Pitfalls in Machine Learning-based Adversary
Modeling for Hardware Systems

Fatemeh Ganji, Sarah Amir, Shahin Tajik, and Domenic Forte

Department of Electrical Engineering
University of Florida
Gainesville, USA

{fganji, sarah.amir, stajik} @ufl.edu, dforte@ece.ufl.edu

Abstract—The concept of the adversary model has been widely
applied in the context of cryptography. When designing a crypto-
graphic scheme or protocol, the adversary model plays a crucial
role in the formalization of the capabilities and limitations of
potential attackers. These models further enable the designer to
verify the security of the scheme or protocol under investigation.
Although being well established for conventional cryptanalysis
attacks, adversary models associated with attackers enjoying the
advantages of machine learning techniques have not yet been
developed thoroughly. In particular, when it comes to composed
hardware, often being security-critical, the lack of such models
has become increasingly noticeable in the face of advanced,
machine learning-enabled attacks. This paper aims at exploring
the adversary models from the machine learning perspective.
In this regard, we provide examples of machine learning-based
attacks against hardware primitives, e.g., obfuscation schemes
and hardware root-of-trust, claimed to be infeasible. We demon-
strate that this assumption becomes however invalid as inaccurate
adversary models have been considered in the literature.

Index Terms—Physically Unclonable Functions, Logic Locking,
Composed Hardware, Root-of-Trust, Machine Learning.

I. INTRODUCTION

In an era characterized by increasing cybersecurity threats,
we have witnessed the ever-continuing competition between
system designers/ manufacturers and adversaries that mali-
ciously break the security of systems. Modern systems are
usually composed of several hardware components, potentially
involved in various protocols. Analyzing the security of such a
system in an effective manner is a nontrivial task, even though
frameworks for modular security, e.g., Canetti’s universally
composable (UC) framework, has been devised to support the
security evaluation of hardware-assisted protocols [1]. It is
even challenging for stand-alone hardware components, de-
spite the existence of mathematical, cryptographic reductions.
This can be explained by the fact that assumptions regarding
the availability of secure key generation and storage, as well
as secure execution, cannot always be valid. In an attempt to
resolve this issue, it has been suggested to build a physical
root-of-trust (RoT), i.e., a physical primitive that can fulfill

Jean-Pierre Seifert
Security in Telecommunications
Technische Universitt Berlin
Berlin, Germany
jean-pierre.seifert @external.telekom.de

the physical security objectives. In this regard, the security
in the system depends heavily on the security of the RoT.
Nevertheless, it has been demonstrated that the security of an
RoT can be compromised through attacks covering the whole
spectrum of invasive, semi-invasive, and non-invasive ones.

Non-invasive attacks have become increasingly threatening
and much more common as a result of the advancement
in machine learning (ML). This is also partially due to the
lack of systematic and provable methods, which can assess
the security of a system in the design phase. This lack of
methods is present, albeit of well-known, and acknowledged
frameworks developed in cryptography, and its sister field, i.e.,
ML. This close relationship has been first well formulated
in a seminal work of Rivest [2], which has recognized the
similarities between attack types and the queries required by
an ML algorithm. Rivest’s paper has further highlighted the
difference between the exact and approximate inference. The
above similarities and differences have been solely partially
considered in hardware security-related literature. In addition
to these, the significance of selecting the proper ML setting is
often underestimated.

To address this, our paper aims at exploring the close
relationship between machine learning and cryptography in
the context of composed hardware and the RoT. To this end,
we discuss the main aspects of an ML framework that are
crucial for assessing the security of these primitives, namely
the distribution of learning examples, access type, and choices
of models (i.e., representations) assigned to an attacker. For
this purpose, we provide examples of physical systems and
discuss how inappropriate conclusions can be made if the
setting of the ML model is applied improperly.

II. BACKGROUND ON HARDWARE SECURITY AND ML
A. Logic Locking Techniques

ICs nowadays become vulnerable to IP piracy, tampering,
and counterfeiting while several phases of chip manufacturing,
such as design, integration, and fabrication are carried out
at various - often untrusted - facilities. Besides, on the end-
user side, especially for the devices delivered to malicious
entities, IP protection is still an issue. IP logic locking (LL)
schemes [3] have been proposed to cope with this issue for
not only standalone hardware primitives, but also composed

hardware. In the latter case, the security of the composed IP
can be ensured by protecting either all the IPs involved in the
composed hardware or solely ones that are security-critical.
Regardless of these scenarios, our goal is to observe why and
to what extent the existing security analysis of LL schemes
through ML can be less precise. Therefore, here, we solely
focus on some examples of sequential and combinational LL.
Sequential LL. mainly refers to the augmentation of the Finite
State Machines (FSMs) at, e.g., the gate-level, by adding a
new set of states, whereas combinational LL methods aims at
adding extra key gates in a design, which are controlled by a
key given to it as input bits [3].

