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Abstract— Grasp planning is essential for robots to execute
dexterous tasks. Solving the optimal grasps for various objects
online, however, is challenging due to the heavy computation
load during exhaustive sampling, and the difficulties to consider
task requirements. This paper proposes a framework to com-
bine analytic approach with learning for efficient grasp gener-
ation. The example grasps are taught by human demonstration
and mapped to similar objects by a non-rigid transformation.
The mapped grasps are evaluated analytically and refined by an
orientation search to improve the grasp robustness and robot
reachability. The proposed approach is able to plan high-quality
grasps, avoid collision, satisfy task requirements, and achieve
efficient online planning. The effectiveness of the proposed
method is verified by a series of experiments.

I. INTRODUCTION

Grasping is an essential capability for robots to accomplish
complex manipulation tasks. In traditional grasping scenar-
ios, such as pick-and-place in assembly lines, object-specific
grippers might be designed for the robust grasping of a single
type of objects. In recent years, however, more and more
applications require a versatile ability for robots to grasp
various objects with general purpose grippers. For example,
human robot interaction requires collaboration and assistance
between robots and humans, during which robots may pass
different tools to humans or help holding various workpieces
for assembly tasks. The increasing demand for massive
customization and warehouse automation also promotes the
development of dexterous grasping.

However, the grasp planning for various objects with
general purpose grippers is challenging to solve due to heavy
computational loads, large task variance and imperfect per-
ceptions. First of all, many analytic planners such as Ferrari-
Canny metric [1] and grasp isotropy [2] require considerable
time for exhaustive searching and complex computation for
evaluation. Secondly, these planners generally assume point
contact, and calculate the quality based on the local features
such as contact position and contact normal, while the global
task requirements such as robot reachability and collision
avoidance are not under consideration. Moreover, analytic
planners are usually sensitive to the noises and distortion of
point clouds caused by hardware limitations and calibration
errors. Therefore, the grasp quality evaluated by analytic
planners is usually inconsistent with the empirical success
rate and cannot resemble reality effectively [3].
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Another common approach for grasp planning is to learn
optimal grasps from previous grasp examples. For example,
the Dex-Net [4] trains a neural network from a database
which is built by analytic planners. The network is able
to estimate optimal grasps for unseen objects after training.
In [5], the grasp is calculated from heatmaps that generated
by deep learning. However, these methods usually require
considerable data for the training process and the optimal
grasp is planned without considering the task constraints.

Despite the variance of object shapes, we notice that
objects to grasp can be classified into several categories. For
example, in the tool picking scenario, objects can often be
specified into categories such as wrenches, pliers, and screw-
drivers. Objects in each category share similar topological
structures but may have difference in shapes and sizes.

Some research has been conducted based on this obser-
vation. In [6], the perceived cloud of the object is fitted to
different objects templates in the database, and the grasp is
estimated by superimposing all representations considering
their confidence levels. A semantic grasping is proposed
in [7] to consider task requirements. The task constraints
are implicitly represented by a grasp example in each object
category and the desired grasp on the novel object is retrieved
by mapping the grasp example and refined by eigen-grasp
planner. A dictionary of object parts is learned in [8] to gen-
erate grasps across partially similar objects. The dictionary
assumes that the segments that shared by objects are rigid
and have similar sizes. However, this assumption cannot hold
in many scenarios.

In this work, we propose a novel framework for effi-
cient and effective grasp generation from previous grasp
examples. Firstly, a ‘learning from human demonstration’
approach is introduced to teach robots candidate grasp poses
by human experts. In the test stage, the category of the
target object will be classified by its similarities towards the
taught objects. Then a grasp pose transferring is performed
between similar objects based on the concept of coherent
point drift method [9], [10]. Moreover, the transformed poses
will be rated by analyzing the grasp isotropy metric [2]. An
orientation search method will also be introduced to improve
the robot reachability and avoid collisions.

