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Abstract— Human motion prediction is non-trivial in modern
industrial settings. Accurate prediction of human motion can
not only improve efficiency in human-robot collaboration,
but also enhance human safety in close proximity to robots.
Although many prediction models have been proposed with
various parameterization and identification approaches, some
fundamental questions remain unclear: what is the necessary
parameterization of a prediction model? Is online adaptation of
models necessary? Can a prediction model help improve safety
and efficiency during human-robot collaboration? These un-
addressed questions result from the difficulty of quantitatively
evaluating different prediction models in a closed-loop fashion
in real human-robot interaction. This paper develops a method
to evaluate the closed-loop performance of different prediction
models. In particular, we compare models with different pa-
rameterizations and models with or without online parameter
adaptation. Extensive experiments were conducted on a human-
robot collaboration platform. The experimental results demon-
strate that human motion prediction significantly enhance the
collaboration efficiency and human safety. Adaptable prediction
models that are parameterized by neural networks achieve
better performance.

I. INTRODUCTION

Human-robot collaboration (HRC) has drawn increasing
attentions in many fields due to its benefits in significantly
boosting the team efficiency and flexibility. In HRC tasks
such as electronics assembly [1], human workers work in
close proximity to robots. To enable safe and efficient
HRC, robots should be aware of current and future hu-
man movements, so as to quickly adapt their behavior to
safely and efficiently collaborate with human workers [2],
[3]. Human motion, however, is naturally highly nonlinear,
stochastic [4], and time-varying with significant individual
differences. Such characteristics makes it hard to predict.
A prediction model that works for one person may not be
applicable to another, or even the same person at a different
time.

A prediction model can take multiple forms such as linear
regression model, supported vector machine, Gaussian mix-
ture model, hidden Markov model [5], feed-forward neural
network and recurrent neural networks (RNNs) [6]. The
parameters of a prediction model can either be fixed with
offline training or online adapted.
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In terms of performance evaluation of a prediction model,
the majority of existing works focus on quantifying its
prediction accuracy on specific datasets. Few of them eval-
uate the effectiveness of the prediction model in real world
experiments with human-robot systems. Considering the gap
between the activities in the datasets and real human motion
in industrial settings, it is hard to determine whether a
prediction model would lead to safe and efficient human-
robot collaboration if real world evaluation is missing.

This paper introduces a series of human-in-the-loop co-
robot experiments to compare different prediction models.
The co-robot platform is based on the safe and efficient robot
collaborative system (SERoCS) [7] as shown in Fig. 1. We
aim to investigate the following problems:

1) whether a complex parameterization (e.g., using a
neural network) of a prediction model is necessary;

2) whether online adaptation of a prediction model is
necessary;

3) whether active prediction improves safety and effi-
ciency of human-robot collaboration.

To answer these questions, we compare four types of pre-
diction models:

1) a linear regression model without adaptation,
2) a linear regression model with adaptation,
3) a neural network model without adaptation,
4) a neural network model with adaptation, called a semi-

adaptable neural network model [2].
The metrics for performance evaluation include 1) safety

and 2) efficiency of the HRC team. In the experiments, the
baseline is the performance of the HRC team without active
prediction, namely, when the robot only considers human
motion uncertainties according to its physical constraints.
The experimental results demonstrate that with active predic-
tion, the safety score is doubled. Among the four evaluated
models, the semi-adaptable neural network model achieves
higher efficiency score than others, which means that predic-
tion model with complex parameterization online adaptation
can help achieve more accurate human motion prediciton.

The remainder of the paper is organized as follows.
Section II formulates the human motion prediction problem
and presents the four motion prediction models. Section III
proposes three hypotheses about the effects of motion pre-
diction on human-robot collaboration. Section IV describes
the experimental setup, and Section V demonstrates the
performance of the four models compared to the baseline.
Section VI discusses the experimental results and Section
VII concludes the paper.
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Fig. 1. The simplified safe and efficient robot collaboration system
(SERoCS).

