Attack of the Genes: Finding Keys and Parameters
of Locked Analog ICs Using Genetic Algorithm

Rabin Yu Acharya, Sreeja Chowdhury, Fatemeh Ganji, and Domenic Forte
Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA
{rabin.acharya, sreejachowdhury, fganji}@ufl.edu, dforte@ece.ufl.edu

Abstract—Hardware intellectual property (IP) theft is a major
issue in today’s globalized supply chain. To address it, numerous
logic locking and obfuscation techniques have been proposed.
While locking initially focused on digital integrated circuits (ICs),
there have been recent attempts to extend it to amalog ICs,
which are easier to reverse engineer and to copy than digital
ICs. In this paper, we use algorithms based on evolutionary
strategies to investigate the security of analog obfuscation/locking
techniques. We present a genetic algorithm (GA) approach which
is capable of completely breaking a locked analog circuit by
finding either its obfuscation key or its obfuscated parameters.
We implement both the GA attack as well as a more naive
satisfiability modulo theory (SMT)-based attack on common
analog benchmark circuits obfuscated by combinational locking
and parameter biasing. We find that GA attack can unlock all
the circuits using only the locked netlist and an unlocked chip in
minutes. On the other hand, while the SMT attack converges
faster, it requires circuit specification to execute and it also
returns multiple keys that need to be brute-forced by a post-
processing step. We also discuss how the GA attack can generalize
to other recent analog locking techniques not tested in the paper.

I. INTRODUCTION

With the increasing sophistication of integrated circuits
(ICs), the electronic design and fabrication industry has shifted
from a vertical business model to a horizontal one, enabling
cheaper manufacturing and lesser time to market. The new
model involves third-party manufacturers and vendors, thus
creating security risks such as counterfeiting [1], hardware
Trojans [2], etc. Compared to digital ICs, analog and mixed-
signal (AMS) ICs are considered an easier target for reverse
engineering, piracy, and counterfeiting [3], [4] due to their
large technology node size, low transistor counts, and lesser
number input/output (I/O) pins. According to IHS, AMS ICs
form the largest category of counterfeit ICs and contribute to
25% of the total number of reported instances [5]. Thus, there
exists a dire need to protect AMS IP/ICs.

There has been considerable work attempting to protect
digital ICs from the above threats, and researchers have
recently drawn inspiration from them in order to protect analog
ICs. The main strategy in the field of hardware IP protection
has been logic locking [6]-[8]. Logic locking' is a design-
for-security (DFS) technique which protects a hardware IP by
modifying its design in such as way that it produces erroneous
behavior unless properly activated by a key. Recent works
which claim to protect AMS and radio frequency (RF) IPs [10]
against counterfeiting activities include [11] and [12]. Both
are performed in a similar manner except for how the key is
chosen and applied to the circuit. In the former, the key is
used to obfuscate/hide the biasing parameters of the IP and

! Also referred as logic obfuscation and logic encryption in the literature [9].

is determined randomly. In the latter, a satisfiability modulo
theory (SMT)-solver is used to find “unique” key such that all
incorrect keys cause the circuit to exhibit behavior far from the
intended design. Though the above techniques claim to protect
analog IPs by combinational locking, we show in this paper
that they are vulnerable to attacks. Specifically, we propose
an attack methodology that employs evolutionary algorithms,
which is capable of breaking all known analog logic locking
techniques. Our main contributions are summarized as follows.

o We propose a genetic algorithm (GA) attack to reverse en-
gineer obfuscated analog circuits. Similar to most attacks
on digital logic locking, our attack requires the locked
netlist and an unlocked IC (i.e., oracle).

o We implement the proposed GA attack and demonstrate
that it is capable of obtaining both keys and obfuscated
parameters of all analog circuit benchmarks locked by
SMT combinational locking [12] and parametric bias-
ing [11]. This can be accomplished by GA in 2 minutes
in the worst case, and our results show that attack time
only increases linearly with key size.

o To further demonstrate the efficacy of the GA attack
in more complex, real-world scenarios, we apply it on
a locked phase-locked loop (PLL) embedded within a
superheterodyne receiver locked by a 512-bit key. Using
the output of the receiver instead of the PLL (which
would be inaccessible in practice), we are able to extract
the 40-bit portion of the key that locks the PLL within 5
minutes.

o We compare the proposed GA attack to state-of-the-art
attack strategies against analog locking based on SMT
solvers, and demonstrate its superiority in extracting keys
that more closely match the oracle.

e« We also explain how GA attack can extend to other
analog locking techniques proposed in the literature.

The rest of the paper is organized as follows. Section II
provides background on analog locking techniques and genetic
algorithm. Section III defines our threat model, describes our
proposed attack methodology, and compares it to alternative
techniques. Experimental results and discussion are given in
Section IV. Finally, Section V concludes the paper.

II. BACKGROUND
A. Related Works on Analog Locking

The security of locking or key-based obfuscation often
comes down to the size of the key. First and foremost, the
key must be long enough to prevent attackers from easily
applying brute force. Thus, a 128-bit key will require a circuit
to produce 2'2® output functions of which only one should
be the correct one. Compared to digital logic locking, it is

ORIGINAL OBFUSCATED

v IN _,,| ORIGINAL OBFUSCATED
Jas, i .
B o vk
v 7 out L :'—I K, _I [_I K.
951 out = _°| i "
2 ! . . .
VL, Vs, [Decrypth - == e, =EeD : | :
ircui 4 as 1
i | (T | [y | [
vV
(a) (b)
Analog key
Current mirror
i IN/L/H
My ;
-ﬁ 1 Vin Biases =
| Vout Access
:| M. N/L/H Analog I(J biases for
L___ A‘ Vin training
(c) (d)

Figure 1: State-of-the-art analog locking techniques. (a) parameter-
biasing based locking (PB-Lock) [11]; (b) SMT-based locking of
transistor widths (SMT-Lock) [12], [16]; (c) multi-threshold voltage
(Vin) locking [17] where N, L and H Vi, refer to normal, low and
high Vi, respectively; (d) neural network based locking [18].

more difficult to realize such a property in analog circuits
since they are designed to work in the presence of process
variability [13]. Aside from brute force, the key should also
be secure from oracle attacks such as SAT [14] and SMT [15].
In oracle attacks, the adversary is assumed to have access to
the locked netlist as well as an unlocked IC (i.e., oracle). The
locked netlist is in the possession of a third party foundry,
but can also be obtained by an end user through reverse
engineering. As mentioned above, analog ICs are lower in
complexity than digital ICs, and therefore easier to de-process
and image to reconstruct the locked netlist. The unlocked chip
can be either purchased in a free market or stolen/captured in
a controlled supply chain.

Fig. 1 illustrates several of the recent state-of-the-art lock-
ing/obfuscation techniques aimed at analog IP/ICs. They can
be divided coarsely into the following categories.

Parameter-biasing based locking: In [11], the widths of
the transistors are obfuscated using key-based combinational
locking of the biasing parameters (current or voltage bias) of
the circuit as shown in Fig. 1a. However, this technique has
one significant drawback which is the fact that it does not
ensure the output using the correct key is significantly unique.
In other words, there can be multiple keys that provide the
correct circuit behavior/performance.

SMT-based locking/combinational locking: To overcome the
drawback of parameter-biasing, [12] and [16] use satisfiability
modulo theorem (SMT)-based locking techniques to ensure
that only one key provides the correct output while other
keys show significant performance deviation. The value of
effective width (W, ¢s) of the original transistor is obfuscated
by replacing it with an m x n grid of transistors with widths
(Winn) controlled by a key as shown in Fig. 1b.

