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Abstract—We develop a framework to obtain graph abstrac-
tions for decision-making where the abstractions emerge as
a function of the agent’s available resources. We discuss the
connection of the proposed approach with information-theoretic
signal compression and formulate a novel optimization problem
to obtain tree-based abstractions that are a function of the agent’s
computational resources. The structural properties of the new
problem are discussed in detail and two algorithmic approaches
are proposed. We discuss the quality of, and prove relationships
between, the solutions obtained by the two proposed algorithms.
The framework is applied to a variety of environments to obtain
hierarchical abstractions.

Index Terms—Hierarchical abstractions, state aggregation,
graph trees, information theory, planning.

I. INTRODUCTION

Information theory provides a principled framework for ob-
taining optimal compressed representations of a signal [1]. The
ability to form such compressed representations, also known as
abstractions, has widespread uses in many fields, ranging from
signal processing and data transmission, to robotic motion
planning in complex environments, and many others [1]–[18].
Particularly for autonomous systems, simplified representa-
tions of the environment which the agent operates in are
preferred, as they decrease the on-board memory requirements
and reduce the computational time required to find feasible or
optimal solutions for planning [2], [5]–[13], [19].

Within the realm of robotics and autonomous systems, a
number of studies have leveraged the power of abstractions
for both exploration and path-planning purposes. Examples
of such prior works include [9]–[12] in which wavelets are
utilized to generate multi-resolution representations of two-
dimensional environments. These compressed representations
encode a simplified graph of the environment, speeding up
the execution time of path-planning algorithms such as A∗

[5]. As the agent traverses the environment, the problem is
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sequentially re-solved in order to obtain a trade-off in the
overall optimality of the resulting path, planning frequency,
and obstacle avoidance. Related works include [5] and [6],
where the authors employed a tree-based framework in order
to execute path-planning tasks in two- and three-dimensional
environments. In these studies, the planning problem involved
the generation of a multi-resolution representation of the
operating space of the robotic agent in the form of a variable-
depth probabilistic quadtree or octree, based on user-provided
parameters and a given initial representation of the envi-
ronment. In addition, the use of probabilistic quadtrees and
octrees allows for the incorporation of sensor uncertainty when
creating maps, since the environment is stored in the form
of an occupancy grid [20], [21]. Other works have studied
the generation of quadtrees in real time, such as [13], or
the creation of multi-resolution trees from a given map and
pruning rules [8].

It should be noted that the use of abstractions is not
unique to the robotics community. For example, researchers
in reinforcement learning have previously utilized state aggre-
gations in order to alleviate the curse of dimensionality when
solving for optimal policies in Markov decision processes [4],
[22]. However, there is no unifying method for how these
abstractions are generated, as existing methods rely heavily on
user-provided rules. Other fields, such as the formal methods
community, have studied bisimulation, which considers model
reduction for dynamical systems that preserve certain system
characteristics [23], [24]. Interestingly, these methods provide
a convergent paradigm between the controls community and
researchers in computer science. We note that related work
also exists in the field of statistics and estimation, where
Chow-Liu trees are utilized in order to approximate probability
distributions using tree structures and concepts from informa-
tion theory [25].

The drawback of previous works is that they do not directly
address the generation of abstractions and instead rely on them
to be either provided a priori or created in a manner that
is known beforehand. Critically, existing works do not take
into consideration the computational limitations of the agent.
That is, existing works do not consider, in their formulation,
that agents with limited on-board resources may not employ
the same representation, or depiction, of the environment as
agents that are not resource limited. The idea that all agents
do not have equal capabilities has been recently discussed in
the literature pertaining to the field of bounded rationality,
where the capabilities of an agent are represented by its
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information-processing abilities [26]–[29]. Consequently, a
resource-limited agent is not able to process all data collected
by observing its surroundings, leading to the need for simplifi-
cation of the space in which it operates. In this way, the agent
must balance its resource limitations, being frugal with regard
to the amount of information it processes while simultaneously
achieving the task it is entrusted to complete. This leads to
an intrinsic balance between optimality and decision-making
complexity.

A number of existing works have modeled single-stage and
sequential bounded-rational decision making in stochastic do-
mains by employing ideas from utility and information theory
to construct constrained optimization problems [18], [26]–
[28]. The solution to these problems is a set of self-consistent
equations that are numerically solved by alternating iterations,
analogous to the Blahut-Arimoto algorithm in rate-distortion
theory [18], [26], [27], [30]. Interestingly, these frameworks
allow for the emergence of bounded-rational policies for a
range of agents with varying capabilities [18], [26]–[28].

In this paper, we address the issue of abstraction generation
for a given environment and formulate a novel optimization
problem that leverages concepts from information theory to
obtain representations of an environment that are a function
of the agent’s available resources. Specifically, we consider
the case where the environment is represented as a multi-
resolution quadtree, and begin by discussing connections be-
tween environment abstractions in the form of quadtrees and
general signal compression, the latter of which has been ex-
tensively studied by information theorists. We then formulate
an optimization problem over the space of trees that utilizes
concepts from the information bottleneck method [30] and
subsequently propose two algorithms to solve this problem.
Theoretical guarantees of our proposed algorithmic approaches
are presented and discussed. We show a number of non-trivial
examples that demonstrate the utility of the approach and
discuss the interpretation of the theory as applied to bounded-
rational robotic agents.

The remainder of the paper is organized as follows. In
Section II we introduce and review the fundamental concepts
needed in this work as well as elucidate the connections
between quadtrees and optimal signal compression. Then,
in Section III, we formulate our problem and show how
principles from information theory can be incorporated into
a new optimization problem over the space of trees. In
Section IV, we propose two algorithms that can be used to
solve the optimization problem and present the theoretical
contributions of the paper. Section V presents results of the
proposed methodology which is then followed by concluding
remarks in Section VI.

II. PRELIMINARIES
Throughout this paper, R and R++ denote the set of real

and strictly positive real numbers, respectively, and Rn denotes
the space of all real-valued vectors of dimension n.

A. Quadtree Decompositions
We consider the emergence of abstractions in the form

of multi-resolution quadtree representations. Quadtrees are a

common tool utilized in the robotics community to reduce
the complexity of environments in order to speed path-
planning or ease internal storage requirements [2], [5], [6],
[13], [16]. It should be noted that, while we will restrict the
discussion to quadtrees throughout the paper, the proposed
approach is applicable to any tree structure. We assume that
the environment W ⊂ R2 (generalizable to Rd) is given by
a two-dimensional grid world where each grid element is a
unit square (hypercube). In addition, it is assumed that there
exists an integer � > 0 such that W is contained within a
square (hypercube) of side length 2�. A tree representation
T = (N , E) = (N (T ), E(T )) of W consists of a set of nodes
N and edges E describing the interconnections between the
nodes in the tree [6]. We denote the set of all possible quadtree
representations of maximum depth � of W by T Q and let
TW ∈ T Q denote the finest quadtree representation of W; an
example is shown in Figure 1. It should be noted that TW
encodes a specific structure for W , which we make precise in
the following definition.

