjerrum, Neuere Anschauungen über Elektrolyte, Berichte Der Dtsch. Chem.
- 455 Gesellschaft. 62 (1929) 1091–1103.
- 456 [24] I. Grenthe, A. V. Plyasunov, K. Spahiu, Chapter IX: Estimations of Medium Effects on
- Thermodynamic Data, 1997.
- 458 [25] M. Wang, Y. Zhang, M. Muhammed, Critical evaluation of thermodynamics of
- complex formation of metal ions in aqueous solutions I. A description of evaluation
- 460 methods, Hydrometallurgy. 45 (1997) 21–36.
- 461 [26] C.W. Davies, Ion Association, Butterworth and Co, 1962.
- 462 [27] A.H. Truesdell, B.F. Jones, WATEQ: A computer program for calculating chemical
- 463 equilibria of natural waters, Jour. Res. US Geol. Surv. 2 (1974) 233–248.
- 464 [28] K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general
- 465 equations, J. Phys. Chem. 77 (1973) 268–277. doi:10.1021/j100621a026.
- 466 [29] R.P. Buck, S. Rondini, A.K. Covington, F.G.K. Baucke, C.M.A. Brett, M.J.T. Milton,
- T. Mussini, R. Naumann, K.W. Pratt, P. Spitzer, G.S. Wilson, Measurement of pH:
- Definition, Standards, and Procedures (IUPAC Recommendations 2002), Pure Appl.
- 469 Chem. 74 (2002) 2169–2200.
- 470 [30] A.K. Covington, Chapter 5: Glass Electrodes, in: Ion Sel. Electrode Methodol. Vol 1,
- 471 CRC Press, 1979: pp. 77–84.
- 472 [31] G. Eisenman, Chapter 3: The dependence of glass-electrode on composition, in: Glas.
- Electrodes Hydrog. Other Cations, New York, 1967: pp. 51–100.
- 474 [32] M. Cremer, Uber die ursache der elektromotorischen eigenschaften der gewebe

- zugleich ein beitrag zur lehre von den polyphasischen elektrolytketten, Z Biol. 47
- 476 (1906) 562–608.
- 477 [33] D.A. Skoog, D.M. West, Fundamentals of Analytical Chemistry, 3rd ed., 1976.
- 478 [34] B.P. Nicolsky, M.M. Shultz, A.A. Belijustin, A.A. Lev, Chapter 6: Ion exchange
- theory of the glass electrodes, in: G. Eisenman (Ed.), Glas. Electrodes Hydrog. Other
- 480 Cations, 1967: pp. 174–222.
- 481 [35] F.G.K. Baucke, The modern understanding of the glass electrode response, Fresenius.
- 482 J. Anal. Chem. 349 (1994) 582–596. doi:10.1007/BF00323462.
- 483 [36] K.L. Cheng, Capacitor theory for nonfaradaic potentiometry, Microchem. J. 42 (1990)
- 484 5–24.
- 485 [37] R.G. Bates, Determination of pH, in: 2nd ed., Wiley, New York, 1973: p. 365.
- 486 [38] K. Oláh, On the theory of the alkaline error of the glass electrode, Period. Polytech.
- 487 Chem. Eng. 4 (1960) 141–156.
- 488 [39] B.P. Nicolsky, Theory of the glass electrode. I., Zh Fis Khim. 10 (1937) 495.
- 489 [40] A.D. Wiesner, L.E. Katz, C. Chen, The impact of ionic strength and background
- 490 electrolyte on pH measurements in metal ion adsorption experiments, J. Colloid
- 491 Interface Sci. 301 (2006) 329–332. doi:10.1016/j.jcis.2006.05.011.
- 492 [41] J. Schott, O.S. Pokrovsky, E.H. Oelkers, The link between mineral
- dissolution/precipitation kinetics and solution chemistry, Rev. Mineral. Geochemistry.
- 494 70 (2009) 207–258. doi:10.2138/rmg.2009.70.6.
- 495 [42] P. V. Brady, J. V. Walther, Controls on silicate dissolution rates in neutral and basic
- 496 pH solutions at 25°C, Geochim. Cosmochim. Acta. 53 (1989) 2823–2830.
- 497 doi:10.1016/0016-7037(89)90160-9.
- 498 [43] E.H. Oelkers, J. Schott, J.L. Devidal, The effect of aluminum, pH, and chemical
- affinity on the rates of aluminosilicate dissolution reactions, Geochim. Cosmochim.

