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State-level needs for social distancing and contact
tracing to contain COVID-19 in the United States

1,24

Weihsueh A. Chiu®'®, Rebecca Fischer? and Martial L. Ndeffo-Mbah

Starting in mid-May 2020, many US states began relaxing social-distancing measures that were put in place to mitigate the
spread of COVID-19. To evaluate the impact of relaxation of restrictions on COVID-19 dynamics and control, we developed a
transmission dynamic model and calibrated it to US state-level COVID-19 cases and deaths. We used this model to evaluate the
impact of social distancing, testing and contact tracing on the COVID-19 epidemic in each state. As of 22 July 2020, we found
that only three states were on track to curtail their epidemic curve. Thirty-nine states and the District of Columbia may have to
double their testing and/or tracing rates and/or rolling back reopening by 25%, while eight states require an even greater mea-
sure of combined testing, tracing and distancing. Increased testing and contact-tracing capacity is paramount for mitigating the

recent large-scale increases in US cases and deaths.

Wuhan, China in December 2019, has now reached pandemic

status with spread to >210 countries and territories, including
the United States'. The United States reported its first imported case
of COVID-19 on 20 January 2020, arriving via an international flight
from China’. Since then the disease has spread rapidly within the
country, with every state reporting confirmed cases within 3 weeks
of the first reported community transmission. As of 1 August, the
United States has exceeded 4.5million cases and 150,000 deaths,
heterogeneously distributed across all states'. To date, states such as
New York, New Jersey and California have borne the highest bur-
den, with <420,000, 183,000 and 510,000 cases and 32,000, 15,000
and 9,000 deaths, respectively, while Alaska and Hawaii have each
reported <4,000 cases and 25 deaths’.

COVID-19 is caused by a newly described and highly transmis-
sible SARS-like coronavirus (SARS-CoV-2). Severe clinical out-
comes have been observed in approximately 20% of symptomatic
cases™. There is no vaccine and no cure or approved pharmaceuti-
cal intervention for this disease, making the fight against the pan-
demic reliant on non-pharmaceutical interventions (NPIs). These
NPIs include: (1) case-driven measures such as testing, contact trac-
ing and isolation®; (2) personal preventive measures such as hand
hygiene, cough etiquette, face mask use, eye protection, physical
distancing and surface cleaning, which aim to reduce the risk of
transmission during contact with potentially infectious individuals®;
and (3) social-distancing measures to reduce interpersonal contact
in the population. In the United States, social-distancing measures
have included policies and guidelines to close schools and work-
places, cancel and restrict mass gatherings and group events, restrict
travel, maintain physical separation from others (for example, keep-
ing six feet apart) and stay-at-home orders’.

Non-pharmaceutical interventions and other responses to
COVID-19, especially stay-at-home orders, have varied widely
across states, leading to spatial and temporal variation in the tim-
ing and implementation of mitigation strategies. This variation in
policies and response efforts may have contributed to the observed
heterogeneity in COVID-19 morbidity and mortality across states®.

| he novel coronavirus pandemic (COVID-19), first detected in

Recent studies suggest that state-wide social-distancing mea-
sures have probably contributed to reducing the spread COVID-
19 epidemic in the United States®'’. Understanding the extent to
which NPIs, such as social distancing, testing, contact tracing and
self-quarantine, influence COVID-19 transmission in a local con-
text is pivotal for predicting and better managing the future course
of the epidemic on a state-by-state basis. This in turn will inform
how these NPIs should be optimized to mitigate the spread and bur-
den of COVID-19 while awaiting development of pharmaceutical
interventions (for example, therapeutics and vaccines).

After several weeks of state-wide stay-at-home orders, most US
states began to ease their social-distancing requirements in May/
June 2020 (ref. ') while attempting to increase their testing and
contact-tracing capacities’”. Mathematical modelling is a unique
tool to help answer these important and timely questions. Models
can contribute valuable insight for public health decision-makers
by providing an evaluation of the effectiveness of ongoing control
strategies along with predictions of the potential impact of alterna-
tive policy scenarios'.

To address these needs, we developed and validated a
data-driven transmission dynamic model to evaluate the impact
of social distancing, state reopening, testing and contact tracing
on the state-level dynamics of COVID-19 infections and mortal-
ity in the United States, shown schematically in Fig. 1. Like many
other COVID-19 transmission models'*", we used an extended
susceptible, exposed, infectious, removed (SEIR) compartmen-
tal model. The model divides the population into several disease
compartments and tracks movements of individuals between the
compartments through different transition rates. The main model
compartments include: S, susceptible; E, exposed; A, infectious and
asymptomatic; I, infectious and symptomatic; R, recovered; and F,
dead. In addition to disease progression stages, our model incorpo-
rates social distancing informed by several public sources of mobil-
ity data, case identification via testing, isolation of detected cases
and contact tracing. This is a mean-field epidemiological model-
ling approach that captures the average disease dynamics behav-
iour within a population'®"’. We used Bayesian inference methods
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Fig. 1| SEIR model structure, parameters, data sources and fitting/validation methods. We used mobility data to constrain the time dependence of the
contact rate. We fitted the model to daily reported cases and confirmed deaths from 19 March to 30 April 2020 and validated its projections against data
from 1May to 20 June 2020. On the model projections, the black solid line is the median, the pink band is the 95% Crl and the orange band is the IQR. We
show model fitting and validation for four states: New York (NY), Ohio (OH), Texas (TX) and Washington (WA).

to calibrate and validate our model prediction to state-level daily
reported COVID-19 cases and fatality data. Model parameters,
prior distributions and their sources are shown in Table 1. We used
the calibrated model to evaluate the transmissibility of COVID-19
in each state from March 2020 to late July 2020, to estimate the
state-level impact of shelter-in-place and reopening on COVID-19
transmission. Finally, we evaluated the degree to which increas-
ing testing efforts (rate of identification of infected cases) and/or
contact tracing could curtail the spread of the disease and enable
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greater relaxation of social-distancing restrictions while preventing
a resurgence of infections and deaths. A detailed description of the
model considerations, parameterization and analysis is provided
in Methods.