Definition 1. Let t ∈ N (TW) be any node at depth k ∈
{0, . . . , �}. Then t′ ∈ N (TW) is a child of t if the following
hold:

1) Node t′ is at depth k + 1 in TW .
2) Nodes t and t′ are incident to a common edge, i.e.,

(t, t′) ∈ E (TW).
Conversely, we say that t is the parent of t′ if t′ is a child of
t. Furthermore, we let

Nk(Tq) = {t ∈ N (Tq) : t is at depth k in TW} ,

to be the set of all nodes of the tree Tq ∈ T Q at depth k.

We will frequently seek to relate nodes in the tree Tq to
those in the tree TW , which leads us to the following definition.

Definition 2. Let t ∈ N (Tq) be any node in the tree Tq ∈ T Q.
Then the following hold:

1) The node t has children

C(t) = {t′ ∈ N (TW) : t′ is a child of t} .

2) The node t has parent

P(t) =
{
t̂ ∈ N (TW) : t ∈ C(t̂)

}
.

3) The node t is the root of the tree Tq , denoted by
Root (Tq), if P(t) = ∅.

4) The node t is a leaf of Tq if C(t) ∩ N (Tq) = ∅.
Furthermore, the set of leaf nodes of Tq is given by

Nleaf (Tq) = {t′ ∈ N (Tq) : C(t′) ∩ N (Tq) = ∅} .

5) If t /∈ Nleaf(Tq) then t ∈ Nint(Tq) = N (Tq) \ Nleaf(Tq),
where Nint(Tq) is the set of interior nodes of Tq .

Note that the space T Q encodes a specific structure on the
abstractions of the environment, as shown in Figure 1. More
precisely, each Tq ∈ T Q, Tq �= TW , specifies a precise relation
between the leaf nodes of TW and the leaf nodes of Tq , an
example of which is shown in Figures 1 and 2. That is, the
tree Tq ∈ T Q specifies an abstraction for which the leaf nodes
of TW are mapped to leaf nodes of Tq in such a way that Tq
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TW
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Fig. 1. Representation of the tree TW and corresponding grid for a 4 × 4
environment.
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Fig. 2. Representation of some Tq ∈ T Q and corresponding grid for a 4× 4
environment.

is a pruned quadtree representation of W . In other words,
we can consider each Tq ∈ T Q as a pruned version of TW ,
where some nodes in the interior of TW are leaf nodes of
Tq . In this way, each Tq ∈ T Q can be seen as encoding an
abstraction, or compression, of W with the constraint that Tq
be a valid quadtree depiction of W . Varying the abstraction
granularity of W can be toggled by selecting various trees
Tq in the space T Q. Our problem is then one of selecting
a tree Tq ∈ T Q as a function of the agent’s computational
capabilities. The observation that each Tq ∈ T Q encodes
a compression of W connects our approach to information-
theoretic frameworks that consider optimal encoder design.
The optimization problem to obtain optimal encoders has been
extensively studied by information theorists in the more gen-
eral setting of signal compression, where no specific structure
on the abstraction is enforced (i.e., the resulting encoding
need not correspond to any tree representation). As such,
the added constraint that our abstraction be a valid quadtree
representation of W creates additional challenges, since direct
application of information-theoretic methods is not possible.
Thus, to elucidate the technical aspects of our approach, we
first present a brief review of the necessary information-
theoretical concepts which we will utilize later on.

B. Information-Theoretical Signal Compression

The task of obtaining compressed representations of signals
is addressed within the realm of information theory [1], [30]–
[34]. Let (Ω,F ,P) to be a probability space with finite sample
space Ω, σ-algebra F and probability measure P : F → [0, 1].
Let X : Ω → R denote the random variable corresponding
to the original, uncompressed, signal, where X takes values
in the set ΩX = {x ∈ R : X(ω) = x, ω ∈ Ω} and, for any
x ∈ R, p(x) = P({ω ∈ Ω : X(ω) = x}). Furthermore, let
the random variable T : Ω → R denote the compressed
representation of X , where T takes values in the set ΩT =
{t ∈ R : T (ω) = t, ω ∈ Ω}. The level of compression be-
tween two random variables X and T is measured by their

mutual information [1], [30], given by

I(T ;X) �
∑
t,x

p(t, x) log
p(t, x)

p(t)p(x)
. (1)

The goal is then to find a stochastic mapping (encoder),
denoted by p(t|x), which maps outcomes in the uncompressed
space x ∈ ΩX , to outcomes in the compressed representation
t ∈ ΩT so as to minimize I(T ;X) (maximize compression)
[30]. However, in order to obtain non-trivial solutions, a metric
quantifying the quality of the resulting compression must be
introduced, since maximal compression (I(T ;X) = 0) is al-
ways achievable. The information bottleneck (IB) method [30]
defines the quality of the compression by utilizing mutual
information.

More specifically, the IB method introduces an additional
random variable, Y : Ω → R, taking values in the set
ΩY = {y ∈ R : Y (ω) = y, ω ∈ Ω}. The variable Y rep-
resents information we are interested in preserving when
forming the compressed representation T of X [30], [31]. The
method imposes the Markov chain condition T ↔ X ↔ Y
which arises as a consequence of the problem formulation. To
see this, note that p(y|t, x) = p(y|x) since it is not possible
for t to convey any additional information regarding y than
what it is already in x, and thus T → X → Y . Furthermore,
if p(y|t, x) = p(y|x) then p(t|y, x) = p(t|x) which gives
Y → X → T . Therefore, T → X → Y implies Y → X → T ,
which is written as T ↔ X ↔ Y [1], [30].

The IB problem is formulated as

min
p(t|x)

I(T ;X), (2)

subject to
I(T ;Y ) ≥ D̂, (3)

where the minimization is over all normalized distributions
p(t|x), assuming that the joint distribution p(x, y) is provided
and D̂ ≥ 0 [30]. Through the introduction of a Lagrange
multiplier, β ≥ 0, we have that (2) subject to (3) has
Lagrangian

KY (p(t|x);β) � I(T ;X)− βI(T ;Y ). (4)
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For given β ≥ 0, the optimization problem

min
p(t|x)

KY (p(t|x);β), (5)

can be solved analytically, giving rise to a set of self-consistent
equations [30].