II. HUMAN MOTION PREDICTION

Let x(k) ∈ R
3 represent the three-dimensional position of

a joint in Cartesian space at time k. Define x+M(k+1)∈R
3M

as a M-step joint positions starting at time k+1 and x−N(k)∈
R

3N be a N-step joint positions before time k. Following the

formulation in [2], the transition model of human motion on

a selected joint can be defined as:

x+M(k+1) = f (x−N(k),a)+wk, (1)

where a ∈N
1 is a discrete action label representing different

motion categories, and wk ∈ R
3M is a zero-mean white

Gaussian noise. The function f (x−N(k),a) :R3N ×N
1 →R

3M

encodes the transition of the human motion, which takes the

historical joint trajectory and current action label as inputs,

and outputs the future positions of the joint.

The following subsections presents the four human motion

prediction models that we evaluate in the work.

A. Linear Regression Model without Adaptation (M1)

In this model, the dynamics (1) is parameterized by a

linear regression [8]:

f (x−N(k),a) =V T sk, (2)

where sk = [x−N(k)T ,a,1]T ∈ R
3N+2 is the input vector, in

which the element 1 is for the bias term, and V ∈R
(3N+2)×3M

represents the unknown model parameters to be identified

from human motion dataset.

Linear regression is usually solved using the least square

method [9], which is inefficient for large scale matrix in-

verse. To speed up the computation, we adopt stochastic

gradient descent (SGD) to perform the multi-variate linear

regression [10].

B. Neural Network Model without Adaptation (M2)

Feedforward Neural Networks (FNNs) has also been

widely utilized to approximate the motion transition model

f in (1) [11]. Parameterization using more complex models

such as Recurrent Neural Networks (RNNs) will not be

covered in this paper, but has been discussed in [12], [13].

In particular, we define a n-layer FNN as:

f (x−N(k),a) =W T max(0,g(U,sk))+ ε(sk), (3)

where g denotes the first n− 1 layers of the FNN, whose

weights are packed in U . ε(sk) ∈R
3M is the function recon-

struction error, which is small when the neural network is

fully trained. W ∈R
nh×3M is the last layer parameter weights,

where nh ∈N is the number of neurons in the hidden layer of

the neural network [14]. We also deploy stochastic gradient

descent to train FNN model.

C. Linear Regression Model with Adaptation (M3)

As we discussed above, human motion is time-varying and

differs among individuals. Hence, it is hard to fully capture

it via a fixed linear regression model as (2). To address the

problem, linear regression model with parameter adaptation

is proposed based on recursive least square parameter adap-

tation algorithm (RLS-PAA) [15], [16].

By stacking all the column vectors of V , we get a

time varying vector θk ∈ R
3M(3N+2) to represent unknown

linear model parameters. We further define data matrix Φk ∈
R

3M×3M(3N+2) as a diagonal concatenation of 3M pieces of

sT
k . With Φk and θk, the transition model (1) using linear

regression model (2) can be rewritten as

x+M(k+1) = Φkθk +wk, (4)

where wk denotes the noise at time step k. Let θ̂k denotes the

parameter estimate at time step k, and let θ̃k = θk − θ̂k be the

parameter estimation error. We define the a priori estimate

of the state and the estimation error as:

x̂(k+1|k) =Φkθ̂k, (5)

x̃(k+1|k) =Φkθ̃k +wk. (6)

The main steps of RLS-PAA are to iteratively update the

parameter estimate θ̂k and predict x+M(k + 1) when new

measurements become available. The parameter update rule

of RLS-PAA can be summarized as [17]:

θ̂k+1 = θ̂k +FkΦT
k x̃(k+1|k) , (7)

where Fk is the learning gain updated by:

Fk+1 =
1

λ1(k)
[Fk −λ2(k)

FkΦkΦT
k Fk

λ1(k)+λ2(k)ΦT
k FkΦk

], (8)

where 0 < λ1(k)≤ 1 and 0 ≤ λ2(k)< 2. Typical choices for

λ1(k) and λ2(k) are:

1) λ1(k) = 1 and λ2(k) = 1 for typical least squares gain.