Prime examples of employing (provable) ML algorithms to
assess the security of LL methods have been suggested in [4],
[5]. More precisely, it has been observed that this problem
can be reduced to the Boolean satisfiability (SAT) problem
and solved by applying off-the-shelf SAT-solvers. When for-
mulated in the probably approximately correct (PAC) learning
framework, the approximation-based versions of SAT attacks
have been applied to deobfuscate circuits effectively [5].
Furthermore, it has been attempted to prove the impossibility
of building robust LL schemes, when the adversary is given
access to an oracle providing her with the outputs of an
unlocked design [4]. In our paper, we mainly consider these
results to put emphasis on different angles of the problem,
which are crucial for conducting thorough PAC learning-based
security assessments.

B. Physically Unclonable Functions

In practice, secure key generation and storage have been
the main challenges to ensure the security of a cryptographic
primitive. As the conventional methods for this failed to reach
the desired level of security, Physically Unclonable Functions
(PUFs) have been considered as a promising solution. PUFs
can be thought of as mappings, where the input/output (so-
called, challenge-response) behavior is determined by the
physical characteristics of the system embodying the PUF.
Among all PUFs, Arbiter PUFs are one of the most celebrated
types of PUF, where the delays of two symmetrically-designed
paths are used to generate an instance-specific response to a
given challenge. Shortly after the introduction of Arbiter PUFs,
it was demonstrated that these circuits are “not difficult enough
to model,” cf. [6].

XORing several chains of Arbiter PUFs has been suggested
to overcome the above shortcoming of Arbiter PUFs [7]. It is
clearly an example of a composition of several instances, aim-
ing at achieving robustness against ML attacks. Nonetheless,
this new type of PUF, called XOR Arbiter PUF, has come
under non-invasive, machine learning (ML) attacks, ranging
from empirical to provable [8], [9]. In the latter case, it has
been proven that if the number of chains exceeds an upper
bound, a class of provable ML algorithms cannot be applied
against XOR Arbiter PUFs [9]. This result has been applied
to design new PUF constructions [10]. However, it seems that
the essential aspects of the framework applied to establish this
bound have been overlooked, which we discuss in this paper.

Besides XOR Arbiter PUFs, we concentrate our attention on
security assessments of Bistable Ring (BR) PUFs as one of the
most interesting families of PUF [11]. This is indeed tempting,
since for BR PUFs, no concrete, mathematically precise model
is known to model the internal functionality of PUF instances.

C. Probably Approximately Correct Learning

This framework deals with the problem of generating a
hypothesis that is a good approximation of the unknown target,
with a given level of probability [12]. More formally, a set of
labeled examples (i.e., a set of input/output pairs) is given to
a learning algorithm A that generates, with high probability,
an approximately correct hypothesis. The examples are drawn
according to a fixed, arbitrary probability distribution D on
the instance space C,, = {0,1}". Our target concept class is
a collection of Boolean functions F' = U,,>1 F},, defined over
C,,. Similarly, a hypothesis h € H,, is a Boolean function over
C.,, which is called an e-approximator for f € Fj,, if

Pr [f(c)=h(c)]>1—c¢.

cepCh

Definition 1 formulates how the algorithm A works:

Definition 1. For the target concept class F, an algorithm
A is called a PAC learning algorithm , if for any n > 1,
any distribution D, any 0 < ¢, < 1, and any f € F,
the following holds. When A is given a polynomial number
of labeled examples, it runs in time polynomial in n, 1/¢,
VCyim(F), 1/6, and returns an e-approximator for f under
D, with probability at least 1 — 6.

For this definition, the Vapnik-Chervonenkis (VC) dimen-
sion VCgim (F') is used to provide the measure of the class.