- 500 Acta. 58 (1994) 2011–2024. doi:10.1016/0016-7037(94)90281-X.
- 501 [44] I. Baur, P. Keller, D. Mavrocordatos, B. Wehrli, C.A. Johnson, Dissolution-
- 502 precipitation behaviour of ettringite, monosulfate, and calcium silicate hydrate, Cem.
- 503 Concr. Res. 34 (2004) 341–348. doi:10.1016/j.cemconres.2003.08.016.
- 504 [45] A. Gabrisová, J. Havlica, S. Sahu, Stability of calcium sulphoaluminate hydrates in
- water solutions with various pH values, Cem. Concr. Res. 21 (1991) 1023–1027.
- 506 doi:10.1016/0008-8846(91)90062-M.
- 507 [46] P. Juilland, E. Gallucci, R. Flatt, K. Scrivener, Dissolution theory applied to the
- induction period in alite hydration, Cem. Concr. Res. 40 (2010) 831–844.
- doi:10.1016/j.cemconres.2010.01.012.
- 510 [47] J.L. Provis, P. Duxson, G.C. Lukey, F. Separovic, W.M. Kriven, J.S.J. Van Deventer,
- Modeling speciation in highly concentrated alkaline silicate solutions, Ind. Eng. Chem.
- 512 Res. 44 (2005) 8899–8908. doi:10.1021/ie050700i.
- 513 [48] R.J. Myers, S.A. Bernal, J.L. Provis, A thermodynamic model for C-(N-)A-S-H gel:
- 514 CNASH-ss. Derivation and validation, Cem. Concr. Res. 66 (2014) 27–47.
- 515 doi:10.1016/j.cemconres.2014.07.005.
- 516 [49] H. Matsuyama, J.F. Young, Effects of pH on precipitation of quasi-crystalline calcium
- silicate hydrate in aqueous solution, Adv. Cem. Res. 12 (2000) 29–33.
- 518 doi:10.1680/adcr.2000.12.1.29.
- 519 [50] I. García Lodeiro, D.E. Macphee, A. Palomo, A. Fernández-Jiménez, Effect of alkalis
- on fresh C–S–H gels. FTIR analysis, Cem. Concr. Res. 39 (2009) 147–153.
- 521 doi:10.1016/j.cemconres.2009.01.003.
- 522 [51] B. Lothenbach, E. Bernard, U. Mäder, Zeolite formation in the presence of cement
- 523 hydrates and albite, Phys. Chem. Earth. 99 (2017) 77–94.
- 524 doi:10.1016/j.pce.2017.02.006.

- 525 [52] K.L. Cheng, D.M. Zhu, On calibration of pH meters, Sensors. 5 (2005) 209–219.
- 526 doi:10.3390/s5040209.
- 527 [53] T. Thoenen, W. Hummel, U.R. Berner, E. Curti, The PSI/Nagra Chemical
- 528 Thermodynamic Database 12/07, Villigen PSI, Switzerland, 2014.
- 529 [54] T. Poinot, M.E. Laracy, C. Aponte, H.M. Jennings, J.A. Ochsendorf, E.A. Olivetti,
- Beneficial use of boiler ash in alkali-activated bricks, Resour. Conserv. Recycl. 128
- 531 (2018) 1–10. doi:10.1016/j.resconrec.2017.09.013.
- 532 [55] S. Licht, pH measurement in concentrated alkaline solutions, Anal. Chem. 57 (1985)
- 533 514–519. doi:10.1021/ac50001a045.
- 534 [56] Y. Marcus, Ionic radii in aqueous solutions, J. Solution Chem. 12 (1983) 271–275.
- 535 doi:10.1007/BF00646201.
- 536 [57] M. Dole, B.Z. Wiener, The theory of the glass electrode. IV. Temperature studies of
- the glass electrode error, Trans. Electrochem. Soc. 72 (1937) 107–127.
- 538 [58] G.M. Anderson, D.A. Crerar, Thermodynamics in Geochemistry, Oxford University
- 539 Press, 1993.