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Abstract. In this paper we consider the following problem: Let Xk, be a Banach space
with a normalized basis (e(k,j))j , whose biorthogonals are denoted by (e∗(k,j))j , for k ∈ N,

let Z = `∞(Xk : k∈N) be their `∞-sum, and let T : Z → Z be a bounded linear operator
with a large diagonal, i.e.,

inf
k,j

∣∣e∗(k,j)(T (e(k,j))
∣∣ > 0.

Under which condition does the identity on Z factor through T? The purpose of this paper
is to formulate general conditions for which the answer is positive.

Contents

1. Introduction

Throughout this paper, we assume Xk is for each k ∈ N a Banach space which has a
normalized basis (e(k,j))j and let (e∗(k,j))j ⊂ X∗k be the coordinate functionals. Let Z be the
space

(1.1) Z = `∞(Xk : k ∈ N) =
{

(xk) : xk ∈ Xk, k∈N, ‖(xk)‖ = sup
k∈N
‖xk‖Xk <∞

}
.

We say a bounded linear operator T : Z → Z has large diagonal, if

inf
k,j

∣∣e∗(k,j)(Te(k,j)

)∣∣ > 0.

The main focus of this work is the following problem concerning operators on Z.

Problem 1.1. Does the identity operator IZ on Z factor through every bounded linear
operator T : Z → Z with a large diagonal, i.e., do there exist bounded linear operators
A,B : Z → Z such that IZ = ATB?

If ?? has a positive answer, we say that Z has the factorization property (with respect to
the array (e(k,j))).

In our previous work [?, Theorem 7.6] we solved the factorization problem for unconditional
sums of Banach spaces with bases (e.g. `p or c0 sums). In that case, an appropriate linear
ordering of the array (e(k,j)) is a basis of the unconditional sum. Since Z is a non-separable
Banach space, the array (e(k,j)) cannot be reordered into a basis of Z. In particular, we lose
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the norm convergence of the series expansion of vectors in Z which are not in the c0-sum of
the Xk. Consequently, the arguments given in [?] are not applicable to the space Z.

Historically, the first factorization problem of that type appeared in the 1967 paper [?]
by Lindenstrauss, in which he proved that the space `∞ is prime. Later in 1982, Capon [?]
actually showed that whenever X has a symmetric basis, `∞(X) has the factorization prop-
erty. Bourgain proved in his 1983 work [?] that H∞ is primary, by solving a factorization
problem of `∞-sums of finite dimensional spaces (Bourgain’s localization method). The first
applications of Bourgain’s localization method appear shortly thereafter in works by the
third named author [?] and by Blower [?]. The cases Xk = Lp, 1 < p < ∞, k ∈ N and
Xk = H1, k ∈ N, were treated by Wark [?] in 2007 and the third named author [?] in 2012,
respectively. The `∞-sum of mixed-norm Hardy and BMO spaces and the `∞-sum of non-
separable Banach spaces with a subsymmetric weak∗ Schauder bases were recently treated
by the first named author in [?, ?].

In our previous paper [?], we developed an approach to factorization problems based on
two player games; the type of games we are referring to were first considered by Maurey,
Milman, Tomczak-Jaegermann in [?] and further developed by Odell-Schlumprecht [?] and
Rosendal [?] who coined the term infinite asymptotic games (see also [?, ?, ?]). Thereby,
we were able to unify the proofs of several known factorization results as well as provide
new ones. We exploited those infinite asymptotic games to define the concept of strategically
reproducible bases in Banach spaces.

In the present paper, we develop a two player game approach to solve the factorization ??
on Z if the array (e(k,j))k,j is uniformly asymptotically curved ; that is, if for every bounded
array (x(k,j))k,j for which the k-th row, (x(k,j))j, is a block basis of (e(k,j))j, for every k ∈ N,
we have

(1.2) lim
n

sup
k

∥∥∥ 1

n

n∑
j=1

x(k,j)

∥∥∥
Xk

= 0.

Our first main ?? isolates conditions on the array (e(k,j)) which guarantee that ?? has a
positive solution. Moreover, if we drop the restriction that the array (e(k,j))k,j is uniformly
asymptotically curved, then we were able to successfully treat the following

Problem 1.2. Does for every T : Z → Z with large diagonal with respect to (e(k,j)) exist an
infinite Γ ⊂ N such that the identity on ZΓ := `∞(Xk : k ∈ Γ) factor through T .

In the special case that Xk = X, k ∈ N, our solution to ?? implies a positive solution to
??.

2. Preliminaries

In this section, we introduce the necessary notation and concepts.

2.1. Review of strategically reproducible bases. Let X denote a Banach space and
S ⊂ X. We define [S] as the norm-closure of spanS, where spanS denotes the linear span

of S. Given sequences (xi) in X and (x̃i) in possibly another Banach space X̃, we say that
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(xi) and (x̃i) are impartially C-equivalent if for any finite choice of scalars (ai) ∈ c00 we have

1√
C

∥∥∥ ∞∑
i=1

aix̃i

∥∥∥ ≤ ∥∥∥ ∞∑
i=1

aixi

∥∥∥ ≤ √C∥∥∥ ∞∑
i=1

aix̃i

∥∥∥.
For a Banach space X we denote by cof(X) the set of cofinite-dimensional subspaces of X,
while cofw∗(X

∗) denotes the set of cofinite-dimensionl w∗-closed subspaces of X∗.
Let C > 0. Given an operator T : X → X, we say that the identity C-factors through

T if there are bounded linear operators A,B : X → X with ‖A‖‖B‖ ≤ C and I = ATB;
moreover, we say that the identity almost C-factors through T if it (C + ε)-factors through
T for all ε > 0. If (ej) is a basis for X and (e∗j) denotes its biorthogonal sequence and an

operator T on X satisfies infj
∣∣e∗j(Tej)∣∣ > 0, then we say that T has large diagonal (with

respect to (ej)). An operator T on X satisfying e∗m(Tej) = 0 whenever j 6= m, is called a
diagonal operator.

We recall some definitions from [?].

Definition 2.1. Let X be a Banach space with a normalized Schauder basis (ej) and its
biorthogonals (e∗j) ⊂ X∗.

(i) We say that (ej) has the factorization property if whenever T : X → X is a bounded lin-
ear operator with infj |e∗j(Tej)| > 0 then the identity of X factors through T . More pre-
cisely, for a map K : (0,∞)→ R+ we say that (ej) has the K(·)-factorization property
in X if for every δ > 0 and bounded linear operator T : X → X, with infj |e∗j(Tej)| ≥ δ
the identity IX on X almost K(δ)-factors through T , i.e., for every ε > 0 there are
operators A,B : X → X, with ‖A‖‖B‖ ≤ K(δ) + ε and IX = BTA.

(ii) We say that the basis (ej) has the uniform diagonal factorization property in X if
for every δ > 0 there exists K(δ) > 0 so that for every bounded diagonal operator
T : X → X with infj

∣∣e∗j(Tej)∣∣ ≥ δ the identity almost K(δ)-factors through T . If
we wish to be more specific we shall say that (ej) has the K(δ)-diagonal factorization
property.

Remark 2.2. First, we remark that if (ej) is unconditional, then it satisfies ?? (??). Sec-
ondly, recall that by [?, Remark 3.11] we have 1/δ ≤ K(δ) ≤ K(1)/δ.

Also recall the following definition of strategic reproducibility [?] of a Banach space X with
a basis (ej).

Definition 2.3. Let X be a Banach space with a normalized Schauder basis (ej) and fix
positive constants C ≥ 1, and η > 0.

Consider the following two-player game between Player I and Player II:

Pregame: Before the first turn Player I is allowed to choose at the beginning of the
game a partition of N = N1 ∪N2.

Turn n, Step 1 : Player I chooses ηn > 0, Wn ∈ cof(X), and Gn ∈ cofw∗(X
∗),

Turn n, Step 2 : Player II chooses in ∈ {1, 2}, a finite subset En of Nin and sequences

of non-negative real numbers (λ
(n)
i )i∈En , (µ

(n)
i )i∈En satisfying

1− η <
∑
i∈En

λ
(n)
i µ

(n)
i < 1 + η.
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Turn n, Step 3 : Player I chooses (ε
(n)
i )i∈En in {−1, 1}En .

We say that Player II has a winning strategy in the game Rep(X,(ei))
(C, η) if he can force the

following properties on the result:
For all j ∈ N we set

xj =
∑
i∈Ej

ε
(j)
i λ

(j)
i ei and x∗j =

∑
i∈Ej

ε
(j)
i µ

(j)
i e∗i

and demand:

(i) the sequences (xj) and (ej) are impartially (C + η)-equivalent,
(ii) the sequences (x∗j) and (e∗j) are impartially (C + η)-equivalent,

(iii) for all j ∈ N we have dist(xj,Wj) < ηj, and
(iv) for all j ∈ N we have dist(x∗j , Gj) < ηj.

We say that (ej) is C-strategically reproducible in X if for every η > 0 Player II has a winning
strategy in the game Rep(X,(ej))

(C, η).

It was shown in [?, Remark 3.5] that in the case that (ej) is shrinking and unconditional,
then ?? is equivalent to a considerably simpler formulation.

?? was used in [?] to prove the following factorization result:

Theorem 2.4 ([?, Theorem 3.12]). Let X be a Banach space with a normalized Schauder
basis (ej) that has a basis constant λ. Assume also that

(i) the basis (ej) has the K(δ)-diagonal factorization property and
(ii) the basis (ej) is C-strategically reproducible in X.