III. LEARNING UNDER UNIFORM DISTRIBUTION

According to Definition 1, one of the most critical param-
eters is the rarget distribution D, on which no restriction is
imposed rather than being fixed. Specifically, the PAC learning
algorithm A - run by an attacker - is needed to perform
well (i.e., in terms of the accuracy and the confidence levels)
with respect to any distribution D. Despite the fact that this
general setting is considered interesting for ML community,
for complexity theory and cryptography, another variant of
PAC learning has become more common, namely, uniform-
distribution PAC learning. The reason for this shift in the focus
of relevant studies is two-fold: (1) the development of efficient
algorithms in original PAC learning is more challenging [13],
and (2) the requirement regarding distribution-independency
makes PAC learning of relatively simple concept classes
challenging [14]. In this regard, interestingly enough, when
the assumption regarding the distribution-independent model
is relaxed, different, often positive results (i.e., a target concept
class is PAC learnable) can be obtained. Next, we will discuss
such results in the context of PUFs and LL schemes.
Uniform PAC learning of LL schemes: First and foremost,
we note that for the class AC® containing poly(n)-size depth-
d circuits, considered in the context of LL, the running time
of a non-trivial distribution-free learning algorithm cannot

be better than 27—"""/" [15]. On the contrary, when the

uniform variant of the PAC learning framework is taken
into account, to learn the circuits in AC?, a polynomial-time
algorithm has been devised [16]. Hence, when it comes to
the application of PAC learning for LL, this variant must
have been considered, although being not explicitly stated in
the literature, see, e,g., [4], [5]. In other words, by the term
“random” input/output pairs widely used in the LL-related
literature, uniformly distributed examples are meant; however,
this term is used to refer to arbitrarily distributed examples in
the ML-related literature.

A. Uniform PAC Learning of XOR Arbiter PUFs

As mentioned in Section I, PAC learning of XOR Arbiter
PUFs, more specifically, the bound proved in [9] has been
attracted a great deal of attention in the hardware security
community. This upper bound relies on an observation made in
the literature that is, Arbiter PUFs can be represented by linear
threshold functions (LTFs) [6], [8]. In this respect, an n-bit
XOR Arbiter PUF composed of k chains of Arbiter PUFs can
be represented by the function f : C, = {-1,+1}" =Y =
{—1,+1}, where y = f(c) = sgn((X/_, wic;) —0) with
the coefficients wy,ws, -+ ,wy,0 € R. In this formulation,
the set of challenges are denoted by C,,, whereas the set
Y includes the responses. Note that to define this function
the following encoding scheme is performed x(Of,) := +1,
and x(1p,) := —1. It has been shown that the coefficients
associated with the LTFs representing XOR Arbiter PUFs are
functions of k£ and n. Based on this result, the upper bound has
been established (see, Corollary 2 in [9], and Table I), based
on the upper mistake-bound of the Perceptron algorithm. Two
aspects of this result are particularly important.

1. Algorithm-independent and uniform PAC learning:
First, the bound in [9] is algorithm-specific, i.e., for other al-
gorithm this bound may not hold. Here we go one step further
and explore the change in the upper bound in the algorithm-
independent setting. In doing so, we apply the general bound
proposed in [12], which depends on the levels of accuracy and
confidence as well as the VCg;,. For an XOR Arbiter PUF,
h(c), VCaimh(c) = O(k(n + 1)(1 + log(kn + k))) cf. [17].
Hence, it is straightforward to achieve the so-called general
bound reported in Table I, summarizing our new results along
with the previous ones. This bound indicates that if there is an
algorithm (without specifying that) to learn the target concept,
at most, how many examples is required.

2. Algorithm-dependent and uniform PAC learning: The
bound in [9] has been established in the original, distribution-
independent PAC learning framework. Let us examine whether
the bound can vary if we consider the uniform-distribution
PAC learning. To this end, among various uniform-distribution
PAC learning algorithms, we take the low degree algorithm,
so-called LMN algorithm, into account. This combines two
advantages: (1) the LMN algorithm can tolerate the noise in
its given examples (for a discussion on the inherent noise in
the XOR Arbiter PUFs, see [17]) , and (2) for this algorithm,
no limitation is imposed on the hypothesis class. By taking

advantage of the second property, we provide a stronger secu-
rity assurance as the freedom given to the learning algorithm
can make it potentially more powerful [18].

LMN algorithm: This algorithm relies on the spectral prop-
erties of Boolean functions by analyzing the Fourier expansion
of them [16]. To define this expansion of a Boolean function,
we use the encoding scheme defined above to write

F0 =3 F(S)xs(o).

SC[n]

where [n] == {1,...,n}, xs(c) = [[;csci» and f(S) :=
E.culf(c)xs(c)]. Here, E <[] denotes the expectation over
uniformly chosen random examples.

