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The novel coronavirus pandemic (COVID-19), first detected in 
Wuhan, China in December 2019, has now reached pandemic 
status with spread to >210 countries and territories, including 

the United States1. The United States reported its first imported case 
of COVID-19 on 20 January 2020, arriving via an international flight 
from China2. Since then the disease has spread rapidly within the 
country, with every state reporting confirmed cases within 3 weeks 
of the first reported community transmission. As of 1 August, the 
United States has exceeded 4.5 million cases and 150,000 deaths, 
heterogeneously distributed across all states1. To date, states such as 
New York, New Jersey and California have borne the highest bur-
den, with <420,000, 183,000 and 510,000 cases and 32,000, 15,000 
and 9,000 deaths, respectively, while Alaska and Hawaii have each 
reported <4,000 cases and 25 deaths1.

COVID-19 is caused by a newly described and highly transmis-
sible SARS-like coronavirus (SARS-CoV-2). Severe clinical out-
comes have been observed in approximately 20% of symptomatic 
cases3,4. There is no vaccine and no cure or approved pharmaceuti-
cal intervention for this disease, making the fight against the pan-
demic reliant on non-pharmaceutical interventions (NPIs). These 
NPIs include: (1) case-driven measures such as testing, contact trac-
ing and isolation5; (2) personal preventive measures such as hand 
hygiene, cough etiquette, face mask use, eye protection, physical 
distancing and surface cleaning, which aim to reduce the risk of 
transmission during contact with potentially infectious individuals6; 
and (3) social-distancing measures to reduce interpersonal contact 
in the population. In the United States, social-distancing measures 
have included policies and guidelines to close schools and work-
places, cancel and restrict mass gatherings and group events, restrict 
travel, maintain physical separation from others (for example, keep-
ing six feet apart) and stay-at-home orders7.

Non-pharmaceutical interventions and other responses to 
COVID-19, especially stay-at-home orders, have varied widely 
across states, leading to spatial and temporal variation in the tim-
ing and implementation of mitigation strategies. This variation in 
policies and response efforts may have contributed to the observed 
heterogeneity in COVID-19 morbidity and mortality across states8. 

Recent studies suggest that state-wide social-distancing mea-
sures have probably contributed to reducing the spread COVID-
19 epidemic in the United States9,10. Understanding the extent to 
which NPIs, such as social distancing, testing, contact tracing and 
self-quarantine, influence COVID-19 transmission in a local con-
text is pivotal for predicting and better managing the future course 
of the epidemic on a state-by-state basis. This in turn will inform 
how these NPIs should be optimized to mitigate the spread and bur-
den of COVID-19 while awaiting development of pharmaceutical 
interventions (for example, therapeutics and vaccines).

After several weeks of state-wide stay-at-home orders, most US 
states began to ease their social-distancing requirements in May/
June 2020 (ref. 11) while attempting to increase their testing and 
contact-tracing capacities12. Mathematical modelling is a unique 
tool to help answer these important and timely questions. Models 
can contribute valuable insight for public health decision-makers 
by providing an evaluation of the effectiveness of ongoing control 
strategies along with predictions of the potential impact of alterna-
tive policy scenarios13.

To address these needs, we developed and validated a 
data-driven transmission dynamic model to evaluate the impact 
of social distancing, state reopening, testing and contact tracing 
on the state-level dynamics of COVID-19 infections and mortal-
ity in the United States, shown schematically in Fig. 1. Like many 
other COVID-19 transmission models14–17, we used an extended 
susceptible, exposed, infectious, removed (SEIR) compartmen-
tal model. The model divides the population into several disease 
compartments and tracks movements of individuals between the 
compartments through different transition rates. The main model 
compartments include: S, susceptible; E, exposed; A, infectious and 
asymptomatic; I, infectious and symptomatic; R, recovered; and F, 
dead. In addition to disease progression stages, our model incorpo-
rates social distancing informed by several public sources of mobil-
ity data, case identification via testing, isolation of detected cases 
and contact tracing. This is a mean-field epidemiological model-
ling approach that captures the average disease dynamics behav-
iour within a population18,19. We used Bayesian inference methods 
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to calibrate and validate our model prediction to state-level daily 
reported COVID-19 cases and fatality data. Model parameters, 
prior distributions and their sources are shown in Table 1. We used 
the calibrated model to evaluate the transmissibility of COVID-19 
in each state from March 2020 to late July 2020, to estimate the 
state-level impact of shelter-in-place and reopening on COVID-19 
transmission. Finally, we evaluated the degree to which increas-
ing testing efforts (rate of identification of infected cases) and/or 
contact tracing could curtail the spread of the disease and enable 

greater relaxation of social-distancing restrictions while preventing 
a resurgence of infections and deaths. A detailed description of the 
model considerations, parameterization and analysis is provided  
in Methods.

Results
Model performance and validation. We used state-level mobility 
data from Unacast, Google and OpenTable to calibrate a paramet-
ric model of shelter-in-place and reopening (Supplementary Fig. 1), 
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Fig. 1 | SEIR model structure, parameters, data sources and fitting/validation methods. We used mobility data to constrain the time dependence of the 
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and used the results to inform prior distributions for the transmis-
sion model (Fig. 1). We fit our model to state-level daily cases and 
deaths data using a Bayesian inference approach (Methods). Model 
performance assessment for several representative states is shown in 
Fig. 1, with full results in Supplementary Figs. 2 and 3. With respect 
to validation, the posterior 95% credible interval (CrI) of our model 
projections, estimated using data to 30 April 2020, covered 84% of 
the data points from 1 May to 20 June 2020. For seven states (Alaska, 
Montana, South Dakota, Iowa, Illinois, Michigan and Minnesota), 
validation had low coverage (<50%) because of insufficient training 
data to 30 April 2020 to adequately inform sheltering and reopen-
ing in those states. This inaccuracy was not unexpected, because 

the length of sheltering and the degree of reopening could not have 
been known on 30 April 2020, and thus our model predictions were 
based on generic prior distributions. However, during model cali-
bration to data to 22 July 2020, these parameters were informed by 
updated state-specific mobility data. Model performance for fitting 
all data to 22 July 2020 is shown in Supplementary Figs. 4–6, with 
posterior parameter distributions shown in Supplementary Fig. 7. 
Good fits with high coverage (>88% for cases, >92% for deaths) 
were obtained for all states.