Then (ej) has the λC2K(δ)-factorization property.

2.2. Dyadic Hardy spaces and BMO. We now turn to defining the dyadic Hardy spaces,
BMO and VMO.

For a more in depth discussion of the biparameter Hardy spaces, we refer to [?]; see also [?].
Let D denote the collection of dyadic intervals given by

D = {[k2−n, (k + 1)2−n) : n, k ∈ N0, 0 ≤ k ≤ 2n − 1}.
For I ∈ D we let |I| denote the length of the dyadic interval I. Let hI be the L∞-normalized
Haar function supported on I ∈ D; that is, for I = [a, b) and c = (a+b)/2, we have hI(x) = 1
if a ≤ x < c, hI(x) = −1 if c ≤ x < b, and hI(x) = 0 otherwise. For 1 ≤ p <∞, the Hardy
space Hp is the completion of

span{hI : I ∈ D}
under the square function norm

(2.1)
∥∥∥∑
I∈D

aIhI

∥∥∥
Hp

=

(∫ 1

0

(∑
I∈D

a2
Ih

2
I(x)

)p/2
dx

)1/p

.

The Haar system (hI)I∈D is a 1-unconditional basis of Hp, and thus gives rise to a canonical
lattice structure. Finally, we define VMO as the norm closure of (hI)I∈D inside BMO, the
dual of H1, where we canonically identify hI with the linear functional f 7→

∫
hI(x)f(x)dx.

Next, let X denote any Banach space. We will now define the vector-valued Banach
spaces Hp[X], 1 ≤ p < ∞, BMO[X] and VMO[X]. Put Dn = {I ∈ D : |I| = 2−n},
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Dn = {I ∈ D : |I| ≥ 2−n}, n ≥ 0 and let (rI) denote a sequence of independent Rademacher
functions. We define

(2.2) Hp[X] =
{
f ∈ L1(X) : ‖f‖Hp[X] <∞

}
,

where for every f =
∑

I∈D fIhI ∈ L1(X), fI ∈ X, I ∈ D, the norm is given by

‖f‖Hp[X] =

∫ 1

0

∥∥∥∑
I∈D

rI(t)fIhI

∥∥∥
Lp(X)

dt.

Of special interest for us is the case p = 1. Müller and Schechtman observed that Davis’
inequality holds for Banach spaces with the UMD property [?, Theorem 6], i.e., there exists
a constant C > 0 depending only on the UMD-constant of the Banach space X such that

C−1‖f‖H1[X] ≤
∫ 1

0

sup
n
‖En(f)‖Xdt ≤ C‖f‖H1[X],

where En denotes the conditional expectation with respect to Dn. For a detailed presentation
of UMD spaces, we refer to Pisier’s recent monograph [?].

We now define BMO[X]:

BMO[X] =
{
f ∈ L1(X) : ‖f‖BMO[X] <∞

}
,

where for every f =
∑

I∈D fIhI ∈ L1(X), fI ∈ X, I ∈ D, the norm is given by

‖f‖2
BMO[X] = sup

I∈D

1

|I|

∫
I

∥∥∥∑
J⊂I

fJhJ(x)
∥∥∥2

X
dx.

Taking Davis’ inequality into account, we observe that for UMD spaces X Bourgain [?,
Theorem 12] proved that the dual of H1[X] is BMO[X∗]. Finally, we define VMO[X] as the
norm closure of span{xIhI : xI ∈ X, I ∈ D} in BMO[X].

Moreover, let R = {I × J : I, J ∈ D} be the collection of dyadic rectangles contained in
the unit square, and set

hI,J(x, y) = hI(x)hJ(y), I × J ∈ R, x, y ∈ [0, 1).

For 1 ≤ p, q <∞, the mixed-norm Hardy space Hp(Hq) is the completion of

span{hI,J : I × J ∈ R}
under the square function norm

(2.3) ‖f‖Hp(Hq) =

(∫ 1

0

(∫ 1

0

(∑
I,J

a2
I,Jh

2
I,J(x, y)

)q/2
dy
)p/q

dx

)1/p

,

where f =
∑

I,J aI,JhI,J . The system (hI,J)I×J∈R is a 1-unconditional basis of Hp(Hq), called
the bi-parameter Haar system. Note that in view of the Khinchin-Kahane inequality, the
norms in the spaces Hp(Hq) and Hp[Hq] are equivalent for 1 ≤ p, q <∞; to be precise, the
identity operator J : Hp(Hq)→ Hp[Hq] satisfies

‖J‖ · ‖J−1‖ ≤ C(p, q).

We refer to [?, Theorem 4, p.20].
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First note that Hp, 1 < p < ∞ is a UMD space; the UMD constant depends only on p.
We will now recall that the dual of VMO(Hp), 1 < p <∞, is H1(Hp′), where p′ = p

p−1
.

Theorem 2.5. Let 1 < p < ∞, define p′ = p
p−1

and J : H1(Hp′) → (VMO(Hp))∗ by f 7→
(g 7→ 〈f, g〉). Then J is an isomorphism with ‖J‖ · ‖J−1‖ ≤ C(p); hence,

(
VMO(Hp)

)∗
=

H1(Hp′).

Proof. Define J : H1(Hp′) → (VMO(Hp))∗ by f 7→ (g 7→ 〈f, g〉). First, we observe that by
Bourgain’s vector-valued version of Fefferman’s inequality [?], we know that ‖J‖ ≤ C(p).
Secondly, let f ∈ H1(Hp′) be given as the finite linear combination f =

∑
I∈D fIhI , fI ∈

Hp′ . Define the family of functions ft =
∑

I∈D rI(t)fIhI , where the (rI) are independent
Rademacher functions. Since∫ 1

0

‖ft‖L1(Hp′ )dt ≥ c(p)‖f‖H1(Hp′ ),

we find a t0 ∈ [0, 1] such that

‖ft0‖L1(Hp′ ) ≥ c(p)‖f‖H1(Hp′ ).

Next, we choose g ∈ L∞(Hp) with ‖g‖L∞(Hp) = 1 such that 〈ft0 , g〉 = ‖ft0‖L1(Hp′ ). Since, f

is a finite linear combination of hI ’s, so is g, and we write g =
∑

I∈D gIhI . Now, we define
h =

∑
I∈D rI(t0)gIhI and note

〈f, h〉 = 〈ft0 , g〉 = ‖ft0‖L1(Hp′ ) ≥ c(p)‖f‖H1(Hp′ ).

Taking into account that Hp, 1 < p <∞ is a UMD space, we observe

‖h‖BMO(Hp) ≤ C(p)‖g‖BMO(Hp) ≤ 4C(p)‖g‖L∞(Hp) = 4C(p).

We summarize the above calculation

‖Jf‖(VMO(Hp))∗ ≥ c(p)‖f‖H1(Hp′ ), f ∈ H1(Hp′).

Finally, let L : VMO(Hp) → R denote any bounded linear functional. Define the condi-
tional expectation En by

En(
∑
I,J∈D

aI,JhI,J) =
∑

I,J∈Dn−1

aI,JhI,J

and note that En is a contraction on BMO(Hp). Next, we now define h =
∑

I,J∈D
L(hI,J )

|I×J | hI,J
and calculate

‖h‖H1(Hp′ ) = sup
n
‖En(h)‖H1(Hp′ ) ≤ C(p) sup

n
sup
{
〈En(h), g〉 : ‖g‖BMO(Hp) ≤ 1

}
= C(p) sup

n
sup
{ ∑
I,J∈Dn

gI,JL(hI,J) : ‖g‖BMO(Hp) ≤ 1
}

= C(p) sup
n

sup
{
L
(
En(g)

)
: ‖g‖BMO(Hp) ≤ 1

}
≤ C(p)‖L‖.

It follows that L(f) = (Jh)(f), f ∈ VMO(Hp). �
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Remark 2.6. Later, in ??, we will show that H1(Hp′) does not contain c0. This observation
allows us to give another proof of ??, which we will discuss below. Since H1(Hp′) has a
1-unconditional basis and it does not contain c0, we obtain by James characterization [?,
Lemma 1] (see also [?, Theorem 1.c.10]) that the biparameter Haar basis of H1(Hp′) is bound-
edly complete. By 1-unconditionality H1(Hp′) is isometrically isomorphic to the dual of the
(H1(Hp′))∗-norm-closed linear span of {hI,J : I, J ∈ D} in (H1(Hp′))∗ [?, Theorem 1.b.4].
Hence, H1(Hp′) is isomorphic to the dual of VMO(Hp) = [hI,J : I, J ∈ D] ⊂ BMO(Hp) and
the isomorphism constant between them depends just on the isomorphism constant between
H1(Hp)∗ and BMO(Hp).

Proposition 2.7. Let X denote a Banach space with a normalized shrinking basis (ej) and
assume that (e∗j/‖e∗j‖) is C-strategically reproducible in X∗. Then (ej) is C-strategically
reproducible in X.

Proof. For the sake of simplicity, we assume that (ej) is bimonotone (and thus, ‖e∗j‖ =
‖ej‖ = 1); the statement still holds without that assumption and can be proved by slightly
modifying the argument given below.