The notion underlying the LMN algorithm is that the Fourier
expansion of some Boolean functions features low coefficients,
sufficient to approximate the respective functions [16]. One
class of function with this property include functions, whose
noise sensitivity is small and bounded'. Informally, for PUFs,
the noise sensitivity of a Boolean function indicates the proba-
bility of receiving a new response, when the challenge bits are
flipped independently, with some probability. More precisely,
the noise sensitivity of f at € is NS.(f) := Pr[f(c) # f(¢')],
where c is a uniformly chosen challenge and ¢’ is obtained by
flipping each bit of the string ¢ independently, with probability
€ (0 < e < 1). For some classes of Boolean function, the noise
sensitivity can be analyzed thoroughly and upper bounds for
that can be established accordingly. LTFs are examples of such
function, where it has been proven that for any LTF f, we have
NS.(f) = O (y/€). More importantly, for any function of k
LTFs, h : {-1,+1}" — {—1,+1} with h = g(f1,--- fx),
NS.(h) = O (k+/¢) [20]. This can be now used to derive the
upper bound on the number of CRP for the LMN algorithm:

Corollary 1. For an XOR arbiter PUF represented by the
Boolean function h, the LMN algorithm can deliver a set
of Fourier coefficients approximating h, where the number of
examples is polynomial in n, k?/e?, and In(1/9).

Proof: As the noise sensitivity of i is NS.(h) = O (k+/e),
fix a(e) = k+/e. According to theorem underlying the notion
of the LMN algorithm, the set of low coefficients S that
can approximate h with the accuracy ¢ fulfills the inequality
> is|5m f(S)2 < e, wherem :=1/a~'(¢/2.32)), and a1 (")
denotes the inverse of the function a(-) cf. [16]. To compute
S, the LMN algorithm requires n°(™ In(6~') example. For
our XOR Arbiter PUFs, represented by h, it is straightforward
to show m = 2.32k? /2. Note that here we implicitly assume
that ¢ < 1/k? to make the function «(-) strictly increasing
continuous over the range [0, 1]. |

The implication of Corollary 1 is that, when & = O(1),
i.e., k is a constant value, the LMN algorithm can PAC learn
the XOR Arbiter PUF. On the other hand, if k¥ > VInn,
applying this algorithm becomes infeasible. This is in line

I'The noise here refers to the attribute noise studied in ML. It is related to
impact of “hidden” factors that can influence the response of the PUF to a
given challenge, e.g., meta-stability of a PUF stage, aging, etc. [17], [19]

TABLE I: Summary of the upper bounds on the number of CRPs required to PAC learn XOR Arbiter PUFs

Bound of Setting
Learning Bound Distribution Algorithm Attackers’ Access
[9] * O((n+ 1)F/e5 4+ In(1/6)/e) Arbitrary Perceptron Random examples
General O((k(n+1)(1+1In(kn+k)In(1/e) +1n(1/4)))/e) Uniform Independent Uniformly-distributed examples
Corollary 1 O (nlC 7/ In(1/8)) Uniform LMN [16] Uniformly-distributed examples
Corollary 2 poly(n, k, (1/¢),log(1/6)) Uniform LearnPoly [21] Membership queries

® Note that this bound does not depend on the VCgi of XOR Arbiter PUFs, but the mistakes made by the Perceptron algorithm.

with what has been reported in the original, distribution-free
PAC learning framework, namely when & = O(Inn), the PAC
learner fails. Note that this result does not contradict what has
been achieved in [17], where XOR Arbiter PUFs with a large
number of arbiter chains have been modeled through applying
the LMN algorithm. In this respect, the difference is two-fold:
(1) here we assume that the chains of an XOR Arbiter PUF are
uncorrelated, whereas in [17], the chains are made correlated
intentionally, (2) we do not consider the impact of the inherent
bias of XOR Arbiter PUFs here, while in [17], the expected
bias (i.e., the bias in the presence of the attribute noise) has
been introduced to evaluate the hardness of PUFs.