Estimations of effective reproduction number. The effective 
reproduction number, Reff, is the average number of secondary  

Table 1 | Model inputs, parameters and prior distributions for Bayesian analysis

Symbol Definition (units) Calibrated parameter(s) Prior (truncation) Notes/refs.

N Population size Input (not calibrated) Constant 40

Ninit Initial IU on 29 February 2020 Ninit logN(1,000, 10) [1, 10,000] a

1/γ Self-isolation time after contact tracing Tisolation = 1/γ logN(14, 2) [7, 21] b

1/κ Latent period (d) Tlatent = 1/κ N(4,1) [2,7] 41,42

c0 Baseline contact rate (contacts d−1) c0 N(13, 5) [7, 20] 43

ρ Recovery rate (d−1) Trecover = 1/ρ logN(10, 1.5) [5, 30] 42,44

β0 Transmission probability per contact (unitless) R0 = c0β0/ρ N(2.9, 0.78) [1.46, 4.5] 45–47

fC Fraction of contacts traced (unitless) fC logN(0.25, 2) [0.05, 1] 48

fA Fraction of infected asymptomatic (unitless) fA N(0.295, 0.275) [0.02, 0.57] 49

T50T Date of 50% of final testing rate (d) T50T U(60, 106) (1 Mar–15 Apr) a

λ General positive diagnosis rate (d−1) λ = Ftest Senstest ktest Derived 45,50,51

Ftest General test coverage (unitless) Ftest β(2,2) 45,50,51

Senstest Test sensitivity (unitless) Senstest N(0.7, 0.1) [0.6, 0.95] 52

ktest General testing rate (d−1) τtest = 1/ktest N(7, 3) [2, 12] 53,54

λC Contact positive diagnosis rate (d−1) λC = Senstest ktest,C Derived

kC,test Contact testing rate (d−1) τC,test = 1/kC,test N(2, 1) [1, 3] a

ρC Rate of infected contacts testing negative (d−1) ρC = (1 – Senstest) ktest,C Derived

δ Fatal illness rate (d−1) IFRd logN(0.01, 2) [0.001, 0.1] 44,55

θmin Minimum of θ(t) θmin Validation: β(2,2)
Calibration: state-specific

a

c

τθ Weibull scale parameter τθ Validation: N(21, 7) [7, 35]
Calibration: state-specific

a

c

nθ Weibull shape parameter nθ Validation: logN(6, 2) [1,11]
Calibration: state-specific

a

c

η Hygiene effectiveness relative to social distancing 
(unitless)

η β(2,4) a

τs Duration of shelter-in-place (d) τs Validation: N(45, 30) [21, 90]
Calibration: state-specific

56

τr Duration of linear increase after shelter-in-place 
(d)

τr Validation: N(45, 30) [14, 105]
Calibration: state-specific

a

c

rmax Maximum relative increase in contacts from 
shelter-in-place (unitless)

rmax Validation: N(1, 1) [0, 2]
Calibration: state-specific

a

c

τcase Lag time for observing confirmed case τcase logN(7, 2) [1, 14] a

τdeath Lag time for observing confirmed death τdeath logN(7, 2) [1, 14] a

αpos Negative binomial shape parameter for case 
likelihood function

αpos logU(0.1, 40) a

αdeath Negative binomial shape parameter for death 
likelihood function

αdeath logU(0.1, 40) a

logN, log-normal distribution with geometric mean and geometric s.d. N, normal distribution with mean and s.d.; U, uniform distribution with minimum and maximum; logU, log-uniform distribution with 
minimum and maximum; β(a,b), beta distribution with shape parameters a and b; time (t) is measured from t = 1, corresponding to 1 January 2020.aAssumed, non-informative prior sufficiently wide to have 
adequate validation coverage. bStandard contact-tracing guidance is to self-isolate for 2 weeks. cFor calibration to 20 June 2020, state-specific priors were derived by fitting to different social-distancing 
datasets, with each parameter’s mean, s.d. and range used to define a normal distribution prior. dSee Methods for relationship between infected fatality rate (IFR) and δ.
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infection cases generated by a single infectious individual dur-
ing their infectious period18. When Reff > 1 the epidemic curve is 
increasing, and when Reff < 1 the epidemic curve is decreasing18. 
Using the posterior distribution of our model parameters, we esti-
mated Reff from 19 March to late July 2020 and identified the mini-
mum level of transmission achieved in each state (Fig. 2a). We found 
that for all except five states (Alabama, Arkansas, North Carolina, 
Utah and Wisconsin), the interquartile range (IQR) for the mini-
mum Reff value was <1 (varying 0.07–0.98), and these values were 
mainly achieved during the state shelter-in-place (11 April–29 May 
2020) (Fig. 2a). Following states’ relaxations of social-distancing 
measures, disease transmission again started to increase. By 22 July 
2020, 42 states and the District of Columbia had at least a 75% prob-
ability that Reff > 1. The model predicts therefore that, as states are 
reopening, a majority are at risk of continued increases in the scale 
of the outbreak and require additional mitigation to contain the 
spread of the disease.

We conducted an analysis of variance (ANOVA) to evalu-
ate the contribution of each parameter to the variation in Reff 
(Supplementary Table 1). Across states, we found that the largest 
drivers of variation in Reff are (1) the power parameter for relating 
social distancing to hygiene-associated reduction in transmission, 
η (ANOVA F (one degree of freedom) = 2,989.166, P < 2.2 × 10–16, 
η2 > 5%, lower 95% confidence interval (CI) of η2 > 4.5%); (2) the 
degree of mitigation during shelter-in-place, θmin (ANOVA F (one 
degree of freedom) = 5,177.354, P < 2.2 × 10–16, η2 > 8.7%, lower 

95% CI of η2 > 8.1%); (3) the maximum relative increase in con-
tact after shelter-in-place orders, rmax (ANOVA F (one degree of 
freedom) = 8,051.61, P < 2.2 × 10–16, η2 > 13.5%, lower 95% CI of 
η2 > 12.8%); and (4) the fraction of contacts traced, fc (ANOVA F 
(one degree of freedom) = 13,834.053, P < 2.2 × 10–16, η2 > 23.2%, 
lower 95% CI of η2 > 22.4%), which together contribute >50% of 
variance (Extended Data Fig. 1 and Supplementary Table 1). This 
observation is consistent with mobility data alone being insufficient 
to account for the combined effect of multiple control measures, 
and suggests that the degree of adoption of non-mobility-related 
measures, such as enhanced hygiene practices and contact tracing, 
plays a large role in the extent to which a state may reduce disease 
transmission.