Multi-threshold voltage locking: The technique described
in [17] involves using transistors of multiple threshold voltages
within the range of [LV;y,, HV;;] to obfuscate actual threshold
voltage NV, as shown in Fig. 1c. This is to ensure significant

performance degradation upon application of the incorrect Vy,.
This technique might protect against imaging-based reverse
engineering since differences in dopants are difficult to distin-
guish by imaging, but will not protect against overproduction
as foundry knows the correct Vy;, during manufacturing.

Neural-network based locking: In an attempt to counter
model approximation attacks, on-die analog neural network
was recently proposed in [18] as shown in Fig. 1d such that the
trained network serves as a lock and its analog input serves as
the key. Only a correct pair of key and lock will set the correct
bias for the analog circuit. This is to ensure that the keys are
only used in the analog domain and that the number of possible
keys is increased, consequently impairing the effectiveness of
the model approximation attacks [18]. Although this can be
thought of as a promising solution against key guessing and
brute force attacks, their neural network-enabled method is
still vulnerable to attacks, ranging from reverse engineering to
ones which are agnostic with regard to the key domain.

To recap, we stress that while the above-mentioned methods
offer a few adaptable solutions for analog design obfuscation,
they are susceptible to either reverse engineering or lock re-
moval attacks [19]. More importantly, the relationship between
the key and the performance of the IC is simple enough
to be approximated, and therefore, the model underlying the
obfuscation can be learned. In this paper, we demonstrate
such an attack. To be more specific, we demonstrate that
the relationship between an IC’s output/performance and its
internal parameters can be easily exploited to guide a genetic
algorithm (GA). In this regard, we will show how to launch an
oracle attack that extracts either the correct key or the hidden
internal parameters of a locked analog circuit.

B. Introduction to Genetic Algorithm

1) Basic Idea and Operation: The genetic algorithm (GA)
is an optimization algorithm inspired by the process of natural
selection. To this end, GA applies three evolutionary operators
— selection, crossover, and mutation — to a population of
chromosomes as shown in Fig. 2. Chromosomes are created
by encoding potential solutions to the problem as strings of
real numbers or binary bits (e.g., Al through A4 represents
different chromosomes in Fig. 2b). A real number or a bit
is referred to as a gene of the chromosome. Representing a
candidate solution or genetic encoding is problem dependent
and one of the major components of the GA [20]. After
encoding, a large population of random chromosomes, each
of L genes, is created. Each chromosome is then tested to
see how suitable it is at solving the problem at hand. This
is accomplished by using a fitness function which assigns a
fitness value to each solution. Depending on the fitness value,
only a few chromosomes are selected for the next stage (see
Fig. 2c¢). New population members are created by merging
two previously fit chromosomes in a process called crossover
(see Fig. 2d) and mutating certain genes of the resulting
chromosome in a process called mutation (see Fig. 2e). These
processes are controlled by crossover and mutation rates,
which determine the probabilities of performing crossover and
mutation of each gene. In a simple GA, only a fraction of the
individuals is replaced in each generation, and the selection
process is biased towards highly fit individuals. This evolution

romosome

=T
. = atfofoJoofo] + Az[1]1]1]1]1]
Fltncs,? Inltla! G§§§" ®)
Calculation Population A3i el 0.‘i a4loToTol2l0
Chi

[(00 ssfofololio] |

I ':’AMW\ @
Crossover A4 M Ad2|1 1
(oo nnonoj

______ :

A4 [o]o]o[1]o]

New
Population

nmnnn o

A42[1]1]t]o]o]

(@)

Figure 2: (a) Flowchart of the genetic algorithm (GA); Example
showing (b) population initialization; (c) selection of fit members
from the population; (d) crossover between fit members to create
new members; (e) mutation of genes in certain members; (f) the new
population after selection, crossover, and mutation.

of individuals is repeated until a stopping criterion is met —
either a solution of desired fitness is found or a limit on the
number of iterations is reached.

2) Complexity and Effectiveness of GA: GA is a highly
non-linear search algorithm, and this inherent feature makes
it difficult to model its behavior. The schema theory, also
called fundamental theorem, is one of the accepted models
which helps to understand the way GA works. In this regard,
a schema is defined as a specific pattern describing a set of
chromosomes. For instance, in Fig. 2b, the chromosomes Al
and A4 belong to the schema H = (0 0 0 * 0). In this
model, the symbol * shows that only the gene at the fourth
position can have a value of either 1 or 0, and other positions
are fixed, i.e., have a value of 0. The order of a schema
o(H) is the number of its fixed positions, e.g., o(H) = 4
since there are four positions with zero in common between
Al and A4. In addition, p(H) is referred to as the defining
length of the schema, that is the distance between its first and
last specific positions. Moreover, m(H,t) denotes the number
of individuals belonging to the schema H at a particular
generation ¢. Accordingly, the fitness of the schema F'(H)
can be defined as the average fitness of all strings belonging
to the schema. We can now define the schema theorem as

i, 1) > PUEDEUD (4 PUD (o),
where F), is the average fitness of the population at generation
t, p. is the crossover rate, and p,, is the mutation rate. The
most important interpretation of this theorem is that a pattern
describing a set of chromosomes will remain or disappear
in the next generations. More importantly, this theorem is a
formalization of how the quality of the next generation can be
predicted. In other words, it identifies the “building blocks”
of a good solution, which are short, low-order, and high-
performance schemata. Furthermore, it relates this quality to
the crossover, believed to be a major source of the creative
power of GAs [21].

3) Applications of GAs: GAs are used in a variety of
applications that involve solving complex problems such as
machine learning, automatic programming, and data model-

ing. They have great advantages compared to conventional
optimization methods such as calculus-based optimization
methods (hill-climbing and gradient-ascent), exhaustive search
methods, and random search methods [22]. Unlike these
methods, GAs are more likely to find a global optimum instead
of getting stuck in a local optimum. Further, GAs do not
require extra information like derivatives or gradients. The
only mechanism that guides their search is the numerical
fitness value of the candidate solutions. This allows them
to function when the search space is noisy, nonlinear, and
derivatives do not exist. GA is also more flexible and can be
tuned depending on whether accuracy or efficiency is more
important. Thus, GA can apply to many more situations than
traditional algorithms.

4) GA in Circuit Design: Among various applications,
evolutionary computation has been demonstrated as promising
and powerful for computer-aided design (CAD) of electronic
circuits. For this purpose, the challenging task of satisfying
multiple objectives (e.g., cost, power consumption, perfor-
mance, and reliability) and selecting the most appropriate
topology, i.e., optimization of the design, can be accom-
plished through evolutionary algorithms, and more specifically,
GAs [23]. In particular, GAs have been widely adopted to
handle the problems related to not only design optimization,
but also the synthesis of analog circuits. The popularity of GAs
stems from their inherent ability to deal with optimization and
search problems, where the size or complexity of the prob-
lems makes the application of other optimization techniques
infeasible. Moreover, and more importantly for our approach,
GAs require no additional information on the search space.
Nevertheless, in this paper, we focus on another aspect of
designing a circuit — the security of the design — which can also
be tackled by GAs successfully. Ironically enough, to assess
the security of analog circuits, we launch GA-based attacks.

III. ATTACK APPROACH
A. Threat Model

We assume a threat model consisting of either an untrusted
foundry or an end user who possesses the necessary tools and
skills needed to reverse engineer and counterfeit the circuit
from a GDSII file [19]. In addition, the circuit is assumed
trusted and devoid of any malicious components. Below we
summarize the assumptions made by our proposed attack.

o The attacker has access to an unlocked IC (oracle) and
can measure correct input/output signals from it.

o The attacker has the obfuscated/locked netlist.

o The attacker does not need to have knowledge of the
locking algorithm used, but he or she needs to know
where in the IP/IC that the key is being applied.