IV. ACCESS MODELS OF ATTACKERS

An important aspect of an attack against cryptosystems is
the access given to an attacker to gather information about the
system, more precisely, the unknown function describing the
internal functionality of the system. While in cryptography,
the attacker’s access to the inputs/outputs of the system has
been accurately classified, in the context of machine learning,
membership and equivalence queries have been defined to deal
with the learning scenarios. A membership query refers to the
case where the attacker can ask the value of the unknown
function on some specified inputs, similar to chosen-plaintext
attacks. By providing access to the equivalence queries, the
attacker can go one step further by asking whether the hy-
pothesis determined by her is equivalent to the unknown target
hypothesis. Although one may think that this type of queries
may not be available for security evaluation of hardware
primitives, cf. [4], according to a well-known result provided
by Angluin [22], equivalence queries can be simulated using
random examples in a straightforward manner. Hence, here,
we consider solely access to the membership queries that can
have a significant impact on the evaluation results.

A. Membership Queries for Learning LL Schemes

As explained before, for LL methods, one must consider
the uniform PAC learning framework. Interestingly enough,
when membership queries are also allowed, the analysis of
the learnability leads to a drastically different result. More
concretely, the distinction between the exact and approximate
learning of obfuscated circuits has been made in [4]. As stated
by Rivest [2], in cryptography, an attacker aims at exactly
identifying the unknown function, whereas ML concerns not
only this but also an approximation of the unknown function.
In this regard, what has been suggested in [4] is that although
the approximation-resiliency of obfuscated circuits cannot be
guaranteed, for some obfuscated circuits, it is possible to
ensure the exact inference-resiliency. To formulate this in the
learning framework, a key aspect has not received sufficient

attention; that is, uniform PAC learning (i.e., approximate
learning) algorithms can be straightforwardly converted to
exact learning one with membership queries [15]. Hence, the
impossibility of exact learning is not relevant.

B. Membership Queries for Learning PUFs

To provide an example of how the ML results can be differ-
ent, when the attacker is given the access the the membership
queries, let us consider again XOR Arbiter PUFs as stated in
the following corollary.

Corollary 2. For an XOR arbiter PUF with log(n) chains, if
the ML algorithm is given access to the membership queries,
the runtime of the algorithm is poly(n).

Proof: As each Arbiter PUF can be modeled by an LTF,
according to the noise sensitivity of LTFs (see Section III)
and the Bourgain’s theorem [23], it is close to an O(e~3/2)-
junta, i.e., small juntas. Moreover, it is known that the class of
r-juntas is a subset, or equal, to the class of r-XT that is the
class of XOR of terms, 17 + 15 + - - -+ T, where T;’s are the
terms with the size at most r (i.e., the conjunction of Boolean
variables), and s is the number of terms. Hence, our O (e ~3/2)-
junta can be equivalent to some r-XT functions, where r is
small and r = O(¢73/2) [24]. Consequently, when we XOR
our k Arbiter PUFs, the combined function is of the form
O(k)-term r-XT that can be represented as O(2"k)-monomial
r-Boolean Multivariate Polynomial, i.e., sparse multivariate
polynomial of degree r over Fy, cf. [24]. The immediate result
of this is that the polynomial-time algorithm suggested in [21]
can be applied to learn the combined function. For this, the
algorithm requires poly(n, (1/¢),log(1/J)) uniformly chosen
membership queries to learn log(n)-XOR Arbiter PUFs with
accuracy € and confidence 9.]

We put emphasize on the important consequence of this re-
sult that is, XOR Arbiter PUFs constructed upon the difficulty
of learning O(log(n))-XOR LTFs cannot be secure against
attackers given access to the membership queries.

V. CHOICE OF REPRESENTATIONS FOR ML ATTACKS

When assessing the security of hardware systems through
ML, two issues should be tackled: (1) the internal functionality
of the system should be (at least) approximated accurately and,
(2), the algorithm running to learn this approximated model
should deliver a hypothesis with pre-defined levels of accuracy
and confidence. These two issues are discussed below.

A. Representation of the Concept Class

Regarding this case, it is known that there is a fundamental
difference between a concept (i.e., a set of Boolean functions)
and its representation. As explained below, this difference is