Results

Model performance and validation. We used state-level mobility
data from Unacast, Google and OpenTable to calibrate a paramet-
ric model of shelter-in-place and reopening (Supplementary Fig. 1),
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Table 1| Model inputs, parameters and prior distributions for Bayesian analysis

Symbol Definition (units) Calibrated parameter(s) Prior (truncation) Notes/refs.
N Population size Input (not calibrated) Constant Y
[\ Initial I, on 29 February 2020 Nt logy (1,000, 10) [1,10,000] 2
1V44 Self-isolation time after contact tracing J[p——V logy(14, 2) [7, 21] b
1/k Latent period (d) Thatent = 1/K N(4,1) [2,7] E2
Go Baseline contact rate (contacts d-") Gn N(3,5) [7,20] a3
P Recovery rate (d=") Tecower =1/p log,(10, 1.5) [5, 30] 2k
Bo Transmission probability per contact (unitless) Ro=cofo/p N(2.9,0.78) [1.46, 4.5] 5y
e Fraction of contacts traced (unitless) lic logy(0.25, 2) [0.05, 1] 8
iia Fraction of infected asymptomatic (unitless) iia N(0.295, 0.275) [0.02, 0.57] 42
T50; Date of 50% of final testing rate (d) T50; U(60, 106) (1 Mar-15 Apr) 2
A General positive diagnosis rate (d=") A= Fioqt SENS gt Kiest Derived 455051
P General test coverage (unitless) [F p2,2) BHEA
Sens,. Test sensitivity (unitless) Sens,. N(0.7,0.1) [0.6, 0.95] =2
Kiest General testing rate (d") T = W N(7,3) [2,12] =R
Ac Contact positive diagnosis rate (d=") Ac=5enS e Kiesic Derived
Ke test Contact testing rate (d=") T =1 My N2, 1 [1,3] 2
Pe Rate of infected contacts testing negative (d™") pc=(-Sens) K Derived
Fatal illness rate (d~") |FRd logy(0.01, 2) [0.001, 0.1] 44,55
- Minimum of 6(t) (7 Validation: $(2,2) 2
Calibration: state-specific g
Ty Weibull scale parameter T, Validation: N(21, 7) [7, 35] e
Calibration: state-specific g
Ny Weibull shape parameter Ny Validation: logy(6, 2) [1,11] 8
Calibration: state-specific g
n Hygiene effectiveness relative to social distancing 7 pQ2,4) 8
(unitless)
7 Duration of shelter-in-place (d) 7, Validation: N(45, 30) [21, 90] =g
Calibration: state-specific
7, Duration of linear increase after shelter-in-place 7, Validation: N(45, 30) [14, 105] 2
(d) Calibration: state-specific g
I Maximum relative increase in contacts from I max Validation: N(1, 1) [0, 2] 2
shelter-in-place (unitless) Calibration: state-specific S
Tease Lag time for observing confirmed case Tease logy(7, 2) [1,14] &
Bttty Lag time for observing confirmed death ittty logy(7, 2) [1,14] 2
Ops Negative binomial shape parameter for case Qs log,(0.1, 40) 2
likelihood function
Agonth Negative binomial shape parameter for death Agonth log,(0.1, 40) 8

likelihood function

logy, log-normal distribution with geometric mean and geometric s.d. N, normal distribution with mean and s.d.; U, uniform distribution with minimum and maximum; log, log-uniform distribution with
minimum and maximum; (a,b), beta distribution with shape parameters a and b; time (t) is measured from t=1, corresponding to 1January 2020.2Assumed, non-informative prior sufficiently wide to have
adequate validation coverage. °Standard contact-tracing guidance is to self-isolate for 2 weeks. “For calibration to 20 June 2020, state-specific priors were derived by fitting to different social-distancing
datasets, with each parameter's mean, s.d. and range used to define a normal distribution prior. “See Methods for relationship between infected fatality rate (IFR) and 8.

and used the results to inform prior distributions for the transmis-
sion model (Fig. 1). We fit our model to state-level daily cases and
deaths data using a Bayesian inference approach (Methods). Model
performance assessment for several representative states is shown in
Fig. 1, with full results in Supplementary Figs. 2 and 3. With respect
to validation, the posterior 95% credible interval (CrI) of our model
projections, estimated using data to 30 April 2020, covered 84% of
the data points from 1 May to 20 June 2020. For seven states (Alaska,
Montana, South Dakota, Iowa, Illinois, Michigan and Minnesota),
validation had low coverage (<50%) because of insufficient training
data to 30 April 2020 to adequately inform sheltering and reopen-
ing in those states. This inaccuracy was not unexpected, because

the length of sheltering and the degree of reopening could not have
been known on 30 April 2020, and thus our model predictions were
based on generic prior distributions. However, during model cali-
bration to data to 22 July 2020, these parameters were informed by
updated state-specific mobility data. Model performance for fitting
all data to 22July 2020 is shown in Supplementary Figs. 4-6, with
posterior parameter distributions shown in Supplementary Fig. 7.
Good fits with high coverage (>88% for cases, >92% for deaths)
were obtained for all states.

Estimations of effective reproduction number. The effective
reproduction number, R, is the average number of secondary
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Fig. 2 | Estimated R, and the level of reopening/rebound in transmission as of
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each colour. It also includes the date of minimum R.. b, The level of reopening/rebound in disease transmission in each state relative to its minimum value

during state shelter-in-place (median, IQR and 95% Crl).

infection cases generated by a single infectious individual dur-
ing their infectious period'. When R.;>1 the epidemic curve is
increasing, and when R.; <1 the epidemic curve is decreasing'®.
Using the posterior distribution of our model parameters, we esti-
mated R, from 19 March to late July 2020 and identified the mini-
mum level of transmission achieved in each state (Fig. 2a). We found
that for all except five states (Alabama, Arkansas, North Carolina,
Utah and Wisconsin), the interquartile range (IQR) for the mini-
mum R value was <1 (varying 0.07-0.98), and these values were
mainly achieved during the state shelter-in-place (11 April-29 May
2020) (Fig. 2a). Following states’ relaxations of social-distancing
measures, disease transmission again started to increase. By 22 July
2020, 42 states and the District of Columbia had at least a 75% prob-
ability that R > 1. The model predicts therefore that, as states are
reopening, a majority are at risk of continued increases in the scale
of the outbreak and require additional mitigation to contain the
spread of the disease.