B. Proposed Attack Methodology

As a running example, we consider combinational locking
techniques where analog circuit components are controlled by
key bits as shown in Fig. 3. This obfuscates the correct value
of the circuit parameters such as the width of the transistor
Y (Wesy) in the original design. Only on application of the
correct key, the circuit operates correctly. As shown in Fig. 4a,
our attack takes a locked netlist and an oracle output as inputs.

Figure 3: Combinational locking example. (a) Original current mirror
with the transistor Y of width W,ys. (b) Additional transistors
connected to key bits to replace Y. q1, g2, etc. represent key bits.

Then, based on the encoding of the problem, GA will either
evolve various combinations of key bits or various values of
obfuscated circuit parameters (such as Y’s width in Fig. 3) to
obtain an output that matches the oracle’s.

Before running the algorithm, parameters as described in
Section II-B1 should be set by the user. These parameters,
mainly the number of chromosomes or solutions (IV), fitness
function, selection criterion, crossover rate, mutation rate, and
stopping criterion, guide the algorithm to reach or converge to-
wards a solution. Below we will describe these parameters and
a general procedure in extracting the correct key/parameters
from a locked circuit.

1) To start the algorithm, the first generation of candidate

solutions is created by generating N random chromo-
somes. IV is usually chosen small so that the algorithm
can converge towards a solution quickly. If one is
evolving the circuit parameters, each chromosome will
be encoded with real numbers. Alternatively, if one is
evolving the key, the chromosome encoding is binary.
The length of the chromosome (L) is equal to the key
size k in this paper.
Example: For the circuit locked as shown in Fig. 3 with
a 4-bit key, a potential chromosome will either be [1010]
or [480.3nm] if we are evolving key bits or Y’s width
value, respectively.

2) Next, one defines the fitness function, i.e., an objective
function that estimates how closely a given design solu-
tion (chromosome) solves the problem. For an analog IC,
there could be many important specification parameters
of the circuit and its output (e.g., throughput, linearity,
bandwidth, gain, etc.) used by the fitness function. For
the benchmarks in later sections, we will use either
the output frequency response or the output transient
response of the circuit as parameters of our fitness
function. A general fitness function F' which helps guide
the GA towards the correct solution is [24]

m n
F =Y (fig)% st fi; = Eij — O, (2

j=11i=1
where f; ; is an individual fitness criterion applied to a
problem with n data points in our multi-objective fitness
function and m is the number of fitness criteria used.
For each criterion f; ;, F; ; is the target output obtained

from the unlocked IC for parameter i and the 5" fitness
criteria, and O; ; is the obtained output after simulating
the netlist with the chromosome solution.

Example: In most of our later experiments, m = 1 and
the fitness criterion corresponds to output frequency or
transient response. ¢ denotes the index in an output data
vector collected over frequency or over time.

3) The best-fit chromosomes (i.e., those with the smallest
value of F') are selected for the next steps of the
evolution while the rest are discarded from the popu-
lation. In this paper, we employed the roulette wheel
selection [20], in which the slots of a roulette wheel are
sized according to the F' of each chromosome solution
in the population, and a chromosome is selected by
spinning the roulette wheel.

4) The selected chromosomes are used to create new chro-
mosomes or offspring using the crossover operator. The
crossover operator swaps a part of the sequence of two
of the selected chromosomes to create two offspring
as discussed in Section II-B1. Note that the crossover
operator is only used for binary-encoded chromosomes
in this paper.

5) These new chromosomes are mutated with a certain rate
to determine how many bits in the offspring will be
flipped from O to 1 and vice versa. For chromosomes
coded with real numbers, the value of the chromosome
will change by the mutation rate.

6) Steps 2 to 5 are repeated until a stopping criterion is
met. Each iteration is called a run, and at the end of
each run, there is usually at least one chromosome with
the smallest fitness value. This could be the final solution
or additional runs may be needed to converge towards
the fittest individual. The number of runs is one of the
stopping criteria for halting the optimization process.
Similarly, time allocated for each run and total time
to run the algorithm can also be employed. Depending
on the progress made, one can change these parameters
including the mutation rate, the selection criteria, the
crossover point, etc. for better optimization.

C. Two-Pass Variant of Proposed Methodology.

In the case of attacking complex benchmark circuits locked
with binary key of length &, the search space for GA is 2¥. One
way to reduce this space is to apply the GA attack twice. In the
first pass, the chromosomes can be encoded using real numbers
in order to identify the value of obfuscated circuit parameters.
In the second pass, the result from the first pass can be used an
additional fitness criteria to guide the GA when it searches for
the correct key. In cases where the obfuscated parameters (e.g.,
transistor widths and lengths, threshold voltages, etc.) take on
discrete values, the search space for the two-pass approach
will effectively reduce from 2 to linear in the discrete values
of the obfuscated parameters.

D. Comparison to Other Attack Techniques

As it was previously demonstrated that SMT solvers can
successfully de-obfuscate locked digital circuits [15], it may
seem tempting to apply the same method against obfuscated

Circuit
Lock
specific equations &
netlist equation || specifications
Locked GA Oracle l
netlist parameters output g it
! SMT Solver

Correct key/
parameter

(a) (b)

Figure 4: Comparison between two attack methods. (a) Attack
process using GA; (b) Attack process using SMT-based method.

analog circuits. This section aims to show how this could be
possible and highlights the limitations of such an attack.

1) SMT-based Attack on Combinational Locking: Attacking
circuits locked using combinational techniques [11], [12], [16]
involves formulating a system of equations that mirror how the
locking has been implemented. That means to launch an SMT-
based attack, the adversary needs to have detailed knowledge
regarding the locking technique unlike launching an attack
based on the proposed GA. The procedure taken by SMT-
based attack to break the defense techniques in [11], [12],
[16] is shown in Fig. 4b and is briefly explained below.

1) Identify the portion of the circuit where the lock has
been implemented and then figure out the type of
obfuscation used, e.g., parameter-biasing [11] or SMT-
based [12], [16].

2) Find the obfuscated circuit parameters such as the width
of transistors and their dependency on the key inputs
based on the locking technique and circuit specifications.
Example. Transistor Y of width W,y is replaced by
m X n transistors where transistors in the same column ¢
has same width value W/. That means W,y is replaced
by W/ = {W{,Wi,...,W/}, where W/ is connected to
m stacked transistors of the same width controlled by
the key vector ¢’ which represents multiple bits of the
key ¢. This in turn obfuscates the output current

Iout = (X;W; 1_[2qz,’j)['ref7 (3)
i= j=

where ¢, ; represents the value of key bit connected to the
transistor at row ¢ and column j and is 1 if no transistor
exists at that location [12]. I is part of the circuit
specifications and needs to be known by the attacker.

3) Formulate theoretical circuit equations for the obfus-
cated bias based on the benchmark.

4) Equate the equations from the first and the second step
and use the solver to find a key or list of keys. If a list
is returned, compare the output obtained from the keys
with the oracle to determine the correct key.