We are now describing a winning strategy for Player II, assuming he has a winning strategy
in X∗. Assume that in Turn n Step 1 Player I picks Wn ∈ cof(X) and Gn ∈ cofw∗(X

∗). Using

his winning strategy in X∗ for the spaces G̃n = Wn
w∗ ∈ cofw∗(X

∗∗) and W̃n = Gn ∈ cof(X∗),
Player II completes Step 2 of Turn n. Obviously, (??), (??) and (??) are satisfied, while (??)

follows from the fact that dist(xn,Wn
w∗

) = dist(xn,Wn), which is a consequence of the Hahn-
Banach theorem. �

Remark 2.8. Using ??, we are able to deduce the following two assertions. By [?, Theo-
rem 5.2] the Haar basis (hI) is strategically reproducible in H1, and hence is also strategically
reproducible in VMO. Moreover, the biparameter Haar system (hI,J) in VMO(Hp) is Cp-
strategically reproducible for a constant Cp > 0, which satisfies supp0≤p≤p1

Cp ≤ Cp0,p1 <∞
whenever 1 < p0 ≤ p1 <∞ [?, Theorem 5.3].

Definition 2.9. Let X be a Banach space with a basis (en). We say that X is asymptotically
curved (with respect to (ej)) if for every bounded block basis (xn)

lim
n→∞

1

n

∥∥∥ n∑
j=1

xn

∥∥∥ = 0.

As already defined in the introduction we call the sequence of Banach spaces (Xk) uni-
formly asymptotically curved with respect to the array (e(k,j)), if for every bounded array
(x(k,j))k,j, for which (x(k,j))j is for every k ∈ N a block basis of (e(k,j))j, we have

lim
n

sup
k

∥∥∥ 1

n

n∑
j=1

x(k,j)

∥∥∥
Xk

= 0.

The following special case of Proposition 3 in [?] is well known. It can also be easily shown
directly.
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Lemma 2.10. Let X denote a Banach space with a Schauder basis (ej), and let 1 ≤ r ≤ ∞,
1 ≤ s ≤ ∞ be such that 1

r
+ 1

s
= 1. Assume that each block sequence (x∗j) of the coordinate

functionals (e∗j) of (ej) satisfies the lower r-estimate∥∥∥ n∑
j=1

x∗j

∥∥∥
X∗
≥ c
( n∑
j=1

‖x∗j‖rX∗
)1/r

, n ∈ N,

for some constant c > 0 independent of n. Then each block sequence (xj) of (ej) satisfies the
upper s-estimate ∥∥∥ n∑

j=1

xj

∥∥∥
X
≤ 1

c

( n∑
j=1

‖xj‖sX
)1/s

, n ∈ N.

The following Lemma is proved easily.

Lemma 2.11. Let 1 < s < ∞. Assume that the array (ek,j)k,j is such that (ek,j)j satisfies
an upper s-estimate for each k, where the constant C is independent of k. Then the array
(ek,j)k,j is uniformly asymptotically curved.

Proposition 2.12. Let 1 ≤ p, q < ∞. Then every block sequence of the biparameter Haar
system in Hp(Hq) satisfies the lower max(2, p, q)-estimate with constant 1 and the upper
min(2, p, q)-estimate also with constant 1.

Proof. Before we begin with the actual proof, we define the biparameter square function S
by

S
(∑
I,J∈D

aI,JhI,J

)
=
(∑
I,J∈D

a2
I,Jh

2
I,J

)1/2

.

Let (fi) denote a block sequence of the biparameter Haar system. Note that

(2.4)
∥∥∥ n∑
j=1

fj

∥∥∥
Hp(Hq)

=

(∫ (∫ ( n∑
j=1

(
Sfj
)2
)q/2

dy
)p/q

dx

)1/p

.

First, we will show that Hp(Hq) satisfies the upper min(2, p, q)-estimate with constant 1.

Case p ≥ 2, q ≥ 2: Since q/2 ≥ 1, we reinterpret (??) and use Minkowski’s inequality
to obtain∥∥∥ n∑

j=1

fj

∥∥∥
Hp(Hq)

=

(∫ ∥∥∥ n∑
j=1

(
Sfj
)2
∥∥∥p/2
Lq/2(y)

dx

)1/p

≤
(∫ ( n∑

j=1

∥∥(Sfj)2∥∥
Lq/2(y)

)p/2
dx

)1/p

=

(∫ ( n∑
j=1

(∫ (
Sfj
)q
dy
)2/q)p/2

dx

)1/p

=
∥∥∥ n∑
j=1

(∫ (
Sfj
)q
dy
)2/q∥∥∥1/2

Lp/2(x)

≤
( n∑
j=1

∥∥∥(∫ (Sfj)qdy)2/q∥∥∥
Lp/2(x)

)1/2

=
( n∑
j=1

‖fj‖2
Hp(Hq)

)1/2

.

Case p ≤ 2, q ≥ 2: The first step is the same as in the previous case, i.e., we have∥∥∥ n∑
j=1

fj

∥∥∥
Hp(Hq)

≤
(∫ ( n∑

j=1

(∫ (
Sfj
)q
dy
)2/q)p/2

dx

)1/p

.
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Since p/2 ≤ 1, we obtain∥∥∥ n∑
j=1

fj

∥∥∥
Hp(Hq)

≤
(∫ ( n∑

j=1

(∫ (
Sfj
)q
dy
)2/q)p/2

dx

)1/p

≤
( n∑
j=1

∫ (∫ (
Sfj
)q
dy
)p/q

dx

)1/p

=
( n∑
j=1

∥∥fj∥∥pHp(Hq)

)1/p

.

Case p ≥ 2, q ≤ 2: Since q/2 ≤ 1, (??) yields∥∥∥ n∑
j=1

fj

∥∥∥
Hp(Hq)

≤
(∫ ( n∑

j=1

∫ (
Sfj
)q
dy
)p/q

dx

)1/p

=
∥∥∥ n∑
j=1

∫ (
Sfj
)q
dy
∥∥∥1/q

Lp/q(x)

≤
( n∑
j=1

(∫ (∫ (
Sfj
)q
dy
)p/q

dx
)q/p)1/q

=
( n∑
j=1

‖fj‖qHp(Hq)

)1/q

.

Case p ≤ 2, q ≤ 2: The first step is similar to the previous case, i.e.,

(2.5)
∥∥∥ n∑
j=1

fj

∥∥∥
Hp(Hq)

≤
(∫ ( n∑

j=1

∫ (
Sfj
)q
dy
)p/q

dx

)1/p

.

If p ≥ q, we use Minkowski’s inequality in Lp/q and obtain∥∥∥ n∑
j=1

fj

∥∥∥
Hp(Hq)

≤
∥∥∥∥ n∑
j=1

∥∥∥∫ (Sfj)qdy∥∥∥
Lp/q(x)

∥∥∥∥1/q

=
( n∑
j=1

‖fj‖qHp(Hq)

)1/q

.

If p ≤ q, (??) yields∥∥∥ n∑
j=1

fj

∥∥∥
Hp(Hq)

≤
( n∑
j=1

∫ (∫ (
Sfj
)q
dy
)p/q

dx

)1/p

=
( n∑
j=1

‖fj‖pHp(Hq)

)1/p

.

Secondly, we will prove that Hp(Hq) satisfies the lower max(2, p, q)-estimate with constant
1.

Case p ≥ q ≥ 2: Since q/2 ≥ 1, we obtain from (??)

(2.6)
∥∥∥ n∑
j=1

fj

∥∥∥
Hp(Hq)

≥
(∫ ( n∑

j=1

∫ (
Sfj
)q
dy
)p/q

dx

)1/p

.

Using p/q ≥ 1 yields∥∥∥ n∑
j=1

fj

∥∥∥
Hp(Hq)

≥
( n∑
j=1

∫ (∫ (
Sfj
)q
dy
)p/q

dx

)1/p

=
( n∑
j=1

‖fj‖pHp(Hq)

)1/p

.

Case q ≥ p ≥ 2: Using (??) and Minkowski’s inequality yields∥∥∥ n∑
j=1

fj

∥∥∥
Hp(Hq)

≥
(∫ ( n∑

j=1

∫ (
Sfj
)q
dy
)p/q

dx

)1/p

=

(∫ ∥∥∥∥(∫ (Sfj)qdy)p/q∥∥∥∥
`q/p(j)

dx

)1/p
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≥
(∥∥∥∥∫ (∫ (Sfj)qdy)p/qdx∥∥∥∥

`q/p(j)

)1/p

=
( n∑
j=1

‖fj‖qHp(Hq)

)1/q

.

Case p ≥ 2 ≥ q: By (??) and Minkowski’s inequality, and since 2/q ≥ 1, p/2 ≥ 1 we
obtain∥∥∥ n∑

j=1

fj

∥∥∥
Hp(Hq)

=

(∫ (∫ ∥∥∥(Sfj)q∥∥∥
`2/q(j)

dy
)p/q

dx

)1/p

≥
(∫ ∥∥∥∫ (Sfj)qdy∥∥∥p/q

`2/q(j)
dx

)1/p

=

(∫ ( n∑
j=1

(∫ (
Sfj
)q
dy
)2/q)p/2

dx

)1/p

≥
( n∑
j=1

∫ (∫ (
Sfj
)q
dy
)p/q

dx

)1/p

=
( n∑
j=1

‖fj‖pHp(Hq)

)1/p

.