For each state, we defined Δ as the level of reopening/rebound 
(Δ = 0% at minimum, 100% at full reopening) in disease trans-
mission relative to its lowest transmission rate observed during 
shelter-in-place, and estimated the current level of reopening/
rebound (Fig. 2b). We found that 24 states had an average of 50–80% 
rebound in COVID-19 transmission by 22 July 2020, while no state 
had <25% rebound (Fig. 2b).

Impact of testing and contact tracing on easing of social distanc-
ing. Bringing and maintaining Reff < 1 is necessary to curtail the 
spread of an outbreak. We evaluated the probability of maintaining 
Reff < 1 for different levels of testing and contact tracing under the 
level of state reopening as of 22 July 2020. We found that in 42 states 
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and the District of Columbia, bringing and maintaining Reff < 1 may 
not be possible without increased contact-tracing efforts because 
increasing testing and isolation alone would require at least a 3.5-fold 
increase in coverage to curtail the epidemic curve with 0.975 prob-
ability (Extended Data Figs. 2 and 3 and Supplementary Table 2). 
The challenges are even greater in ensuring continued control of the 
epidemic with full reopening, because testing and isolation alone 
would be insufficient to curtail the epidemic in 33 states and, in all 
states, contact-tracing coverage of 50–75% would be required to 
curtail the epidemic curve with 0.975 probability (Extended Data 
Fig. 4 and Supplementary Table 3).

To evaluate the impact of scaling up of testing and contact tracing 
on epidemic dynamics in each state, we assumed a linear ‘ramp-up’ 
of testing and/or contact tracing from 1–14 August 2020, after which 
both parameters remain constant. We then predicted the daily 
number of reported cases and deaths (Fig. 3 and Supplementary 
Fig. 8). We found that, under current levels of reopening and con-
trol, 40 states would be unable to curtail the spread of the epidemic 
within the following 2 months (Supplementary Fig. 8). Even with 
increased testing and contact tracing, these states will still experi-
ence an increase in reported cases and deaths of between 2 weeks 
and 2 months (Fig. 3 and Supplementary Fig. 8). For example, Ohio, 
Texas and Washington may experience a 2-week increase in cases 
and a 1-month increase in deaths even if their current testing and 
contact-tracing rates were doubled within the following 2 weeks 
(Fig. 3b–d). Moreover, reported cases increase during the 2-week 
ramp-up period (Fig. 3). We found that, in 27 states and the district  
of Columbia, an additional 25% (50%) relaxation of restrictions 

without simultaneously increasing contact tracing may exacerbate 
disease dynamics and result, on average, in increases of 25–65% 
(45–150%) in cases and 22–48% (35–92%) in deaths within the  
following 2 months (Supplementary Fig. 8).

We next evaluated the maximal degree of rebound in transmis-
sion (that is, level of reopening) permitted while maintaining Reff < 1 
under different testing and contact-tracing scenarios (Fig. 4). We 
found that, under the current levels of testing and contact-tracing 
rate, 27 states cannot maintain Reff < 1 (at 75% confidence) even with 
only 25% reopening/rebound in transmission (Fig. 4a). By doubling 
the current testing rate, eight states could maintain Reff < 1 (at 75% 
confidence) even with a 50% level of reopening (Fig. 4b). By dou-
bling contact tracing, nine states could remove all mobility restric-
tions while maintaining Reff < 1 (at 100% confidence) (Fig. 4c). By 
doubling both testing rate and contact tracing, ten states could 
remove all mobility restrictions while maintaining Reff < 1 (at 100% 
confidence) (Fig. 4d).

We categorized states by the additional amount of mitigation 
efforts needed to maintain R(t) < 1 with at least 75% confidence  
(Fig. 5 and Supplementary Fig. 8). We found that, under current 
control efforts, no states could reduce and maintain R(t) < 1 if their 
current level of reopening was relaxed by an additional 25% (‘Very 
Low’ category), and three states (Connecticut, Maine and New 
Hampshire) could reduce and maintain R(t) < 1 without additional 
reopening (‘Low’ category). Eight states could reduce and maintain 
R(t) < 1 by doubling their contact-tracing rate or by implementing 
additional social-distancing restrictions, a 25% reversal of the cur-
rent level of reopening (‘Moderate’ category), while 30 states and 
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Fig. 3 | a–d, Predicted time course (median, IQR and 95% CrI) of daily reported cases and deaths under different testing and contact-tracing rates (1× and 
2×) in New York (a), Ohio (b), Texas (c) and Washington State (d).
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the District of Columbia need a combined intervention of doubling 
both testing and contact tracing and/or 25% reversal of current 
reopening to reduce and maintain R(t) < 1 (‘High’ category). For the 
remaining eight states (Arizona, Florida, Idaho, Maryland, North 
Dakota, Nevada, South Carolina and Washington), a 50% rever-
sal of current reopening, in addition to increased testing and/or  
contact tracing, are needed to reduce and maintain R(t) < 1  
(‘Very High’ category).

Discussion
There is a delicate and continuous balance to strike between the use 
of social-distancing measures to mitigate the spread of an emerg-
ing and deadly disease such as COVID-19 and the need for reopen-
ing of various sectors of activities for the social, economic, mental 
and physical well-being of a community. To address this issue, it 
is imperative to design measurable, data-driven and flexible mile-
stones to identify when to make specific transitions with regard 
to easing or re-tightening of specific social-distancing measures. 
We developed a data-driven SARS-CoV-2 transmission dynamic 
model, not only to make short-term predictions on COVID-19 
incidence and mortality in the United States but, more importantly, 
to evaluate the impact of relaxation of social-distancing measures 
and increasing testing and contact tracing on the epidemic in  
each state.