2) SMT Solvers — Challenges and Possibilities: Similar to
GAs, SMT solvers first found application in design and veri-
fication of analog and mixed-signal (AMS) circuits, e.g., [25],
[26]. In addition to verification, SMT solvers have been
utilized to enhance understanding of the functionality of small
components and sub-circuits in a larger system. Although

challenging to determine the mapping between the inputs and
outputs of sub-circuits with equivalent functionality, it has
been demonstrated that SMT solvers can solve this prob-
lem [27], cf. [28]. Recently, SMT solvers were used to assess
the security of hardware primitives, namely by launching
attacks against obfuscated digital circuits® [15]. It has been
claimed that SMT solvers can overcome obstacles that the
attacker has to face by solving problems classified as constraint
satisfaction problems (CSPs). Formally, such a problem is
defined by a set of variables X1, --- , X,,, where each variable
(e.g., X;) has a nonempty domain D; (1 < i < n) containing
possible values that can be assigned to X;. Along with the
set of variables, a set of constraints C4,--- , (), is defined,
with C; specifying the restricting rules on the values that the
variables can simultaneously take. When finding a solution to
a CSP, the solver must find an assignment of the values to
variables so that the values are chosen from the respective
domains, and each and every constraint is satisfied (for more
details, see [30]). The solver can deliver either a set of possible
solutions or one solution, with no preference. Nowadays, a
typical SMT solver is composed of a SAT solver, crucial
for solving Boolean satisfiability problem, as well as theory
solvers for decidable theories in concrete domains, e.g., linear
integer arithmetic, arrays and bit-vectors, etc.? [31].

With regard to this definition, it is tempting to formulate
the problem of finding the correct key of an obfuscated analog
circuit as a CSP problem, and accordingly, apply an off-the-
shelf SMT solver to unlock the circuit. However, one has
to be careful about the challenges and limitations that are
inevitably involved in SMT solvers. First and foremost, an
SMT solver is a collection of heuristics used to combine
several algorithmic proof methods. A theoretical framework,
namely Davis—Putnam-Logemann—Loveland (DPLL) scheme,
must have been principally applied to integrate the theory
solvers together with a SAT solver. Nevertheless, in typical
SMT solvers, the DPLL scheme has been either substituted by
or combined with a set of heuristics [31]. Consequently, from
one SMT to another, it may be impossible to achieve the same
result for given a problem. More importantly, due to a lack of
detailed knowledge of how the heuristics can be controlled, it
may be possible to neither generalize the results to similar
systems under test (e.g., similarly obfuscated circuits) nor
repeat the same experiment successfully. As a prime example,
the formula preprocessing, i.e., the process of translating the
given problem into a formula understandable by the solver,
can be handled by different SMT solvers in various ways. In
the literature, this problem is well formulated as the “strategic
control”, meaning that end-users are given theoretical and
practical tools and methods to control core heuristic aspects
of the SMT. In this regard, a strategy, i.e., general search
mechanisms, should be adopted to reduce the search space
by focusing on a particular class of problems [31]. Interest-

’During the time that we were developing the ideas presented here, an
SMT-supported attack against analog locking was proposed in [29]. While
we do not have access to [29] and cannot elaborate on its details, we expect
the main differences to be similar as between our approach and [15].

3Note that our main focus lies on the so-called lazy approach, in which
theory solvers are involved in the problem-solving process. This is due to
their superior efficiency in the context of this study.

ingly enough, to devise such effective strategies, evolutionary
algorithms, particularly, GAs have been used to improve SMT
solver efficiency, e.g., [32]-[34].

Moreover, even if heuristics mentioned above could be
tailored to the needs of particular known classes of problems,
see, e.g., [35], they can perform poorly on other classes. One
may argue that in the context of obfuscated circuits, in general,
the netlist of circuits can be represented by graphs, and then
first-order theories involved in SMT solvers can be applied
to tackle the problem of de-obfuscation. Hence, it might
be concluded that the design of SMT solvers is appropriate
for these problems. It is clear that even in this case, SMT-
based approaches suffer from two main shortcomings: (1) the
preprocessing step (i.e., translation of the netlist to the graph)
increases the computational overhead, and (2) to obtain the
graph representing a given netlist, a detailed specification of
the circuit is required. The latter problem may seem relatively
simple, when considering digital circuits; however, for analog
circuits, this step involves a precise specification of the circuit.
For example, a current internal to the chip, I.¢, is needed
to formulate the equations and inequalities that describe the
circuit shown in Fig. 3. This quantity is unlikely to be available
in practice. This is in contrast to GA, where the inputs fed into
the algorithms are solely the locked netlist and the outputs
collected from the locked circuit (see Fig. 4). Comparing the
steps of the GA and SMT-based attacks makes this further
evident. More specifically, for the GA-based attack, the above
point refers to the first step (i.e., generating the chromosomes),
whereas steps 1-2 in the case of the SMT-based attack should
be taken. These steps 1-2, as discussed before, are much more
complicated as they are not only locking-technique dependent,
but also circuit-specification dependent.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Setup

The proposed GA attack is validated primarily on four
different circuit benchmarks based on 180 nm generic process
design kit (GPDK) technology: operational transconductance
amplifier (OTA), fourth-order Gm-C band-pass filter (BPF),
phase-locked loop (PLL), and a triangular waveform gen-
erator (TWG) used in class-D amplifiers. We also perform
an additional experiment on a superheterodyne receiver. All
experiments are run on a CPU which has a x64-based Intel
Xeon 3.3 GHz Processor and 32 GB of RAM. The steps
taken to carry out the proposed attack are shown in Fig. 5.
The circuits are designed and obfuscated with a k-bit key
where k = 16, 32,40, and 64 using SMT-based combinational
locking [12] and parameter-biasing locking [11], henceforth
referred to as SMT-Lock and PB-Lock respectively*. The
correct output of the unlocked circuit is recorded from the
design’s output pins as well. The attacks are carried out
using GA as described in Section III-B. The creation of
chromosomes, the genetic evolution, and the corresponding
simulations of the evolved netlist are entirely done within

4The locking techniques are chosen to illustrate the proposed approach and
provide a comparison to SMT-based attacks. However, the GA attack should
generalize to other locking schemes such as [17], [18] (see Section IV-D).

Genetic GA New
encoding evolution netlist

No

Yes Matches
oracle?

Figure 5: Experimental setup showing the procedure used in extract-
ing the obfuscated parameters and/or keys using GA.

PySpice

Key / Parameter . .
simulation

the Python environment. We use PySPICE which is an open-
source module that can simulate and manipulate SPICE netlists
in Python by interfacing Python to the Ngspice simulators [36].

GA Attack Settings. As discussed in Section III-B, we need
to first set the GA parameters to attack the circuit benchmarks.
N is set to 40. Roulette wheel selection is used as the
selection criteria. For binary-encoded chromosomes, single-
point topology aware crossover is chosen as the crossover
operator where bits to right of the crossover point (half-way
point of the key size in our method) are swapped between
the two parent chromosomes [20]. Mutation rate is chosen to
be 5%. The obfuscated netlist combined with the generated
chromosome is then evaluated for fitness. In general, either
output frequency response or transient response is used as a
fitness criteria. In other words, the number of fitness criteria
is one (m = 1), in which case Equation (2) simplifies to

F=Y (Bi—0:) “
i=1

In this paper, we do not halt the algorithm until we get the
desired output. For example, if the frequency response is used
as a fitness criterion and the frequency response of the evolved
circuit (0O;) is equal to the actual output of the unlocked circuit
(E}), then the GA halts. Further, if the best fitness value among
the chromosomes does not keep improving up until a certain
generation, we perform survival selection with the Age-fitness
Pareto algorithm [23]. Survival selection culls the combined
population of parents and offspring using tournament selection
with replacement. This process was implemented with a Pareto
tournament scheme in which two random members of the
combined population were selected [23]. If one of the pair had
both lower fitness and higher age than the other, it was thrown
out. The survivor was then returned to the pool. This continued
until the population size was reduced back to 40. Age was
defined as the number of generations in which an individual
had been present in the population. Offspring inherited the age
of the older parent in the case of crossover. One new, randomly
generated individual with an age of 0 and created in the same
way as members of the initial population was added to the
population in each generation.