The remainder of this paper is organized as follows:
Section II introduces the normal formulation of grasping
problems and the benefits of involving human demonstration.
The background of coherent point drift, together with its ap-
plication on grasp pose transferring is introduced in Section
III. Section IV presents the dissimilarity measure between
objects and the refinement of poses after transferring. A
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series of experiments on grasping multiple categories of
objects are shown in Section V. Experimental videos can be
found in [11]. Section VI concludes the paper and proposes
future works.

II. GRASP PLANNING WITH HUMAN DEMONSTRATION

A basic grasp planning for parallel grippers can be formu-
lated as

max
c,nc

Q(c,nc) (1a)

s.t. ci ∈ ∂O i = 1, 2 (1b)
‖c1 − c2‖ ≤ wmax, (1c)

where Q denotes the grasp quality to be maximized, c =
{c1, c2} denotes the contact pair with ci ∈ RD, and nc =
{nc,1, nc,2} denotes the normals of the contact pair with
nc,i ∈ SD−1. Constraint (1b) shows the contacts should lie
on the surface of object ∂O, and (1c) shows that the distance
of the contact pair should be less than the width of the gripper
wmax.

Equation (1) is challenging to solve by gradient-based
methods because of the high complexity of surface mod-
eling, the discrete representation of surface points, and the
discontinuity of surface normal. Compared with gradient-
based searching, sampling-based methods are able to adapt
to discrete object representation and escape from local op-
timum. However, they require considerable computation for
sampling and quality evaluation to find a reasonable grasp
due to the complicated structure of the object and the fea-
sibility constraints such as gripper width, task requirements
and collisions, thus the direct sampling methods are generally
not affordable for real-time implementation.

In this paper, we assume that the objects to grasp can
be clustered into various categories. The objects in the same
category share similar topological structures but can have dif-
ferent shapes, sizes and configurations. The objective of this
paper is to provide an efficient framework to grasp objects in
the same category without overwhelmed training, modeling
and computation. To achieve this, we introduce human
demonstration to accelerate grasp searching by providing
heuristics to guide sampling. Instead of directly using human
demonstration as the sampling pool for the target object to
grasp, we use a mapping function to transfer the example
grasps based on the topological similarity between the source
object and the target object. Therefore, (1) becomes:

max
c,nc

Q(c,nc) (2a)

s.t. {c,nc} ∈ map(H) (2b)
‖c1 − c2‖ ≤ wmax, (2c)

whereH denotes a human demonstration database containing
example grasps on the source object, and the function map(·)
represents a grasp transferring. Compared with (1), the
introduction of human demonstration in (2) has the following
advantages. First, incorporating human intelligence into the
framework will improve the empirical success rate, since the
human demo usually considers a variety of factors such as

Fig. 1. The Grasp Pose Transferring: (a) A toy manipulator model as a
grasping object. (b) The grasp example that contains a source object and
several grasp poses. (c) The non-rigid point registration by Coherent Point
Drift. (d) The target object with the warped grasp poses. The grasp poses
are labeled with number.

the local structure of the object and the global geometry
for collision avoidance. Second, some tasks have special
requirements. For example, some workpieces have fragile
parts or polished surfaces which are not suitable for grasping.
Some workpieces have some preferred grasp poses for the
ease of following assembly procedures. Explicitly impos-
ing such constraints to traditional approaches is nontrivial,
while these requirements can be easily encoded by human
demonstration. Moreover, by mapping the grasp examples to
novel objects, the proposed method exploits much fewer but
reasonable grasp samples compared to traditional exhaustive
search methods. Therefore, the searching time is greatly
reduced.

III. GRASP POSE TRANSFERRING BY POINT
REGISTRATION

Assume a grasp template consists of a source object
(Fig. 1a) and multiple demonstrated grasp poses (Fig. 1b),
where the blue dots are the point clouds of the source object
and each coordinate labeled with a number represents a
demonstrated grasp pose. The source object is represented
by a point set X = (x1, · · · , xN ) ∈ RN×D, where xn ∈ RD

is the n-th point in the point set. The grasp poses are denoted
as gi = (ti,Ri) ∈ RD ⊗ SO(D), i = 1, 2, · · · , I , where
ti ∈ RD is the center of the grasping point, Ri ∈ SO(D)
represents the grasp orientation, and i is the index among
the total I grasp poses. The target object is represented by
another point set Y = (y1, · · · , yM ) ∈ RM×D, where ym ∈
RD is the m-th point in the target point set. Our objective
is to find a smooth transformation T : RD → RD that maps
the source object to the target object as well as transferring
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the grasp examples to new grasp poses g′
i = (t′i,R