The self-consistent equations obtained as a solution to (5)
can be solved numerically by an algorithm that likens the
Blahut-Arimoto algorithm from rate-distortion theory, albeit
with no guarantee of convergence to a globally optimal so-
lution [30]. The parameter β serves the role of adjusting the
amount of relevant information regarding Y that is retained in
the abstract representation T . As a result, when β → ∞ the op-
timization process is concerned with the maximal preservation
of information, while β → 0 promotes maximal compression,
with no regard to the information carried regarding Y . Inter-
mediate values of β lead to a spectrum of solutions between
these two extremes [30]. The mapping p∗(t|x) obtained as a
solution to the IB problem is generally stochastic, resulting in
a deterministic mapping only when β → ∞ [30], [33].

C. Agglomerative Information Bottleneck

The agglomerative IB (AIB) method is another framework
to form compressed representations of X , which is useful
when deterministic clusters that retain predictive information
regarding the relevant variable Y are desired. The method uses
the IB approach to solve for deterministic, or hard, encoders
(i.e., p(t|x) ∈ {0, 1} for all t, x). Concepts from AIB will
prove useful in our formulation, since each tree Tq ∈ T Q

encodes a hard (deterministic) abstraction of W , where each
leaf node of TW is aggregated to a specific leaf node of Tq .
That is, by viewing the uncompressed space (ΩX ) as the
nodes in Nleaf(TW) and the abstracted (compressed) space
(ΩT ) as the nodes in Nleaf(Tq), the abstraction operation can be
specified in terms of an encoder p(t|x) where p(t|x) ∈ {0, 1}
for all t and x, where p(t|x) = 1 if x ∈ Nleaf(TW) is
aggregated to t ∈ Nleaf(Tq), and zero otherwise (see Figures
1 and 2). To better understand these connections, we briefly
review the AIB before presenting the formulation of our
problem.

The solution provided by AIB is an encoder p(t|x) for
which p(t|x) ∈ {0, 1} for all t, x and β > 0. AIB considers
the optimization problem

max
p(t|x)

LY (p(t|x);β), (6)

where the Lagrangian is defined as

LY (p(t|x);β) � I(T ;Y )− 1

β
I(T ;X), (7)

and the maximization is performed over deterministic distri-
butions p(t|x) for given β > 0 and p(x, y) [31], [32].

AIB works from bottom-up, starting with T = X and with
each consecutive iteration reduces the cardinality of T until
|ΩT | = 1 [31]. Specifically, let Tm represent the abstracted
space with m elements (|ΩTm

| = m) and let Ti represent
the compressed space with |ΩTi | = i < m elements, where
i = m − 1 and the number of merged elements is n = 2.
We then merge elements {t′1, . . . , t′n} ⊆ ΩTm

to a single

element t ∈ ΩTi
to obtain Ti. The set {t′1, . . . , t′n} ⊆ ΩTm

selected to merge is determined by considering the difference
in the IB Lagrangian induced by the merge operation, as
follows. Let p− : ΩTm

× ΩX → {0, 1} be the mapping
before the merge and p+ : ΩTi

× ΩX → {0, 1} be the
resulting mapping after elements {t′1, . . . , t′n} ⊆ ΩTm

are
grouped to t ∈ ΩTi . Note that, as AIB considers a sequence
of merges, the mapping p−(t|x) represents an abstraction of
higher cardinality as compared to p+(t|x). The merger cost is
then given by ∆LY : 2ΩTm × R++ → R, defined as [32]

∆LY ({t′1, . . . , t′n} ;β) � LY (p
−(t|x);β)− LY (p

+(t|x);β).
(8)

The above relation can be decomposed into a change in mutual
information by utilizing (7) as

∆LY ({t′1, . . . , t′n} ;β) =

[I(Tm;Y )− I(Ti;Y )]− 1

β
[I(Tm;X)− I(Ti;X)] . (9)

This can be further simplified by noting that

I(T ;X) = H(T )−H(T |X) = H(T ), (10)

where, H(T ) is the Shannon entropy of the random variable
T , given by

H(T ) � −
∑
t

p(t) log p(t), (11)

and the conditional entropy H(T |X) = 0 since p(t|x) ∈
{0, 1} (i.e. there is no uncertainty in the random variable T
when given an outcome of X). Equation (9) then becomes

∆LY ({t′1, . . . , t′n} ;β) =

[I(Tm;Y )− I(Ti;Y )]− 1

β
[H(Tm)−H(Ti)] . (12)

It was shown in [31], [32] that (12) can be written as

∆LY ({t′1, . . . , t′n} ;β) =

p(t)

[
JSΠ(p(y|t′1), . . . , p(y|t′n))−

1

β
H(Π)

]
, (13)

where Π ∈ Rn is given by

Π = [Π1, . . . ,Πn]
T �

[
p(t′1)

p(t)
, . . . ,

p(t′n)

p(t)

]T
, (14)

and JSΠ(p1, . . . , pn) is the Jensen-Shannon (JS) divergence
[35] between the distributions p1, . . . , pn, with weights Π
defined as

JSΠ(p1, . . . , pn) �
n∑

s=1

ΠsDKL(ps, p̄), (15)

where, for each outcome y ∈ ΩY ,

p̄(y) =

n∑
s=1

Πsps(y). (16)

In (15) DKL(µ, ν) denotes the Kullback-Leibler (KL) diver-
gence between discrete probability distributions µ and ν given
by

DKL(µ, ν) �
∑
y

µ(y) log
µ(y)

ν(y)
. (17)
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It can also be shown that

p(t) =

n∑
s=1

p(t′s), (18)

p(y|t) =
n∑

s=1

Πsp(y|t′s), (19)

which can be verified by realizing that p(t|x) ∈ {0, 1} for
all x ∈ ΩX and t ∈ ΩT as well as employing the condition
T ↔ X ↔ Y [31], [32]. Note that the merger cost (8) can be
written in terms of only the distributions p(y|t′1), . . . , p(y|t′n)
and the weight vector Π. This reduces the overall complexity
of computing ∆LY ({t′1, . . . , t′n} ;β), as opposed to utilizing
equation (9), which contains sums over the sample spaces of
Y , T and X [31], [32].