We showed that, in most states, control strategies implemented 
during their shelter-in-place period were sufficient to contain the 
outbreak, defined as reducing and ultimately maintaining Reff < 1. 
However, for the majority of states, our modelling suggests that 
reopening has proceeded too rapidly and/or without adequate test-
ing and contact tracing to prevent a resurgence of the epidemic. Our 
model suggests that, for some states, a substantial fraction of the 
population may have already been infected such that, even with-
out additional intervention, Reff(t) is declining towards (or below) 1 
even as R(t) > 1. The most extreme example is Arizona, where Reff(t) 
is estimated to have declined below the previous minimum Reff value 
achieved during shelter-in-place. However, accurate estimation of 
the susceptible fraction of the population is difficult due to the 
uncertain degree of undercounting in the reported case data. Thus, 
we used R(t) to categorize the mitigation requirements in each state 
and evaluate the level of control effort needed to curtail the spread 
of the epidemic in each state.

Moreover, even in states with currently decreasing incidence 
and mortality, such as Maine and New Jersey, additional relax-
ation of restrictions is likely to ‘bend the epidemic curve upwards’ 
in the absence of increased testing or tracing. However, our model  
predicts that a combination of increased testing, increased con-
tact tracing and/or scaling back of reopening will be sufficient 
to curtail the spread of COVID-19 in most states. Specifically,  
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doubling of current testing and contact-tracing rates would enable 
the majority of states to either maintain or increase the easing of 
social-distancing restrictions in a ‘safe’ manner in the short term. 
Scaling back the current level of reopening by 25%, in combination 
with doubling of testing and tracing, will be sufficient to control 
the epidemic in the long term in all but eight Very High risk states. 
The impact of these interventions on the epidemic curve was evalu-
ated by computing their probability of reducing and maintaining 
R < 1. However, in states with high over-dispersion in disease trans-
mission and faced with an epidemic with high super-spreadability 
characteristics, the reproduction number may be subject to large 
fluctuation as the number of infection cases decreases. This is more 
likely to be the case for states with lower dispersion parameters 
posterior values, such as Arkansas, Connecticut, Idaho, Kansas, 
Kentucky, Louisiana, Mississippi, New Hampshire, South Carolina 
and Wyoming (Supplementary Fig. 7).

Increasing testing and contact-tracing rates entails both increas-
ing the number of tests performed per day and requires early iden-
tification and effective isolation of COVID-19-infected individuals. 
This can be accomplished through active case detection via effi-
cient contact-tracing strategies. However, it should also be noted 
that increased testing and contact tracing will lead to a short-term 
increase in reported cases because a larger fraction of the infected 
population is being observed, and that several weeks may pass 

before these rates begin to show a decline. Therefore, it is impera-
tive that policymakers and the public recognize that such a surge is 
actually a sign that testing and tracing efforts are succeeding, and 
exercise the patience to wait several weeks before these successes are 
reflected as declining rates of reported cases.

Other modelling studies have used SEIR-type compartmental 
models to assess the impact of social distancing, testing and con-
tact tracing to curb the epidemic curve in Italy and the United 
Kingdom14–17. Consistent with our results, these studies have shown 
that rapid reopening of the economy without adequate testing and 
contact tracing could lead to a resurgence of the epidemic14–17. 
Specifically, they show that high testing and contact-tracing 
rates may enable the maintenance and increase the easing  
of social-distancing restrictions without an increased rate of 
COVID-19 transmission14.

Our study has several limitations, due to modelling assump-
tions and the quality of available data. Like most COVID-19 trans-
mission models14–17, we used a compartmental SEIR-type model 
to model the spread of SARS-CoV-2 because of its simplicity and 
ability to capture population average dynamics. This modelling 
approach does not account for heterogeneity in individual-level 
behaviour, over-dispersion due to super-spreaders, social contact 
networks and inherent stochasticity, which may play an important 
role in SARS-CoV-2 transmission dynamics. Although these factors 

Mitigation requirement

Low

Moderate

High

Very High

Can reopen further, but <25%

2× contact tracing or reversal of
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Fig. 5 | State-specific level of mitigation needed, as of 22 July 2020, to curtail the spread of COVID-19. Levels are based on maintaining R < 1 with  
at least 75% confidence, equivalent to the upper bound of IQR. Categories are based on evaluation of scenarios with different combinations of baseline/
doubling testing, baseline/doubling contact tracing and baseline ±25% in the reopening parameter, Δ. Categories are defined as follows: Very Low  
(no states): can reopen further by >25% while maintaining R(t) < 1; Low (three states): can reopen further by <25% with up to 2× increase in testing while 
maintaining R(t) < 1; Moderate (nine states): requires 2× contact tracing or reversal of reopening by 25% to maintain R(t) < 1; High (30 states and DC): 
requires multiple interventions (2× testing, 2× contract tracing and reversal of reopening by 25%) to maintain R(t) < 1; Very High (eight states): reversal 
of reopening by 50% combined with 2× testing and/or 2× contact tracing to maintain R(t) < 1. Credit: the US map shapefile is derived from the usmap 
R package, which is open source under GPL-3.
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can be modelled through the use of individual-based models20–22, 
individual-based modelling is a more complex modelling frame-
work and may require a substantial amount of individual-level data 
for model parameterization, calibration and validation.

To characterize the limitations of using cell-phone-based mobil-
ity data to infer (prior distributions for) contact rates, we examined 
the state-to-state variation in mobility data to the correspond-
ing posterior distributions for each mobility-related parameter 
(Supplementary Fig. 9). Three parameters of particular interest 
are the minimum relative contact rate (θmin), the duration of the 
shelter-in-place phase (τs) and the maximum amount of reopening 
(rmax). For θmin, none of the r2 values were consistently <0.2 although 
the slope and intercept of the regression line for the Unacast 
Visitation metric were within 15% of 1 and 0, respectively. Similarly, 
for τs, the highest r2 value was 0.37 for OpenTable Bookings data, 
which also had a relatively accurate regression line (again within 
15%). For rmax, the highest r2 values were for Google retail and rec-
reation (0.49) and Unacast Visitation (0.52) metrics, but the Google 
data were much more accurate with a slope close to 1 and inter-
cept close to 0. Overall, these results suggest that cell-phone-based 
mobility data vary substantially in their accuracy (slope and inter-
cept near 1 and 0, respectively) and, overall, have low precision  
(no r2 more than about 0.5), and support our use of the range across 
multiple sources in developing prior distributions, rather than using 
such data directly for modelling contact rates.