Case p, q ≤ 2: The first step is the same as in the previous case, i.e.,∥∥∥ n∑
j=1

fj

∥∥∥
Hp(Hq)

≥
(∫ ( n∑

j=1

(∫ (
Sfj
)q
dy
)2/q)p/2

dx

)1/p

=

(∫ ∥∥∥(∫ (Sfj)qdy)p/q∥∥∥
`2/p(j)

dx

)1/p

Here, 2/p ≥ 1, hence, by Minkowski’s inequality, we obtain∥∥∥ n∑
j=1

fj

∥∥∥
Hp(Hq)

≥
(∥∥∥∫ (∫ (Sfj)qdy)p/qdx∥∥∥

`2/p(j)

)1/p

=
( n∑
j=1

‖fj‖2
Hp(Hq)

)1/2

.

�

Remark 2.13. Let 1 < r, s < ∞, then the identity operator provides an isomorphism
between Hr(Hs) and Lr(Ls) (see Capon [?]); hence, by ??, each block sequence with respect
to the biparameter Haar system in Lr(Ls) satisfies an upper min(r, s)-estimate with constant
C = Cr,s. Moreover, supp0≤r,s≤p1

Cr,s ≤ Cp0,p1 <∞ whenever 1 < p0 ≤ p1 <∞.

3. Simultaneous strategical reproducibility and statement of the main
results

In order to state our main results, we will now state precisely the necessary definitions.
Recall that we defined Z as the space

(3.1) Z = `∞(Xk : k ∈ N) =
{

(xk) : xk ∈ Xk, k∈N, ‖(xk)‖ = sup
k∈N
‖xk‖Xk <∞

}
.

We also put

Y = c0(Xk : k ∈ N) =
{

(xk) : xk ∈ Xk, k∈N, lim
k→∞
‖xk‖Xk = 0

}
.

If for some space X we have Xk = X, for all k ∈ N, we will write `∞(X) and c0(X) instead
of `∞(Xk : k ∈ N) and c0(Xk : k ∈ N).
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For x = (xk) in Z (or Y ) we call the set supp(x) = {k ∈ N : xk 6= 0} the support of x in
Z (or Y ).

For N ⊂ N, and x = (xk) ∈ Z we let PN(x) ∈ Z be the projection of x on the coordinates
in N ,i.e.,

(3.2) PN(x) = (yk), with yk =

{
xk if k ∈ N , and

0 if k 6∈ N ,

and we put ZN := PN(Z) which is isometrically isomorphic to `∞(Xk : k ∈ N) and will be
identified with that space. For x = (xk) ∈ Z and k ∈ N we put Pk(x) = xk. In particular we
identify Xk with its image under the canonical embedding into Z. We also identify X∗k in the
canonical way as a subspace of Z∗ (x∗ ∈ X∗k is acting on the k-component of z̄ = (zk) ∈ Z).
Note that X∗k is thus a w∗-closed subspace of Z∗. For k, j ∈ N we also consider e(k,j) to be
an element of Z, and e∗(k,j) to be an element of Z∗ in the obvious way.

Convention 3.1. We fix from now on a bijective map ν(·, ·) : N2 → N, (k, j) 7→ ν(k, j) with
the property that for any i, j, k ∈ N we have ν(k, i) < ν(k, j) if and only if i < j. We denote
the inverse map by (κ, ι) : N → N2, n 7→ (κ(n), ι(n)). We order the array (e(k,j) : k, j ∈ N)
into a sequence (en), by putting en = e(κ(n),ι(n)) and e∗n = e∗(κ(n),ι(n)). More generally, whenever

(x(k,j))j is a sequence in Xk, k ∈ N, then we order the array (x(k,j)) into the sequence (xn)
defined by xn = x(κ(n),ι(n)); we do the same for (x∗(k,j)).

Let P denote the product topology on Z, i.e., the coarsest topology such that all the Pk,
k ∈ N, are continuous. Let z(j) ∈ Z, j ∈ N, and z ∈ Z. Then (z(j)) converges to z with
respect to P , if and only if

lim
j→∞

Pkz
(j) = Pkz, for all k∈N.

Whenever a sequence converges in Z, we implicitly refer to convergence with respect to the
product topology P . Whenever a sequence converges in some Xk, we refer to the norm
topology in Xk.

Remark 3.2. For each k∈N, assume (e(k,j))j has basis constant λ ≥ 1. Let
∑∞

n=1 anen ∈ Y ,
where the series converges in the relative topology P|Y . Then the series

∑∞
n=1 anen converges

in the norm topology of Y .

We now consider the following “simultaneous version” of the game described in [?].

Definition 3.3. Let C ≥ 1. We say that the array (e(k,j)) is C-simultaneously strategically
reproducible in Z if for every k ∈ N (e(k,j))j is C-strategically reproducible in Xk.

Remark 3.4. Note that we can also describe simultaneous strategic reproducibility in terms
of the following two-player game: The array (e(k,j)) is C- simultaneously strategically re-
producible if and only if for every η > 0, Player II has a winning strategy for the game
Rep(Z,(e(k,j))))

(C, η) between Player I and Player II:

Assume the space Z, PN , (en : n ∈ N) and (e∗n : n ∈ N), are defined as in (??), (??) and
in ??.

Pregame: Before the first turn Player I is allowed to choose a partition of N = N1∪N2.

For k ∈ N, and r = 1, 2 let N
(k)
r = {ν(k, j) : j ∈ N} ∩Nr.
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Turn n, Step 1 : Player I chooses ηn > 0, Gn ∈ cofw∗(X
∗
κ(n)), and Wn ∈ cof(Xκ(n)).

Turn n, Step 2 : Player II chooses in ∈ {1, 2}, a finite subset En of N
(κ(n))
in

and sequences

of non-negative real numbers (λ
(n)
i )i∈En , (µ

(n)
i )i∈En satisfying

1− η <
∑
i∈En

λ
(n)
i µ

(n)
i < 1 + η.

Turn n, Step 3 : Player I chooses (ε
(n)
i )i∈En in {−1, 1}En .

We say that Player II has a winning strategy in the game RepZ,(e(k,j))(C, η) if he can force

the following properties on the result:
For all k, j ∈ N we set n = ν(k, j) and put

xn = x(k,j) =
∑
i∈En

ε
(n)
i λ

(n)
i e(k,i) and x∗n = x∗(k,j) =

∑
i∈En

ε
(n)
i µ

(n)
i e∗(k,i)

and demand:

(i) the sequences (x(k,j))j and (e(k,j))j are impartially (C + η)-equivalent for each k ∈ N;
(ii) the sequences (x∗(k,j))j and (e∗(k,j))j are impartially (C + η)-equivalent for each k ∈ N;

(iii) for all n ∈ N we have dist(x∗n, Gn) < ηn;
(iv) for all n ∈ N we have dist(xn,Wn) < ηn.

Completely analogous to ??, we define the corresponding notions in Z, below.

Definition 3.5. Let T : Z → Z be an operator.

(i) We call T a diagonal operator on Z, if e∗m(Ten) = 0, whenever m 6= n.
(ii) We say that T has a large diagonal if infn

∣∣e∗n(Ten)∣∣ > 0.

We are now in the position to state our two main results.

Theorem 3.6. Assume that there are C, λ ≥ 1, and a map K : (0,∞)→ (0,∞) so that

(i) the basis constant of (e(k,j))j, is at most λ in Xk, for each k ∈ N;
(ii) (e(k,j))j has the K-diagonal factorization property in Xk, for each k ∈ N;

(iii) the array (e(k,j))k,j is C-simultaneously strategically reproducible in Z.

Let T : Z → Z be bounded and linear, with

δ = inf
k,j∈N

∣∣e∗(k,j)(Te(k,j))
∣∣ > 0.

Then for each sequence of infinite subsets (Ωl) of N, there is an infinite Γ ⊂ N so that Γ∩Ωl

is infinite for all l ∈ N and the identity on ZΓ λCK(δ)-factors through T .

Remark 3.7. Note, that we did not simply state in ?? that there is an infinite Γ so that the
identity on ZΓ factors through T . However, we show more: additionally we require that the
intersection of Γ with any prespecified sequence of infinite sets Ωl ⊂ N , l ∈ N, also has to
stay infinite. This means that if an infinite number of elements of the spaces Xn belong to a
certain category, then also the spaces in an infinite subset of Γ will belong to that category.
In ?? we will provide an application of that additional condition on Γ.
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Corollary 3.8. Assume that X is a Banach space with a normalized basis which is C-
strategically reproducible and has the K-diagonal factorization property for some K : (0,∞)→
(0,∞). Define e(k,j) to be the j-th basis element of the k-th component in `∞(X), for k, j∈N.

Then the array (e(k,j))k,j is simultaneously C-strategically reproducible in Z = `∞(X), and
the identity on Z factors through every operator T : Z → Z with large diagonal.

The following result describes a situation where it is not necessary, like in ??, to pass to
an infinite subset Γ of N.

Theorem 3.9. Assume the array (e(k,j)) is uniformly asymptotically curved (see (??)), and
furthermore, that there are C, λ ≥ 1, and a map K : (0,∞)→ (0,∞) so that

(i) the basis constant of (e(k,j))j, is at most λ in Xk, for each k ∈ N;
(ii) (e(k,j))j has the K-diagonal factorization property in Xk, for each k ∈ N;

(iii) the array (e(k,j))k,j is simultaneously C-strategically reproducible in Z.

Let T : Z → Z be bounded and linear, with

δ = inf
k,j∈N

∣∣e∗(k,j)(Te(k,j))
∣∣ > 0.