2) 0< λ1(k)< 1 and λ2(k) = 1 for least squares gain with

forgetting factor.

3) λ1(k) = 1 and λ2(k) = 0 for constant adaptation gain.

D. Neural Network Model with Adaptation (M4)

In this model, the last-layer weight W in the feed-forward

neural network (3) is also adaptable online using RLS-

PAA [2]. We call the new model the semi-adaptable neural

network [2]. This method requires the neural network to be

pre-trained offline so that effective feature can be extracted
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when the last layer is removed [18]. To accommodate time-
varying behaviors and individual differences in human mo-
tion, we just need to adjust the weights W in the last layer
of the neural network.

To apply RLS-PAA on the adaptation of W in (3), we
follow similar operations in M3, and transform W and
max(0,g(U,sk))

T into θk and Φk, respectively. Then (1)
and (3) can be written into the same form as (4). Note
that the adaptation of the last layer of a neural network
doee not require time-consuming operations such as gradient
computation, thus its computation cost is fairly low and is
suitable for real-time deployment. The adaptation procedure
is summarized in Algorithm 1.

Algorithm 1: Semi-adaptable neural network for human
motion prediction

Input : Offline trained neural network (3) with g, U
and W

Output : future trajectory x+M(k+1)
Variables : Adaptation gain F , neural network last layer

parameters θ , variance of zero-mean white
Gaussian noise Var(wk)

Initialization: F = 1000I, θ = column stack of W ,
λ1 = 0.998, λ2 = 1

1 while True do
2 Wait for a new joint position p captured by Kinect and

current action label a from action recognition module;
3 Construct sk = [x−N(k),a,1]T ;
4 Obtain Φ(k) by diagonal concatenation of

max(0,g(U,sk));
5 Update F by (8);
6 Adapt the parameters θ in last layer of neural network by

(7);
7 Calculate future joint trajectory x+M(k+1) by (4);
8 send x+M(k+1) to robot control.
9 end

III. HYPOTHESIS

Based on the prediction models discussed in the previous
section, we anticipate that active prediction will affect both
safety and efficiency during human-robot collaboration, and
the effects vary for models with different parameterizations
and models with or without online adaptation. Here we
propose three main hypotheses, which will be verified in
the experiments to be discussed in the following sections:

Hypothesis 1 (Prediction Accuracy) Online adaptation of
a prediction model improves the prediction accuracy. The
prediction accuracy is higher for models that can encode
nonlinear features.

Hypothesis 2 (Prediction and Safety) Active human mo-
tion prediction enables the robot motion planner to take
human tendency into consideration, which improves human
safety.

Hypothesis 3 (Prediction and Efficiency) Collaboration
efficiency is higher if the prediction models can achieve
higher prediction accuracy (e.g., adaptable prediction
models).

IV. EXPERIMENT DESIGN

To quantitatively evaluate the effects of motion prediction
on human-robot collaboration, we conduct a series of exper-
iments in which a human works in close proximity to a robot
while the robot is performing predefined tasks.

A. Experiment Setup

The experiment platform is shown in the left part of Fig. 1.
The robot manipulator is FANUC LR Mate 200iD/7L, a
6-degree-of-freedom industrial robot. There is one Kinect
sensor to monitor the environment. We track the trajectory
of the human’s right wrist. All the experiments are imple-
mented in Matlab 2016 platform on a Windows desktop with
2.7 GHz Intel Core i5 Processor and 16 GB RAM. The robot
controller runs on the Simulink RealTime target.

B. The Safe and Efficient Robot Collaboration System

The experiment is built upon the safe and efficient robot
collaboration system (SERoCS) [7]. SERoCS consists of
three modules: (T1) the robust cognition module for envi-
ronment monitoring and prediction, (T2) the optimal task
planning module for efficient human-robot collaboration,
and (T3) the motion planning and control module for safe
human-robot interaction. In the experiments, the robot is only
required to track a simple trajectory, which does not require
task planning in T2. We close the loop with only T1 and T3.
The input to T1 is the real-time measurement from the Kinect
sensor, while the output from T1 is the predicted trajectory
x̂(k+1 | k). All four prediction models described in Section
II are used separately in T1 for comparison.