The initiation of social-distancing measures, such as 
stay-at-home orders in the United States, for mitigating the spread 
of COVID-19 has occurred concurrently with increased promo-
tion and application of other NPIs, such as hygiene practices (for 
example, hand hygiene, surface cleaning, cough etiquette and 
wearing of a face mask). These hygiene practices, coupled with 
the avoidance of physical contact whenever possible (keeping six  
feet apart), could impact the spread of COVID-19 by reducing 
the risk of both exposure and transmission of SARS-CoV-2 from 
infected patients23,24. Though our model explicitly accounts for 
the differential contribution of social distancing (mobility reduc-
tion) versus hygiene practices and physical distancing to reducing 
COVID-19 transmission, we assume that the impact of hygiene 
practices and physical distancing was a function of social distanc-
ing (mobility reduction). While mobile phone mobility data may 
continue to be informative in regard to to contact rates, at least in 
aggregate, the impact of enhanced hygiene practices is more dif-
ficult to measure independently. As several states have eased their 
social-distancing requirements, especially their stay-at-home 
orders, compliance with hygiene practices would become even 
more important for reducing individuals’ risk of getting or trans-
mitting the pathogen. However, keeping a high population-level 
adherence to these measures is required to mitigate the spread of 
the COVID-19 epidemic25. As states are reopening various aspects 
of their economy, data on compliance with enhanced hygiene 
practices and physical distancing are needed to improve the esti-
mation of these measures’ population-level impact on reducing  
disease transmission.

Additionally, consistent with previous COVID-19 modelling 
studies26–28, our model uses a simple functional form to model 
increases in testing rate from early March to June 2020. This test-
ing rate was estimated through model fitting to daily reported case 
and mortality data. Particularly in states that have seen a substan-
tial increase in testing capability and efforts during the month of 
May, our simple time-varying assumption may underestimate the 
current level of testing and contact tracing. However, it should be 
noted that increased testing capacity does not necessarily lead to 
an increased rate of testing if individuals are unaware, unwilling 
or unable to be tested29. Having data on contact tracing and date of 
symptoms onset would enable us to compute a better estimate of the 
current testing and contact-tracing rate in each state. Our model 

also assumes that all individuals who test positive to COVID-19 are 
effectively isolated for the remainder of their infectious period and 
no longer contribute to disease transmission. Though voluntary 
compliance to COVID-19 self-quarantine recommendations may 
be high across the United States, it is probably not 100%. Therefore, 
the assumption of effective isolation of all identified cases may 
cause our model to slightly overestimate the impact of increased 
testing rate on disease dynamics. However, we anticipate that this 
assumption would have only a marginal impact on the qualitative 
nature of our results.

Finally, our model does not explicitly account for age-stratified 
risk of disease transmission and mortality. This age stratification is 
important for the design and evaluation of social-distancing and 
testing strategies that are targeted towards the elderly population, 
which is at higher risk of COVID-19-induced hospitalization and 
death30. As reopening the economy becomes an imperative for 
states across the United States, age- or risk-targeted interventions 
may be a valuable tool to mitigate the burden of the pandemic. 
Future modelling studies could investigate the effectiveness of age- 
or risk-targeted non-pharmaceutical and potential pharmaceutical 
(vaccine or therapeutic) interventions for controlling the spread 
and burden of COVID-19.

In sum, we use a data-driven mathematical modelling approach 
to study the impacts of social distancing, testing and contact trac-
ing on the transmission dynamics of SARS-CoV-2. Our find-
ings emphasize the importance for public health authorities not 
only to monitor the case and mortality dynamics of SARS-CoV-2 
in their state, but also to understand the impact of their existing 
social-distancing measures on SARS-CoV-2 transmission and to 
evaluate the effectiveness of their testing and contact-tracing pro-
grammes for prompt identification and isolation of new cases of 
COVID-19. As reported, case rates are increasing widely across 
US states because social-distancing restrictions have been eased 
to allow the resumption of greater economic activity, and we find 
that most states need to either substantially scale back reopening 
or enhance their capacity and scale of testing, case-isolation and 
contact-tracing programmes to mitigate large-scale increases in 
COVID-19 cases and deaths.

Methods
Our overall approach is as follows: (1) develop a mathematical model (an 
SEIR-type compartmental model)18,19 that incorporates social-distancing data, case 
identification via testing, isolation of detected cases and contact tracing; (2) assess 
the model’s predictive performance by training (calibrating) it to reported cases 
and mortality data from 19 March to 30 April 2020 and validating its predictions 
against data from 1 May to 20 June 2020; and (3) use the model, trained on data 
to 22 July 2020, to predict future incidence and mortality. The final stage of our 
approach predicts future events under a set of scenarios that include increased 
case detection through expansion of testing rate, contact tracing and relaxation or 
increase of measures to promote social distancing. All model fitting is performed 
in a Bayesian framework to incorporate available prior information and address 
multivariate uncertainty in model parameters.

Model formulation. We modified the standard SEIR model to address testing and 
contact tracing, as well as asymptomatic individuals. A fraction fA of those exposed 
(E) to enter the asymptomatic A class (divided into AU for untested and AC for 
contact traced) instead of the infected I class, which in our model formulation also 
includes infectious presymptomatic individuals. With respect to testing, separate 
compartments were added for untested, ‘freely roaming’ infected individuals (IU), 
tested/isolated cases (IT) and fatalities (FT). Following recovery, untested infected 
individuals (IU) and all asymptomatic individuals move to the untested recovered 
compartment, IU, and tested infected individuals move to the tested recovered 
compartment, IT. In balancing considerations of model fidelity and parameter 
identifiability, we made the reasonably conservative assumptions that all tested 
cases are effectively isolated (through self-quarantine or hospitalization) and  
thus unavailable for transmission, and that all COVID-related deaths are 
identified/tested.