′
i) on the

target object (Fig. 1d).
The transformation can be found by aligning the source

object to the target object. Then the task can be formulated
as a point set registration problem as shown in Fig. 1c.
Considering variation and deformation between the source
object and the target object, the mapping should have more
flexibility than rigid transformation. In the meantime, the
topological structure of point sets must be preserved during
the alignment process so that the the grasp pose can be
transferred to a reasonable location. In this work, we use
the coherent point drift (CPD) algorithm [9] to perform a
smooth non-rigid point registration.

A. Coherent Point Drift

In order to align the source object toward the target
object, CPD considers source points in X as the centroids
of Gaussian mixtures, and transforms them to fit the target
points in Y coherently. The source points are assumed to
deform toward the target points according to a continuous
displacement field v(·), and the transformed source point is
written as

T (xn) = xn + v(xn). (3)

The goal of CPD is to retrieve the displacement field v that
maximizes the likelihood of Y sampled from X.

With the Gaussian mixture model, the probability distri-
bution of ym can be described as

p(ym) =
N∑

n=1

p(n)p(ym|n)

=

N∑
n=1

1

N
N (ym; T (xn), σ

2)

=

N∑
n=1

1

N

1

(2πσ2)D/2
exp(−‖ym − xn − v(xn)‖2

2σ2
),

(4)

where it is assumed that each Gaussian shares the same
isotropic covariance σ2 and has equal membership proba-
bility p(n) = 1/N .

Since there might be some noise and outliers from the
measurement, which may deteriorate the result of regis-
tration, an additional uniform distribution is added to the
mixture model to take account of these effects. Thus, the
complete mixture model is reformulated as

p(ym) =
N+1∑
n=1

p(n)p(ym|n)

= (1− µ)
N∑

n=1

1

N
N (ym; T (xn), σ

2) +
µ

M
, (5)

where µ ∈ [0, 1] denotes the weight of the uniform distribu-

tion. The log-likelihood function of Y is given by

l(v, σ2) = log
M∏

m=1

p(ym)

=
M∑

m=1

log
N+1∑
n=1

p(n)p(ym|n). (6)

The parameter (v, σ2) can be estimated by maximizing (6);
however, it is nontrivial to directly optimize over the log-
likelihood function, since the summation inside the log(·)
leads to a non-convex formulation. An alternative log-
likelihood function L can be constructed as

L(v, σ2) =
M∑

m=1

N+1∑
n=1

p(n|ym) log (p(n)p(ym|n)) . (7)

It can be proven by Jensen’s inequality [12] that L is the
lower bound of l. Hence, increasing the value of L will
always ‘push’ the value of l increased until it reaches the
local optimum. Compared with the structure of l, the inside
summation of L is moved to the front of the log(·) function,
which provides much convenience to maximize the log-
likelihood by the EM algorithm [13].

The EM algorithm runs the expectation step (E-step)
and maximization step (M-step) iteratively to estimate the
parameters by maximizing L.

E-step: The expectation step computes the posterior prob-
ability distribution of p(n|ym) with the previous estimated
parameters from the last M-step,

p(n|ym) =
exp

(
−‖ym−xn−v(xn)‖2

2σ2

)
∑N

n=1 exp
(
−‖ym−xn−v(xn)‖2

2σ2

)
+ c

, (8)

where c = (2πσ2)D/2 µ
(1−µ)

N
M .

M-step: Ignoring the terms that are independent of v and
σ2, the log-likelihood function can be written as

L(v, σ2) = − 1

2σ2

N∑
n=1

M∑
m=1

p(n|ym)‖ym − xn − v(xn)‖2

− D

2

N∑
n=1

M∑
m=1

p(n|ym) log σ2. (9)

The maximization step is to substitute (8) into (9) and
take partial derivative with respect to v and σ2 to find its
maximum.

