

1 **Title:**
2 An experimental test of parasite adaptation to common vs. rare host genotypes
3 **Running title:**
4 Parasites on rare vs. common hosts
5 **Authors:**
6 Amanda K Gibson^{1,2*}, P Signe White^{1,3}, McKenna J Penley¹, Jacobus C de Roode¹, and Levi T
7 Morran¹
8 **Institutional Affiliations:**
9 ¹Department of Biology, Emory University, Atlanta, GA 30322
10 ²Department of Biology, University of Virginia, Virginia 22902, USA
11 ³Population Biology, Ecology, and Evolution Graduate Program, Laney Graduate School, Emory
12 University, Atlanta, GA 30322
13 **Corresponding author:** Amanda K Gibson, Department of Biology, University of Virginia,
14 Virginia 22902, USA
15 Email:akg5nq@virginia.edu
16 [Telephone: \(434\) 243-2626](tel:(434)243-2626)
17 [Fax: NA](tel:(434)243-2626)
18
19
20
21
22
23
24
25
26

27 **Abstract**

28 In adapting to specifically infect common host genotypes, parasites impose negative frequency-
29 dependent selection that favors rare host genotypes. This parasite-mediated advantage of rarity
30 is key to the idea that parasites maintain genetic variation and select for outcrossing in host
31 populations. Here, we report the results of an experimental test of parasite adaptation to
32 common vs. rare host genotypes. We selected on the bacterial parasite *Serratia marcescens* to
33 kill *C. elegans* hosts in uneven mixtures of host genotypes. To examine the effect of
34 commonness itself, independent of host identity, each of four host genotypes was represented as
35 common or rare in experimental host mixtures. After experimental selection, we evaluated a
36 parasite line's change in virulence, the selected fitness trait, on its rare and common host
37 genotypes. Our results were consistent with a slight advantage for rare host genotypes: on
38 average, parasites lost virulence against rare genotypes, but not against common genotypes. The
39 response varied substantially, however, with distinct patterns across host genotype mixtures.
40 These findings support the potential for parasites to impose negative frequency-dependent
41 selection, and they emphasize that the cost of being common may vary with host genotype.

42

43 **Keywords:** coevolution, negative frequency-dependent selection, Red Queen hypothesis,
44 experimental evolution, *Serratia marcescens*, *Caenorhabditis elegans*

45

46

47

48 **Introduction**

49 Models of host-parasite coevolution often find, or assume, that parasites adapt to infect locally
50 common host genotypes. It is an intuitive idea: selection to exploit frequently encountered
51 resources should be much stronger than selection to exploit rare resources (Whitlock 1996). This
52 process explains why parasites are thought to impose negative frequency-dependent selection:
53 the fitness of a host genotype should decline as it becomes common, because it becomes more
54 infected than the population mean. In contrast, parasites fare poorly against rare hosts, which
55 should increase in frequency. Hence this targeting of common over rare host genotypes lies at
56 the heart of major evolutionary hypotheses, including the Red Queen hypothesis and parasite-
57 mediated maintenance of genetic diversity (Bell 1982; Haldane 1949; Hamilton 1980; Hamilton
58 et al. 1990; Hutson and Law 1981; Jaenike 1978).

59 In strong support of this process, Chaboudez and Burdon (1995) found that, in 13 of 16
60 populations, the most common clone of rush skeletonweed (*Chondrilla juncea*) was the only
61 clone or one of just two clones infected by the rust fungus *Puccinia chondrillina*. Infection of
62 the most common clone in a single population would be expected by random chance; what is
63 remarkable is the replication of this finding across multiple populations with distinct clones.
64 This study, however, is one of very few reported instances of frequency-dependent infection (see
65 also Lively and Dybdahl 2000). Perhaps this dearth reflects the variety of possible
66 manifestations of parasite adaptation in natural populations. With parasite-mediated changes in
67 host genotype frequencies and time lags in parasite adaptation, ongoing parasite adaptation can
68 generate different relationships between host frequency and infection or susceptibility over time
69 (Wolinska and Spaak 2009).