SMT Attack. Similarly, an attack is also carried out us-
ing the SMT-based method discussed in Section III-D1. Z3
solver [37], an open-source SMT-solver is used for this
purpose. Circuit equations, equations based on the locking
technique, and the circuit specifications were used to extract
a list of candidate keys.

In our experiments, we consider two scenarios:

OTA (a) 1 BPF (b)
0.6/ mna, guer™ " w" ¥ B
PSP S N
< 0.5/ ¢0e090020 00000
- e o R AR SO a > NP
w02 +\.::.;\’ 4*+++4\‘_’,4\ ('S “
®000c00000q Seo0e
0 : : : 0 ———
0 0 20 30 40 0 10 15 20
Generation Generation
PLL(C) ... 1 TWG (d)
Py st e s 3
p :\x-vKY'u:‘xl‘&'_“,‘_x«—w»&Iy,x« N LT e R
—ypop 4 — S
o st T b Ak <
0.5 sossessensetilllT T 05 nsmea ¥ L
ic \ i Sag gy O . 1
. Aty SO
0 0 . - - ey
Generastoon 100 0 5 10 15 20
i ‘~'-Best‘~’u""u*‘ﬂ"'lt'(f Generation

Figure 6: Fitness results across generations of GA for the four
different benchmarks (OTA, BPF, PLL, TWG). Note that the attack
execution is stopped as soon as the fitness objective is met.

Case 1: GA Attack to Find Obfuscated Parameters. Lock-
ing techniques in [11], [12] are both forms of combinational
locking where an equivalent width (W) of the current or
voltage biasing circuit is obfuscated using the key. In this case,
we use GA to calculate W,y by encoding each chromosome
with real numbers and evolving them (different width values)
to match the actual circuit output. Essentially, the result is a
circuit design with the lock removed and a specification that
matches the unlocked chip. In this case, the search space for
the GA reduces from exponential (2¥) to linear (i.e., discrete
width values of the transistor).

Example. Suppose the IP to be locked is a current mirror, ¥
shown in Fig. 3, and the attacker has access to the output pin
meaning, in this case, he or she access to the I,,;. To protect
this IP, the bias transistor is split into multiple branches where
each branch ¢ contains additional transistors of sizes WZ/ that
are controlled by the key. Using I,,; as a fitness criteria for
our GA, we calculate W, without considering the additional
transistors used. The discovered width can also be used as an
additional fitness criterion to extract the correct key from the
locked circuit for Case 2.

Case 2: GA and SMT Attacks to Find Obfuscation Key.
The circuits locked with SMT-Lock and PB-Lock are attacked
using GA by applying multiple-fitness criteria including the
equivalent W from the results of Case 1. In addition, we
employ an SMT-solver to find keys for comparative purposes.

B. Results of Case 1

Fig. 6 shows the results of this case over multiple iterations
of the GA attack. Note that if the output of the evolved netlist
matches the oracle output, then the fitness value is equal to 0
and GA halts the evolution process. For each generation, the
plots show the average fitness value over all chromosomes (1),
and one standard deviation away from the mean values (u30)
as well as the value of the fittest chromosome represented by
“Best”. Here the best fitness refers to the optimal fitness values
in a population at a specific generation, i.e., starts close to 0
and decreases slowly until GA converges towards the correct
solution. Below we discuss the results for each benchmark.

OTA. In an OTA [38], the widths of transistors are obfuscated
using additional transistors which are then controlled by the

key bits to obfuscate the bias current (I5) of the amplifier. For
this case, we replace these additional transistors with a single
transistor whose width is unknown. The only output parameter
the attacker has access to is the frequency response of the
amplifier. Using this as our fitness criteria, the GA evolves
different widths to calculate the equivalent width (W,) such
that the frequency response of this evolved circuit matches that
of the unlocked circuit. As shown in Fig. 6a, the GA reaches
the fitness value of 0 during 48" generation of the evolution
process. The time taken for GA to extract this value is 33 s.

BPF. The BPF has two second-order band-pass filters, as
shown in Fig. 7a, in cascade [39]. In total, the BPF has eight
OTAs, out of which six are locked. The key bits are divided
across the OTAs. For example, a 33 bit key is distributed
across 6 OTAs which means six of these current mirrors will
be locked by replacing the biasing transistor in each current
mirror with multiple transistors [12]. This key, like before,
obfuscates the bias current (/p) of the amplifier that in turn
obfuscates other circuit parameters such as central frequency
(f.) and bandwidth (BW) of the filter. In this case, the attacker
measures the output frequency response of the filter from the
oracle. From the obfuscated netlist, the additional transistors
are removed and replaced with a single transistor. Then using
the output frequency response as our fitness criterion, the
Wy is discovered by GA for each of the current mirrors.
In this case, the fitness calculation will also be performed
according to Equation (4). As shown in Fig. 6b, the GA
reaches the fitness value of 0 during 24" generation of the
evolution process. The best fitness value converges slowly,
compared to the case of OTA. This can be because there are six
current mirrors whose bias current needs to be appropriate to
match the correct output, and there are only a small number of
width values that satisfy this condition. At around generation
16, the GA throws away the lesser-fit parents using the Age-
fitness Pareto algorithm as described in Section IV-A. This
results in a sharp improvement in the best fitness value and
eventual convergence to the correct Weyry by the GA. The
entire GA attack completes in 61.7s.

PLL. The PLL, as shown in the inset of Fig. 7b, has various
interconnected components [40]. The locked component of the
PLL is an LC-based voltage controlled oscillator (VCO) whose
oscillation frequency is a function of the control voltage [41].
The locking mechanisms obfuscate the range of this control
voltage which in turn obfuscates the operating frequency
foperating Of the PLL. The attacker does not know the correct
foperating but can measure the output transient and frequency
responses for different inputs from the pins of the unlocked
IC. This means that the number of fitness criterion m will be
2. Then using Equation 2, the fitness value will be calculated.
Fig. 6¢ shows that GA converges towards W,y during 1240
generation of the evolution process. The graph related to the
best fitness values remains steady until the 64" generation
as GA is trying to converge towards the appropriate locking
frequency of the circuit. Similar to the BPF scenario, the Age-
fitness Pareto algorithm triggers during the 72"¢ generation to
remove lesser fit chromosomes from the population. Then this
new generation of individuals helps GA to quickly converge
towards the correct solution. The entire GA attack takes 118.3s

512-bit key
T

Ref

e N

CLK |

Y_

(b)

Figure 7: (a) Second order Gm-C band pass filter (BPF) design; (b) Block diagram of a superheterodyne receiver with an integrated type-II

3rd order PLL (inset).

3000 T
® |
22000 ‘
= |
= ol il
IR LT (e[|]
0 0.5 1 1.5 2 25

Frequency in GHz

Figure 8: Multiple keys matching oracle output response (locking
frequency of PLL=1.8GHz) in PB-Lock technique.

to find Weff.

TWG. TWG consists of two current mirrors that help gen-
erate a triangular carrier wave [42]. These current mirrors
are obfuscated using the combinational locking techniques
discussed above, thus obfuscating the frequency (frgy) and
the amplitude of the TWG. Similar to before, we first replace
the additional transistors in the obfuscated current mirror by a
single transistor. Then using the output frequency response as
our fitness criterion, we calculate the width value of this single
transistor for each current mirror used in the TWG. The fitness
value is calculated according to Equation (4). The results as
shown in Fig. 6d show that during every generation the fitness
keeps improving. The average fitness value is also quite low,
and the GA converges towards the correct solution during 24"
generation. In this case, the Age-fitness Pareto algorithm based
selection did not trigger. GA extracts the width values in 43.5s.