III. PROBLEM FORMULATION

The IB methods presented in the previous section do not
impose any constraints on the mapping p(t|x). That is, by
solving the IB problem, one obtains a mapping p∗(t|x) that
is generally stochastic, and thus it is not guaranteed that it
encodes a (quad)tree representation for any value of β > 0.
The difficulty lies in the specific structure imposed on the
abstraction by the space T Q, as even AIB or deterministic
IB cannot guarantee that the resulting p∗(t|x) encodes a tree
belonging to T Q, although they do provide deterministic en-
coders [31]–[33]. Recall that, since each Tq ∈ T Q represents
an abstraction of TW , Tq can be equivalently represented as
pq(t|x), where pq(t|x) = 1 if x ∈ Nleaf(TW) is abstracted
to t ∈ Nleaf(Tq) and zero otherwise. We can then define
the IB Lagrangian in the space of quadtrees as the mapping
LY : T Q × R++ → R given by

LY (Tq;β) � LY (p
q(t|x);β), (20)

where LY (p(t|x);β) is defined in (7). Then, for a given β > 0,
we can search the space of trees for the one that maximizes
(20). This optimization problem is formally given by

Tq∗ = argmax
Tq∈T Q

LY (Tq;β), (21)

with the resulting world representation encoded by the map-
ping pq

∗
(t|x). That is, the leafs of Tq∗ determine the optimal

multi-resolution representation of W for the given β.
By posing the optimization problem as in (21), we have

implicitly incorporated the constraints on the mapping p(t|x)
so that the resulting representation is a quadtree depiction
of the world. While the optimization problem given by (21)
allows one to form an analogous problem to that in (6) over
the space of trees, the drawback of this method is the need
to exhaustively enumerate all feasible quadtrees which can
represent the space. In other words, (21) requires that pq(t|x)
be provided for each Tq ∈ T Q. Because of this, the problem
becomes intractable for large grid sizes and thus requires
reformulation to handle larger world maps.

Interestingly, we note that it is possible to arrive at a
quadtree Tqm ∈ T Q by starting from Tq0 ∈ T Q and
considering a sequence of intermediate trees, as illustrated in
Figure 3. The resulting sequence of trees can be viewed as

Tq0

Tq1

Tq2

Tq3

Fig. 3. Sequence of trees from Tq0 = Root(TW ) ∈ T Q to Tq3 ∈ T Q

(m = 3) by performing a sequence of nodal expansions. Note that Tq0 =
Root (TW ) is the root node of TW .

defining a path between Tq0 and Tqm , in which each vertex
of the path corresponds to a distinct intermediate tree in the
sequence. Note that it is not always possible to reach any tree
Tqm starting from any tree Tq0 by considering such a sequence
of trees. In order to address this, we require the following
definitions.

Definition 3 ([36]). A tree G = (N (G), E(G)) is a subtree
of the tree J = (N (J ), E(J )), denoted G ⊆ J , if N (G) ⊆
N (J ) and E(G) ⊆ E(J ).

Definition 4. The tree Tq′ ∈ T Q is a neighbor of the tree
Tq ∈ T Q if N (Tq′) \N (Tq) = {t′1, . . . , t′n} ⊆ Nleaf(Tq′) such
that P(t′1) = · · · = P(t′n) = t ∈ Nleaf(Tq).

With these definitions, we see that if Tq′ ∈ T Q is a neighbor
of Tq ∈ T Q, then we can obtain Tq′ by adding the nodes
{t′1, . . . , t′n} to Tq , where the set {t′1, . . . , t′n} consists of the
children of a leaf node t of Tq . We call this process of adding
C(t) = {t′1, . . . , t′n} to N (Tq) a nodal expansion of Tq at
t. We observe that by only performing a sequence of nodal
expansions, a path exists between the trees Tq0 ∈ T Q and
Tqm ∈ T Q if Tq0 is a subtree of Tqm

(
Tq0 ⊆ Tqm

)
. An

illustration of nodal expansion is provided in Figure 3, where
we also note that each tree Tqi+1 in the sequence is a neighbor
to tree Tqi with i ∈ {0, 1, 2}.

Furthermore, we may view the set of all possible quadtrees
as a connected graph, where neighbors are defined according
to Definition 4. An illustration of neighboring trees is provided
in Figure 4. Thus, if it is possible to obtain a sequential
characterization of (20), we can formulate an optimization
problem requiring the generation of candidate solutions only
along the path leading from Tq0 to Tqm . To this end, if we
take Tq0 ⊆ Tqm , where Tq0 , Tqm ∈ T Q, and assume that Tqm
is obtained by m expansions of Tq0 , then

LY (Tqm ;β) = LY (Tq0 ;β) +
m−1∑
i=0

∆LY (Tqi , Tqi+1 ;β), (22)

where ∆LY (·, ·;β) is defined as

∆LY (Tqi , Tqi+1 ;β) � LY (Tqi+1 ;β)− LY (Tqi ;β), (23)
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Tq1

Tq2 Tq3 Tq4 Tq5

Fig. 4. Tree neighbors of Tq1 =
{
Tq2 , Tq3 , Tq4 , Tq5

}
.

and Tqi+1 ∈ T Q is a neighbor of Tqi ∈ T Q with higher
leaf node cardinality for i ∈ {0, . . . ,m− 1}. Consequently,
(22) gives a sequential representation of (20). Additionally,
the nodal expansion operation to move from tree Tq ∈ T Q to
the neighbor Tq′ ∈ T Q has an analogous interpretation to (8)
of the AIB method discussed in Section II. Consequently,

∆LY (Tqi , Tqi+1 ;β) = ∆LY ({t′1, . . . , t′n} ;β), (24)

and thus

∆LY (Tqi , Tqi+1 ;β) =

p(t)

[
JSΠ(p(y|t′1), . . . , p(y|t′n))−

1

β
H(Π)

]
. (25)

Importantly, note that the structure of ∆LY (Tqi , Tqi+1 ;β) in
(25) only depends on which leaf nodes of Tqi are expanded, as
depicted in Figure 5. This implies that ∆LY (Tqi , Tqi+1 ;β) is
only a function of the nodes that are to be expanded, and not of
the overall configuration of the tree, which greatly simplifies
the calculation of ∆LY (Tqi , Tqi+1 ;β).

It follows that the optimization problem can be reformulated
as

max
m

max
{Tq1 ,...,Tqm}

LY (Tq0 ;β) +
m−1∑
i=0

∆LY (Tqi , Tqi+1 ;β). (26)

In this formulation, the constraint encoding that the resulting
representation is a quadtree is handled implicitly by Tqi ∈ T Q.
The additional maximization over m in (26) appears because
the horizon of the problem is not known a priori and is, instead,
a free parameter in the optimization problem.