We also deploy the T3 module to plan and control the
robot motion. The input to T3 is the environment information
and the predicted human motion from T1, while the output is
the planned robot motion trajectory xR. The robot is equipped
with 1) a short-term safety-oriented planner based on the
safe set algorithm [15] and 2) a long-term efficiency-oriented
planner based on the convex feasible set algorithm [19]. The
two planners run in parallel.

The closed-loop execution of the human-robot collabora-
tion system is summarized below, which is also shown in
Fig. 1.

1) The T1 module estimates the historical human states
x−N(k) from the sensory data and predicts the future
trajectory x̂(k+1 | k).

2) The T3 module plans the future robot trajectory given
information from the T1 module. The short term plan-
ner runs in receding horizon for 1 kHz. The long term
planner only replans in two scenarios: when a new
task is specified, or when the safety specification is
triggered, i.e., the distance between the human and the
robot is below a threshold.

3) The planned trajectory is send to the robot hardware for
execution. New states of the system will be obtained
in the next time step, and the steps 1) -3) repeat until
experiments end.
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Fig. 2. Four predefined motions for human right hand.

C. Human-Robot Collaboration Tasks

To effectively compare the effects of the four motion
prediction models in Section II, we need to design human-
robot interactive tasks considering the following features.

1) Diversity of human motions: The improvement brought
by motion prediction should be robust to diverse complex
human motions. Therefore, the task needs to emphasize the
diversity of human motions.

2) Responsiveness of the robot: We want to test if the
robot can operate safely and efficiently in the worst case
scenario, i.e., when the human completely ignores the robot.
In this situation, the robot needs to react quickly to meet the
human’s needs.

3) Repeatability: All experiments should be repeatable.
Robot should be required to perform the same task at each
trial. The same motion planner should be applied. Different
human motion types should also be designed and fixed across
comparison experiments with different motion prediction
methods.

To meet these requirements, we design the following inter-
active tasks, which are commonly encountered in workspace-
sharing human-robot interactions in factory settings. The
situation is that the human subject is working on his/her
own task and the robot wants to fetch a target object to help
the human. As shown in Fig. 1, we allocate a Disk and a
RAM for the robot to fetch, starting from its idle pose. To
emphasize the diversity of human motions, we design four
different motion patterns, as shown in Fig. 2 and ask the
human subjects to follow. The four motion patterns represent
four different action labels a in (1). The action label is pre-
defined across experiments. To test the responsiveness of the
robot, we instruct the human subject in the experiments not
to respond to the robot as long as safety is under control
with the emergency brake. To guarantee the repeatability,
we fix the locations of the Disk and RAM across different
experiments. This paper considers one human subject across
all experiments, which is enough to verify the effectiveness
of different prediction methods, since the trajectories from
one human subject are already diverse.

D. Experiment Procedure

1) Data collection: For each type of motion defined in
Fig. 2, we collect 30 trajectories from the human subject, and
use the trajectories to train the four prediction models. Each
trajectory contains 45 time steps, where the human subject
conducts routine motions without the robot. The sampling
rate is 5 Hz. A low-pass filter is applied to smooth the
trajectories before training. We set N = M = 3 throughout
the experiments.

2) Offline training: We pre-train the prediction models
using the collected data. For M1, we use a 10× 9 matrix

to represent transformation parameter θ , and apply SGD to
optimize θ . For M2, we apply a 3-layer fully-connected
neural network with a structure of 11× 40× 9. The loss
function is set to be the L2 loss. All the learning rates are
set to 0.001 and the number of epochs is 100. Note that
the parameters of M3 and M4 can be initialized with the
parameters of the pre-trained M1 and M2, respectively.