We conducted an analysis of variance (ANOVA) to evalu-
ate the contribution of each parameter to the variation in R,
(Supplementary Table 1). Across states, we found that the largest
drivers of variation in R, are (1) the power parameter for relating
social distancing to hygiene-associated reduction in transmission,
17 (ANOVA F (one degree of freedom)=2,989.166, P<2.2x107',
n*> 5%, lower 95% confidence interval (CI) of #?>4.5%); (2) the
degree of mitigation during shelter-in-place, 8,,, (ANOVA F (one
degree of freedom)=5,177.354, P<2.2x107, #*>8.7%, lower
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95% CI of #*>8.1%); (3) the maximum relative increase in con-
tact after shelter-in-place orders, r,,,, (ANOVA F (one degree of
freedom)=8,051.61, P<2.2X107', #*>13.5%, lower 95% CI of
7*>12.8%); and (4) the fraction of contacts traced, f. (ANOVA F
(one degree of freedom)=13,834.053, P<2.2Xx107'¢, 7*>23.2%,
lower 95% CI of #*>22.4%), which together contribute >50% of
variance (Extended Data Fig. 1 and Supplementary Table 1). This
observation is consistent with mobility data alone being insufficient
to account for the combined effect of multiple control measures,
and suggests that the degree of adoption of non-mobility-related
measures, such as enhanced hygiene practices and contact tracing,
plays a large role in the extent to which a state may reduce disease
transmission.

For each state, we defined A as the level of reopening/rebound
(A=0% at minimum, 100% at full reopening) in disease trans-
mission relative to its lowest transmission rate observed during
shelter-in-place, and estimated the current level of reopening/
rebound (Fig. 2b). We found that 24 states had an average of 50-80%
rebound in COVID-19 transmission by 22 July 2020, while no state
had <25% rebound (Fig. 2b).

Impact of testing and contact tracing on easing of social distanc-
ing. Bringing and maintaining Rz<1 is necessary to curtail the
spread of an outbreak. We evaluated the probability of maintaining
R.;<1 for different levels of testing and contact tracing under the
level of state reopening as of 22 July 2020. We found that in 42 states

1083


http://www.nature.com/nathumbehav

ARTICLES

NATURE HUMAN BEHAVIOUR

)
(-

Contact tracing 1x Contact tracing 1x Contact tracing 2x Contact tracing 2x

Testing rate 1x Testing rate 2x Testing rate 1x Testing rate 2x

Contact tracing 1x Contact tracing 1x Contact tracing 2x Contact tracing 2x

Testing rate 1x Testing rate 2x Testing rate 1x Testing rate 2x

e o
o o °
I I I
syyeap pauLyuoo Ajreq

Daily reported cases or deaths per 100,000

seseo papodal Ajleq

AN A
A A A A

o
°
I

syjeap pauLyuod Ajreq

A A A

A A AN

L A

Daily reported cases or deaths per 100,000

saseo papodal Ajleq

T T T T T T T T T T T T T T T T T T T T T T T
& & S
O P PR P o @ P PR P o @ PPt

Date

Contact tracing 1x Contact tracing 1x Contact tracing 2x Contact tracing 2x

Testing rate 1x Testing rate 2x Testing rate 1x Testing rate 2x

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
&SP PR P W B PO P B PP P B S S e

Date

Contact tracing 1x Contact tracing 1x Contact tracing 2x Contact tracing 2x

Testing rate 1x Testing rate 2x Testing rate 1x Testing rate 2x

o
2
L

Suieap powyuo Areq

)
>

)

o
2
L

Suieep powIyuoo Aeq

254
A

\

100

75 o

50 -

Daily reported cases or deaths per 100,000

sose0 patiodas Alleq

25 o

Daily reported cases or deaths per 100,000

@
2
L

soses patiodas Alleq

30 4 gg
04

T T T T T T T T T L T L T T T T T L T T T T
@ PR P @ PP A P @ TIPS P @ PPt P

Date

Prediction — Median  [Jfj cn

T T T T T T T T T T T T T T T T T T T T T T T
& W PP P B PP P S PP P @ S S e

QR Ramp-up period

Fig. 3 | a-d, Predicted time course (median, IQR and 95% Crl) of daily reported cases and deaths under different testing and contact-tracing rates (1x and

2x) in New York (a), Ohio (b), Texas (¢) and Washington State (d).

and the District of Columbia, bringing and maintaining R 4< 1 may
not be possible without increased contact-tracing efforts because
increasing testing and isolation alone would require atleast a 3.5-fold
increase in coverage to curtail the epidemic curve with 0.975 prob-
ability (Extended Data Figs. 2 and 3 and Supplementary Table 2).
The challenges are even greater in ensuring continued control of the
epidemic with full reopening, because testing and isolation alone
would be insufficient to curtail the epidemic in 33 states and, in all
states, contact-tracing coverage of 50-75% would be required to
curtail the epidemic curve with 0.975 probability (Extended Data
Fig. 4 and Supplementary Table 3).