Summary of Case 1. We successfully used GA to find the
value of the obfuscated parameter that matches the oracle
output for all four different circuit benchmarks. This takes
2 minutes at worst. This calculated value can also be used
as an additional fitness criterion to reduce the search space
of extracting a correct key from 2* to linear, which we will
demonstrate on the PLL and the superheterodyne receiver in
Sections IV-C1 and IV-C4.

C. Results of Case 2

1) GA Attack Results: Before discussing the results, it is
worth revisiting the major difference between SMT-Lock and
PB-Lock. In the former, the key is made to be unique while
in the latter it is selected randomly. Thus, in the case of
PB-Lock, the GA might return a different key than the one
randomly selected by the locking scheme. Nevertheless, the
key returned by GA results in a circuit that matches the oracle.
This illustrates a significant security flaw in PB-Lock and the
advantage of the GA attack. Fig. 8 shows the number of keys
that match the oracle output after simulating over 500 thousand

Table I: The results of GA attack and SMT-based attack on ana-
log circuits locked using SMT-based locking (SMT-lock) [12] and
parameter-biasing lock (PB-Lock) [11]. For each circuit benchmark,
we show the key length (k), the number of keys returned (K'), and
the time taken for the attack in seconds ().

GA attack M SMT attack

k SMT-lock PB-Lock SMT-lock PB-Lock

K iG] [K [i6 || K [t | B | L6

6 | 1 17.1 T 112 1 13 7 123

32 1 22.6 N 19.3 3 1.7 10 1.71

OTA ™20 [1 27 | 214 7 | 23 7 | 22
64 1 43.8 1" 38.3 8 4.1 22 4

6 | 1 | 318 | I° | 29 4 | 71 12 | 34

2 1 634 | T | 415 5 | 93 9 | 47

BPF =251 99.6 T 4 7 [147 | 21 1}l
64 | 1 | 1343 | U | 1114 || 11 | 177 | 23 | 136

6 | 1 36 T | 334 3 [135 | 7 13
T [715 | 1T | 648 8 2T 6 | 207

PLL — T T 1072 [1T [1054 || 13 | 377 | 22 39
64 | 1 | 1445 | U | 1216 || 17 | 413 | 24 | 404

6 | 1 | 227 | 183 1 23 2 18

32 | 1 | 542 | T | 320 1 3.6 9 27

TWG 0 1 | 894 | T | 634 6 | 44 | 11 | 33
64 | 1 | 176 | T | 1103 8§ | 81 | 22 | 74

Avg. | 95 | 1 | 676 | 1 | 543 || 64 | 11.8 | 153 | 10.6

* GA halts the evolution process after returning a single key. The output
for this key matches the oracle output. However, this might not be the
actual key which the circuit benchmark was locked with.

keys for the PLL locked with a 40-bit key. Even for a highly
parameter-sensitive circuit like PLL, there are over 160 keys
that return the exact locking frequency fiocking Of 1.8GH z.
In order to speed up the attacks in Case 2 for PLL, we use
the two pass variant (described in Section III-C) with multiple
fitness criteria including the value of W, obtained from Case
1. Multiple-fitness criteria also helps in tackling the problem
of non-monotonicity [23]. While attacking the circuit locked
with SMT-based locking technique [12], GA will take slightly
longer to converge towards the correct key. The time taken to
extract the correct key mainly depends on the complexity of
the circuit, key length k, and number of fitness criterion used.

The number of keys extracted (K') and the time taken
(t) by GA attack for the four different circuit benchmarks
locked by SMT-Lock and PB-Lock are summarized in the
lefthand side of Table I. In the case of SMT-lock, GA always
returns the correct key. This is because there is only one
key which sets the current bias properly such that the output
response is unique for that key. By using multiple fitness
criteria (including the value of the equivalent W,y obtained
from Case 1), the search space is reduced from exponential
(2%) to linear. For PB-Lock, GA attack returns a single key

<106 BPF:GAattack BPF:SMT attack
] x10° OTA:GA attack . OTA:SMT attack _ T FreyfomGAata] 10 [—Worst key SMT attack |
—_ ——key from GA attack] : . o --Best key SMT attack
) o = 3 § |
5 5] 1222222828 ©)
~% 0.5 ~2 05 2 g 6l
] 8 e ¢
5 5 = o NE—ES .
§° g0 ¢ ¢
Q Q 3)
g ? I s 2]
505 €505 s s
8 8 ===Worst key SMT attack ° -5 O o
A 4 —*-Best key SMT attack 1 2 3 p
10° 102 10* M 2 104 ! 2 3 4 x10* i -4
Frequency in MHz Frequency in MHz Frequency in MHz Frequency in MHz 10
(a) (b)
PLL:GA attack PLL:SMT attack
- 0.05 T 1.5
N N %107 TWG:GA attack TWG:SMT attack
P I 5 - : - 15 -
€ 25 e s
2 T2 0.5 2
[© 0.
§ § £ s
g 0 g 0 ° Q
e 2) E o
i & 3 3
> >-0.5 Y >.0.5
Q @ o o -
& 0.025 & o g
@ ® -1 |-—Bestkey SMT attack £ E
- — < < ~=Worst key SMT attack:
'} 0.05 ——key from GA attack| | L 15 -=—Worst key SMT attack s | . [=key from GA attack| 1.5 |=-Best key SMT attack |
0 1000 2000 (1] 500 1000 1500 2000 0 2 4 6 8 10 0 2 4 6 8 10
Time in (ns) Time in (ns) Time in (4.S) Time in (48)
(© (d)

Figure 9: Difference between oracle and unlocked chip with keys recovered through GA and SMT attacks for the benchmarks (a) OTA, (b)

BPE, (c) PLL, (d) TWG. GA attack provides one key while the SMT
are shown for simplicity.

which does not necessarily match the locking key, but still
unlocks the circuit as described above.For both SMT-Lock and
PB-Lock, the GA attack completes in less than 2.5 minutes
for all benchmarks and k. Further, it is worth noting that the
attack time increases linearly with respect to k.

2) SMT Attack Results: As described in Section III-D1,
the SMT-attack requires that the adversary know the desired
current value of the current mirrors and have good analog
design experience to formulate the right equations.

The righthand side of Table I shows the results for SMT-
based attack on circuits locked with SMT-Lock and PB-Lock.
SMT-based attack takes less amount of time than GA but
never returns a single key (even in the case of attacking SMT-
lock). Thus, a set of output responses need to be collected
by applying each key to the locked netlist and compared to
the output of the oracle. In other words, the SMT attack does
involve a certain amount of brute force to be performed which
depending on the complexity of the circuit and the skill of the
attacker can take exponential time. More precisely, suppose
that a set of K’ keys are delivered by the SMT solver. If
all possible keys are checked by using brute force, the time
complexity of this inevitable post-processing step is O(K'2%).