Then the identity on Z λCK(δ)-factors through T .

4. Factorization through diagonal operators

The main purpose of this section is to prove the pivotal ??.

Lemma 4.1. Let S : Z → Z be a bounded operator, and let (Ωk) denote a sequence of infinite
subsets of N. For any ρ > 0 there is an infinite Γ ⊂ N so that

Γ ∩ Ωk is infinite for all k ∈ N,
and ∥∥PΓ ◦ S|ZΓ

∥∥ ≤ 2
∥∥S|Y ∥∥+ ρ.

Proof. Let l ∈ N. We first observe that for a fixed x∗ ∈ X∗l , and for any infinite set Λ ⊂ N,
such that Λ ∩ Ωk is infinite for all k ∈ N, there is an infinite Λ′ ⊂ Λ so that Λ′ ∩ Ωk is
still infinite, for all k ∈ N, and ‖x∗ ◦ Pl ◦ S ◦ PΛ′‖ ≤ ρ. Indeed, if that were not true we
could choose for any n ∈ N a partition of Λ into n infinite subsets Λ1,Λ2, . . .Λn such that
Λj ∩ Ωk is infinite, for all 1 ≤ j ≤ n, k ∈ N, and find x1, x2, . . . xn in Z with ‖xj‖ ≤ 1,
supp(xj) ⊂ Λj and x∗

(
Pl ◦ S(xj)

)
≥ ρ. But then we would have for x =

∑n
j=1 xj that

‖x‖ ≤ 1 and x∗
(
Pl ◦S(x)

)
≥ nρ, which is impossible assuming that n is chosen large enough.

We now choose a sequence (y∗j : j ∈ N) in X∗l with ‖y∗j‖ = 1 which norms the elements
of Xl. Using our previous observation we find infinite sets Λ1 ⊃ Λ2 ⊃ . . ., so that for all
j, k ∈ N theset Λj ∩ Ωk is infinite and∥∥y∗j ◦ Pl ◦ S ◦ PΛj

∥∥ ≤ ρ.

Then choose a diagonal set Γ′ = {λj : j ∈ N} of the sets Γj, j ∈ N, which has furthermore
the property that Γ′ ∩ Ωk is infinite for all k ∈ N.

Now, we can choose for a given ε > 0 and an x = (xk) ∈ Z a number j ∈ N for which

y∗j
(
Pl ◦ S ◦ PΓ′(x)

)
≥ (1− ε)

∥∥Pl ◦ S ◦ PΓ′(x)
∥∥
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and thus,

(1− ε)‖Pl◦S ◦ PΓ′(x)
∥∥

≤
∣∣y∗j ◦ Pl ◦ S ◦ PΓ′\Γj(x)

∣∣+
∣∣y∗j ◦ Pl ◦ S ◦ PΓj ◦ PΓ′(x)

∣∣
≤ ‖Pl ◦ S|Y ‖+ ‖y∗j ◦ Pl ◦ S ◦ PΓj‖ ≤ ‖S|Y ‖+ ρ.

Since ε > 0 was arbitrary, we deduce that∥∥Pl ◦ S|ZΓ′
‖ ≤ ‖S|Y

∥∥+ ρ.

Let (kj) ⊂ N be a sequence in which every k ∈ N appears infinitely often. Starting by
letting Γ0 = N and γ1 ∈ Ωk1 , we can apply our observation and recursively choose infinite
sets Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ . . ., and γ1 < γ2 < . . . so that

Γj ∩ Ωk is infinite for all j, k ∈ N, γj ∈ Γj−1 ∩ Ωkj and
∥∥Pγj ◦ S|ZΓj

‖ ≤ ‖S|Y
∥∥+ ρ.

Finally, letting Γ = {γj : j ∈ N}, we deduce that

‖PΓS|ZΓ
‖ = sup

j∈N
‖PγjS|ZΓ

‖

≤ sup
j∈N

(∥∥PγjS|Z{γ1,γ2,...γj}

∥∥+
∥∥PγjS|ZΓj

∥∥) ≤ 2
∥∥S|Y ∥∥+ ρ,

which proves our claim. �

Lemma 4.2. We assume that the array (e(k,j))k,j is uniformly asymptotically curved. Let
z∗ ∈Z∗ and η > 0. Then there exists (mk) ⊂ N so that for every w = (wk) ∈ Z, ‖w‖ ≤ 1
with wk ∈ [e(k,j) : j ≥ mk], k ∈ N, it follows that |z∗(w)| ≤ η. In other words, letting
Wk = [e(k,j) : j ≥ mk] it follows that

‖z∗|`∞(Wk:k∈N)‖ ≤ η.

Proof. Assume that our claim is not true for some z∗ ∈ Z∗ and η > 0. Then we can choose

inductively for every n ∈ N, sequences (m
(n)
k )k∈N ⊂ N, and zn = (w

(n)
k )k ∈ BZ , so that

m
(n−1)
k < m

(n)
k for all k ∈ N (with m

(0)
k = 0),(4.1)

w
(n)
k ∈ [e(k,j) : m

(n−1)
k < j ≤ m

(n)
k ], for all k ∈ N, and(4.2)

z∗((w
(n)
k )k) > η/2.(4.3)

Then for n ∈ N define

un =
( 1

n

n∑
m=1

w
(m)
k : k ∈ N

)
∈ Z,

It follows from our assumption on the spaces Xk that limn ‖un‖Z = 0, but on the other hand
we have

z∗
(
un
)

=
1

n

n∑
m=1

z∗
(
(w

(n)
k )k

)
> η/2

which for large enough n leads to a contradiction. �
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Let (ej) denote a basic sequence in a Banach space X. We say that a sequence (xj) in X
is a perturbation of a block basic sequence of (ej) if there exists a block basis sequence (x̃j)
of (ej) such that

∑∞
j=1 ‖xj − x̃j‖X <∞.

Notation 4.3. Let λ ≥ 1 and assume the basis constant of (e(k,j))j, is not larger than λ, for
all k ∈ N. Assume that for each k ∈ N, (x(k,j))j is a sequence in Xk and that (x∗(k,j))j is a

perturbation of a block basic sequence of (e∗(k,j))j in X∗k . Moreover, assume that

(i) (x(k,j))j and (e(k,j))j are impartially C-equivalent, for all k ∈ N;
(ii) (x∗(k,j))j and (e∗(k,j))j are impartially C-equivalent, for all k ∈ N;

(iii) 1− η < x∗(k,i)(x(k,i)) < 1 + η, for all k, i ∈ N.

Then for each k, j∈N, we define

Ak : Xk → Xk, Ake(k,j) = x(k,j),

Bk : Xk → Xk, Bkx =
∞∑
j=1

x∗(k,j)(x)e(k,j).

and their respective vector operator version

A : Z → Z, A
(
(zk)k

)
=
(
Akzk

)
k
,

B : Z → Z, B
(
(zk)k

)
=
(
Bkzk

)
k
.

Remark 4.4. In view of our hypothesis, the operators Ak, Bk, k ∈ N and consequently A,
B in ?? are well defined and satisfy ‖A‖ ≤

√
C and ‖B‖ ≤ λ

√
C. Indeed, for k ∈ N we have

sup
x∈Xk,‖x‖≤1

‖
∑
j

x∗j(x)ek,j‖ = sup
x∈Xk‖x‖≤1
x∗∈X∗k‖x

∗‖≤1

∑
j

x∗j(x)x∗(ek,j) = sup
x∈Xk,‖x‖≤1
x∗∈X∗k‖x

∗‖≤1

(∑
j

x∗(ek,j)x
∗
j

)
(x)

= sup
x∗∈X∗k ,‖x∗‖≤1

∥∥∥∑
j

x∗(ek,j)x
∗
j

∥∥∥ ≤ λ sup
x∗∈span(e∗k,j),‖x∗‖≤1

∥∥∥∑
j

x∗(ek,j)x
∗
j

∥∥∥
≤ λ
√
C sup

x∗∈span(e∗k,j),‖x∗‖≤1

∥∥∥∑
j

x∗(ej)e
∗
k,j

∥∥∥ = λ
√
C.

Moreover, for each k, i ∈ N we have

(4.4) BTA(e(k,i)) =
( ∞∑
j=1

x∗(l,j)(Tx(k,i))e(l,j) : l ∈ N
)
∈ Z
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it follows (infinite sums are meant to converge with respect to the topology P , introduced
in Convention ??) for an x =

∑∞
n=1 anen ∈ Z that

(4.5)

BTA
( ∞∑
n=1

anen

)
=

∞∑
m=1

x∗m

(
TA

∞∑
n=1

anen

)
em

=
∞∑
m=1

m−1∑
n=1

anx
∗
m(Txn)em

+
∞∑
m=1

amx
∗
m(Txm)em +

∞∑
m=1

x∗m
(
T

∞∑
n=m+1

anxn
)
em.

(Note that T might not be continuous with respect to P , we only used the linearity of T ).
If x =

∑∞
n=1 anen ∈ Y (which implies that this series is norm convergent) then

(4.6) BTA
( ∞∑
n=1

anen

)
=

∞∑
m=1

∞∑
n=1

anx
∗
m

(
Txn

)
em,

where the convergence of the double sum is meant with respect to the topology P .

We now formulate and prove a rather technical proposition which presents the heart of
the proof of ?? and ??.