not only reflected in the size of the representations, but also
on the effectiveness of learning in terms of accuracy.
Concept representations for obfuscated circuits: When
analyzing the security of LL methods, the class ACY is often
considered, which is composed of all families of circuits of
depth O(1) and polynomial size, with mainly unlimited fan-in
AND gates and OR gates. In this manner, the size of the circuit
has a drastic impact on both of the number of examples (i.e.,
the input/output pairs), and the running time of the algorithm.
It may be interesting to examine why this factor is not taken
into account in one of the most relevant studies presented
in [5]. The point is that the ML model considered in [5] is
the online-ML, which can be converted to a PAC learning
model. Accordingly, the impact of the size of the concept
representation is reflected by the number of mistakes that the
algorithm is allowed to make for a given level of accuracy.
Concept representations for PUFs: In contrast to LL sce-
narios, for PUFs, various representation classes have been
considered. As an example of how choosing an improper
representation can affect the accuracy of learning PUFs, we
shift our focus to the problem of PAC learning BR PUFs. In
an attempt to approximate the functionality of these PUFs, it
has been suggested that LTFs can represent BR PUFs [11]. As
an inevitable result of this simplified representation, according
to the results presented in [11], it is not possible to arbitrarily
increase the learning accuracy. In other words, the accuracy
level reaches the maximum possible value (approximately 95%
for various BR PUF instances) and remains the same even after
increasing the number of CRPs fed into the ML algorithm.
Seen from the angle of ML, it is known that to tackle this
problem, a more expressive model could be helpful. For this
purpose, two main directions can be explored.

1. Regularity of LTFs representing BR PUFs: As the
regularity of a representation (i.e., having only a few large
coefficients) plays an important role in its learnability, it could
be thought that if the representation of a BR PUF (i.e., LTFs)
can be made regular, the accuracy of learning can be increased
to an arbitrarily high level. This is according to a well-known
result in ML, which states that for any LTF f defined over
{0,1}™, there is a linear threshold function f’ so that it is
e-close to f and all of its weights are integers of magnitude
at most \/n(1/£)0(es*(1/€) [25] Such a function f’ can be
built upon the Chow parameters of f, i.e., n+ 1 degree-0 and
degree-1 Fourier coefficients of f, namely f(0) = E[f(z)],
and f(i) = E[f(2)x;] for i = 1,--- ,n. To approximate the
Chow parameters and construct f’, a minimum number of
Q(n) labeled examples should be given to a polynomial-time
algorithm that outputs f’ for a constant ¢, e.g., ¢ = 0.01.

Note that if a BR PUFs can be approximated by LTFs, then
/' must approximate it with a constant, arbitrarily small, pre-
defined level of €. To investigate this, we conduct experiments
on BR PUFs implemented on an Intel/Altera Cyclone IV
FPGA, manufactured on a 60nm technology [26]. In this
regard, by using a small set of noiseless CRPs, we approximate
the Chow parameters and follow the algorithm suggested
in [25] to construct f’. Afterward, we apply the Perceptron

TABLE II: Results of learning an LTF f’ built upon Chow
parameters approximated by using the CRPs collected from
BR PUFs. Even with an increase in the number of CRPs in
the training set, the accuracy cannot be increased arbitrarily.

Noiseless CRPs for computing the Accuracy
Chow parameters and in training set 16 32 64
1000 71.93 | 91.52 | 92.55
2500 81.02 | 92.04 | 93.80
5000 8494 | 9145 | 93.57
10000 88.65 | 91.85 | 93.69
TABLE III: Results of testing how far BR PUFs are to LTFs.
n # CRPs How far from any halfspace (min.) [%]
16 100 20
32 1339 40
64 63434 50

algorithm embedded in Weka [27] to learn the CRPs obtained
from f’, i.e., for each challenge, the response is computed
and inserted in the training set. The remaining CRPs are
involved in the test set, composed of 44834, 35876, and 31375
noiseless and stable CRPs collected from 16-, 32-, and 64-
bit BR PUF, respectively. We expect that if BR PUFs can be
represented by LTFs, the output/input relationship of f’ can be
learned and generalized to the training set. The results of our
experiments are presented in Table II, where the key insight is
that the above does not hold. Thus, our assumption regarding
representing BR PUFs by LTFs is not valid.

2. Testing halfspaces: It can be argued that since we
first represent a BR PUF by an LTF and further approximate
its corresponding Chow parameters, the error of the whole
process could have increased so that the accuracy of learning
cannot be arbitrarily high. In another attempt to confirm that
an inappropriate representation, namely, LTFs, results in this,
we employ a property testing algorithm. More specifically, a
property tester can with high probability examine how close an
unknown function can be to a class of Boolean functions. To
test if BR PUFs are close to LTFs (or so-called, halfspaces),
we run a halfspace tester proposed in [28]. In brief, with high
probability 0§, this tester distinguishes halfspaces from other
Boolean functions, which are e-far from any halfspaces, when
given poly(1/¢) uniformly chosen examples - noiseless CRPs
in our case. We implement the algorithm in MATLAB, into
which we feed the CRPs collected from our BR PUFs. The
results of this experiment are summarized in Table III, where
6 = 0.99. As can be understood from these results, BR PUFs
are not close to halfspace, which confirms our results discussed
before.