To evaluate the impact of scaling up of testing and contact tracing
on epidemic dynamics in each state, we assumed a linear ‘ramp-up’
of testing and/or contact tracing from 1-14 August 2020, after which
both parameters remain constant. We then predicted the daily
number of reported cases and deaths (Fig. 3 and Supplementary
Fig. 8). We found that, under current levels of reopening and con-
trol, 40 states would be unable to curtail the spread of the epidemic
within the following 2 months (Supplementary Fig. 8). Even with
increased testing and contact tracing, these states will still experi-
ence an increase in reported cases and deaths of between 2 weeks
and 2 months (Fig. 3 and Supplementary Fig. 8). For example, Ohio,
Texas and Washington may experience a 2-week increase in cases
and a 1-month increase in deaths even if their current testing and
contact-tracing rates were doubled within the following 2 weeks
(Fig. 3b-d). Moreover, reported cases increase during the 2-week
ramp-up period (Fig. 3). We found that, in 27 states and the district
of Columbia, an additional 25% (50%) relaxation of restrictions

1084

without simultaneously increasing contact tracing may exacerbate
disease dynamics and result, on average, in increases of 25-65%
(45-150%) in cases and 22-48% (35-92%) in deaths within the
following 2 months (Supplementary Fig. 8).

We next evaluated the maximal degree of rebound in transmis-
sion (that is, level of reopening) permitted while maintaining R, <1
under different testing and contact-tracing scenarios (Fig. 4). We
found that, under the current levels of testing and contact-tracing
rate, 27 states cannot maintain R, < 1 (at 75% confidence) even with
only 25% reopening/rebound in transmission (Fig. 4a). By doubling
the current testing rate, eight states could maintain R <1 (at 75%
confidence) even with a 50% level of reopening (Fig. 4b). By dou-
bling contact tracing, nine states could remove all mobility restric-
tions while maintaining R;<1 (at 100% confidence) (Fig. 4c). By
doubling both testing rate and contact tracing, ten states could
remove all mobility restrictions while maintaining R.;<1 (at 100%
confidence) (Fig. 4d).

We categorized states by the additional amount of mitigation
efforts needed to maintain R(f) <1 with at least 75% confidence
(Fig. 5 and Supplementary Fig. 8). We found that, under current
control efforts, no states could reduce and maintain R(¢) <1 if their
current level of reopening was relaxed by an additional 25% (‘Very
Low’ category), and three states (Connecticut, Maine and New
Hampshire) could reduce and maintain R(f) < 1 without additional
reopening (‘Low’ category). Eight states could reduce and maintain
R(t) <1 by doubling their contact-tracing rate or by implementing
additional social-distancing restrictions, a 25% reversal of the cur-
rent level of reopening (‘Moderate’ category), while 30states and
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the District of Columbia need a combined intervention of doubling
both testing and contact tracing and/or 25% reversal of current
reopening to reduce and maintain R(f) < 1 (‘High’ category). For the
remaining eight states (Arizona, Florida, Idaho, Maryland, North
Dakota, Nevada, South Carolina and Washington), a 50% rever-
sal of current reopening, in addition to increased testing and/or
contact tracing, are needed to reduce and maintain R(f)<1
(‘Very Highy’ category).

Discussion

There is a delicate and continuous balance to strike between the use
of social-distancing measures to mitigate the spread of an emerg-
ing and deadly disease such as COVID-19 and the need for reopen-
ing of various sectors of activities for the social, economic, mental
and physical well-being of a community. To address this issue, it
is imperative to design measurable, data-driven and flexible mile-
stones to identify when to make specific transitions with regard
to easing or re-tightening of specific social-distancing measures.
We developed a data-driven SARS-CoV-2 transmission dynamic
model, not only to make short-term predictions on COVID-19
incidence and mortality in the United States but, more importantly,
to evaluate the impact of relaxation of social-distancing measures
and increasing testing and contact tracing on the epidemic in
each state.
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We showed that, in most states, control strategies implemented
during their shelter-in-place period were sufficient to contain the
outbreak, defined as reducing and ultimately maintaining R.;< 1.
However, for the majority of states, our modelling suggests that
reopening has proceeded too rapidly and/or without adequate test-
ing and contact tracing to prevent a resurgence of the epidemic. Our
model suggests that, for some states, a substantial fraction of the
population may have already been infected such that, even with-
out additional intervention, R (f) is declining towards (or below) 1
even as R(#) > 1. The most extreme example is Arizona, where R (t)
is estimated to have declined below the previous minimum R value
achieved during shelter-in-place. However, accurate estimation of
the susceptible fraction of the population is difficult due to the
uncertain degree of undercounting in the reported case data. Thus,
we used R(f) to categorize the mitigation requirements in each state
and evaluate the level of control effort needed to curtail the spread
of the epidemic in each state.

Moreover, even in states with currently decreasing incidence
and mortality, such as Maine and New Jersey, additional relax-
ation of restrictions is likely to ‘bend the epidemic curve upwards’
in the absence of increased testing or tracing. However, our model
predicts that a combination of increased testing, increased con-
tact tracing and/or scaling back of reopening will be sufficient
to curtail the spread of COVID-19 in most states. Specifically,
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Mitigation requirement

Low Can reopen further, but <25%
2x contact tracing or reversal of
Moderate reopening by 25%
High At least two of: 2x testing, 2x contact
9 tracing, reversal of reopening by 25%
. Reversal of reopening by 50%, in addition
. Very High to 2x testing and/or 2x contact tracing

Fig. 5 | State-specific level of mitigation needed, as of 22 July 2020, to curtail the spread of COVID-19. Levels are based on maintaining R <1 with

at least 75% confidence, equivalent to the upper bound of IQR. Categories are based on evaluation of scenarios with different combinations of baseline/
doubling testing, baseline/doubling contact tracing and baseline £25% in the reopening parameter, A. Categories are defined as follows: Very Low

(no states): can reopen further by >25% while maintaining R(t) <1; Low (three states): can reopen further by <25% with up to 2x increase in testing while
maintaining R(t) <1; Moderate (nine states): requires 2x contact tracing or reversal of reopening by 25% to maintain R(t) <1; High (30 states and DC):
requires multiple interventions (2x testing, 2x contract tracing and reversal of reopening by 25%) to maintain R(t) <1; Very High (eight states): reversal

of reopening by 50% combined with 2x testing and/or 2x contact tracing to maintain R(t) <1. Credit: the US map shapefile is derived from the usmap