70 Holding the host population constant reveals that parasites can rapidly specialize on
71 individual host genotypes. Experimental evolution studies have clearly shown that parasites will
72 adapt to specifically infect an individual host genotype after serial passage in homogeneous

73 populations of the host (e.g. Little et al. 2006; Nidelet and Kaltz 2007; Yourth and Schmid-
74 Hempel 2005). There is limited evidence, however, that parasites target common host genotypes
75 during serial passage in genetically heterogeneous host populations, like those parasites
76 encounter in the wild. The results of Koskella and Lively (2009) are suggestive: over five
77 generations of experimental coevolution, the trematode *Atriophallophorus winterbourni*
78 (formerly *Microphallus* sp.: Blasco-Costa et al. 2019) evolved to specifically attack the most
79 common clone in a diverse population of the snail *Potamopyrgus antipodarum*. The next critical
80 step is to determine if this result is repeatable across different host genotypes: in heterogeneous
81 host populations, parasites should evolve to attack common over rare host genotypes, regardless
82 of the host genotypes in question.

83 Here, we used experimental evolution to compare adaptation of parasites to common and
84 rare host genotypes in experimental host populations that varied in the identity and frequency of
85 the common and rare host genotypes. We assembled genetically heterogeneous host populations
86 by mixing two genotypes of the nematode *Caenorhabditis elegans* such that one genotype was
87 common (90% or 75%) and one rare (10% or 25%). We repeated this across different
88 combinations of genotypes, so four genotypes were represented as both rare and common in
89 experimental populations. Beginning with a single genotype of the bacterial parasite *Serratia*
90 *marcescens*, we selected for increased virulence (i.e. host mortality) against hosts in these mixed
91 populations for 10 or 20 rounds of selection, accounting for several hundred bacterial
92 generations. Our results suggest that parasites confer a slight advantage on rare host genotypes.

93 **Methods**

94 *Heterogeneous host populations*

95 We assembled heterogeneous host populations using four genotypes of *C. elegans*: the canonical
96 divergent lab genotypes, N2 and CB4856, plus LTM1 and ewIR68 (Doroszuk et al. 2009;
97 Gibson et al. 2020). The ancestral bacterial strain Sm2170 showed substantial variation in
98 virulence against these genotypes, with mortality far higher for N2 and LTM1 than CB4856 and
99 ewIR68 (Fig. S1) (Gibson et al. 2020; White et al. 2019). We established six host heterogeneity
100 treatments (Fig. 1). In two treatments, N2 was common (90% or 75%) and LTM1 rare (10% or
101 25%). Two additional treatments reversed these frequencies, with LTM common and N2 rare.
102 The final two treatments paired CB4856 and ewIR68 at 75%:25% and 25%:75%. These
103 experimental treatments are a subset of the treatments included in two larger experimental
104 evolution studies (Gibson et al. 2020; White et al. 2019), which demonstrated that Sm2170 can
105 adapt to specifically attack these host genotypes when selected in homogeneous host populations
106 (Fig. S2). As a result, the LTM1/N2 treatments differ from the CB4856/ewIR68 treatments in
107 the duration of experimental evolution and the number of technical replicates in mortality assays.
108 For this study, we do not draw comparisons between treatments that differed in mixing
109 frequency (90:10 vs. 75:25). For our purposes, these treatments served only as alternate
110 approaches to establishing host mixtures with a rare and a common host genotype.

111 *Experimental evolution*

112 Our experimental design imposed selection for increased virulence (i.e. parasite-induced host
113 mortality) in heterogeneous host populations by passaging those parasites that killed hosts
114 rapidly (Fig. 1) (based on Morran et al. 2011; Morran et al. 2009). We established the ancestral
115 parasite lineage from a single colony of Sm2170, a genotype of *S. marcescens* that is virulent to
116 *C. elegans*. We then subjected this lineage to 10 (CB4856/ewIR68) or 20 (N2/LTM1) rounds of
117 selection. Each round of selection, we added ~1000 (for CB4856 and ewIR68 mixtures) or ~500
118 (for N2 and LTM1 mixtures) L4 larvae to the parasite lawn of a *Serratia* selection plate. After

119 24 hours, we selected 20-30 dead hosts from the parasite lawn and extracted their parasites. We
120 cultured these bacteria and randomly selected 40 colony-forming units per experimental line to
121 establish the parasite lawn for the next round of selection. The selection process was repeated by
122 adding naive hosts to this lawn. We prevented evolution in the host lines by continually thawing
123 stock collections archived at -80°C. Experimental selection produced 36 independent parasite
124 lines (6 replicate lines x 6 heterogeneity treatments), which were frozen at -80°C.