B. Representation of the Hypothesis Class

Another crucial aspect of an ML-based analysis is to stress
how the representation of what should be delivered by the
machine (i.e., the hypothesis) can have an impact on the
results. In view of the fact that an unknown concept class can
be learned under a hypothesis class, but not others, special care
must be taken. In other words, if more expressive hypothesis
representations are allowed, the analysis of the learnability
yields different results. Therefore, it can be desired to remove
the dependency on the hypothesis representation and give the
learner the freedom to return any hypothesis. In PAC learn-

ing framework, this refers to improper learning. Ironically,
although being called improper, ML algorithms categorized
in this class are more powerful than proper learners, which
output a specific hypothesis representation.

Improper learning of PUFs: In the context of PUFs, the
significance of improper learning has been already recognized
in the literature, see, e.g., [17], [19]. In line with that result, as
the LMN algorithm is an improper ML algorithm, the bound
that we have derived in Corollary 1 serves as another exam-
ple of applying improper learning algorithms against PUFs.
Specifically, we put emphasis again on the results of learning
XOR arbiter PUFs presented in [17], where XOR Arbiter
PUFs with a large number of chains (k > Inn) have been
learned with a reasonable level of accuracy (approximately
75%). This result is obtained by employing the LMN algorithm
within the uniform PAC learning framework. At first sight, it
could seem to be contrary to what has been proved in [9];
however, now after explaining the factors contributing to that
(the distribution of the example and the type of the algorithm),
it should be clear that those results are not comparable.
Hypothesis representation for obfuscated circuits: To
provide an example of what may constitute a reason for
deciding whether an obfuscated circuit can be learned, we
explore a representation-dependent result considered in [4].
In a nutshell, it has been discussed if an obfuscated sequential
circuit would be vulnerable to PAC learning-based attacks.
To answer this question, the authors of [4] have suggested
that deterministic finite automaton (DFA) representation of
FSMs can be learned through Angluin’s method [22], if the
number of possible input patterns to the FSM would not
be exponential. It should not be overlooked, however, that
Angluin’s algorithm delivers DFAs, and thus, improper ML
algorithms can be further taken into account.

VI. CONCLUSION

This paper aims to highlight the impact of ML settings on
the security assessment of standalone and composed hardware.
To this end, we demonstrate the relationship between these
settings and the freedom given to an adversary in terms of
having access to learning examples and models. In addition to
providing theoretical insight into why the ML setting is crit-
ical, we discuss examples of real-world hardware primitives,
where inappropriate choices of the parameters can result in
less accurate security assessment.

ACKNOWLEDGMENT

We acknowledge the effort made by Mr. Antonio Cavotta to
compute the Chow parameters, when he was doing his master
thesis under the supervision of Profs. Seiferet and Neitzert.
This work is supported by National Science Foundation under
grant agreement No. CNS 1651701, National Institute of
Standards and Technology under grant No. 60NANB16D248
and AFOSR under award No. FA9550-14-1-0351.

REFERENCES
[1] R. Canetti, “Universally Composable Security: A New Paradigm for

Cryptographic Protocols,” in Proc. of Symp. on Foundations of Comp.
Sci., pp. 136-145, 1IEEE, 2001.

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]
(23]
[24]

[25]

[26]

R. L. Rivest, “Cryptography and Machine Learning,” in Intrl. Conf. on
the Theory and Application of Cryptology, pp. 427-439, Springer, 1991.
S. Dupuis and M.-L. Flottes, “Logic locking: A survey of proposed
methods and evaluation metrics,” J. of Elec. Testing, pp. 1-19, 2019.
K. Shamsi, D. Z. Pan, and Y. Jin, “On the Impossibility of
Approximation-Resilient Circuit Locking,” in Intrl. Symp. on Hardware
Oriented Security and Trust (HOST), pp. 161-170, IEEE, 2019.

K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately Deobfuscating Integrated Circuits,” in Intrl. Symp. on
Hardware Oriented Security and Trust (HOST), pp. 95-100, IEEE, 2017.
B. Gassend, D. Lim, D. Clarke, M. Van Dijk, and S. Devadas, “Iden-
tification and Authentication of Integrated Circuits,” Concurrency and
Computation: Practice and Experience, vol. 16, no. 11, pp. 1077-1098,
2004.

G. E. Suh and S. Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” in Proc. of the Design
Automation Conf., pp. 9-14, 2007.