Proposition 4.5. Assume that for some λ ≥ 1 the basis constant of (e(k,j))j, is not larger
than λ. Let T : Z → Z be a bounded linear operator, for each k∈N let (x(k,j))j be a sequence
in Xk and let (x∗(k,j))j be a perturbation of a block basis of (e∗(k,j))j in X∗k .

Let 0 < η ≤ 1, C ≥ 1 and (ηn) ⊂ (0, 1] so that
∑∞

m=1

∑∞
n=m ηn < η/2. Consider the

following conditions:

(i) (x(k,j))j and (e(k,j))j are impartially C-equivalent, for all k ∈ N;
(ii) (x∗(k,j))j and (e∗(k,j))j are impartially C-equivalent, for all k ∈ N;

(iii)
∑m−1

n=1 |x∗m(Txn)| < ηm, for all m ∈ N;
(iv)

∑∞
n=m+1 |x∗m(Txn)| < ηm, for all m ∈ N;

In order to formulate the last condition, we assume that for each n ∈ N, we are given a

sequence (W
(n)
k )k, where W

(n)
k is a cofinite-dimensional subspace of Xk, with W

(n+1)
k ⊂ W

(n)
k

for k, n ∈ N.

(v) For each n ∈ N, assume that

‖T ∗x∗n|`∞(W
(n+1)
k :k∈N)

‖ < ηn and dist
(
xn,W

(n)
κ(n)

)
< ηn,

for all n ∈ N.

Let D : Z → Z denote the diagonal operator given by

De(k,j) = x∗(k,j)(Tx(k,j))e(k,j), for all k, j ∈ N.

Then the following assertions (??) and (??) hold true.

(a) If (??)–(??) is satisfied, then BTA−D : Y → Y is well defined and

‖BTA−D : Y → Y ‖ ≤ 2λη.
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D is a bounded operator from Z to Z and thus also D − BTA. Moreover, for each
sequence of infinite subsets (Ωl) of N, there exists an infinite set Γ ⊂ N such that

Γ ∩ Ωl is infinite, for all l ∈ N, and ‖DΓ − PΓBTA : ZΓ → ZΓ‖ < 5λη,

where DΓ = PΓ ◦D.
If we additionally assume that K ≥ 1 is such that the identity K-factors through

PΓD|ZΓ
and η < 1/(5λK), then the identity on ZΓ

(
λKC

1−5λKη

)
-factors through T .

(b) If alternatively, (??)–(??) and (??) are satisfied, then

‖BTA−D : Z → Z‖ < 2λ
√
C(3 + ‖T‖)η.

If we additionally assume that K ≥ 1 is such that the identity on Z K-factors through D

and η < 1/(2λ
√
C(3+‖T‖)K) then the identity on Z

(
λKC

1−2λ
√
C(3+‖T‖)Kη

)
-factors through

T .

Proof. Naturally, the proof splits into two parts.

Proof of (??). Let y =
∑∞

n=1 anen ∈ Y be finitely supported and observe that by (??)

(4.7) (BTA−D)y =
∞∑
m=1

∑
n:n6=m

anx
∗
m(Txn)em.

Hence, for each k ∈ N we obtain

Pk(BTA−D)y =
∑

m:κ(m)=k

∑
n:n6=m

anx
∗
m(Txn)em,

and thus

(4.8)

‖Pk(BTA−D)y‖Xk ≤
∑

m:κ(m)=k

∞∑
n 6=m

|an||x∗m(Txn)|

≤ 2λ‖y‖Y
∑

m:κ(m)=k

∞∑
n 6=m

|x∗m(Txn)|.

By (??) and (??) we have
∑

m,n:m 6=n |x∗m(Txn)| <∞, and hence

lim
k→∞

∑
m:κ(m)=k

∞∑
n6=m

|x∗m(Txn)| = 0.

Together with estimate (??) we obtain (BTA−D)y ∈ Y .
Using (??) and (??), (??) yields

‖(BTA−D)y‖Y ≤
∞∑
m=1

m−1∑
n=1

|an||x∗m(Txn)|+
∞∑
m=1

N∑
n=m+1

|an||x∗m(Txn)| ≤ 2λη‖y‖Y .

We conclude
‖BTA−D : Y → Y ‖ ≤ 2λη.

Next, we observe that since D is a diagonal operator, which means that D is of the form

D : Z → Z, (xk) 7→ (Dkxk),
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where the operators Dk : Xk → Xk, k ∈ N, are uniformly bounded. Thus, D is also a
bounded operator on Z with norm supk ‖Dk : Xk → Xk‖ and the operator PΓBTA|ZΓ

−D
is a well defined and a bounded operator on all of Z. Our conclusion follows therefore from
?? for some infinite set Γ ⊂ N.

For the additional part, assume that B̂ : ZΓ → ZΓ and Â : ZΓ → ZΓ are such that
‖B̂‖‖Â‖ ≤ K and I = B̂DΓÂ. It follows that ‖I−B̂PΓBTA|ZΓ

Â‖ = ‖B̂(DΓ−PΓBTA|ZΓ
)Â‖ <

5λKη < 1. Hence, the map Q = B̂PΓBTA|ZΓ
Â is invertible with ‖Q−1‖ ≤ 1/(1−5λKη). In

conclusion, if we set B̃ = Q−1B̂B, Ã = AÂ then B̃T Ã = I and ‖B̃‖‖Ã‖ ≤ λKC/(1−5λKη).

Proof of (??). Note that since A is a bounded operator (see ??), it follows that

A(z) =
( ∞∑
j=1

aν(k,j)x(k,j) : k ∈ N
)

=
∞∑
n=1

anxn,

whenever z =
∑∞

n=1 anen ∈ Z, where the series converges in the product topology P . So, in
particular the sum

∑
n=1 anxn is well defined in Z if the sum

∑
n=1 anen is well defined. Let

us assume that z =
∑∞

n=1 anen ∈ SZ and thus ‖A(z)‖ ≤
√
C.

By (??) and the definition of D we obtain

(BTA−D)
( ∞∑
n=1

anen

)
=

∞∑
m=1

m−1∑
n=1

anx
∗
m(Txn)em +

∞∑
m=1

x∗m
(
T

∞∑
n=m+1

anxn
)
em.

The norm of the first sum is dominated by

(4.9)
∞∑
m=1

m−1∑
n=1

|an||x∗m(Txn)| < 2λ
∞∑
m=1

ηm ≤ 2λη.

To estimate the norm of the second sum, first choose yn ∈ W (n)
κ(n) according to (??) such

that ‖xn − yn‖ < ηn. Let m ∈ N be fixed. We claim that y =
∑∞

n=m+1 anyn is a well

defined element in `∞
(
W

(m+1)
k : k ∈N

)
. Indeed, it is well defined since

∑∞
n=m+1 anxn ∈ Z

and
∑∞

n=1 ηn < η < ∞. Moreover, by the properties of our enumeration (see ??) and since

W
(n+1)
k ⊂ W

(n)
k , k, n ∈ N, we have that

y =
∞∑

n=m+1

anyn =
∞∑
k=1

∑
n>m
κ(n)=k

anyn ∈ `∞
(
W

(nk)
k : k∈N

)
,

where nk = min{n > m : κ(n) = k} ≥ m+ 1; thus we proved y ∈ `∞
(
W

(m+1)
k : k∈N

)
. By a

standard perturbation argument, we obtain

∞∑
m=1

∣∣x∗m(T ∞∑
n=m+1

anxn
)∣∣ ≤ ∞∑

m=1

∣∣T ∗x∗m( ∞∑
n=m+1

anyn
)∣∣+

∞∑
m=1

∣∣T ∗x∗m( ∞∑
n=m+1

an(xn − yn)
)∣∣

≤
∞∑
m=1

ηm

∥∥∥ ∞∑
n=m+1

anyn

∥∥∥+
∞∑
m=1

‖T ∗x∗m‖
∞∑

n=m+1

|an|ηn (by (vi))
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≤
∞∑
m=1

ηm(2λ
√
C + 2λη) +

∞∑
m=1

‖T‖
√
C2λ

∞∑
n=m+1

ηn

≤ η2λ
√
C(2 + ‖T‖)

which together with (??) establishes the first part of (b).

For the additional part, assume that B̂ : Z → Z and Â : Z → Z are such that ‖B̂‖‖Â‖ ≤ K

and I = B̂DÂ. It follows that ‖I−B̂BTAÂ‖ = ‖B̂(D−BTA)Â‖ < 2λ
√
C(3+‖T‖)Kη < 1.

Hence, the map Q = B̂BTAÂ is invertible with ‖Q−1‖ ≤ 1/(1 − 2λ
√
C(3 + ‖T‖)Kη). In

conclusion, if we set B̃ = Q−1B̂B, Ã = AÂ then B̃T Ã = I and

‖B̃‖‖Ã‖ ≤ λKC/(1− 2λ
√
C(3 + ‖T‖)Kη).

�

We finally prepare the work of the next section by isolating the following technical ??.

Lemma 4.6. Assume that λ ≥ 1 and K : (0,∞) → (0,∞) is continuous, so that for each
k the basis constant of (e(k,j))j, is not larger than λ and which has the K(δ)-factorization
property in Xk.

Then for every bounded diagonal operator D : Z → Z (i.e. D(ek,j) is a multiple of ek,j, for
k, j ∈ N), for which

δ = inf
k,j∈N

∣∣e∗(k,j)(De(k,j))
∣∣ > 0,

the identity almost K(δ)-factors through D.