With respect to contact tracing, the additional compartment SC represents 
unexposed contacts who undergo a period of isolation during which they are not 
susceptible before returning to S, while EC, AC and IC represent contacts who were 
exposed. Again, the reasonably conservative assumption was made that all exposed 
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contacts undergo testing, with an accelerated testing rate compared to the general 
population. We assume a closed population of constant size, N, for each state.

The ordinary differential equations governing our model are as follows:

dS
dt ¼ �S ´ c ´ β þ ð1� βÞ´ fC½  ´ ðIU þ AUÞ=N þ SC ´ γ
dSC
dt ¼ �SC ´ γ þ S ´ c ´ ð1� βÞ´ fC ´ ðIU þ AUÞ=N
dE
dt ¼ �E ´ κ þ S ´ c ´ β ´ ð1� fCÞ ´ ðIU þ AUÞ=N
dEC
dt ¼ �EC ´ κ þ S ´ c ´ β ´ fC ´ ðIU þ AUÞ=N
dIU
dt ¼ �IU ´ ðλþ ρÞ þ E ´ κ ´ ð1� fAÞ
dAU
dt ¼ �AU ´ ρþ E ´ κ ´ fA
dIC
dt ¼ �IC ´ ðλC þ ρCÞ þ EC ´ κ ´ ð1� fAÞ
dAC
dt ¼ �AC ´ ρC þ EC ´ κ ´ fA
dRU
dt ¼ ðIU þ AU þ ACÞ ´ ρþ IC ´ ρC
dIT
dt ¼ �IT ´ ðρþ δÞ þ IU ´ λþ IC ´ λC
dRT
dt ¼ IT ´ ρ
dFT
dt ¼ IT ´ δ

where c is the contact rate between individuals, β is the transmission 
probability per infected contact, fC is the fraction of contacts identified through 
contact tracing, 1/γ is the duration of self-isolation after contact tracing, 1/κ is the 
latent period, fA is the fraction of exposed who are asymptomatic, λ is the testing 
rate, δ is the fatality rate, ρ is the recovery rate and λC and ρC are the testing and 
recovery rates, respectively, of contact-traced individuals. The testing rates λ and 
λC, the fatality rate δ and the recovery rate of traced contacts ρC are each composites 
of several underlying parameters. The testing rate defined as

λðtÞ ¼ Ftest;0 ´ 1� 1

1þ eðt�T50TÞ=τT

� �
´ Senstest ´ ktest;

where Ftest,0 is the current testing coverage (fraction of infected individuals tested), 
Senstest is the test sensitivity (true positive rate) and ktest is the rate of testing for those 
tested, with a typical time-to-test equal to 1/ktest. The time-dependence term models 
the ramping up of testing using a logistic function with a growth rate of 1/τT d−1, 
where T50T is the time where 50% of the current testing rate is achieved. Similarly, 
for testing of traced contacts, the same definition is used with the assumption that 
all identified contacts are tested, Ftest,0 = 1 and at a faster assumed testing rate, kC,test:

λCðtÞ ¼ 1� 1

1þ eðt�T50TÞ=τT

� �
´ Senstest ´ kC;test;

Because all contacts are assumed to be tested, the rate ρC at which they enter 
the ‘recovered’ compartment, RU is simply the rate of false negative test results:

ρCðtÞ ¼ 1� 1

1þ eðt�T50TÞ=τT

� �
´ ð1� SenstestÞ´ ktest

The fatality rate is adjusted to maintain consistency with the assumption that 
all COVID-19 deaths are identified, assuming constant IFR. Specifically, we first 
calculated the fraction of infected that is tested and positive:

fposðtÞ ¼ fC
λCðtÞ

λCðtÞ þ ρCðtÞ
þ ð1� fCÞ

λðtÞ
λðtÞ þ ρ

:

Then the case fatality rate CFR(t) = IFR/fpos(t). Because CFR = δ/(δ + ρ), this 
implies

δðtÞ ¼ ρ
CFRðtÞ

1� CFRðtÞ ¼ ρ
IFR

fposðtÞ � IFR
:

The model is ‘seeded’ Ninitial cases on 29 February 2020. Because in the early 
stages of the outbreak there may be multiple ‘imported’ cases, we fit to data only 
from 19 March 2020 onwards, 1 week after the US travel ban was put in place31.

Our model is fit to daily case yc and death yd data (cumulative data are not used 
for fitting because of autocorrelation). To adequately fit the case and mortality 
data, we accounted for two lag times. First, a lag is assumed between leaving the 
IU compartment and public reporting of a positive test result, accounting for the 
time it takes to seek a test, obtain testing and have the result reported. No lag is 
assumed for tests from contact tracing. Second, a lag time is assumed between 
entering the fatally ill compartment FT and publicly reported deaths. Additionally, 
we use a negative binomial likelihood to account for the substantial day-to-day 
over-dispersion in reporting results. The corresponding equations are as follows:

yobs;½c;dðtÞ  NegBin½α½c;d; p½c;dðtÞ
p½c;dðtÞ ¼

ypred;½c;d ðtÞ
α½c;dþypred;½c;d ðtÞ

ypred;cðtÞ ¼ IUðt � τcaseÞ´ λðtÞ þ ICðtÞ´ λCðtÞ
ypred;dðtÞ ¼ ITðt � τdeathÞ ´ δðtÞ

In this parameterization, because the dispersion parameter α → ∞, the 
likelihood becomes a Poisson distribution with expected value ypred,[c,d], whereas for 

small values of α there is substantial interindividual variability. Case and death data 
were sourced from The COVID Tracking Project32.

Finally, we derived the time-dependent reproduction number, R(t) and the 
effective reproduction number, Reff(t) of this model, given by

RðtÞ ¼ c ´ β ´ ð1� fCÞ
1� fA
λþ ρ

þ fA
ρ

� �

and

Reff ðtÞ ¼ RðtÞ ´ SðtÞ
N

Reff(t) is the average number of secondary infection cases generated by a 
single infectious individual during their infectious period in partially susceptible 
population at time t. It is equal to the product of the transmission risk per contact 
of an infectious individual with their untraced contacts, c × β × (1 − fC), times 
their average duration of infection, 1�fA

λþρ þ
fA
ρ

� �

I

, and the portion of contacts that 
are susceptible, SðtÞN

I
. This accounts for the relative contribution of asymptomatic, 

c ´ β ´ 1� fCð Þ fA
ρ

� �
´ SðtÞ

N

I

 and symptomatic infection, c ´ β ´ ð1� fCÞ 1�fA
λþρ

� �
´ SðtÞ

N

I

. 
Using posterior samples for all 50 states and the District of Columbia, we 
conducted an analysis of variance using a linear model to characterize the 
contributions to the combined interstate and intrastate variation in Reff. Specifically, 
we used a linear model for Reff with the model parameters R0, η, θmin, rmax, fC, fA, λ 
and ρ as predictors, and evaluated the percentage of variance in Reff contributed by 
each parameter.