125 *Mortality assays*

126 Our experimental evolution design selected for parasites that killed their hosts rapidly, so we
127 measured the response to selection by assaying the mortality of hosts when paired with
128 experimentally evolved parasites. Generation 10 parasite lines (for CB4856/ewIR68) and
129 generation 20 parasite lines (for N2/LTM1) were tested against homogeneous groups of both the
130 rare and the common host genotype with which they were evolved. The ancestral parasite
131 population was also tested against homogeneous groups of each host genotype.

132 We constructed mortality assay plates as described for selection plates during
133 experimental evolution (Fig. 1). A known number of hosts was added to the parasite lawn of a
134 plate and incubated at 20°C. At 48 hours post exposure, we counted the number of surviving
135 hosts on the plate and from this calculated the proportion of dead hosts (as in Gibson et al. 2020;
136 Penley et al. 2017; White et al. 2019). For each of the 24 parasite lines in the N2/LTM1 pairing,
137 ~500 hosts were added per mortality assay plate, with 8 technical replicates (four per each of two
138 independent assays). For each of the 12 parasite lines in the CB4856/ewIR68 pairing, ~200
139 hosts were added per mortality assay plate, with six technical replicates. Virulence of the
140 ancestral parasite was assayed with six (CB4856/ewIR68) or twelve (N2/LTM1) technical

141 replicates. The difference in replication arose because these data were collected as part of two
142 larger experimental evolution projects.

143 *Statistical analysis*

144 We conducted all statistical analyses in R v.3.6.0 (R Core Team 2013) and plotted data using
145 ggplot2 (Wickham 2016). To compare adaptation of parasites to common vs. rare host
146 genotypes, we examined the change in virulence (i.e. change in proportion of dead hosts) from
147 the ancestral mean for each host genotype. Using the packages lme4 (Bates et al. 2015) and afex
148 (Singmann et al. 2019), we fit a linear mixed model to the change in virulence for each mortality
149 assay replicate. To account for the structure of the experiment, we specified random effects for
150 mortality assay date (3 separate blocks), parasite line (1-6), and experimental treatment (six
151 combinations of host genotypes and frequencies, Fig. 1), with line nested in treatment. The
152 predictor variables were the host genotype assayed (N2, LTM1, ewIR68, or CB4856), the
153 frequency of the assayed host during experimental evolution of the parasite line being tested
154 (rare or common), and an interaction of frequency and assayed host genotype.

155

156

157

158

159 **Results**

160 After experimental selection of parasites in uneven host mixtures, we evaluated adaptation to
161 rare and common host genotypes by measuring change from the ancestor in the focal fitness trait,
162 virulence. We found different patterns of virulence evolution across host mixtures. In two cases,

163 parasites lost virulence against rare host genotypes: averaged across replicate parasite lineages,
164 parasite-induced mortality declined $8.78 \pm 3.27\%$ (SEM) from the ancestor on rare genotype
165 ewIR68 and $3.86 \pm 3.85\%$ on rare genotype N2, with no change against the respective common
166 genotypes CB4856 ($1.00 \pm 1.70\%$) and LTM1 ($1.35 \pm 1.87\%$) (Fig. 2A,2C). In another case,
167 parasites gained virulence against the common host genotype: mortality increased $4.71 \pm 1.80\%$
168 from the ancestor on the common genotype N2, with no change against the rare genotype LTM1
169 ($0.36 \pm 2.62\%$) (Fig. 2D). In the final case, parasites lost virulence against both the rare
170 (CB4856: $-6.57 \pm 5.72\%$) and the common (ewIR68: $-11.42 \pm 5.72\%$) host genotypes (Fig. 2B).