U. Riihrmair, F. Sehnke, J. Solter, G. Dror, S. Devadas, and J. Schmid-
huber, “Modeling Attacks on Physical Unclonable Functions,” in Proc.
of the ACM Conf. on Comp. and Comm. Security, pp. 237-249, 2010.
F. Ganji, S. Tajik, and J.-P. Seifert, “Why Attackers Win: On the
Learnability of XOR Arbiter PUFs,” in Trust and Trustworthy Comp.,
pp- 22-39, Springer, 2015.

M. D. Yu, M. Hiller, J. Delvaux, R. Sowell, S. Devadas, and I. Ver-
bauwhede, “A Lockdown Technique to Prevent Machine Learning on
PUFs for Lightweight Authentication,” [EEE Trans. on Multi-Scale
Comp. Sys., vol. PP, no. 99, 2016.

X. Xu, U. Rithrmair, D. E. Holcomb, and W. P. Burleson, “Security Eval-
uation and Enhancement of Bistable Ring PUFs,” in Radio Frequency
Identification, pp. 3—16, Springer, 2015.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learn-
ability and the Vapnik-Chervonenkis Dimension,” J. of the ACM, vol. 36,
no. 4, pp. 929-965, 1989.

R. O’Donnell and R. A. Servedio, “Learning Monotone Decision Trees
in Polynomial Time,” SIAM J. on Computing, vol. 37, no. 3, pp. 827-
844, 2007.

M. Kharitonov, “Cryptographic Hardness of Distribution-specific Learn-
ing,” in Proc. of ACM Symp. on Theory of Computing, pp. 372-381,
ACM, 1993.

R. A. Servedio and L.-Y. Tan, “What Circuit Classes Can Be Learned
with Non-trivial Savings?,” in 8th Innovations in Theoretical Comp. Sci.
Conf., Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

N. Linial, Y. Mansour, and N. Nisan, “Constant Depth Circuits, Fourier
Transform, and Learnability,” J. of the ACM, vol. 40, no. 3, pp. 607-620,
1993.

F. Ganji, S. Tajik, P. Stauss, J.-P. Seifert, D. Forte, and M. Tehranipoor,
“Rocknroll PUFs: Crafting Provably Secure PUFs from Less Secure
Ones,” in Proc. of Intrl. Workshop on Security Proofs for Embedded
Systems, vol. 11, pp. 33—48, 2019.

A. Daniely, N. Linial, and S. Shalev-Shwartz, “From Average
Case Complexity to Improper Learning Complexity,” arXiv preprint
arXiv:1311.2272, 2013.

F. Ganji, S. Tajik, and J.-P. Seifert, “A Fourier Analysis Based Attack
against Physically Unclonable Functions,” in Intl. Conf. on Financial
Crypto. and Data Security, Springer, 2018.

A. R. Klivans, R. O’Donnell, and R. A. Servedio, “Learning Intersec-
tions and Thresholds of Halfspaces,” in Foundations of Comp. Sci.,
Annual IEEE Symp. on, pp. 177-186, 2002.

R. E. Schapire and L. M. Sellie, “Learning Sparse Multivariate Polyno-
mials over a Field with Queries and Counterexamples,” J. of Comp. and
System Sciences, vol. 52, no. 2, pp. 201-213, 1996.

D. Angluin, “Learning Regular Sets from Queries and Counterexam-
ples,” Information and computation, vol. 75, no. 2, pp. 87-106, 1987.
J. Bourgain, “On the Distribution of the Fourier Spectrum of Boolean
Functions,” Israel J. of Mathematics, vol. 131, no. 1, pp. 269-276, 2002.
N. H. Bshouty, “Exact Learning from an Honest Teacher that Answers
Membership Queries,” Theoretical Comp. Sci., vol. 733, pp. 443, 2018.
A. De, 1. Diakonikolas, V. Feldman, and R. A. Servedio, “Nearly
Optimal Solutions for the Chow Parameters Problem and Low-weight
Approximation of Halfspaces,” J. of the ACM, vol. 61, no. 2, p. 11,
2014.

Altera, “Cyclone IV Device Handbook,” Altera Corp., San Jose, 2014.

[27] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA Data Mining Software: An Update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10-18, 2009.

[28] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. A. Servedio, “Testing
Halfspaces,” SIAM J. on Comp., vol. 39, no. 5, pp. 2004-2047, 2010.

https://www.researchgate.net/publication/337874468