R package, which is open source under GPL-3.

doubling of current testing and contact-tracing rates would enable
the majority of states to either maintain or increase the easing of
social-distancing restrictions in a ‘safe’ manner in the short term.
Scaling back the current level of reopening by 25%, in combination
with doubling of testing and tracing, will be sufficient to control
the epidemic in the long term in all but eight Very High risk states.
The impact of these interventions on the epidemic curve was evalu-
ated by computing their probability of reducing and maintaining
R< 1. However, in states with high over-dispersion in disease trans-
mission and faced with an epidemic with high super-spreadability
characteristics, the reproduction number may be subject to large
fluctuation as the number of infection cases decreases. This is more
likely to be the case for states with lower dispersion parameters
posterior values, such as Arkansas, Connecticut, Idaho, Kansas,
Kentucky, Louisiana, Mississippi, New Hampshire, South Carolina
and Wyoming (Supplementary Fig. 7).

Increasing testing and contact-tracing rates entails both increas-
ing the number of tests performed per day and requires early iden-
tification and effective isolation of COVID-19-infected individuals.
This can be accomplished through active case detection via effi-
cient contact-tracing strategies. However, it should also be noted
that increased testing and contact tracing will lead to a short-term
increase in reported cases because a larger fraction of the infected
population is being observed, and that several weeks may pass

1086

before these rates begin to show a decline. Therefore, it is impera-
tive that policymakers and the public recognize that such a surge is
actually a sign that testing and tracing efforts are succeeding, and
exercise the patience to wait several weeks before these successes are
reflected as declining rates of reported cases.

Other modelling studies have used SEIR-type compartmental
models to assess the impact of social distancing, testing and con-
tact tracing to curb the epidemic curve in Italy and the United
Kingdom'*-"". Consistent with our results, these studies have shown
that rapid reopening of the economy without adequate testing and
contact tracing could lead to a resurgence of the epidemic'*".
Specifically, they show that high testing and contact-tracing
rates may enable the maintenance and increase the easing
of social-distancing restrictions without an increased rate of
COVID-19 transmission'.

Our study has several limitations, due to modelling assump-
tions and the quality of available data. Like most COVID-19 trans-
mission models'*""’, we used a compartmental SEIR-type model
to model the spread of SARS-CoV-2 because of its simplicity and
ability to capture population average dynamics. This modelling
approach does not account for heterogeneity in individual-level
behaviour, over-dispersion due to super-spreaders, social contact
networks and inherent stochasticity, which may play an important
role in SARS-CoV-2 transmission dynamics. Although these factors
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can be modelled through the use of individual-based models**-*,
individual-based modelling is a more complex modelling frame-
work and may require a substantial amount of individual-level data
for model parameterization, calibration and validation.

To characterize the limitations of using cell-phone-based mobil-
ity data to infer (prior distributions for) contact rates, we examined
the state-to-state variation in mobility data to the correspond-
ing posterior distributions for each mobility-related parameter
(Supplementary Fig. 9). Three parameters of particular interest
are the minimum relative contact rate (6,,,), the duration of the
shelter-in-place phase (7,) and the maximum amount of reopening
(7may)- For .., none of the r? values were consistently <0.2 although
the slope and intercept of the regression line for the Unacast
Visitation metric were within 15% of 1 and 0, respectively. Similarly,
for 7, the highest r* value was 0.37 for OpenTable Bookings data,
which also had a relatively accurate regression line (again within
15%). For r,,,,, the highest r* values were for Google retail and rec-
reation (0.49) and Unacast Visitation (0.52) metrics, but the Google
data were much more accurate with a slope close to 1 and inter-
cept close to 0. Overall, these results suggest that cell-phone-based
mobility data vary substantially in their accuracy (slope and inter-
cept near 1 and 0, respectively) and, overall, have low precision
(no r* more than about 0.5), and support our use of the range across
multiple sources in developing prior distributions, rather than using
such data directly for modelling contact rates.

The initiation of social-distancing measures, such as
stay-at-home orders in the United States, for mitigating the spread
of COVID-19 has occurred concurrently with increased promo-
tion and application of other NPIs, such as hygiene practices (for
example, hand hygiene, surface cleaning, cough etiquette and
wearing of a face mask). These hygiene practices, coupled with
the avoidance of physical contact whenever possible (keeping six
feet apart), could impact the spread of COVID-19 by reducing
the risk of both exposure and transmission of SARS-CoV-2 from
infected patients”*. Though our model explicitly accounts for
the differential contribution of social distancing (mobility reduc-
tion) versus hygiene practices and physical distancing to reducing
COVID-19 transmission, we assume that the impact of hygiene
practices and physical distancing was a function of social distanc-
ing (mobility reduction). While mobile phone mobility data may
continue to be informative in regard to to contact rates, at least in
aggregate, the impact of enhanced hygiene practices is more dif-
ficult to measure independently. As several states have eased their
social-distancing requirements, especially their stay-at-home
orders, compliance with hygiene practices would become even
more important for reducing individuals’ risk of getting or trans-
mitting the pathogen. However, keeping a high population-level
adherence to these measures is required to mitigate the spread of
the COVID-19 epidemic®. As states are reopening various aspects
of their economy, data on compliance with enhanced hygiene
practices and physical distancing are needed to improve the esti-
mation of these measures’ population-level impact on reducing
disease transmission.