171 To test the focal hypothesis, we evaluated the effect of host frequency on virulence
172 evolution independent of the host genotypes in question. We found that a host genotype's
173 frequency (rare/common) during experimental selection of a parasite line was an important
174 predictor of virulence evolution ($F=9.547$, $df=1$, $p=0.002$) (Table S1B). Specifically, change in
175 virulence from the ancestor was reduced on host genotypes that had been rare during selection,
176 relative to host genotypes that had been common (coefficient: -0.031 , $SE=0.010$, $p=0.002$)
177 (Table S1C). In spite of the differences in virulence evolution noted above, we did not find that
178 the effect of host genotype frequency varied significantly with the assayed host genotype
179 (insignificant interaction: $F=0.587$, $df=3$, $p=0.680$) (Table S1A), so we dropped this term from
180 the model. The difference between rare and common hosts was slight: on average, the mortality
181 of rare host genotypes declined $-3.73 \pm 1.74\%$ from the ancestor, while mortality of common
182 host genotypes was unchanged ($0.28 \pm 1.55\%$).

183 **Discussion**

184 We set out to test the critical idea that parasites evolve to target common host genotypes over
185 rare host genotypes. We aimed to test the effect of frequency itself, independent of host identity

186 and initial resistance level. Hence, we used multiple combinations of host genotypes that varied
187 in their resistance to ancestral parasites. Host genotypes were represented as both rare and
188 common across experimental host populations (Fig. 1). Overall, our results are consistent with a
189 slight, parasite-mediated advantage of rare host genotypes (Fig. 2): the mean evolutionary
190 change from the ancestor in the focal fitness trait, virulence, was lower when parasite lines were
191 tested on their rare host genotype than on their common host genotype. On average, virulence
192 was maintained against common host genotypes but declined against rare host genotypes.

193 This effect did not vary significantly with the host genotype in question: the interaction of
194 assayed host genotype and frequency did not contribute to variation in virulence evolution (Table
195 S1). Nonetheless, there is obvious variation in the relative performance of parasite lines on rare
196 vs. common host genotypes (Fig. 2). Most notably, for the host mixture of CB4856 (rare) and
197 ewIR68 (common), parasites evolved reduced virulence against both rare and common hosts
198 (Fig. 2B). Among the genotypes tested, the CB485 and ewIR68 host genotypes are the most
199 resistant to infection (Fig. S1), with the common genotype, ewIR68, the most resistant of the
200 group. It is plausible that small parasite effective population sizes due to high host resistance
201 and reduced efficacy of selection to attack a single host genotype resulted in the rapid fixation of
202 deleterious mutations in these parasite populations. Parasites can substantially increase in
203 virulence when selected in homogeneous populations of CB4856 and ewIR68 (Fig. S2), but
204 mixing them at a range of frequencies severely limits the response to selection (White et al.
205 2019). Regardless of the explanation, this outlier response suggests that host genetic
206 background determines if, and to what extent, parasites evolve to target common vs. rare hosts.

207 Our results support the idea that, on average, rare genotypes have an advantage over
208 common genotypes in the presence of parasites, but the differences we observed were small.
209 The mean proportional change in virulence (i.e. change in host mortality from the ancestor)

210 against a common host genotype exceeded the change for its paired rare host genotype by only
211 ~four percentage points. The Red Queen hypothesis and related ideas rest upon the idea that
212 parasite adaptation to common host genotypes confers a fitness advantage on rare host genotypes
213 that is substantial enough to drive rapid oscillations in host genotype frequency and
214 counterbalance the cost of outcrossing (Howard and Lively 1994; May and Anderson 1983). In
215 support of the Red Queen, coevolving *S. marcescens* prevents the invasion of selfing lineages
216 into obligately outcrossing populations of *C. elegans* (Morran et al. 2011; Parrish et al. 2016;
217 Slowinski et al. 2016). This consistent pattern suggests that *S. marcescens* targets common,
218 selfed genotypes, giving rare, outcrossed genotypes a fitness advantage that outweighs the costs
219 of outcrossing. Those studies used the same design and similar genetic backgrounds as ours.
220 Yet, given that ancestral virulence was relatively even between paired host genotypes (Fig. S1),
221 the average rare-common differential we observed here likely would not translate into substantial
222 parasite-mediated variation in fitness.