3) Experimental validation: After the off training, we
start human-robot interaction experiments by substituting the
prediction module with the four different prediction models.
For each human motion shown in Fig. 2, 20 independent
trials are conducted with each prediction model. In each
trial, 45 sampling points are recorded which contain the
human trajectory x̄, the robot trajectory, and human motion
prediction x̂ at each time steps. We also record the same
amount of baseline trials, namely, the joint motions of the
human and the robot without active prediction.

E. Evaluation Metrics

1) Prediction Accuracy: We define the average prediction
error using average distance between the predicted trajectory
and ground truth trajectory.

Prediction Error =
1
n

n

∑
i=1
‖x̄(i+1)− x̂(i+1)‖2, (9)

where a smaller average prediction error implies better
prediction performance.

2) Safety: The robot is supposed to keep a proper distance
from the human to avoid potential collisions. Existing works
measure safety during HRI by the distance between human
and robot [20]. Similarly, we define the safety index for each
trail as the average closest distance between the human and
the robot:

Safety =
1
n

n

∑
i=1

(min(Dist(Hi,Ri))), (10)

where n is the sample frame number for a trial, Hi and Ri
denote human pose and robot pose at frame i, respectively.
A higher safety index means the robot is farther from the
human, hence safer.

3) Efficiency: For human-lead HRI scenarios where the
human has priority to occupy the workspace, the robot
should wait until human leaves before it can approach
its target, whereas human’s work time is independent of
robot’s efficiency. Therefore, conventional efficiency metrics
by evaluating how many target can be achieved by the robot
within certain amount of time [21] does not fit in those
scenarios and better efficiency metrics should be developed.
Note that proper prediction of human motion can make the
robot escape in advance when human is approaching, and
continue with its task when the human tends to get away.
In other words, good motion prediction can improve the
efficiency of robot motion by making the robot keep as
close to its target as possible. Denote the average robot-target
distance without human interference as ground truth DRT . We
define the efficiency index by comparing the average distance
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Fig. 3. Prediction error comparison among four different motion prediction
algorithms on 80 trials. The bold lines are averaged over all sample points
for each trial, the shaded area presents its standard deviation. Rectangle
backgrounds with different color denote the different motion classes.

TABLE I
MEAN AND VARIANCE OF THE PREDICTION ERROR FOR FOUR MOTION

PREDICTION MODELS.

prediction error mean
(m)

prediction error vari-
ance
(m2)

M3 0.1447 0.0032
M4 0.1209 0.0002
M2 0.2304 0.0021
M1 0.4678 0.0012

between the robot and its target with the ground truth DRT :

Efficiency =
DRT

1
n ∑

n
i=1(Dist(Ri,T ))

, (11)

where T denotes the target position. A higher efficiency in-
dex indicates that the robot completes tasks more efficiently.

V. RESULTS

A. Prediction accuracy

We first evaluate the performance of the four prediction
models according to the prediction error as shown in Fig. 3.
Semi-adaptable neural network results in much smaller pre-
diction error as well as standard deviation on the 80 trials.
The statistics are also summarized in Table I.

B. Safety and efficiency

We also compare the safety and efficiency scores for
the four prediction models and baseline (i.e., the scenario
without prediction). Comparison results is shown in Fig. 4.

Compared with the scenario without prediction, active
prediction using either prediction model boosts the safety
scores with a significant margin. Adaptable models achieve
the same safety level as non-adaptable models, while the
efficiency scores of adaptable models are not compromised
compared to the baseline. The mean and variance of safety-
efficiency score of the five methods are shown in Table II.
Semi-adaptable neural network leads to the most robust
performance with the smallest variance, and its performance
is also well balanced in terms of safety and efficiency.

We also applied the unpaired t-test to determine the sig-
nificance of improvement of active prediction and adaptation
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Fig. 4. Safety and efficiency score map for four motion prediction
algorithms and collaboration system without prediction. M0 denotes result
without prediction.