Next, we propose two algorithms that can be used to solve
the problem in (26). Note that, by taking Tq0 = Root(TW) ∈
T Q, we can guarantee that a path exists between Tq0 and any
other Tq ∈ T Q, since, in this case, Tq0 ⊆ Tq for all Tq ∈ T Q.

IV. ALGORITHMIC SOLUTIONS
In this section, we discuss two algorithmic approaches to

solve the optimization problem (26). Specifically, we present
two novel approaches: a Greedy search method, and an algo-
rithm we call Q-tree search. Proofs of all lemmas, propositions
and theorems in this section are provided in the Appendix.

A. A Greedy Approach

A greedy approach to solve (26) involves maximizing
∆LY (Tqi , Tqi+1 ;β) myopically at each step. That is, pro-
vided that Tqi+1 ∈ T Q is a neighbor of Tqi ∈ T Q,

we consider the next tree Tqi+1 that maximizes the value
of ∆LY (Tqi , Tqi+1 ;β), and we sequentially keep selecting
trees (Tqi+1 → Tqi+2 → · · · ) until no further improve-
ment is possible. In other words, the Greedy search al-
gorithm continues along the current path in the space of
trees until it finds a tree Tqi ∈ T Q that has no neigh-
bor Tqi+1 ∈ T Q for which ∆LY (Tqi , Tqi+1 ;β) > 0. The
process is detailed in Algorithm 1. In this algorithm, the
function computeDeltaL

(
Tqi , Tqk , β

)
computes the value

of ∆LY (Tqi , Tqk ;β).

The Greedy search algorithm is simple to implement and
requires little pre-processing. However, one can construct
examples for a given β > 0 and Tqi ∈ T Q for which
∆LY (Tqi , Tqi+1 ;β) < 0 for all Tqi+1 ∈ T Q that are neigh-
bors of Tqi , and where there exists at least one neighbor
Tqi+2 ∈ T Q of Tqi+1 such that ∆LY (Tqi+1 , Tqi+2 ;β) >
0 and ∆LY (Tqi , Tqi+1 ;β) + ∆LY (Tqi+1 , Tqi+2 ;β) > 0.
In this case, the algorithm will terminate at the con-
dition ∆LY (Tqi , Tqi+1 ;β) < 0, without gaining access
to ∆LY (Tqi+1 , Tqi+2 ;β) > 0. Since in this scenario
∆LY (Tqi , Tqi+1 ;β) + ∆LY (Tqi+1 , Tqi+2 ;β) > 0, further im-
provement of (26) is possible, but not achievable by the
greedy approach. Therefore, while the Greedy search al-
gorithm is simple to implement, it does not, in general,
find globally optimal solutions. However, as β → ∞, the
Greedy search algorithm does find a global solution as
limβ→∞ ∆LY (Tqi , Tqi+1 ;β) ≥ 0 for all Tq ∈ T Q, as seen
by the limit of (25) and non-negativity of the JS-divergence.

Algorithm 1 The Greedy Search Algorithm.
Input Data: p(x, y), β > 0
Result: Tq∗
Tq0 ← Root (TW)
while termination condition not satisfied do

for each neighbor Tqk of Tqi do
v(k) ← computeDeltaL

(
Tqi , Tqk , β

)
end for
if max v > 0 then
z ← argmax v
Tqi+1 ← neighbor Tqz of Tqi
i ← i+ 1

end if
end while
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Fig. 5. Representation of the invariance of ∆LY (Tqi , Tqi+1 ;β). Changes to
the previous tree are shown in grey shading. Note that, in both cases, moving
from Tq1 to Tq2 or from Tq3 to Tq4 involves expanding the same node.
Subsequently, ∆LY (Tq1 , Tq2 ;β) = ∆LY (Tq3 , Tq4 ;β).

B. The Q-tree Search Algorithm

We now present an alternative approach, detailed in Algo-
rithm 2, designed to overcome some of the shortfalls encoun-
tered with the Greedy search algorithm. The main drawback
of utilizing the greedy approach in solving the optimization
problem (26) is the short-sightedness of the algorithm and its
inability to realize that poor expansions at the current step
may lead to much higher-valued options in the future. This is
analogous to problems in reinforcement learning and dynamic
programming, where an action-value function (Q-function) is
introduced to incorporate the notion of cost-to-go for selecting
among feasible actions in a given state [3], [37]. The idea
behind introducing such a function is to incorporate future
costs, allowing agents to take actions that are not the most
optimal with respect to the current one-step cost, but have
lower total cost due to events that are possible in the future.

To this end, for any tree Tqi and its neighbor Tqi+1(⊇ Tqi)
we define the function

QY (Tqi , Tqi+1 ;β) �

max

{
∆LY (Tqi , Tqi+1 ;β) +

n∑
τ=1

QY (Tqi+1 , Tqi+2
τ

;β), 0

}
,

(27)

where Tqi+2
τ

is a neighbor of Tqi+1 for all τ = 1, . . . , n and

QY (Tq′ , TW ;β) � max {∆LY (Tq′ , TW ;β), 0} , (28)

for all Tq′ ∈ T Q for which TW ∈ T Q is a neighbor. If Tqi+1

is obtained by a nodal expansion of Tqi at t ∈ Nleaf(Tqi),
then the quadtrees Tqi+2

τ
for τ ∈ {1, . . . , n} are obtained

by nodal expansions of Tqi+1 at nodes {t′1, t′2, . . . , t′n} ∈
C(t), as shown in Figure 6. In Algorithm 2, the function
populateQ (p(x, y), β) computes the Q-values for each node
in the original tree, which are then accessed as the algorithm
determines which nodes are to be present in the compressed
representation.

Note that QY (Tqi , Tqi+1 ;β) conveys whether or not a cur-
rent poor expansion (that is, one where ∆LY (Tqi , Tqi+1 ;β) <

0) can be overcome by future rewards by continuing ex-
pansions that are available through {t′1, . . . , t′n}. One may
observe that this is possible due to the dependence of
∆LY (Tqi , Tqi+1 ;β) on only the nodes added by moving from
Tqi to Tqi+1 and not the overall configuration of the tree,
as seen in (25) and the subsequent discussion. Furthermore,
the sum over τ in (27) encodes the fact that it is possible
for all children of {t′1, . . . , t′n} to be expanded in ensuing
steps if they improve the quality of the solution. In addi-
tion, we see from the definition of QY (Tqi , Tqi+1 ;β) that, if∑n

τ=1 QY (Tqi+1 , Tqi+2
τ

;β) = 0, then the algorithm will not ig-
nore a one-step improvement provided ∆LY (Tqi , Tqi+1 ;β) >
0. In general, the solution obtained by the Greedy search
algorithm will not necessarily be the same as the one obtained
by the Q-tree search algorithm. Contrasting the Q-tree search
algorithm to the greedy approach, we obtain the following
theorem that relates the solutions obtained by these two
methods.