223 Why might the advantage of being rare be so low in our experiment? We can rule out the
224 possibility that insufficient genetic variation limited adaptation to common host genotypes -
225 selection in homogeneous populations resulted in large changes from ancestral virulence, at least
226 on CB4856 and ewIR68 (Fig. S2) (Gibson et al. 2020; White et al. 2019). We can also rule out
227 insufficient time as a primary explanation – parasites were serially passaged for half as long on
228 CB4856/ewIR68 mixtures relative to LTM1/N2 mixtures yet we observed the largest difference
229 in performance on rare and common host genotypes for parasites selected in mixtures of ewIR68
230 (rare) and CB4856 (common) (Fig. 2). It is possible that surveying the mean virulence of each
231 parasite line masked relevant variation in the parasite population. According to this hypothesis,
232 we would expect to find substantial variability in virulence between individual clones within
233 each parasite line, with some showing especially high virulence against the common host

234 genotype or especially low virulence against the rare host genotype. Indeed, some individual
235 parasite lines showed fairly large differences between proportional mean change from the
236 ancestor on common vs. rare host genotypes, with an upper quartile ranging from 10.17 to 25.16
237 percentage points. We also prevented coevolution in our experiment. Coevolution can generate
238 and maintain more genetic variation in parasite populations than parasite evolution alone
239 (Morran et al. 2011; Pal et al. 2007; Paterson et al. 2010; Schulte et al. 2013). Thus we expect
240 that coevolution would accelerate virulence evolution and enhance the rare-common differential.

241 Coevolutionary models rest upon the process of adaptation by parasites to infect common
242 host genotypes, at the expense of infection of rare host genotypes. Thus far, this theoretical
243 finding lacked direct experimental support. Using an experimental evolution approach with fully
244 reciprocal, uneven combinations of multiple host genotypes, we found that parasites targeted
245 common over rare hosts. This resulted from a mean loss of virulence against rare genotypes.
246 We also found suggestive evidence that the effect of host frequency may vary with host genotype
247 (though this interaction was insignificant). The variation we observe across parasite lines
248 emphasizes the value of complementing field studies, which survey ongoing adaptation, with
249 controlled experiments, which can parse the contributions of host frequency and genotype to
250 divergence in evolutionary trajectories. Finally, based on our findings, we hypothesize that
251 coevolution, as opposed to parasite evolution alone, would strengthen the covariance of parasite
252 fitness and host genotype frequency.

253 **Acknowledgements**

254 We are grateful to Emory university undergraduates Helena Baffoe-Bonnie, Julie Lin, Raythe
255 Owens, Arooj Khalid, Dilys Osei, Angela Choi, Rishika Pandey, and Arthur Menezes for their

256 contributions to experimental evolution. Some strains were provided by the CGC, which is
257 funded by the NIH Office of Research Infrastructure Programs (P40 OD0140440).

258 **Funding**

259 This work was supported by the National Science Foundation (DEB-1750553, LTM) and the
260 NIH IRACDA program Fellowships in Research and Science Teaching (FIRST) at Emory
261 University (K12GM000680, AKG).

262 **Data Accessibility Statement**

263 Data and analysis scripts associated with this study are provided as a supplemental file for
264 review. Upon acceptance, we will make these files publicly available on the Dryad Digital
265 Repository.

266 **Author contributions**

267 AKG conceived and directed the study, performed experimental evolution and assays, collected
268 data, analyzed data, and wrote the manuscript. PSW contributed to experimental design,
269 performed experimental evolution and assays, and collected data. MJP assisted in experimental
270 evolution and collected data. JCdR contributed to developing and guiding the study and
271 critically revised the manuscript. LTM conceived the study, provided guidance, collected data,
272 and critically revised the manuscript. *All authors gave final approval for publication.*

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290 **References**

291 Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4.
292 Journal of Statistical Software 67:1-48.

293 Bell, G. 1982, The Masterpiece of Nature: the Evolution and Genetics of Sexuality. Berkeley, CA,
294 University of California Press.

295 Blasco-Costa, I., K. Seppälä, F. Feijen, N. Zajac, K. Klapper, and J. Jokela. 2019. A new species of
296 *Atriophallophorus* Deblock & Rosé, 1964 (Trematoda: Microphallidae) described from in vitro-
297 grown adults and metacercariae from *Potamopyrgus antipodarum* (Gray, 1843) (Mollusca:
298 Tateidae). Journal of Helminthology 94:1-15.