TABLE II
MEAN AND VARIANCE OF THE SAFETY AND EFFICIENCY SCORES FOR

THE FOUR MOTION PREDICTION MODELS.

safety
mean

safety
variance

efficiency
mean

efficiency
variance

M3 0.5577 0.2593 0.5741 0.0162
M4 0.5603 0.1353 0.5466 0.0055
M2 0.5486 0.2775 0.3983 0.0026
M1 0.9209 1.130 0.3541 0.0024
w/o Prediction 0.2550 0.1898 0.6588 0.0095

techniques in the statistical sense. The t value in terms of
safety score between the neural network group and that
without prediction is 3.8413 and the corresponding two-
tailed P value is 0.0002. On the other hand, the t value in
terms of efficiency score between M4 and M2 is 14.7321 and
the corresponding two-tailed P value < 0.0001. The above
null hypothesis testings demonstrate that the improvements
brought by prediction and online adaptation in terms of safety
and efficiency are considered to be statistically significant.

VI. DISCUSSION

A. Hypothesis 1 - Online Adaptation Improves Accuracy

As shown in the results, the prediction error is reduced
significantly for adaptable models, which supports that online
adaptable of the prediction model can improve prediction
performance (Hypothesis 1). The quantitative metrics of
prediction error mean and variance indicate that the semi-
adaptable neural network leads to the best performance
(Hypothesis 1). Due to high non-linearity of human motion,
models parameterized by M2 perform better than models
parameterized by M1.

Encoding nonlinear features will improve the prediction
performance. M3 only takes small quantities of past joint
positions as input, and fails to encode the nonlinear fea-
tures from input. Thus, small input noise can cause large
prediction variance. However, M4 encodes enough nonlinear
features for adaptation from the raw input. Large quantities
of nonlinear feature make online adaptation less sensitive
to noisy input. Thus we observe a small prediction error
variance for M4. Note that M2 performs worse than M3; this
is because the fixed offline trained model can not capture the
time-varying behavior of human motion. If the human motion
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in testing phase differs from that in training phase greatly, a
large prediction error will be observed for offline models.

B. Hypothesis 2 - Effective Prediction Improves Safety

It is notable that the average human-robot distance is
only 0.255 m without prediction, which is less than the
minimum threshold 0.3 m for safe human-robot interaction.
However, the average safety scores are doubled when predic-
tion modules are applied (Hypothesis 2). It is very common
that human might approach to a robot at a high speed,
which leaves the robot a shorter time to escape the potential
collision, especially when robot system update frequency is
low.

The prediction models predict the tendency of human
motion, such that the robot can generate trajectories by taking
the future constraints into consideration. When the human
is moving fast toward robot, the potential collision will be
detected in a timely manner. Thus replanner can be triggered
in advance to maintain safe human-robot distance.

C. Hypothesis 3 - Effective Prediction Improves Efficiency

Though safety score is largely enhanced with active pre-
diction, efficiency scores of prediction models without online
adaptation are greatly compromised, since the robot’s behav-
ior is too conservative. However, when online adaptation is
applied, the safety score is well maintained and the efficiency
score is greatly boosted to the same level as the scenario
without prediction (Hypothesis 3).

Good human-robot collaboration system should excel both
in safety and efficiency. When human motion prediction is
good, the robot will accurately capture the tendency when
human is getting away. Thus, the robot can quickly resume
its own task by planning a new path that bypasses the
predicted human trajectory. In such scenario, human safety
is guaranteed and the robot does not need to wait too long
or detour too much. However, if human motion prediction
is inaccurate, unrealistic path planning will be produced. As
a result, efficiency is deteriorated and collision might also
happen.

VII. CONCLUSION

In this paper, we quantitatively evaluated the effects of
human motion prediction on human-robot collaboration. We
designed a series of human-robot interaction experiments.
We compared models with different parameterizations, and
models with and without online parameter adaptation. The
experiment results demonstrated that human motion predic-
tion significantly enhanced the collaboration safety, and more
accurate prediction led to better efficiency. Both complex
parameterizations and online adaptation helped to improve
the motion prediction performance. Adaptable prediction
models that were parameterized by neural networks achieved
the best and robustest performance in our experiments.
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