Although alternating between E-step and M-step will
converge to a local optimal, it can not guarantee that the
topological structure of the source object is preserved after
the transformation. That is because there is no topologi-
cal constraints to restrict the locations of these Gaussian
centroids. Therefore, a regularization term is added to the
log-likelihood function to regularize the smoothness of the
deformation function, and the modified likelihood function
is given by

L̃(v, σ2) = L(v, σ2)− λ

2
‖v‖2F , (10)
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where ‖v‖2F =
∫
RD

|V (s)|2
G(s) ds is a norm to quantitatively

measure the function smoothness [14]. V (s) is a Fourier
transform of v and G(s) presents a symmetric filter that
approaches to zero as s → ∞. The overall Fourier domain
norm here basically captures the energy of high frequency
components of V (s). Intuitively, the larger the norm ||v||F ,
the more ‘oscillating’ v will be, i.e., less smoothness. λ ∈
R+ is a weighting coefficient that represents the trade off
between the fitting of the point sets and the smoothness
constraints on the transformation.

It can be proved by variational calculus that the maximizer
of (10) has the form of the radial basis function [9],

v(z) =
N∑

n=1

wng(z − xn), (11)

where g(·) is a kernel function retrieved from the inverse
Fourier transform of G(s), and wn is the unknown kernel
weights. In general, g(·) can be any formulation with positive
definiteness, and G(s) behaves like a low-pass filter. For
simplicity, a Gaussian kernel is chosen so that g(z − xn) =
exp(− 1

2β2 ||z − xn||2), where β ∈ R+ is a parameter that
defines the width of smoothing Gaussian filter. Larger β
corresponds to more rigid transformation, whereas smaller
β produces more local deformation.

Substituting (7) and (11) to (10), we get

L̃ =
−1
2σ2

N∑
n=1

M∑
m=1

p(n|ym)‖ym − xn −
N∑

k=1

wkg(xn − xk)‖2

− D

2

N∑
n=1

M∑
m=1

p(n|ym) log σ2 − λ

2
tr(WTGW), (12)

where G ∈ RN×N is a Gramian matrix with element
Gij = g(xi − xj) and W = [w1, · · · , wn]

T ∈ RN×D is
the vectorization of kernel weights in (11).

From (12), the regularized log-likelihood function is now
parameterized by (W, σ2). Similar to (7), the EM algorithm
can be performed to estimate the parameters iteratively. In
E-step, the posterior p(n|ym) is calculated by using the
previous estimated parameters. In M-step, take ∂L̃/∂W = 0
and ∂L̃/∂σ2 = 0 to obtain a new estimate of (W, σ2). The
closed-form solution for M-step requires further mathemati-
cal derivation, more details can be found in [9], [10].

After L̃ is converged, the point set of the source object X
can be aligned toward the target object by

T (X) = X+GW. (13)

B. Grasp Pose Transferring

As shown in Fig. 1d, after finding the mapping from the
source object X to the target object Y, the demonstrated
grasp poses on X will also be transferred to achieve new
grasp poses that are suitable for object Y. The grasp poses
can be decomposed to two parts: the position and the
orientation of the robot end-effector. Regards to the position,
the non-rigid transformation T : RD → RD can directly map

the center of grasp from grasp example to the target object
by

t′i ← T (ti), i = 1, 2, · · · , I. (14)

As for the orientation, it can be considered as transferring
x, y, and z axes of the original grasp orientation to the
new object space. One natural way to transform a vector
v at a point t through a function is to multiply the vector
with the gradient of T (t) [15], i.e. ∇T (t)v. Considering the
properties of the special orthogonal group, the singular value
decomposition (SVD) of the matrix is performed to construct
the new orientation of the grasp, which is

R′
i ← UiV

T
i , i = 1, 2, · · · , I. (15)

where UiΣV
T
i = svd(∇T (ti)Ri), Ui,Vi are the orthonor-

mal basis of the matrix, and Σ is a diagonal matrix that
consists of the singular values of the matrix.