299 Chaboudez, P., and J. Burdon. 1995. Frequency-dependent selection in a wild plant-pathogen system.
300 Oecologia 102:490-493.

301 Doroszuk, A., L. B. Snoek, E. Fradin, J. Riksen, and J. Kammenga. 2009. A genome-wide library of
302 CB4856/N2 introgression lines of *Caenorhabditis elegans*. Nucleic Acids Research 37:e110-
303 e110.

304 Gibson, A. K., H. S. Baffoe-Bonnie, M. J. Penley, J. Lin, R. Owens, A. Khalid, and L. T. Morran. 2020.
305 The evolution of parasite host range in heterogeneous host populations. *Journal of Evolutionary*
306 *Biology*:doi: 10.1111/jeb.13608.

307 Haldane, J. B. S. 1949. Disease and evolution. *La Ricerca Scientifica* 19:68-76.

308 Hamilton, W. 1980. Sex versus non-sex versus parasite. *Oikos* 35:282-290.

309 Hamilton, W., R. Axelrod, and R. Tanese. 1990. Sexual reproduction as an adaptation to resist parasites (a
310 review). *Proceedings of the National Academy of Sciences* 87:3566-3573.

311 Howard, R. S., and C. M. Lively. 1994. Parasitism, mutation accumulation and the maintenance of sex.
312 *Nature* 367:554-557.

313 Hutson, V., and R. Law. 1981. Evolution of recombination in populations experiencing frequency-
314 dependent selection with time delay. *Proceedings of the Royal Society B: Biological Sciences*
315 213:345-359.

316 Jaenike, J. 1978. An hypothesis to account for the maintenance of sex within populations. *Evolutionary*
317 *Theory* 3:191-194.

318 Koskella, B., and C. M. Lively. 2009. Evidence for negative frequency-dependent selection during
319 experimental coevolution of a freshwater snail and a sterilizing trematode. *Evolution* 63:2213-
320 2221.

321 Little, T. J., C. B. Watt, and D. Ebert. 2006. Parasite-host specificity: experimental studies on the basis of
322 parasite adaptation. *Evolution* 60:31-38.

323 Lively, C. M., and M. F. Dybdahl. 2000. Parasite adaptation to locally common host genotypes. *Nature*
324 405:679-681.

325 May, R. M., and R. M. Anderson. 1983. Epidemiology and genetics in the coevolution of parasites and
326 hosts. *Proceedings of the Royal Society B: Biological Sciences* 219:281-313.

327 Morran, L., O. Schmidt, I. Gelarden, R. Parrish II, and C. M. Lively. 2011. Running with the Red Queen:
328 host-parasite coevolution selects for biparental sex. *Science* 333:216-218.

329 Morran, L. T., M. D. Parmenter, and P. C. Phillips. 2009. Mutation load and rapid adaptation favor
330 outcrossing over self-fertilization. *Nature* 462:350-352.

331 Nidelet, T., and O. Kaltz. 2007. Direct and correlated responses to selection in a host-parasite system:
332 testing for the emergence of genotype specificity. *Evolution* 61:1803-1811.

333 Pal, C., M. D. Macia, A. Oliver, I. Schachar, and A. Buckling. 2007. Coevolution with viruses drives the
334 evolution of bacterial mutation rates. *Nature* 450:1079-1081.

335 Parrish, R. C., II, M. J. Penley, and L. T. Morran. 2016. The integral role of genetic variation in the
336 evolution of outcrossing in the *Caenorhabditis elegans-Serratia marcescens* host-parasite system.
337 *PLoS One* 11:e0154463.

338 Paterson, S., T. Vogwill, A. Buckling, R. Benmayor, A. J. Spiers, N. R. Thomson, M. Quail et al. 2010.
339 Antagonistic coevolution accelerates molecular evolution. *Nature* 464:275-278.

340 Penley, M. J., G. T. Ha, and L. T. Morran. 2017. Evolution of *Caenorhabditis elegans* host defense under
341 selection by the bacterial parasite *Serratia marcescens*. *PloS one* 12.