Incorporating social distancing, enhanced hygiene practices and reopening. 
The impact of social distancing, hygiene practices and reopening was modelled 
through a time dependence in the contact rate, c and the transmission probability 
per infected contact, β:

cðtÞ ¼ c0 ´ θðtÞ þ ð1� θminÞ´ rðtÞ½ 
βðtÞ ¼ β0 ´ θðtÞη

The θ(t) function parameterized social distancing during the progression to 
shelter-in-place, and is modelled as a Weibull function:

θðtÞ ¼ θmin þ ð1� θminÞe�ðt=τθÞnθ ;

which starts as unity and decreases to θmin, with τθ being the Weibull scale 
parameter and nθ the Weibull shape parameter (Fig. 1).

The r(t) function parameterized relative increase in contacts due to reopening 
after shelter-in-place, with r = 1 corresponding to a return to baseline c = c0.

rðtÞ ¼ rmax
t�τθ�τs

τr
uðt � trÞ � uðt � trmaxÞ½  þ uðt � trmaxÞ

uðtÞ ¼ HeavisideðtÞ  1� 1
1þe4t

tr ¼ τθ þ τs
trmax ¼ τθ þ τs þ τr

The term r(t) is 0 before tr, linear between tr and trmax and constant at a value 
of rmax after that, and made continuous by approximating the Heaviside function 
by a logistic function. The reopening time is defined as τs days after τθ, and the 
maximum relative increase in contacts rmax happens τr days after that.

We selected the functional form above for c(t) because it was found to be 
able to represent a wide variety of social-distancing data, including mobile phone 
mobility data from Unacast33 and Google34 as well as restaurant booking data from 
OpenTable35. We used these different mobility sources to derive state-specific prior 
distributions because different social-distancing datasets had different values for 
θmin, τθ, nθ, τs, rmax and τr (Supplementary Fig. 1).

With respect to the reduction in transmission probability β, we assumed 
that during the shelter-in-place phase, hygiene-based mitigation paralleled this 
decline with an effectiveness power η, and that this mitigation continued through 
reopening.

Finally, we define an overall reopening parameter Δ that measures the rebound 
in disease transmission, c × β relative to its minimum, defined to be 0 during 
shelter-in-place (that is, R(t) is at a minimum) and 1 when all restrictions are 
removed (when R(t) = R0), which can be derived as:

ΔðtÞ ¼ c ´ β=ðc0 ´ β0Þ � θ1þη
min

1� θ1þη
min

:

Our model is illustrated in Fig. 1, with parameters and prior distributions listed 
in Table 1.

Scenario evaluation. We used the model to make several inferences about the 
current and future course of the pandemic in each state. First, we consider the 
effective reproduction number. Two time points of particular interest are the 
time of minimum Reff, reflecting the degree to which shelter-in-place and other 
interventions were effective in reducing transmission, and the final time of the 
simulation, 22 July 2020, reflecting the extent to which reopening has increased Reff. 
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Additional parameters of interest are the current levels of reopening Δ(t), testing λ 
and contact tracing fC.

We then conducted scenario-based prospective predictions using our model’s 
parameters as estimated to 22 July 2020. We then asked the following questions:

	(1)	 Assuming current levels of reopening, what increases in general testing λ and/
or contact tracing fC would be necessary to bring Reff < 1?

	(2)	 What level of reopening Δ can maintain Reff < 1 under four different scenarios: 
current values of testing and contact tracing, doubling testing, double tracing 
and doubling both testing and tracing?

	(3)	 What will be the rates of new cases and deaths under different scenarios?  
Specifically, we evaluate the impact of increases in testing and contact tracing 
under current levels of reopening, as well as increases or decreases of 25 or 50%.

For (1), we evaluated the posterior probability that Reff < 1 under scaling 
transformations λ → λ × μλ and fC → fC × μC with scaling factors μλ and μC:

Reff ðtÞ ¼ SðtÞ ´ c ´ β ´ ð1� μC ´ fCÞ
1� fA

μλ  λþ ρ
þ fA

ρ

� �

We additionally derived ‘critical’ values of μC and μλ where Reff(t) < 1 under 
the conditions of increased testing alone (μC = 1), increased contact tracing alone 
(μλ = 1) and equal increases in testing and tracing (μC = μλ). We also performed the 
same analysis under a full reopening scenario (that is, setting S(t) = 1, c = c0 and 
β = β0).

For (2), we rearranged the equation for Reff in terms of the reopening  
parameter Δ:

Reff ðtÞ ¼ SðtÞ ´ c0 ´ β0 ´ ð1� μC ´ fCÞ
1� fA

μλ ´ λþ ρ
þ fA

ρ

� �
Δ ´ ð1� θ1þη

min Þ þ θ1þη
min

� �

We then fixed the scaling factors at 1 or 2, and solved the above equation to 
determine the percentage of reopening (Δcrit) that can be achieved while keeping 
Reff < 1. Values of Δcrit ≥ Δ(t) indicate the additional degree of reopening possible 
while maintaining Reff < 1, while values of Δcrit < Δ(t) indicate that reduction 
of reopening is needed. To convert back to testing and contact-tracing rates, 
we multiplied the scaling factors μC and μλ by the original values of fC and λ, 
respectively.

Finally, for (3), we additionally evaluated changes in reopening Δ → Δ + ΔΔ 
for ΔΔ values of +25% (+50%) or −25% (−50%), for a total of 20 scenarios (four 
different levels of testing and tracing and five different levels of reopening). We 
then ran the SEIR model forward in time to 30 September 2020. For all three 
intervention parameters, μC, μλ and ΔΔ, we assumed a ramp-up period of 2 weeks 
from 1 to 14 August 2020.