Theorem 1. Let Tq0 ∈ T Q be a tree at which both Greedy
and Q-tree search algorithms are initialized. Then the solution
Tq∗G obtained by the Greedy search algorithm is a subtree of
the solution Tq∗Q obtained by the Q-search method.

Proof. The proof is presented in Appendix A.

As a direct consequence of Theorem 1, solutions obtained
by the Q-tree search algorithm will contain at least as many
leaf-nodes as the solution of the greedy approach, and, at the
same time, produce a better solution (if one exists) with respect
to (26) for a given β > 0.

Before we discuss the properties of the solution obtained
by the Q-tree search algorithm, we provide the following
definition.

Definition 5. A tree Tq ∈ T Q is minimal with respect to
the cost LY (·;β) if, for all Tq′ ∈ T Q such that Tq′ ⊂ Tq ,
LY (Tq′ ;β) < LY (Tq;β).

From Definition 5 we see that, if a tree is minimal, then it
is not possible to reduce the number of leaf nodes of the tree
without reducing the value of the objective function LY (·;β).
In what follows, we will show that the tree obtained by the

Algorithm 2 The Q-tree search Algorithm.
Input Data: p(x, y), β > 0
Result: Tq∗
Tq0 ← Root (TW)
QY (·, ·;β) ← populateQ (p(x, y), β) using (27)
while termination condition not satisfied do

for each neighbor Tqk of Tqi do
v(k) ← QY (Tqi , Tqk ;β)

end for
if max v > 0 then
z ← argmax v
Tqi+1 ← neighbor Tqz of Tqi
i ← i+ 1

end if
end while
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Fig. 6. Illustration of the dependency of QY (Tqi , Tqi+1 ;β) = max
{
∆LY (Tqi , Tqi+1 ;β) +

∑n
τ=1 QY (Tqi+1 , Tqi+2

τ
;β), 0

}
on the trees Tqi+1

and T
qi+2
τ

for τ ∈ {1, . . . , n}. Moving from tree Tqi to tree Tqi+1 involves expanding the node t ∈ Nleaf

(
Tqi

)
(line A) and incurs the one-step

cost ∆LY

(
Tqi , Tqi+1 ;β

)
. The trees T

qi+2
τ

for τ ∈ {1, . . . , n} are then the trees created by expanding each of the childeren nodes of t, given by
C(t) = {t′1, t′2, t′3, t′4}, one at a time. Thus, the trees T

qi+2
τ

differ from the tree Tqi by two expansions (line B), allowing QY (·, ·;β) to capture the notion
of cost-to-come. Note that n = 4 for the special case of quadtrees.

Q-tree search algorithm is minimal and optimal with respect
to (26). In order to present these theoretical results, some
additional definitions are required, which are provided next.

Definition 6. Given any node t ∈ N (Tq), the subtree of Tq ∈
T Q rooted at node t is denoted by Tq(t) and has node set

N
(
Tq(t)

)
=

{
t′ ∈ N (Tq) : t′ ∈

⋃
i

Di

}
,

where D1 = {t}, Di+1 = A (Di) and where

A (Di) =
{
t′ ∈ N (TW) : t′ ∈

⋃
m∈Di

C (m)
}
.

A visualization of Tq(t) for some Tq ∈ T Q is provided in
Figure 7. Furthermore, recall that ∆LY (Tq, Tq′ ;β) is only a
function of the nodes that are added to tree Tq ∈ T Q to obtain
Tq′ ∈ T Q, as shown by (25) and depicted in Figure 5. Thus,
it is convenient to describe ∆LY (Tq, Tq′ ;β) explicitly as a
function of the nodes of the trees Tq and Tq′ as given in the
following definition.

Definition 7. The node-wise ∆L̂Y -function for any node t ∈
Nint(TW) is given by

∆L̂Y (t;β) = ∆LY ({t′1, . . . , t′n} ;β),

where {t′1, . . . , t′n} = C(t) ⊂ N (TW). Furthermore,
∆L̂(t;β) = 0 for all t ∈ Nleaf (TW).

As a consequence of Definition 7, note that if we let Tq′ be
a neighbor of Tq such that {t′1, . . . , t′n} = C(t) = N (Tq′) \
N (Tq) where t ∈ Nleaf(Tq) then,

∆LY (Tq, Tq′ ;β) = ∆L̂Y (t;β). (29)

Moreover, since QY (·, ·;β) in (27) is recursively defined in
terms of ∆LY (·, ·;β), we have the following definition.

Definition 8. The node-wise Q̂Y -function for any node t ∈
Nint(TW) is given by

Q̂Y (t;β) = max
{
∆L̂Y (t;β) +

∑
t′∈C(t)

Q̂Y (t
′;β), 0

}
,

and where Q̂Y (t;β) = 0 for all t ∈ Nleaf(TW).

From Definition 8, if Tq′ ∈ T Q is a neighbor of Tq ∈ T Q

where nodes {t′1, . . . , t′n} = C(t) ⊆ Nleaf(Tq′) are merged to
a node t ∈ Nleaf(Tq) to obtain tree Tq , then we have

QY (Tq, Tq′ ;β) = Q̂Y (t;β). (30)

As a result of Definitions 7 and 8, if
{
Tqi , Tqi+1 , . . . , Tqi+j

}
⊂

T Q is a sequence of trees such that Tqi+k+1 is a neighbor of
Tqi+k for all k ∈ {0, . . . , j − 1}, then

∆LY (Tqi , Tqi+j ;β) =
∑
z∈Bij

∆L̂Y (z;β), (31)

where Bij = Nint(Tqi+j ) \ Nint(Tqi). Additionally, we should
note the connection between (31) and (22). Namely, it can be
shown that

LY (Root (TW) ;β) = 0, (32)

which follows from the non-negativity of the mutual informa-
tion and properties of entropy. Taking Tq0 = Root (TW) in
(22) and utilizing (32), we see that for any Tqm ∈ T Q,

LY (Tqm ;β) =

m−1∑
i=0

∆LY (Tqi , Tqi+1 ;β). (33)

Then, since (31) provides a relation for the right-hand side of
(33) we have, for any Tq ∈ T Q,

LY (Tq;β) =
∑

z∈Nint(Tq)

∆L̂Y (z;β), (34)
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t

Fig. 7. Visual representation of Tq(t), where Tq(t) ⊆ Tq for some Tq ∈ T Q

and node t ∈ N (Tq).

since Nint (Root (TW)) = ∅, which follows from Definition 2.
We see from (34) that the value of LY (Tq;β) for any tree
Tq ∈ T Q and β > 0 is the sum of the node-wise ∆L̂Y (·;β)
function over the interior nodes of the tree Tq ∈ T Q. With
this in place, we now have the following two lemmas, which
will be useful for proving the optimality of the Q-tree search
algorithm.