Hence, the new grasp poses on the target can be transferred
by

g′
i = (t′i,R

′
i)← (T (ti),UVT

i ), i = 1, 2, · · · , I. (16)

IV. GRASP POSES FOR VARIOUS OBJECTS

A. Dissimilarity Measure

During the training stage, multiple grasp poses for differ-
ent categories of objects are demonstrated by human experts.
Given a new object at test, it is necessary to first classify
which category the object belongs to, then use the Section
III method to transfer the corresponding grasp poses from
the correct category to get a new feasible grasp. Therefore,
an object classifier is essential for pose transferring.

There are some researches that apply surface matching
technique to rigidly fit the object template to the measured
point clouds and calculate the dissimilarity [16], [17]. The
source objects from different categories are exploited as
the templates to match the target object. By measuring the
dissimilarity between each of the source objects X and the
target object Y, the most similar pair will be selected to
determine the category of the target object. In our work, since
CPD can be applied to warp the template X to T (X) which
is aligned with Y, the residual dissimilarity between T (X)
and Y instead of the dissimilarity between X and Y will be
checked to provide a more robust category classification.

The average minimum distance between the two point sets
can be designed as:

d(T (X),Y) =
1

N

N∑
n=1

min
m∈[1,M ]

||T (xn)− ym||, (17)

where ||T (xn)−ym|| is the Euclidean distance between point
T (xn) and ym. Equation (17) is an error function that is
commonly used for point cloud alignment. However, (17) is
asymmetric. The dissimilarity between a source object and
a target object can be formulated as

D(X′,Y) = d(X′,Y) + d(Y,X′), (18)

where X′ = T (X) is the source points warped toward Y
by CPD. The function D(·, ·) sums the two asymmetric
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(a) (b)

Fig. 2. (a) a grasp example, where the red arrows indicate the direction of
gripper closing (which is also the grasp axis). (b) The side view of the grasp
example, and the transparent grippers are shared the same grasp center and
grasp axis but different orientations.

dissimilarity measurements together so that D is symmetric
to its input arguments, i.e. D(X′,Y) = D(Y,X′).

Suppose there are K object categories, the most possible
category that the target object belongs to can be estimated
by

k∗ = arg min
k∈[1,K]

D(X′
k,Y). (19)

B. Grasp Pose Optimization

Once the object category is determined, we can map
the example poses from the corresponding category to the
target object. The grasp quality of the mapped poses will
then be evaluated by analytic methods using the grasp
isotropy index [2]. The grasp isotropy index measures the
uniformness of different contact forces to the total wrench.
More concretely, it can be written as

Qi =
σminG(g′

i, go)

σmaxG(g′
i, go)

, (20)

where go denotes the pose of the object, G(g′
i, go) represents

the grasp map determined by the contacts and the object [18],
and σmin and σmax respectively denote the minimum and
maximum singular values of the grasp map. The contacts
are inferred by the line search along the grasp axis. The line
search tries to locate the nearest neighbor of the grasp center
on the object’s point cloud. The contacts are represented by
the nearest neighbors search in the positive and negative
directions of the grasp axis respectively. The transferred
grasp would be treated as a bad pose if the contacts deviate
from grasp axis too much, in which case a negative quality
will be allocated.

Apart from the grasp quality, we have to consider the fea-
sibility constraints such as the reachability and the gripper-
object collision. The feasibility constraints are guaranteed by
an orientation search introduced below.

Because the robot grasp pose with a parallel-jaw gripper
is composed of a center of grasp and a grasp axis, it does not
necessarily restrict all the rotation axis. i.e. the grasp quality
is not affected by rotating along the grasp axis. A parallel-
jaw gripper grasp example is shown in Fig. 2a, where the