342 R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical
343 Computing Vienna, Austria:<http://www.R-project.org>.

344 Schulte, R. D., C. Makus, and H. Schulenburg. 2013. Host-parasite coevolution favours parasite genetic
345 diversity and horizontal gene transfer. *Journal of Evolutionary Biology* 26:1836-1840.

346 Singmann, H., B. Bolker, J. Westfall, F. Aust, and M. Ben-Shachar. 2019. afex: Analysis of Factorial
347 Experiments. R package version 0.25-1 <https://CRAN.R-project.org/package=afex>.

348 Slowinski, S. P., L. T. Morran, R. C. Parrish II, E. R. Cui, A. Bhattacharya, C. M. Lively, and P. C.
349 Phillips. 2016. Coevolutionary interactions with parasites constrain the spread of self-fertilization
350 into outcrossing host populations. *Evolution* 70:2632-2639.

351 White, P., A. Choi, R. Pandey, A. Menezes, M. J. Penley, A. K. Gibson, J. C. de Roode et al. 2019. Host
352 heterogeneity mitigates virulence evolution. *Biology Letters* 16:doi: 10.1098/rsbl.2019.0744.

353 Whitlock, M. C. 1996. The Red Queen beats the jack-of-all-trades: the limitations on the evolution of
354 phenotypic plasticity and niche breadth. *American Naturalist* 148:S65-S77.

355 Wickham, H. 2016, *ggplot2: Elegant Graphics for Data Analysis*. New York, Springer-Verlag.

356 Wolinska, J., and P. Spaak. 2009. The cost of being common: evidence from natural *Daphnia*
357 populations. *Evolution* 63:1893-1901.
358 Yourth, C. P., and P. Schmid-Hempel. 2005. Serial passage of the parasite *Crithidia bombyi* within a
359 colony of its host, *Bombus terrestris*, reduces success in unrelated hosts. *Proceedings of the Royal
360 Society B: Biological Sciences* 273:655-659.