Additionally, consistent with previous COVID-19 modelling
studies’*, our model uses a simple functional form to model
increases in testing rate from early March to June 2020. This test-
ing rate was estimated through model fitting to daily reported case
and mortality data. Particularly in states that have seen a substan-
tial increase in testing capability and efforts during the month of
May, our simple time-varying assumption may underestimate the
current level of testing and contact tracing. However, it should be
noted that increased testing capacity does not necessarily lead to
an increased rate of testing if individuals are unaware, unwilling
or unable to be tested”. Having data on contact tracing and date of
symptoms onset would enable us to compute a better estimate of the
current testing and contact-tracing rate in each state. Our model
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also assumes that all individuals who test positive to COVID-19 are
effectively isolated for the remainder of their infectious period and
no longer contribute to disease transmission. Though voluntary
compliance to COVID-19 self-quarantine recommendations may
be high across the United States, it is probably not 100%. Therefore,
the assumption of effective isolation of all identified cases may
cause our model to slightly overestimate the impact of increased
testing rate on disease dynamics. However, we anticipate that this
assumption would have only a marginal impact on the qualitative
nature of our results.

Finally, our model does not explicitly account for age-stratified
risk of disease transmission and mortality. This age stratification is
important for the design and evaluation of social-distancing and
testing strategies that are targeted towards the elderly population,
which is at higher risk of COVID-19-induced hospitalization and
death®. As reopening the economy becomes an imperative for
states across the United States, age- or risk-targeted interventions
may be a valuable tool to mitigate the burden of the pandemic.
Future modelling studies could investigate the effectiveness of age-
or risk-targeted non-pharmaceutical and potential pharmaceutical
(vaccine or therapeutic) interventions for controlling the spread
and burden of COVID-19.

In sum, we use a data-driven mathematical modelling approach
to study the impacts of social distancing, testing and contact trac-
ing on the transmission dynamics of SARS-CoV-2. Our find-
ings emphasize the importance for public health authorities not
only to monitor the case and mortality dynamics of SARS-CoV-2
in their state, but also to understand the impact of their existing
social-distancing measures on SARS-CoV-2 transmission and to
evaluate the effectiveness of their testing and contact-tracing pro-
grammes for prompt identification and isolation of new cases of
COVID-19. As reported, case rates are increasing widely across
US states because social-distancing restrictions have been eased
to allow the resumption of greater economic activity, and we find
that most states need to either substantially scale back reopening
or enhance their capacity and scale of testing, case-isolation and
contact-tracing programmes to mitigate large-scale increases in
COVID-19 cases and deaths.

Methods

Our overall approach is as follows: (1) develop a mathematical model (an
SEIR-type compartmental model)'*"” that incorporates social-distancing data, case
identification via testing, isolation of detected cases and contact tracing; (2) assess
the model’s predictive performance by training (calibrating) it to reported cases
and mortality data from 19 March to 30 April 2020 and validating its predictions
against data from 1 May to 20 June 2020; and (3) use the model, trained on data

to 22 July 2020, to predict future incidence and mortality. The final stage of our
approach predicts future events under a set of scenarios that include increased
case detection through expansion of testing rate, contact tracing and relaxation or
increase of measures to promote social distancing. All model fitting is performed
in a Bayesian framework to incorporate available prior information and address
multivariate uncertainty in model parameters.

Model formulation. We modified the standard SEIR model to address testing and
contact tracing, as well as asymptomatic individuals. A fraction f, of those exposed
(E) to enter the asymptomatic A class (divided into Ay for untested and A for
contact traced) instead of the infected I class, which in our model formulation also
includes infectious presymptomatic individuals. With respect to testing, separate
compartments were added for untested, ‘freely roaming’ infected individuals (I,),
tested/isolated cases (Ir) and fatalities (Fy). Following recovery, untested infected
individuals (I;) and all asymptomatic individuals move to the untested recovered
compartment, I;;, and tested infected individuals move to the tested recovered
compartment, I In balancing considerations of model fidelity and parameter
identifiability, we made the reasonably conservative assumptions that all tested
cases are effectively isolated (through self-quarantine or hospitalization) and

thus unavailable for transmission, and that all COVID-related deaths are
identified/tested.

With respect to contact tracing, the additional compartment S.. represents
unexposed contacts who undergo a period of isolation during which they are not
susceptible before returning to S, while E, A. and I represent contacts who were
exposed. Again, the reasonably conservative assumption was made that all exposed
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contacts undergo testing, with an accelerated testing rate compared to the general
population. We assume a closed population of constant size, N, for each state.
The ordinary differential equations governing our model are as follows:

D= —Sxex [+ (1= p)xfe]x (lu + Av) /N + Scx v
$e = —Sexy+Sxcx (1 - p)x fox (Iy + Au) /N
—F‘=—E><K+S><c><ﬂ>< (I —fc)x (Iy +Ay)/N
dE(:7EC><K+S><C></}><fC><(IU+AU)/

4o = —Iux (A+p) + Exxx (1—fi)
ji%j:lApr+Exxfo B

3¢ = —Icx (Ac +pc) + Ecx kx (1 = fa)
T——Acxpc+Ecxx><fA

=y +Au+Ac)xp+Icxpc
‘&_—ITx(pM)HUxHICMC

ddi‘T =1Irxd

where c is the contact rate between individuals, f is the transmission
probability per infected contact, f. is the fraction of contacts identified through
contact tracing, 1/y is the duration of self-isolation after contact tracing, 1/x is the
latent period, f, is the fraction of exposed who are asymptomatic, 4 is the testing
rate, § is the fatality rate, p is the recovery rate and A. and p. are the testing and
recovery rates, respectively, of contact-traced individuals. The testing rates 4 and
Ao the fatality rate § and the recovery rate of traced contacts p.. are each composites
of several underlying parameters. The testing rate defined as

1

A(t) = Ftesx,o x |1 — m

X Senstest X Kiest,

where F, is the current testing coverage (fraction of infected individuals tested),
Sens, is the test sensitivity (true positive rate) and k., is the rate of testing for those
tested, with a typical time-to-test equal to 1/k,. The time-dependence term models
the ramping up of testing using a logistic function with a growth rate of 1/z, d™*,
where T50, is the time where 50% of the current testing rate is achieved. Similarly,
for testing of traced contacts, the same definition is used with the assumption that

all identified contacts are tested, F,.,,=1 and at a faster assumed testing rate, K¢,