Lemma 1. Let t ∈ Nint(TW). Then Q̂Y (t;β) > 0
if and only if there exists a tree Tq ∈ T Q such that∑

z∈Nint(Tq(t)) ∆L̂Y (z;β) > 0. Furthermore, if Q̂Y (t;β) >

0, then there exists a tree Tq∗ ∈ T Q such that∑
z∈Nint(Tq∗(t)) ∆L̂Y (z;β) = Q̂Y (t;β), and for all other trees

Tq′ ∈ T Q with t ∈ N (Tq′) and Tq′(t) �= Tq∗(t) it holds that∑
z∈Nint(Tq′(t))

∆L̂Y (z;β) ≤ Q̂Y (t;β).

Proof. The proof is presented in Appendix B.

The ensuing result implies that if a node with positive
Q̂Y (·;β) is not expanded, then the resulting tree is sub-optimal
with respect to (26).

Lemma 2. Let Tq∗ ∈ T Q be the solution returned by the Q-
tree search algorithm and let Tq′ ∈ T Q be such that Tq′ ⊂ Tq∗ .
Then

LY (Tq′ ;β) < LY (Tq∗ ;β) .

Proof. The proof is presented in Appendix C.

Importantly, Lemma 1 establishes that a node with
Q̂Y (·;β) > 0 should be expanded, whereas Lemma 2 states
that if the nodes with Q̂(·;β) > 0 are not expanded, then the
resulting tree is sub-optimal with respect to LY (·;β). The next
theorem formally establishes the optimality of solutions found
by the Q-tree search algorithm.

Theorem 2. Let Tq̃ ∈ T Q to be a minimal tree that is also
optimal with respect to the cost LY (·;β). Assume, without loss
of generality1, that the Q-tree search algorithm is initialized
at the tree Tq0 ∈ T Q, where Tq0 ⊆ Tq̃ and let Tq∗ ∈ T Q

be the solution returned by the Q-tree search algorithm. Then
Tq∗ = Tq̃ .

Proof. The proof is presented in Appendix D.

1The fully abstracted tree with single node Root(TW ) is a subtree of any
quadtree

Theorem 2 establishes that the Q-tree search will find
the globally optimal tree with respect to the cost LY (·;β),
provided the algorithm is initiated at a tree Tq0 ∈ T Q such that
Tq0 ⊆ Tq̃ . Therefore, by selecting Tq0 = Root(TW) we can
guarantee that the Q-tree search algorithm will find the glob-
ally optimal solution. Having established these results, we now
discuss some details of our framework before demonstrating
the utility of the approach.

C. Influence of p(x, y)

A tacit assumption regarding the probability distribution
p(x, y) has been made in the development of this framework.
Namely, provided that p(x) > 0, we can write the distribution
p(x, y) as p(x, y) = p(y|x)p(x). This poses no technical
concern in the case when p(x) > 0 for all x ∈ ΩX . In
contrast, when p(x) ≯ 0 for all x ∈ ΩX , it may happen that an
aggregate node and all of its children have no probability mass.
This situation arises if p(x) = 0 for all x ∈ ΩX which belong
to the aggregate node t ∈ ΩT . In this case, we have from
(18) that p(t) = 0, but it is not clear that (25) is well-defined.
Additionally, the need to investigate this scenario is clear from
Definition 7 and the subsequent discussion, as it illustrates the
connection between the change in the objective function value
when moving from tree Tqi ∈ T Q to tree Tqi+1 ∈ T Q to the
node-specific quantities. Thus, in order to apply the Greedy or
Q-tree search algorithms for general p(x), we must establish
that (25) is well defined in these cases. This leads us to the
following proposition.

Proposition 1. Let t ∈ Nint(TW) and assume p(x) = ε/N for
all x ∈ Nleaf(TW(t)) with N = |Nleaf(TW(t))| for some ε > 0.
Then lim

ε→0+
∆L̂(t;β) = 0 for all β > 0.

Proof. The proof is presented in Appendix E.

The utility of Proposition 1 is that it allows for the direct
application of both the Greedy and Q-tree search algorithms
for any p(x) without modification to the respective algorithms.
This allows us not only to form abstractions as a function of
β > 0, but lets us also dictate where information is important
by changing p(x). To see why p(x) allows us to dictate where
information is important, let the joint distribution p(x, y) be
defined by p(y|x) and p(x) as p(x, y) = p(y|x)p(x), and
consider

p(y|t) = 1

p(t)

∑
x∈Nleaf(TW(t))

p(y|x)p(x). (35)

From (35) we see that nodes x ∈ Nleaf(TW(t)) that are
aggregated to t ∈ Nint(TW) and have p(x) = 0 do not
contribute to the conditional distribution p(y|t), and thus have
lower importance to the optimization problem, since these
nodes convey no information regarding Y . Therefore, abstract
nodes t ∈ ΩT for which the underlying x ∈ Nleaf(TW(t))
have high p(y|x) and p(x) will have the greatest information
content regarding Y , as these conditions will increase the value
of p(y|t). Furthermore, we see from (35) that, when p(x)
is uniform, the algorithm does not discriminate as to where
the information in the environment is located, as each value
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of p(y|x) for x ∈ Nleaf(TW(t)) is given equal weight when
computing p(y|t). Consequently, as β → ∞ the algorithms
become concerned with retaining all the relevant information
in the environment, regardless of where this information is
located. This is illustrated in the numerical examples we
discuss next.

V. NUMERICAL EXAMPLES

In this section, we present a numerical example to demon-
strate the emergence of abstractions in a grid-world setting.
To this end, consider the environment shown in Figure 8d
having dimension 256×256. We view this map as representing
an environment where the intensity of the color indicates the
probability that a given cell is occupied. In this view, the map
in Figure 8d can be thought of as an occupancy grid (OG)
where the original space, X , is considered to be the elementary
cells shown in the figure.