Fig. 3. The experimental setup: a FANUC LR Mate 200iD/7L and dual
Ensenso stereo cameras

center of grasping point is the blue dot and the red arrows
represent the operational direction of the jaw which parallels
to the grasp axis. By rotating along the grasp axis, the grasp
pose can be modified as the translucent grippers as shown
in Fig. 2b, where the modified poses are also valid grasps.
If the initial grasp pose is not feasible, then the modification
can be made by searching the various orientations around the
initial one. Suppose the initial orientation is denoted as R0,
the sampled orientation is denoted as Ri, and R is the set
of all the sampled orientations. The orientation search can
be formulated as

min
Ri∈R

∆ξ(R0,Ri) + C [fIK(t,Ri) + fcol(t,Ri,Y)] ,

(21)

where ∆ξ(R0,Ri) = 1 − ξ(R0)
T ξ(Ri) ∈ [0, 1] is the

rotation deviation in quaternion between R0 and Ri, ξ(·)
converts a rotation matrix to a quaternion. We use quaternion
rather than Euler angles to represent rotation difference to
avoid singular representation in rotations. fIK(t,R) is a
boolean function that returns 1 when the inverse kinematics
of (t,R) is invalid and returns 0 otherwise. fcol(t,R,Y) is
another boolean function that return 1 when the gripper with
the pose (t,Ri) is collided with Y and returns 0 otherwise.
C is a large constant number to penalize the condition of
both the infeasible inverse kinematics and the gripper-object
collision. If all the sampled orientations are invalid, the
value of (21) will be greater than or equal to C. Then the
orientation search is applied to exploit the other candidates
until it finds a feasible grasp pose to perform the task.

V. EXPERIMENTAL RESULTS

In order to verify the proposed grasping approach, a series
of experiments were conducted to grasp various objects by a
robot manipulator. The experimental setup is shown in Fig. 3,
where the robot was FANUC LR Mate 200iD/7L, and two
Ensenso stereo cameras were calibrated and synchronized
to capture the point clouds of objects in the workspace. All
the programs were implemented in MATLAB on a Windows
desktop with a Intel Core i5 CPU and 16GB RAM. The robot
controller was deployed on a Simulink RealTime target.
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(a) (b) (c)

Fig. 4. The point cloud process, (a) The raw data was captured by the dual Ensenso stereo camera. (b) The objects were extracted from the background
by predefined region. (c) The point cloud was clustered by DBSCAN.

The point clouds retrieved from the dual Ensenso stereo
cameras were shown in Fig. 4a. By applying the snapshot
of the empty workspace as a filter mask, the point clouds
of objects were extracted from the background as shown in
Fig. 4b. Then running the density-based spatial clustering
application with noise (DBSCAN) algorithm [19], the point
clouds can be separated to several clusters to represent
different objects (Fig. 4c). A voxel grid filter with step
size 5mm was implemented to downsample the point clouds
uniformly.

Six categories of objects, including cups, pliers, wrenches,
cable adapters, toy manipulator models and toy humanoid
models, were tested in the experiment (Fig. 5). Note that
neither CAD models nor mesh files were used in this work.
For each category, a specific source object was selected, and
the human operator taught multiple preferred grasp poses on
it through kinesthetic teaching. The point cloud of the object
and the demonstrated grasp poses were recorded as training
database.

At the test stage, objects with different sizes and con-
figurations across all the categories were randomly placed
in the workspace. For example, multiple types of cups and
wrenches were tested for grasping; the pliers were either
open or closed; the cable adapter were twisted to various
shapes; the joints of the two toy manipulator models and the
toy humanoid model were rotated to random angles. All the
target objects were shown in Fig. 6.

Before executing the grasp experiment, an object classi-
fication test was performed by measuring the dissimilarity
between the target object and all the source objects (see
Section IV.A). The target objects in Fig. 6 were randomly
placed, with each category of objects collecting 20 different
configurations. The parameters of CPD were set as β = 2
and λ = 50.

As shown in Fig. 7, the performance of object classifica-
tion was presented by a confusion matrix, where each column
represented the predicted class and each row represented the
actual class. The diagonal entries of the confusion matrix
indicated the correct classification, whereas the off-diagonal
entries were misclassification. The overall classification ac-
curacy was 94.17% (113/120).