Proof. Let D : Z → Z be a bounded diagonal operator with δ = infk,j∈N
∣∣e∗(k,j)(Te(k,j)

)∣∣ > 0.

For k ∈ N let Dk = D|Xk . Then Dk is a diagonal operator from Xk to Xk. Next, let η > 0.
Then there are for each k ∈ N bounded operators Ak : Xk → Xk and Bk : Xk → Xk, so that
‖Ak‖ · ‖Bk‖ ≤ K(δ) + η and Ik = Bk ◦ Dk ◦ Ak, where Ik is the identity on Xk. We can
assume that ‖Ak‖ = 1 and that ‖Bk‖ ≤ K(δ) + η. Putting

A : Z → Z, (zk) 7→
(
Akzk

)
, B : Z → Z, (zk) 7→

(
Bkzk

)
,

it follows that ‖A‖ = 1 and ‖B‖ ≤ K(δ) + η, and IZ = B ◦D ◦ A. �

5. Proof of ?? and ??

The proof of both theorems ?? and ?? is organized as depicted in the flowchart ??.
According to the flowchart ??, their respective proofs deviate at two distinct points. In the
proof below we indicate that by arranging the text side by side in separate columns. We use
a corresponding color scheme in the flowchart and in the proof.

Let T : Z → Z be a bounded linear operator with infk,j∈N
∣∣e∗(k,j)(Te(k,j))

∣∣ =: δ > 0. By

??, Player II has a winning strategy in the game Rep(Z,(e(k,j)))
(C, η). Let us fix η > 0 to be

determined later.
We will now describe a strategy for Player I in a game Rep(X,(en))(C, η), and assume Player

II answers by following his winning strategy.

Pregame. At the beginning, Player I chooses N1 = {n ∈ N : e∗n(Ten) ≥ δ} and N2 = {n ∈
N : e∗n(Ten) ≤ −δ}. For k ∈ N, and i = 1, 2 let N

(k)
i = {ν(k, j) : j ∈ N} ∩Ni.
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Pregame

Fork

Turn n, Step 1 Turn n, Step 1

Merge

Turn n, Step 2

Turn n, Step 3

Fork

Postgame Postgame

Theorem 3.6 Theorem 3.8

Theorem 3.6 Theorem 3.8

Figure 1. Flowchart of the proof of ?? and ??.

Turn n, Step 1. During the n-th turn, Player I proceeds as follows. In the first step of the
n-th turn he chooses

(5.1) ηn <
η

2n+2n(1 + ‖T‖)
√
C + η

.

Let ln = max(
⋃n−1
m=1Em) if n > 1 (where the finite sets E1, E2,...En−1 were chosen in previous

turns) and put l1 = 1. Define

An =
{
xm, Txm : m < n} ∪ {e(κ(n),i), T e(κ(n),i) : i ≤ ln}

and put

(5.2) Gn = A⊥n ∩X∗κ(n)

as subspace of X∗κ(n) and Z∗.
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Choice of Wn in ??.

Now, let

Bn =
{
x∗m, T

∗x∗m : m < n
}

∪ {e∗(κ(n),i), T
∗e∗(κ(n),i) : i ≤ ln}

and define

(5.3) Wn = (Bn)⊥ ∩Xκ(n)

as a subspace of Xκ(n) and Z.

Choice of Wn in ??.

In order to choose the required cofinite-
dimensional subspaceWn ofXκ(n) Player
I also chooses at the n-th step a sequence

(V
(n)
l )l, where V

(n)
l is a finite codimen-

sional subspace of Xl of the form

(5.4) V
(n)
l = [e(l,j) : j ≥ m(n, l)],

with V
(n)
l ⊂ V

(m)
l for l ∈ N, 0 ≤ m < n

and we put V
(0)
l = Xl for l ∈ N. By

using ?? finitely many times Player I can

find for each l a subspace V
(n)
l of V

(n−1)
l

so that for all j < n

(5.5) ‖T ∗x∗j |`∞(V
(n)
l :l∈N)

‖ ≤ ηn

and he chooses

(5.6) Wn=V
(n)
κ(n) =[e(κ(n),j) : j≥mn],

where mn = m(n, κ(n)).

Turn n, Step 2. Player II, following a winning strategy, chooses in ∈ {1, 2}, picks a finite set

En ⊂ N
(κ(n))
in

and sequences of non-negative scalars (λ
(n)
i )i∈En , (µ

(n)
i )i∈En with

1− η <
∑
i∈En

λ
(n)
i µ

(n)
i < 1 + η.

Turn n, Step 3. Then Player I picks signs (ε
(n)
i )i∈En ∈ {−1,+1}En so that whenever

xn =
∑
i∈En

λ
(n)
i ε

(n)
i e(κ(n),i) and x∗n =

∑
i∈En

µ
(n)
i ε

(n)
i e∗(κ(n),i),

we have

(5.7) |x∗n
(
Txn

)
| > (1− η)δ.

That it is possible to choose such signs (ε
(n)
i )i∈En ∈ {−1,+1}En . Indeed, r = (rj)j∈En be a

Rademacher sequence, meaning that rj, j ∈ En, are independent random variables on some
probability space (Ω,Σ,P), with P(rj =1) = P(rj =−1) = 1

2
.

E
((∑

i∈En

riµ
(n)
i e∗(κ(n),i)

)(
T
( ∑
j∈En

rjλ
(n)
j e(κ(n),j)

)))
= E

( ∑
i,j∈En

rirjµ
(n)
i λ

(n)
j e∗j(Te(κ(n),i))

)
=
∑
i∈En

µ
(n)
i λ

(n)
i e∗(κ(n),i)(Te(κ(n),i))

{
> δ(1− η) if in = 1,

< −δ(1− η) if in = 2.
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The latter inequality follows from the large diagonal of the operator.

Postgame. After the game is completed the conditions (??) to (??) of ?? are satisfied.
Now, let m,n ∈ N, m < n. By the winning strategy of Player II (see (??) of ??) and (??),

we obtain

(5.8) |x∗n(Txm)| ≤ ‖Txm‖ · dist(x∗n, Gn) < ‖T‖
√
C + η · ηn.

We now estimate |x∗n(Txm)| if m > n.

Postgame for ??.

By the winning strategy of Player II
(see ?? (??)) together with (??) yields
for all n < m that

|x∗n(Txm)| = |T ∗x∗n(xm)|
≤ ‖T ∗x∗n‖ · dist(xm,Wm)

< ‖T ∗‖
√
C + η · ηm.

This inequality, (??) and (??) imply that
the conditions of Proposition ?? are sat-
isfied for η′m = mηm, m ∈ N.
By ?? (??), there is an infinite set Γ ⊂ N
so that the diagonal operator DΓ : ZΓ →
ZΓ given by

DΓe(k,i) = x∗(k,i)(Tx(k,i))e(k,i)

is bounded. By ??, the identity on
ZΓ (Kδ(1 − η) + ξ) factors through
DΓ for any ξ > 0. Hence, if η
is sufficiently small then by the addi-
tional assertion in ?? (??), the identity(

(λK(δ(1−η))+ξ)(C+η)
1−5λ(Kδ(1−η))+ξ)η

)
-factors through T .

Postgame for ??.

Note that by (??), condition (??) of ??
is satisfied if we replace ηn by η/2n+2 .

Secondly, for n0 < n if wk ∈ V
(n)
k ⊂

V
(n0+1)
k , for k ∈ N with ‖(wk)‖Z ≤ 1

and z = (wk), then by (??)∣∣(T ∗n0
x∗n0

)
(z)
∣∣ ≤ ηn0 < η/2n0+2.

Thus, condition (??) of ?? is satisfied, as
well. By ?? (??), the diagonal operator
D : Z → Z given by

De(k,i) = x∗(k,i)(Tx(k,i))e(k,i)

is bounded. By ??, the identity on
Z (K(δ(1 − η)) + ξ)-factors through
D for any ξ > 0. Hence, if
η is sufficiently small, then by the
additional assertion of ?? (??), the

identity
(

(λK(δ(1−η))+ξ)(C+η)

1−2λ
√
C+η(3+‖T‖)K(δ(1−η))+ξ)η

)
-

factors through T .

Recall that the function K : (0,∞) → R is continuous (see [?, Remark 3.11]). As we could
have picked η and ξ arbitrarily close to zero we deduce that the identity on ZΓ (for ??), or
the identity on Z, (for ??), respectivly, almost λK(δ)C-factors through T . �

6. Heterogenous `∞-sums of classical Banach spaces

Given 1 < p0 < p1 <∞, we define the sets of Banach spaces

W = {Lp,Hp,VMO,VMO(Hr),Hp(Hq),Lr(Ls) : 1≤p, q<∞, p0≤r, s≤p1}(6.1)

X = {Lr, Hp,VMO,VMO(Hr), Hp(Hq), Lr(Ls) : p0≤p, q<∞, p0≤r, s≤p1}.(6.2)

In this section, we use the following notation: Assume that we are given a sequence of
Banach spaces (Vk) in either W or X . Then for each k, j ∈ N, ek,j denotes the j-th Haar
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function whenever Vk ∈ {Lr, Hp,VMO}, and ek,j denotes the j-th biparameter Haar function
if Vk ∈ {VMO(Hr), Hp(Hq), Lr(Ls)}. For details on the enumeration of the biparameter
Haar system we refer to [?]; see also [?].