361

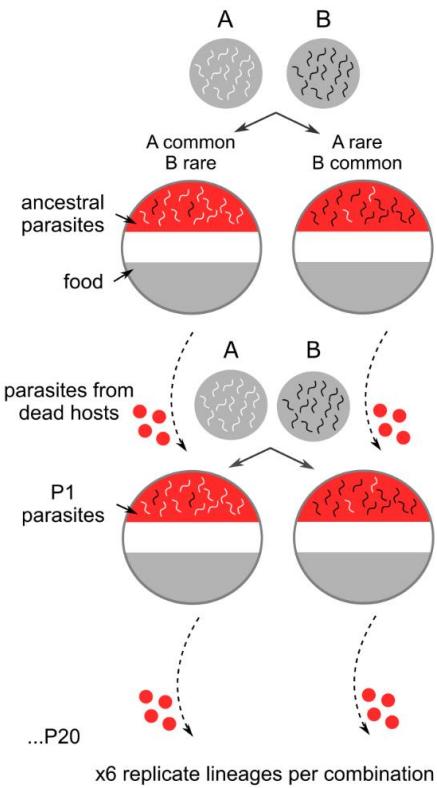
362

363

364

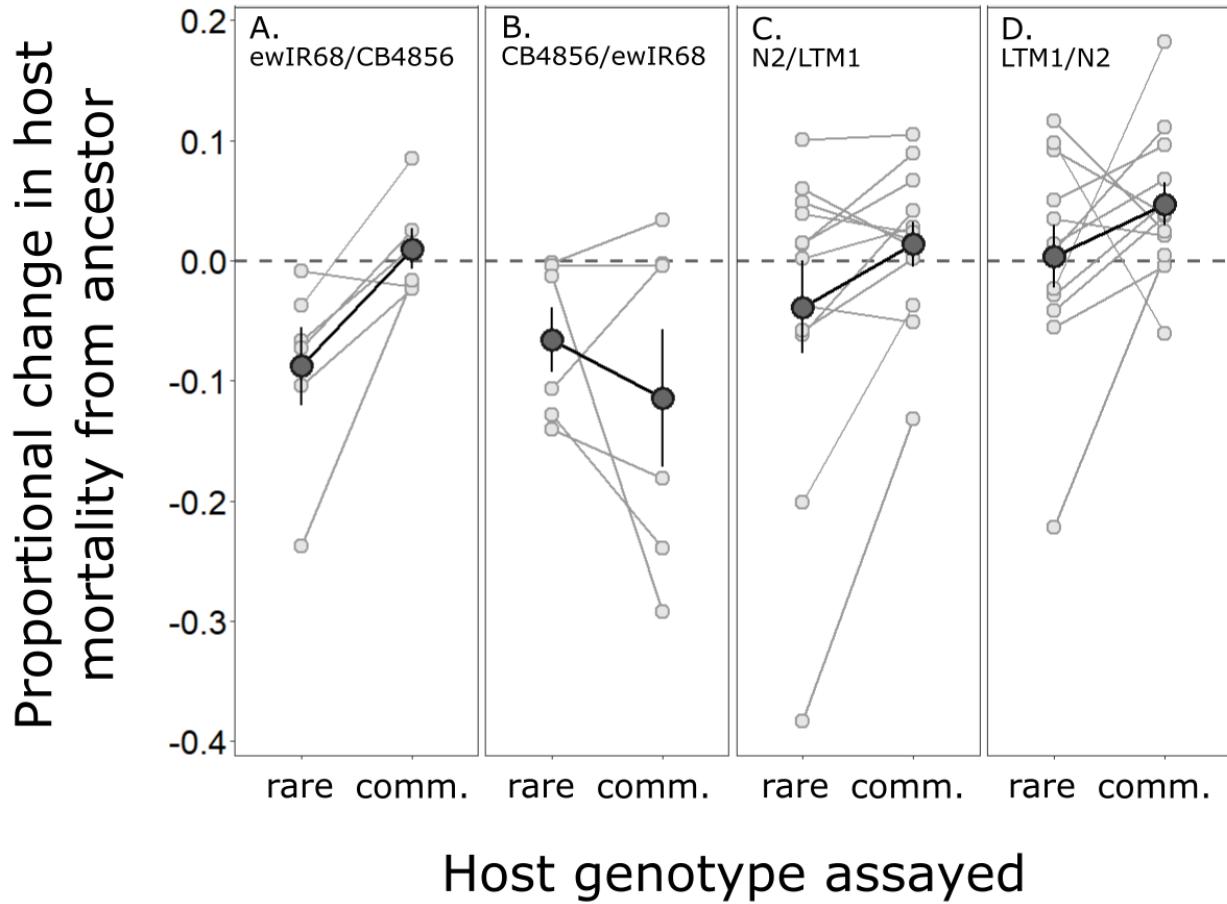
365

366


367

368

369


370

371 **Figures**

Combinations	Rare	Common
9 N2: 1 LTM1	LTM1	N2
3 N2: 1 LTM1	LTM1	N2
1 N2: 3 LTM1	N2	LTM1
1 N2: 9 LTM1	N2	LTM1
3 CB4856: 1 ewlR68	ewlR68	CB4856
1 CB4856: 3 ewlR68	CB4856	ewlR68

Figure 1: Experimental evolution design. A single genotype of *Serratia marcescens* was used to initiate 36 independent parasite lines. These lines were selected for increased killing of hosts in heterogeneous host populations, in which one host genotype was common and one rare. Each round of selection, non-evolving hosts were added to a lawn of parasites, dead hosts were isolated at 24 hours, and parasites were extracted. These parasites - those that killed their hosts rapidly - were then passaged to the next round of selection. Four host genotypes were paired in different combinations and frequencies. There were six replicate parasite lines for each combination of host genotypes.

Figure 2: Change in virulence against rare vs. common host genotypes. We assayed the virulence (host mortality) of each parasite line against the rare (left) and common (right) host genotypes with which it was evolved. We used these estimates to calculate the proportional change from ancestral virulence (Fig. S1) against each host. The dashed line indicates no change from the ancestor. Each dark point represents the mean proportional change of 12 (N2/LTM1 combinations) or six (CB456/ewIR68 combinations) evolved parasite lines, with standard error of the mean. Shaded points show the mean estimates for each individual parasite line; these mean estimates were calculated from eight (N2/LTM1) or six (CB456/ewIR68) technical assay replicates per line.