3) Performance of Keys from GA vs. SMT Attack: Fig. 9
shows the difference in the output performance of the cir-
cuit locked with a 64-bit key using parameter-biasing tech-
nique [11] after applying keys extracted from the GA and
SMT attacks. As discussed earlier, GA returns just a single
key while SMT returns a set of keys. Below we will explain
the results and compare the performance for each benchmark
with key returned from GA attack and with best and worst
keys returned from SMT attack.

attack provides multiple keys. The best and worst SMT key results

OTA is characterized by gain G = 41dB and unity gain
BW = 1.2GHz. As shown in Fig. 9a, the key extracted from
the GA attack shows a very small difference in the order of
10~3dB while both keys returned from the SMT attack show a
more significant difference in the performance value. The OTA
frequency response using the best key from SMT attack shows
a difference in gain of about 0.6dB throughout the frequency
range compared to the oracle output. While the frequency
response with the worst key shows a higher difference in gain
compared to the oracle.

BPF is characterized by G = 0dB, central frequency f.
250kH z, and BW = 150kH z. As shown in Fig. 9b, both the
keys returned from the SMT attack show significant difference
in gain and BW while the key returned by GA attack shows
little to no difference.

PLL is characterized by locking frequency fiocking
1.8GHz and settling time Ts = 920ns. As shown in Fig. 9c,
the circuit using the key returned from the GA attack has
frocking = 1.778GH z and settling time T, = 923ns, which
closely matches the oracle output. PLL using the best key
returned from the SMT attack has fiocking = 1.83GHz and
settling time 75 = 953ns. PLL using one of the worst keys
returned from the SMT attack has fiocking = 2.92GHz and
T, = 930ns.

TWG is characterized by amplitude of 1V and time period of
2us. As shown in Fig. 9d, locked TWG with the key returned
from GA attack shows no difference in the output response.
However, the keys returned from SMT attack show difference
in time period and amplitude. Although the TWG with the keys
returned from the SMT-attack has amplitude of 1V, they have
different time-periods compared to the unlocked TWG which

2 T
@
24 .
= A SR kbl b A Sl
L |--Best - *-p - +-pto® -p-a| > 'f‘* ;I&T:J;.t-:;;::;
% 00 150 200

50Generation1

Figure 10: Fitness results across generations for superheterodyne
receiver.

then results in a difference in transient response compared to
the oracle. TWG with the best key returned from the SMT-
attack has a time period of 1.85us while TWG with the worst
key has a time period of 2.28us.

4) GA Attack on Locked Superheterodyne Receiver: A su-
perheterodyne receiver is one of the most commonly used RF
circuits for modern-day radio receivers. To protect its IP, PB-
Lock uses a 512-bit key to obfuscate the performance of the
receiver with 40-bit key to lock the PLL, see [11]. Considering
the key length and the number of interconnected components
as shown in Fig. 7b, it should take exponential time to extract
the correct key. Further. in previous experiments, the attacker
had direct access to the output of the locked element of the
circuit. Here, however, the only accessible output of the oracle
is the receiver output (i.e., out of Amp in Fig. 7b).

Here, we attempt to unlock the the PLL using the two-pass
variants. First, we employ GA to extract the equivalent value
of the PLL’s obfuscated parameter (i.e., Wy). While this is
similar to Case 1, the output of the receiver is used for the
fitness criteria instead of the PLL output. Then, we use Wy
as well as the frequency response of the receiver as our fitness
criteria to extract the correct key of the locked PLL, i.e., the
number of fitness criterion m = 2 and Equation (2) becomes

F= Z(Eu - 0i1)*+ Z(Eu — 0i2)?, (5)
i=1 i=1
where E; | and F; > refers to the target value of the equivalent
Wy and the frequency response from the oracle respectively
while O;; and O; o refers to the width value obtained for
a specific key and the frequency response obtained after
simulating the netlist of the receiver for a specific key.

The key locking the PLL is extracted by GA in 314.3
seconds in the 181°¢ generation as can be seen in Fig 10.
The key returned from GA matches the one used to lock the
PLL. This shows that the correct key can be extracted even
without using the immediate output of the PLL. The rest of
the keys locking the receiver can be extracted more easily by
GA (not shown for brevity) as the receiver’s performance is
most heavily dependent on the PLL.

Summary of Case 2. There are multiple salient points from
this section.

e GA successfully extracted the key from the benchmarks
locked with different key sizes of both SMT-lock [12]
and PB-lock [11]. GA returned a single key whose
output matched exactly with the oracle output. This was
accomplished at worst under 2.5 minutes.

o For comparison purposes, the same benchmarks were
attacked using SMT-solver which returned multiple keys.
The SMT-attack returned the set of keys faster, at worst

under a minute, but the time complexity of the inevitable
brute force to obtain the correct key is O(K 2%).

e The GA was able to unlock the PLL of a superhetero-
dyne receiver using the output of the receiver instead of
the PLL’s immediate output. The key was successfully
extracted in about 5 minutes.

D. Discussion and Final Takeaways

In this section, we have described the experimental setup
and the results obtained from the proposed GA based attack
and compared the results with SMT-based attack on SMT-Lock
and PB-Lock. Below we list the advantages of our attack and
its extension to other known analog locking techniques.

Advantages of GA vs. SMT Attack.

o GA attack is a straightforward approach that does not
require any prior knowledge of the locking technique
or the circuit benchmark. With just the oracle and the
obfuscated netlist, the attacker can extract the correct key
from the locked circuit as shown in Case 2 experiments.

o Rather than find the correct key, the attacker can also
find the value of the obfuscated parameter which takes
linear time as shown in Case 1 experiments. This value
can further be used to reduce the search space for finding
the correct key from 2F to linear time as shown in Case
2 experiments.

e SMT-solver, on the other hand, uses theoretical circuit-
equations, equations describing the locking technique,
and the oracle to attack the circuit and return a set of
keys whose performances did not match the oracle output
as closely as the GA attack, see Fig. 9 and Table 1.

Applying GA Attack to Other Analog Locking Schemes.
It is important to note that the GA attack is generalizable, and
should be capable of defeating schemes other than SMT-Lock
and PB-Lock. We make the following inferences.

e The Case 1 experiments demonstrate that GA attack can
discover obfuscated parameters, such as W. Thus, it
should also be able to obtain the value of the obfuscated
threshold voltages V;;, used in [43] by employing multiple
fitness criterion for different output parameters (such as
frequency response and transient response).

o The Case 2 experiments (most notably, superheterodyne
receiver) demonstrate that the GA attack can extract
internal keys and parameters using just a netlist and the
oracle. We believe that it can, therefore, be used to break
the neural network-based analog circuit locking described
in [18] by extracting either the neural network’s analog
key or the internal biases controlled by that.

V. CONCLUSION AND FUTURE WORK

In this paper, we showed how an evolutionary approach like
the genetic algorithm (GA) can easily break the security of the
analog locking techniques. We successfully extracted the value
of the obfuscated parameter as well as the correct key from
the circuits locked with popular techniques in the literature.
Given the oracle output and the obfuscated netlist, we also
showed how the attacker can easily estimate the value of the
obfuscated parameter to reduce the search space of finding
the correct key. In future work, we shall demonstrate the GA
attack on other locking techniques.

[5]
[6]

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

M. M. Tehranipoor, U. Guin, and D. Forte, Counterfeit Integrated
Circuits. Springer Intrl. Publishing, 2015.

M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE design & test of computers, vol. 27,
no. 1, pp. 10-25, 2010.

A. Antonopoulos, C. Kapatsori, and Y. Makris, “Security and trust in
the analog/mixed-signal/rf domain: A survey and a perspective,” in 2017
22nd IEEE European Test Symp. (ETS), 2017.

M. M. Alam, S. Chowdhury, B. Park, D. Munzer, N. Maghari, M. Tehra-
nipoor, and D. Forte, “Challenges and opportunities in analog and mixed
signal (ams) integrated circuit (ic) security,” Journal of Hardware and
Systems Security, 2018.