Each category of objects was tested 20 times for grasping

TABLE I
GRASPING QUALITY EVALUATION

Grasping
Pose No. 1 2 3 4 5

Isotropy
Index 0.0098 -1.000 0.0001 0.0089 -1.000

TABLE II
GRASPING RESULTS

class success/trials avg. CPD time
(ms)

avg. numbers
of points

manipulator 19/20 1276.4 1563.7
wrench 20/20 111.3 316.7

plier 18/20 706.1 1419.0
humanoid 17/20 369.5 773.3

cup 20/20 350.5 609.3
adapter 19/20 480.2 917.0
average 18.8/20 549.0 933.2

with different orientations, shapes, sizes, and configurations.
The parameters of CPD were the same as the ones in object
classification.

Take one target object (Fig. 1d) as an example. The grasp-
ing qualities of the transferred grasps are provided in Table I.
Note that the qualities of the second and fifth transferred
poses are marked as negative based on the isotropy index
analysis, since the second pose was mapped to a region with
sparse points, and the contacts for the the fifth grasp was
wider than the width of the gripper. The remaining pose with
the highest grasping quality, i.e., the first pose, was selected.
The selected pose was then refined by the orientation search
to improve the reachability and avoid collision. The final
grasp performed in the experiment is shown in Fig. 8b.
The grasp was regarded as success when the object could
be robustly lifted up at least 10 cm without slipping off
from the gripper. The success rate, average computation time
and average point numbers for each category of objects are
provided in Table II. The experimental video can be found
at [11]. The snapshots of grasping experiments are shown in
Fig. 8.

Although the shapes and configurations of target objects
were different to the ones of source objects, they shared the
similar structures. Therefore, the grasp poses on the source
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Fig. 5. Grasp examples: the first row shows one of the grasp pose on each source object, and the second row provides the snapshots of the actual
demonstrated grasp poses.

Fig. 6. Target objects, which are similar to the source objects but different
in size, shape, and configuration.

Manipulator – 1 20 0 0 0 0 0

Wrench – 2 0 19 0 0 0 1

Plier – 3 0 2 18 0 0 0

Humanoid – 4 2 0 0 18 0 0

Cup – 5 0 0 0 0 20 0

Adapter – 6 0 2 0 0 0 18

1 2 3 4 5 6

Fig. 7. The confusion matrix of object classification. Each column
represents a predicted class, and each row represents a actual class.

object could be transferred to reasonable locations on the
target objects. For instance, the grasp poses on the various toy
manipulator models were invariant in terms of topological
structures (see the first row of Fig. 8). The grasp poses taught
by kinesthetic teaching had the intuition from human such
as the task specific consideration and fairly good grasping
quality, and CPD transferred the insight to the target objects.
Therefore, the test can be successful in most of the cases.

The failure case happened when there was a very large
distortion to transform the source object to the target, which
degraded the accuracy of the transformation estimated by
CPD. As a result, the grasp pose was not accurately trans-
formed, which caused the grasp failed. Although CPD did
not transfer grasp poses with high accuracy in this situation,
it provided a relatively close one. In the future, we may
include an adaptation on the warped grasp pose to avoid this
failure.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposed a framework for efficient grasp
generation by combining analytic approach with learning
from demonstration. A database containing multiple cate-
gories of source objects with demonstrated grasp poses were
constructed by human experts. During the test scenario, a
novel object was firstly classified into one of the example
categories by measuring its dissimilarity to each source
object. Then the grasp poses on the most similar source
object were transferred to the novel object by the coherent
point drift (CPD) method. All the transferred grasp poses
were evaluated and sorted by the grasp isotropy metric.
The selected pose was further refined by an orientation
search mechanism, which improves the robot reachability
and avoids collision. A series of experiments were performed
to grasp six categories of objects with various shapes, sizes
and configurations. The average success rate was 18.8 out of
20 grasp trials. The experimental video is available at [11].

There are several directions to further improve this work
in the future. Since the CPD method might fail to transfer
the grasp pose to the novel objects in large distortion cases,
we consider introducing a parameter adaptation mechanism
in CPD and a searching mechanism around the transferred
poses to deal with large deformation. In addition, feature
extraction will be conducted to categorize a novel object and
improve the scalability of the current approach.
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Fig. 8. The planned grasp poses and the corresponding snapshots of the grasping results.
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