Ac(t) = {1 -

1
W] X Sensiest X K tests

Because all contacts are assumed to be tested, the rate p. at which they enter
the ‘recovered’ compartment, Ry, is simply the rate of false negative test results:

1
1+ e(t=T501)/7r

pc(t) = [1 - ] X (1 — Senstest) X Kiest

The fatality rate is adjusted to maintain consistency with the assumption that
all COVID-19 deaths are identified, assuming constant IFR. Specifically, we first
calculated the fraction of infected that is tested and positive:

Ac(t) A(®)
Ac(t) + pc(t) ) +p

Then the case fatality rate CFR(¢) = IFR/f,.(t). Because CFR=5/(5+p), this
implies

Joos (1) = fe +1-fo)3

CFR(Y) IFR

o =P TCRE 7 fonl) — TR

The model is ‘seeded’ N, cases on 29 February 2020. Because in the early
stages of the outbreak there may be multiple ‘imported’ cases, we fit to data only
from 19 March 2020 onwards, 1 week after the US travel ban was put in place®.

Our model is fit to daily case y, and death y, data (cumulative data are not used
for fitting because of autocorrelation). To adequately fit the case and mortality
data, we accounted for two lag times. First, a lag is assumed between leaving the
I, compartment and public reporting of a positive test result, accounting for the
time it takes to seek a test, obtain testing and have the result reported. No lag is
assumed for tests from contact tracing. Second, a lag time is assumed between
entering the fatally ill compartment F; and publicly reported deaths. Additionally,
we use a negative binomial likelihood to account for the substantial day-to-day
over-dispersion in reporting results. The corresponding equations are as follows:

Yobs,[c.d ]( ) NEgBm[a le.d]s Ple ( )]
( )= Ypreded) (1)
e, g HYpred e (1)
yp,edL(t) Ty(t — Tease) X A(t) + Ic(t) x Ac(t)
Ppred.d(t) = It (t — Tgean) X 6(t)

In this parameterization, because the dispersion parameter @ — oo, the
likelihood becomes a Poisson distribution with expected value y,,q (.4, Whereas for
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small values of a there is substantial interindividual variability. Case and death data
were sourced from The COVID Tracking Project™.

Finally, we derived the time-dependent reproduction number, R(¢) and the
effective reproduction number, R «(t) of this model, given by

1—fA+fi>

RO = expx 1= fo) (2 4+ 2

and

S(t)
R () = R(t) x N
R.«(t) is the average number of secondary infection cases generated by a
single infectious individual during their infectious period in partially susceptible
population at time ¢. It is equal to the product of the transmission risk per contact
of an infectious individual with their untraced contacts, cX #x (1—f;), times
lﬁ% + f‘), and the portion of contacts that

their average duration of infection, (
. This accounts for the relative contribution of asymptomatic,

S(t)

are susceptible, =

ex fx (1 —fc) ({')‘) S(t )and symptomatic infection, cx fx (1 — fc )(;Jrf/;‘) (T
Using posterior samples for all 50 states and the District of Columbia, we
conducted an analysis of variance using a linear model to characterize the
contributions to the combined interstate and intrastate variation in R.g. Specifically,
we used a linear model for R with the model parameters Ry, 7, O, Tmaw fo far 4
and p as predictors, and evaluated the percentage of variance in R, contributed by
each parameter.

Incorporating social distancing, enhanced hygiene practices and reopening.
The impact of social distancing, hygiene practices and reopening was modelled
through a time dependence in the contact rate, ¢ and the transmission probability
per infected contact, f:

c(t) = cox [0(t) + (1 — Omin) x 7(£)]
B(t) = Box 6(t)"

The 6(t) function parameterized social distancing during the progression to
shelter-in-place, and is modelled as a Weibull function:

0(t) = Omin + (1 = Oin)e~ /)",
which starts as unity and decreases to 6,,,, with 7, being the Weibull scale
parameter and 7, the Weibull shape parameter (Fig. 1).

The (t) function parameterized relative increase in contacts due to reopening
after shelter-in-place, with =1 corresponding to a return to baseline c=c,,

7(8) = Tmax =25 [u(t — 1) — 4t — tmax)] + U(t — trmax)
u(t) = Heaviside(t) ~ 1 —
L =19+ 7

Lrmax = To + Ts + 7

1
1+et

The term r(¢) is 0 before ¢, linear between ¢, and ¢,,,, and constant at a value
of r,,,, after that, and made continuous by approximating the Heaviside function
by alogistic function. The reopening time is defined as 7, days after 7,, and the
maximum relative increase in contacts r,,,, happens 7, days after that.

We selected the functional form above for c(t) because it was found to be
able to represent a wide variety of social-distancing data, including mobile phone
mobility data from Unacast™ and Google™ as well as restaurant booking data from
OpenTable”. We used these different mobility sources to derive state-specific prior
distributions because different social-distancing datasets had different values for
0> To» N> T T a0 7, (Supplementary Fig. 1).

With respect to the reduction in transmission probability 4, we assumed
that during the shelter-in-place phase, hygiene-based mitigation paralleled this
decline with an effectiveness power #, and that this mitigation continued through
reopening.

Finally, we define an overall reopening parameter A that measures the rebound
in disease transmission, ¢ X f relative to its minimum, defined to be 0 during
shelter-in-place (that is, R(f) is at a minimum) and 1 when all restrictions are
removed (when R(f) =R,), which can be derived as:

_ cxB/(coxBy) = O

1— 91+rl

min

A(t)

Our model is illustrated in Fig. 1, with parameters and prior distributions listed
in Table 1.

Scenario evaluation. We used the model to make several inferences about the
current and future course of the pandemic in each state. First, we consider the
effective reproduction number. Two time points of particular interest are the

time of minimum R, reflecting the degree to which shelter-in-place and other
interventions were effective in reducing transmission, and the final time of the
simulation, 22 July 2020, reflecting the extent to which reopening has increased R,
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Additional parameters of interest are the current levels of reopening A(f), testing 1
and contact tracing f.