“Top 5 most counterfeited parts represent a 169 billion potential chal-
lenge for global semiconductor market,” Apr 2012.

J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy of
integrated circuits,” in Proc. of the Conf. on Design, Automation and Test
in Europe, DATE °08, (New York, NY, USA), pp. 1069-1074, ACM,
2008.

Y. M. Alkabani and F. Koushanfar, “Active hardware metering for
intellectual property protection and security,” in 16th USENIX Security
Symp. (USENIX Security 07), (Boston, MA), USENIX Association, Aug.
2007.

J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis
of logic obfuscation,” in Proc. of the 49th Annual Design Automation
Conf., DAC 12, (New York, NY, USA), pp. 83-89, ACM, 2012.

P. Mishra, S. Bhunia, and M. M. Tehranipoor, Hardware IP Security
and Trust. Springer Intrl. Publishing, 2017.

Y. Bi, J. S. Yuan, and Y. Jin, “Beyond the interconnections: Split
manufacturing in RF designs,” Electronics, vol. 4, no. 3, pp. 541-564,
2015.

V. V. Rao and I. Savidis, “Protecting analog circuits with parameter
biasing obfuscation,” in 2017 18th IEEE Latin American Test Symp
(LATS), pp. 1-6, March 2017.

J. Wang, C. Shi, A. Sanabria-Borbon, E. Sdnchez-Sinencio, and J. Hu,
“Thwarting analog ic piracy via combinational locking,” in 2017 IEEE
Intrl. Test Conf. (ITC), pp. 1-10, IEEE, 2017.

I. Polian, “Security aspects of analog and mixed-signal circuits,” in 2016
IEEE 21st Intrl. Mixed-Signal Testing Workshop (IMSTW), July 2016.
P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” in 2015 IEEE Intrl. Symp. on Hardware
Oriented Security and Trust (HOST), pp. 137-143, IEEE, 2015.

K. Azar, H. Kamali, H. Homayoun, and A. Sasan, “SMT attack: Next
generation attack on obfuscated circuits with capabilities and perfor-
mance beyond the sat attacks,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2019, pp. 97-122, Oct. 2018.
V. V. Rao and I. Savidis, “Mesh based obfuscation of analog circuit
properties,” in 2019 IEEE Intrl. Symp. on Circuits and Systems (ISCAS),
pp. 1-5, May 2019.

A. A. Saki and S. Ghosh, “How multi-threshold designs can protect
analog ips,” in 2018 IEEE 36th Intrl. Conf. on Computer Design (ICCD),
pp. 464-471, Oct 2018.

G. Volanis, Y. Lu, S. G. R. Nimmalapudi, A. Antonopoulos, A. Marshall,
and Y. Makris, “Analog performance locking through neural network-
based biasing,” in IEEE 37th VLSI Test Symp. (VTS), pp. 1-6, IEEE,
2019.

R. Torrance and D. James, “The state-of-the-art in semiconductor reverse
engineering,” in Proc. of the 48th Design Automation Conf., DAC ’11,
(New York, NY, USA), pp. 333-338, ACM, 2011.

M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1996.

[21]
[22]
(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
[31]

(32]

[33]

[34]
(35]
(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

M. Mitchell, “Genetic algorithms: An overview,” Complexity, vol. 1,
no. 1, pp. 31-39, 1995.

S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms.
Springer Publishing Company, Incorporated, 1st ed., 2007.

R. S. Zebulum, M. A. Pacheco, and M. M. B. Vellasco, Evolutionary
electronics: automatic design of electronic circuits and systems by
genetic algorithms. CRC press, 2001.

T. Murata and H. Ishibuchi, “MOGA: Multi-objective genetic algo-
rithms,” in "IEEE Intrl. Conf. on Evolutionary Computation”, vol. 1,
pp. 289-294, 1995.

D. Walter, S. Little, and C. Myers, “Bounded model checking of
analog and mixed-signal circuits using an smt solver,” in Intrl. Symp.
on Automated Technology for Verification and Analysis, pp. 6681,
Springer, 2007.

S. M. Saif, M. Dessouky, M. W. El-Kharashi, H. Abbas, and S. Nassar,
“Pareto front analog layout placement using satisfiability modulo theo-
ries,” in 2016 Design, Automation & Test in Europe Conf. & Exhibition
(DATE), pp. 1411-1416, IEEE, 2016.

A. Gascon, P. Subramanyan, B. Dutertre, A. Tiwari, D. Jovanovié,
and S. Malik, “Template-based circuit understanding,” in 2014 Formal
Methods in Computer-Aided Design (FMCAD), pp. 83-90, IEEE, 2014.
S. Keshavarz, C. Yu, S. Ghandali, X. Xu, and D. Holcomb, “Survey on
applications of formal methods in reverse engineering and intellectual
property protection,” Journal of Hardware and Systems Security, vol. 2,
no. 3, pp. 214-224, 2018.

N. G. Jayasankaran, A. S. Borbon, A. Abuellil, E. Sanchez-Sinencio,
H. J., and J. Rajendran, “Breaking analog locking techniques via
satisfiability modulo theories,” in Intrl. Test Conf., IEEE, 2019.

C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook
of Model Checking, pp. 305-343, Springer, 2018.

L. De Moura and G. O. Passmore, “The strategy challenge in smt solv-
ing,” in Automated Reasoning and Mathematics, pp. 15-44, Springer,
2013.

N. G. Ramirez, Y. Hamadi, E. Monfroy, and F. Saubion, “Towards
automated strategies in satisfiability modulo theory,” in European Conf.
on Genetic Programming, pp. 230-245, Springer, 2016.

J. Zhang, S. Li, and S. Shen, “Extracting minimum unsatisfiable cores
with a greedy genetic algorithm,” in Australasian Joint Conf. on Artifi-
cial Intelligence, pp. 847-856, Springer, 2006.

N. G. Ramirez, A Framework for Autonomous Generation of Strategies
in Satisfiability Modulo Theories. PhD thesis, 2018.

C. Barrett, A. Stump, and C. Tinelli, “The satisfiability modulo theories
library,” 2010. http://smtlib.cs.uiowa.edu/[LastAccessed:Oct.22,2019].
F. Salvaire, “Pyspice.” https://pyspice.fabrice-salvaire.fr, yyyy.

L. De Moura and N. Bjgrner, “Z3: An efficient smt solver,” in Intrl.
Conf. on Tools and Algorithms for the Construction and Analysis of
Systems, pp. 337-340, Springer, 2008.

F. Maloberti, Analog design for CMOS VLSI systems, vol. 646. Springer
Science & Business Media, 2006.

A. C. Sanabria-Borbon and E. Sanchez-Sinencio, “Efficient use of gain-
bandwidth product in active filters: Gm-c and active-r alternatives,” in
2017 IEEE 8th Latin American Symp. on Circuits Systems (LASCAS),
pp. 1-4, Feb 2017.

B. Razavi, Monolithic phase-locked loops and clock recovery circuits:
theory and design. John Wiley & Sons, 1996.

D. Ham and A. Hajimiri, “Concepts and methods in optimization of
integrated LC VCOs,” IEEE Journal of Solid-State Circuits, vol. 36,
pp- 896-909, June 2001.

K. el khadiri and Q. Hassan, “Design of class-D audio power amplifiers
in 130 nm SOI-BCD technology for automotive applications,” WSEAS
Transaction on Circuits and Systems, 2015.

A. A. Saki and S. Ghosh, “How multi-threshold designs can protect
analog ips,” in IEEE 36th Intrl. Conf. on Computer Design, 2018.