Corollary 6.1. Let (Wk)
∞
k=1 denote a sequence of Banach spaces in W and let T : `∞(Wk :

k∈N)→ `∞(Wk : k∈N) be bounded and linear, with

δ = inf
k,j∈N

∣∣e∗k,j(Tek,j)∣∣ > 0.

Then for each sequence of infinite subsets (Ωl) of N, there is an infinite Γ ⊂ N so that Γ∩Ωl

is infinite for all l ∈ N and the identity on `∞(Wk : k ∈ Γ) C
δ

-factors through T , where C
depends only on p0, p1.

Proof. First, we note that by [?, Proof of Theorem 5.1, Theorem 5.2, Theorem 5.3, The-
orem 6.1, Remark 6.6] the one- or two-parameter Haar system in each of the spaces Lp,
Hp, Hp(Hq), 1 ≤ p, q < ∞ is C-strategically reproducible for some universal constant,
and Lr(Ls), p0 ≤ r, s ≤ p1 is Cp0,p1-strategically reproducible. By ??, the Haar system is
strategically reproducible in VMO, and the biparameter Haar system is Cp0,p1-strategically
reproducible in VMO(Hp). In each of the spaces in W , the Haar system has the C

δ
-diagonal

factorization property (for the L1 case we refer to [?, Proposition 6.2], for the other cases,
this follows by unconditionality) for some universal constant C. The assertion follows from
??. �

Before we can proceed to our next application, we need the following observation.

Lemma 6.2. Let (Xk)
∞
k=1 denote a sequence of Banach spaces in X . Then the array (ek,j)

is uniformly asymptotically curved.

Proof. For each k ∈ N, let (f(k,j))j be a normalized block basis of (hI). Let k ∈ N be fixed
for now. Since the (f(k,j))j have disjoint Haar spectra, observe that for each n ∈ N∥∥∥ n∑

j=1

f(k,j)

∥∥∥
Xk
≤ C

∫ 1

0

∥∥∥ n∑
j=1

rj(t)f(k,j)

∥∥∥
Xk
dt ≤ C

( n∑
j=1

‖f(k,j)‖rXk
)1/r

,

where r1, . . . , rK are independent Rademacher functions and r = p0 if Xn ∈ {Lp, Hp} and
r = 2 if Xn = VMO [?, Proposition 5.1.1, p. 268]. The constant C depends on p0 and p1 if
Xn = Lp, and C = 1 if Xn ∈ {Hp,VMO}. In either case, we obtain

sup
k

∥∥∥ n∑
j=1

f(k,j)

∥∥∥
Xk
≤ Cn1/r.

Moving on to the biparameter spaces, let r′ be such that 1
r

+ 1
r′

= 1. By ??, H1(Hr′)
satisfies a lower r′-estimate with constant 1; hence by ?? and ??, the array formed by
the biparameter Haar system in the predual of H1(Hr′), which is VMO(Hr), is uniformly
asymptotically curved. For the spaces Hp(Hq) and Lr(Ls) we refer to ??, ?? and ??. �

?? and ?? combined yield the following factorization result.
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Corollary 6.3. Let (Xk)
∞
k=1 denote a sequence of Banach spaces in X , and let T : `∞(Xk :

k∈N)→ `∞(Xk : k∈N) be bounded and linear, with

δ = inf
k,j∈N

∣∣e∗k,j(Tek,j)∣∣ > 0.

Then the identity on `∞(Xk : k∈N) C
δ

-factors through T , where C depends only on p0, p1.

Proof. Let (ek,j) be defined as in ??. First, note that (ek,j)j has unconditional basis constant

Cp0,p1 for each k ∈ N; hence, (ek,j)j has the
Cp0,q1
δ

-diagonal factorization property for all
k ∈ N. Secondly, for the simultaneous strategical reproducibility of the array (ek,j), we refer
to the argument presented in the proof of ??. Finally, applying ?? and ?? concludes the
proof. �

7. Final remarks and open questions

Our first question asks whether ?? can be true if we drop the assumption that the array
(e(k,j)) is uniformly asymptotically curved.

Question 1. Assume that

(i) the basis constant of (e(k,j))j, is at most λ in Xk, for each k ∈ N;
(ii) (e(k,j))j has the K-diagonal factorization property in Xk, for each k ∈ N;

(iii) the array (e(k,j))k,j is simultaneously C-strategically reproducible in Z.

Is it true that the array (e(k,j)) has the factorization property in Z = `∞(Xk)?

The following example exhibits a sequence of spaces the array of which is not uniformly
asymptotically curved, yet the array has the factorization property in Z.

Example 7.1. Let (pk) be a dense sequence in [1,∞). Then

(i) the basis constant of (hk,I)I is 1 in Lpk ;
(ii) (hk,I)I has the 1

δ
-diagonal factorization property [?, Remark 6.6];

(iii) the array (hk,I) is simultaneously 1-strategically reproducible [?, Remark 6.6];
(iv) the array (hk,I) is not uniformly asymptotically curved.

In contrast, the array (hk,I) has in Z = `∞(Lpk : k∈N) the factorization property.

In order to show this is indeed true, we need the following proposition.

Proposition 7.2. Let (pk) and (qk) denote two dense sequences in [1,∞). Then `∞(Lpk :
k∈N) is isomorphic to `∞(Lqk : k∈N).

Proof. In the first step of this proof we fix p ∈ [1,∞) and a dense sequence (qk)k in [1,∞)
and show that Lp is isomorphic to a 2-complemented subspace of `∞(Lqk : k ∈N). By the
density of (qk)k we may pick a subsequence (qkn)n so that for each n ∈ N the identity map
In : L

qkn
n → Lpn is a 2-isomorphism. We then define T : Lp → `∞(Lqkn : n ∈ N) given as

follows: if f ∈ Lp can be written as f =
∑

j

∑
|I|=2−j aIhI then Tf = (

∑
j≤n
∑
|I|=2−j aIhI)n.

Then clearly, T is a 2-isomorphic embedding of the image. We will now show that the image
of T is 4-complemented in `∞(Lqkn : n∈N). To see this, we define Q : `∞(Lqkn : n ∈ N)→ Lp

by

Q
( ∞∑
j=0

∑
|I|=2−j

an,IhI

)
n

=
∞∑
j=0

∑
|I|=2−j

(lim
n∈U

an,I)hI ,
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where U is some fixed non-principal ultrafilter on N. For each m ∈ N, define Rm : Lp → Lp

by

Rm

( ∞∑
j=0

∑
|I|=2−j

aIhI

)
=

m∑
j=0

∑
|I|=2−j

aIhI .

We now verify that Q is indeed well defined. Observe that for (fn)n ∈ `∞(Lqkn : n ∈ N),
where fn =

∑∞
j=0

∑
|I|=2−j an,IhI ∈ Lqkn , n ∈ N, we have

∥∥RmQ((fn)n)
∥∥
Lp

=
∥∥∥ m∑
j=0

∑
|I|=2−j

(lim
n∈U

an,I)hI

∥∥∥
Lp

= lim
n∈U

∥∥∥ m∑
j=0

∑
|I|=2−j

an,IhI

∥∥∥
Lp

= lim
n∈U
‖Rmfn‖Lp ≤ lim

n∈U
‖Rnfn‖Lp

≤ 2 sup
n
‖Rnfn‖Lqkn ≤ 2‖(fn)‖`∞(Lqkn :n∈N).

Evidently, QTf = f for all f ∈ Lp, hence, the image of T is 4-complemented. Moreover, T
can be extended to a 2-isomorphism T̃ : Lp → `∞(Lqk : k∈N) with 4-complemented image.
This type of argument goes back to Johnson [?].

In the second step we show that if (pk)k, (qk)k are as in the assumption then `∞(Lpk :
k ∈N) is 2-isomorphic to a 4-complemented subspace of `∞(Lqk : k ∈N). Indeed, we may
decompose N into infinite disjoint sets (Mn)n so that for all n ∈ N the sequence (pk)k∈Mn

is dense in [1,∞). By the first step, for each n ∈ N we can find a 2-embedding of Lpn into
`∞(Lqk : k∈Mn) with 4-complemented image. The second step then easily follows.

For the final step we fix a dense sequence (qk)k in [1,∞) with the property that each term
qk is repeated infinitely many times. This implies that the space X = `∞(Lqk : k ∈ N) is
isometrically isomorphic to `∞(X), i.e., it satisfies the accordion property (see [?, II.B.24]).
To conclude, we show that for an arbitrary dense sequence (qk)k the space V = `∞(Lpk : k∈
N) is isomorphic to X. Indeed, by the second step we have that X is complemented in V and
V is complemented in X. By the accordion property of X we deduce that X is isomorphic
to V . �

Verification of ??. Given an operator T : Z → Z with large diagonal, choose infinite sets
Ωk ⊂ N so that pk = limj∈Ωk pj, k ∈ N. By ?? there exists an infinite set Γ ⊂ N for which
Γ ∩ Ωk is infinite for each k ∈ N so that IZΓ

factors through T . Since {pγ : γ ∈ Γ} is again
dense in [1,∞), we obtain by ?? that ZΓ is isomorphic to Z. Hence, IZ factors through
T . �

An interesting special case of ?? is the following

Question 2. Assume that (pk), 1 ≤ pk < ∞ either converges to 1 or diverges to ∞. Does
the array (hk,I) have the factorization property in Z = `∞(Lpk : k∈N)?
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