To summarize the relative need for mitigation in each state, we categorized 
states based on which scenarios resulted in the IQR of R(t) < 1 on 15 August 2020. 
The categories were defined as follows:
•	 Very Low: can reopen further by >25% while maintaining R(t) < 1
•	 Low: can reopen further by <25% with up to 2× increase in testing while 

maintaining R(t) < 1
•	 Moderate: requires 2× contact tracing or reversal of reopening by 25% to bring 

and maintain R(t) < 1
•	 High: requires multiple interventions (2× testing, 2× contract tracing and 

reversal of reopening by 25%) to bring and maintain R(t) < 1
•	 Very High: combining 2× testing, 2× contact tracing and reversal of reopening 

by 50% is needed to bring and maintain R(t) < 1
We use R(t) instead of Reff(t), to minimize the impact of heterogeneity and 

uncertainty in the value of S(t)/N on our results. Thus, requiring R(t) < 1 provides 
greater assurance of state-wide control of the epidemic.

Software and code. Posterior distributions were sampled with Markov chain 
Monte Carlo (MCMC) simulation performed using MCSim v.6.1.0 in Metropolis 
within Gibbs sampling36. For each US state, four chains of 200,000 iterations each 
were run, with the first 20% of runs discarded and 500 posterior samples saved for 
analysis. For each parameter, comparison of interchain and intrachain variability 
was assessed to determine convergence, with the potential scale reduction 
factor R ≤ 1.2 considered converged37. Additional analysis of model outputs was 
performed in RStudio v.1.2.1335 (ref. 38) with R v.3.6.1 (ref. 39).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The following publicly available datasets are used: mobility data from Unacast 
were sourced from https://covid19-scoreboard-api.unacastapis.com/api/search/
covidstateaggregates_v3; mobility data from Google were sourced from https://
www.gstatic.com/covid19/mobility/Global_Mobility_Report.csv; restaurant 
booking data were sourced from OpenTable, https://www.opentable.com/
state-of-industry; case and death data were sourced from The COVID Tracking 
Project, https://covidtracking.com/.

Mobility data are shown in Supplementary Fig. 1. Case and death data are shown in 
Figs. 1 and 3 and Supplementary Figs. 3–6 and 8. All data used are also available in 
the software and code repository.

Code availability
The codes used to generate our results will be available on GitHub prior to 
publication, at https://github.com/wachiuphd/COVID-19-Bayesian-SEIR-US.
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Extended Data Fig. 1 | Correlations across states between Reff(t) and (A) θmin, (B) η, (C) Δ, and (D) fC. For each state, 500 posterior samples are shown. 
Substantial state-to-state heterogeneity is evident in all parameters, with η,θmin, rmax, and fC contribute over 50% of the variance in Reff(t) under a linear 
model (estimated from ANOVA table [Supplementary Table 1] using the sum-of-squares relative to the total sum-of-squares). For θmin, while lower values 
appear to be associated with greater current values of Reff(t) in a univariate model (linear model coefficient = -0.54, t statistic = -78.14, p < 2.2e-16, 95% 
CI = [-0.56,-0.53]), the correlation is positive in the multivariate model (coefficient = 0.11, t statistic = 13.65, p < 2.2e-16, 95% CI = [0.09, 0.13]). The 
other parameters correlate as expected: higher Reff(t) is correlated with lower contribution from hygiene practices (smaller η) (coefficient = -0.39,  
t statistic = -59.7, p < 2.2e-16, 95% CI = [-0.40,-0.38]), more reopening (larger rmax) (coefficient = 0.44, t statistic = 119.0, p < 2.2e-16, 95% CI = [0.43, 
0.45]), and lower rates of contact tracing (smaller fC) (coefficient = -0.90, t statistic = -114.6, p < 2.2e-16, 95% CI = [-0.92, -0.89]).
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Extended Data Fig. 2 | Contour maps for each state of the probability that Reff(t) at different levels contact tracing fC and testing λ. Contours are labelled 
as by median and 95% Credible interval, and current median estimates of fC and λ are shown by the circle.
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Extended Data Fig. 3 | Estimated testing and contact tracing rates needed for Reff(t) < 1 as of July 22, 2020. Boxplots (line = median, box = IQR, 
whiskers = 95% CrI) are filled based on the estimated Reff(t) on July 22, 2020, as shown in the legend. Top panel is changing testing rate alone, the middle 
panel is changing contact tracing rate alone, and the bottom panel is changing both to the same value. Also shown are the current median estimates of the 
testing and contact tracing rates.
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Extended Data Fig. 4 | Estimated testing and contact tracing rates needed for R(t) < 1 with complete re-opening (that is, removal of all social 
distancing and hygiene mitigation). Boxplots (line = median, box = IQR, whiskers = 95% CrI) are filled based on the estimated Reff(t) on July 22, 2020, 
as shown in the legend. Top panel is changing testing rate alone, the middle panel is changing contact tracing rate alone, and the bottom panel is changing 
both to the same value. Also shown are the current median estimates of the testing and contact tracing rates.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection NA 

Data analysis Posterior distributions were sampled using Markov chain Monte Carlo simulation performed using MCSim version 6.1.0 using Metropolis 
within Gibbs sampling; Additional analysis of model outputs was performed in RStudio version 1.2.1335 with R version 3.6.1. The codes used 
to generate our results will be available on Github prior to publication at https://github.com/wachiuphd/COVID-19-Bayesian-SEIR-US. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The following publicly available datasets are used: 
Mobility data from Unacast were sourced from https://covid19-scoreboard-api.unacastapis.com/api/search/covidstateaggregates_v3.   
Mobility data from Google were sourced from https://www.gstatic.com/covid19/mobility/Global_Mobility_Report.csv. 
Restaurant booking data were sourced from OpenTable https://www.opentable.com/state-of-industry.  
Case and death data were sourced from The COVID Tracking Project (https://covidtracking.com/).



2

nature research  |  reporting sum
m

ary
April 2020

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size NA

Data exclusions NA

Replication NA

Randomization NA

Blinding NA

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data
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Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging
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