We then conducted scenario-based prospective predictions using our model’s
parameters as estimated to 22 July 2020. We then asked the following questions:

(1) Assuming current levels of reopening, what increases in general testing 4 and/
or contact tracing f would be necessary to bring Rz<1?

(2) What level of reopening A can maintain R.;< 1 under four different scenarios:
current values of testing and contact tracing, doubling testing, double tracing
and doubling both testing and tracing?

(3) What will be the rates of new cases and deaths under different scenarios?
Specifically, we evaluate the impact of increases in testing and contact tracing
under current levels of reopening, as well as increases or decreases of 25 or 50%.

For (1), we evaluated the posterior probability that R.¢< 1 under scaling
transformations 4 — A X y, and f. — f. X p with scaling factors y, and p:

Ralt) = 80 ex e (1 = eefe) (2 42

We additionally derived ‘critical’ values of y and y, where R ¢(t) <1 under
the conditions of increased testing alone (i =1), increased contact tracing alone
(u,=1) and equal increases in testing and tracing (uc=p,). We also performed the
same analysis under a full reopening scenario (that is, setting S(f) =1, c=¢, and
B=Py).

For (2), we rearranged the equation for R in terms of the reopening
parameter A:

_ - fA fA 1+ 1+

Reft (t) = S(t)x cox o x (1 = uex fc) <m +;> [Ax (1= 05i) + O]

We then fixed the scaling factors at 1 or 2, and solved the above equation to
determine the percentage of reopening (4, that can be achieved while keeping
R.< 1. Values of A ;> A(t) indicate the additional degree of reopening possible
while maintaining R.¢< 1, while values of A_;, <A(t) indicate that reduction
of reopening is needed. To convert back to testing and contact-tracing rates,
we multiplied the scaling factors yi and y;, by the original values of f. and 4,
respectively.

Finally, for (3), we additionally evaluated changes in reopening A - A +A,
for A, values of +25% (+50%) or —25% (—50%), for a total of 20 scenarios (four
different levels of testing and tracing and five different levels of reopening). We
then ran the SEIR model forward in time to 30 September 2020. For all three
intervention parameters, ic, 4, and A,, we assumed a ramp-up period of 2 weeks
from 1 to 14 August 2020.

To summarize the relative need for mitigation in each state, we categorized
states based on which scenarios resulted in the IQR of R(f) <1 on 15 August 2020.
The categories were defined as follows:

o Very Low: can reopen further by >25% while maintaining R(t) <1

o  Low: can reopen further by <25% with up to 2X increase in testing while
maintaining R(f) <1

o Moderate: requires 2X contact tracing or reversal of reopening by 25% to bring
and maintain R(¢) <1

«  High: requires multiple interventions (2 testing, 2X contract tracing and
reversal of reopening by 25%) to bring and maintain R(¢) < 1

o Very High: combining 2X testing, 2X contact tracing and reversal of reopening
by 50% is needed to bring and maintain R(¢) <1

We use R(t) instead of R.q(t), to minimize the impact of heterogeneity and
uncertainty in the value of S()/N on our results. Thus, requiring R(f) < 1 provides
greater assurance of state-wide control of the epidemic.

Software and code. Posterior distributions were sampled with Markov chain
Monte Carlo (MCMC) simulation performed using MCSim v.6.1.0 in Metropolis
within Gibbs sampling™. For each US state, four chains of 200,000 iterations each
were run, with the first 20% of runs discarded and 500 posterior samples saved for
analysis. For each parameter, comparison of interchain and intrachain variability
was assessed to determine convergence, with the potential scale reduction

factor R< 1.2 considered converged”. Additional analysis of model outputs was
performed in RStudio v.1.2.1335 (ref. **) with R v.3.6.1 (ref. *).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The following publicly available datasets are used: mobility data from Unacast
were sourced from https://covid19-scoreboard-api.unacastapis.com/api/search/
covidstateaggregates_v3; mobility data from Google were sourced from https://
www.gstatic.com/covid19/mobility/Global_Mobility_Report.csv; restaurant
booking data were sourced from OpenTable, https://www.opentable.com/
state-of-industry; case and death data were sourced from The COVID Tracking
Project, https://covidtracking.com/.
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Mobility data are shown in Supplementary Fig. 1. Case and death data are shown in
Figs. 1 and 3 and Supplementary Figs. 3-6 and 8. All data used are also available in
the software and code repository.

Code availability
The codes used to generate our results will be available on GitHub prior to
publication, at https://github.com/wachiuphd/COVID-19-Bayesian-SEIR-US.
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Extended Data Fig. 1| Correlations across states between R (t) and (A) 0,,.., (B) n, (C) A, and (D) f.. For each state, 500 posterior samples are shown.
Substantial state-to-state heterogeneity is evident in all parameters, with 1,0.,,,,, 'max @nd fc contribute over 50% of the variance in R.(t) under a linear
model (estimated from ANOVA table [Supplementary Table 1] using the sum-of-squares relative to the total sum-of-squares). For 0, while lower values
appear to be associated with greater current values of R 4(t) in a univariate model (linear model coefficient = -0.54, t statistic =-78.14, p < 2.2e-16, 95%
Cl =[-0.56,-0.53]), the correlation is positive in the multivariate model (coefficient = 0.17, t statistic = 13.65, p < 2.2e-16, 95% Cl = [0.09, 0.131). The
other parameters correlate as expected: higher R(t) is correlated with lower contribution from hygiene practices (smaller 1) (coefficient = -0.39,

t statistic =-59.7, p < 2.2e-16, 95% Cl = [-0.40,-0.38]), more reopening (larger r,,,,) (coefficient = 0.44, t statistic =119.0, p < 2.2e-16, 95% Cl =[0.43,
0.45]), and lower rates of contact tracing (smaller f.) (coefficient = -0.90, t statistic = -114.6, p < 2.2e-16, 95% Cl =[-0.92, -0.891).
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