We wish to compress X to an abstract representation T
(a quadtree), while preserving as much information regarding
cell occupancy as possible. Thus, we take Y to be the relevant
random variable corresponding to the occupancy and study this
problem while varying β > 0. Therefore, ΩY = {0, 1} where
y = 0 corresponds to free space and y = 1 to occupied space.
It is assumed that p(x) is provided and p(y|x) is given by the
occupancy grid, where p(x, y) = p(y|x)p(x) .

A. Region-Agnostic Abstraction

In this section, we assume that p(x) is uniform. By changing
β we obtain a family of solutions, with the leaf node cardinal-
ity of the resulting tree returned by the respective algorithm
shown in Table I. As seen in Table I, the number of leaf nodes
of the trees found by both algorithms is increasing with β.
Furthermore, the Q-tree search and Greedy search leaf node
cardinalities converge as β tends toward infinity, as expected.
Additionally, as seen in Table I, the information contained
in the compressed representation T regarding the relevant
variable Y , given by I(T ;Y ), approaches the information
that the original space X contains about Y , quantified by
I(X;Y ). Note also that I(T ;Y ) ≤ I(X;Y ), which follows
from the Markov chain Y → X → T and the data processing
inequality. This encodes the fact that the information contained
about the relevant variable Y retained by the abstraction T
cannot exceed that given by the original space X . Furthermore,
from Table I, we notice that the Q-tree search algorithm finds
solutions that are more informative regarding the relevant
variable Y than the Greedy search algorithm, indicating that
the Greedy search algorithm terminates prematurely, and that
further improvement is possible for the given β > 0. We also
see that the solutions of the Greedy search algorithm and of
the Q-tree search converge as β approaches infinity.

Shown in Figure 9 is the information plane, where the
normalized I(T ;Y ) is plotted versus the normalized I(T ;X).
In this way, the information plane displays the amount of
relevant information retained in a solution vs. the level of com-
pression of X . In viewing this figure, recall that Theorem 2
establishes the global optimality of solutions obtained by Q-
tree search, and hence no solution above the Q-tree search

(a) (b)

(c) (d)

Fig. 8. Visualizations of Q-tree search solutions returned at various β together
with original (uncompressed) map for uniform p(x). Shading of red scales
with the probability of occupancy. (a)-(c) are the resulting representations for
β = 400, β = 2 × 103 and β = 30 × 103, respectively. (d) is the original
representation.

line is achievable in the space T Q, since this would imply
that there exist solutions (quadtrees) in T Q encoding more
information about Y for the same level of compression.

With this in mind, Figure 9 also corroborates that the Greedy
search algorithm generally finds solutions that are sub-optimal
with respect to LY (·;β), since trees found by the Greedy
search algorithm retain less information about Y for the same
level of compression as the information-plane curve of the
Greedy search algorithm lies below that of the Q-tree search
algorithm. Moving along the curve is done by varying β,
with increasing β moving the solution to the right in this
plane, towards more informative, higher cardinality solutions.
In addition, Figure 9 includes a comparison of Q-tree and
Greedy search approaches with the performance of k-class

TABLE I
NORMALIZED LEAF-NODE CARDINALITY AND RELEVANT INFORMATION

FOR SOLUTIONS RETURNED BY Q-TREE SEARCH (Q) AND GREEDY
SEARCH ALGORITHMS (G) AS A FUNCTION OF β FOR UNIFORM p(x).

%|ΩX | I(T ;Y )/I(X;Y )

β/103 Q G Q G
0.25 5.11 0.15 0.72 0.0
0.4 10.80 0.42 0.8871 0.5839
0.55 12.35 0.67 0.9163 0.6410
0.7 13.39 2.93 0.9315 0.7202
2 19.76 12.73 0.9714 0.9104

20 62.50 52.06 0.9990 0.9942
70 82.67 76.33 0.9998 0.9987
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Fig. 9. Information plane (I(T ;Y )/I(X;Y ) vs. I(T ;X)/H(X)) for uniform
p(x) showing the Q-tree, Greedy and k-class tree solutions. Method 1
corresponds to creating new class intervals by halving the previous class
intervals, whereas Method 2 divides the interval [0, 1] into k evenly spaced
intervals for any integer value of k. The k-class solution moves along the
curve in the information plane by changing the number of classes.

trees, as introduced in [8]. From this comparison we see that
the k-class tree solutions lie below that of both Greedy and
Q-tree search, implying that this ad-hoc tree pruning approach
finds solutions that are suboptimal as compared to both Greedy
and Q-tree search since the k-class trees retain less relevant
information for a given level, or amount, of compression.

A sample of environment depictions for various values of
β obtained from the Q-tree search algorithm are shown in
Figures 8a-8c. As seen in these figures, the solution returned
by the Q-tree search algorithm approaches that of the original
space as β → ∞, with a spectrum of solutions obtained as
β is varied. These figures show that areas containing high
information content, as specified by Y , are refined first while
leaving the regions with less information content to be refined
at a higher value of β.

We see that β resembles a sort of a “gain” that can be in-
creased, resulting in progressively more informative solutions
of higher cardinality. Thus, once the map is given, changing
only the value of β gives rise to a variety of solutions of
varying resolution. That is, our framework finds the optimal
tree Tq∗ with respect to LY (·;β) without the need to specify
pre-defined pruning rules or a host of parameters that define
the granularity of the abstraction a priori. Interestingly, β plays
a similar role in this work as in [18], [26], [27]. Namely, as
β → 0, highly compressed representations of the space are
obtained whereas for large values of β, we asymptotically ap-
proach the original map. Thus, we can view β as a “rationality
parameter,” analogous to [18], [26], [27], where agents with
low β are considered to be more resource limited, thus utilizing
simpler, lower cardinality representations of the environment.

B. Region-Specific Abstractions

We have discussed how the Greedy and Q-tree search
algorithms can be used to obtain abstractions as a function of

(a) (b)

(c) (d)

Fig. 10. Visualizations of Q-tree search solutions returned at various β
together with original (uncompressed) map for non-uniform p(x). Shading
of red scales with the probability of occupancy. (a)-(c) are the resulting
representations for β = 160, β = 3× 103 and β = 30× 103, respectively.
(d) is the original representation together with p(x).

β > 0 under the assumption that the distribution p(x) is uni-
form. We now relax this assumption and discuss the ability to
obtain region-specific abstractions in the environment through
a non-uniform p(x), without modification to the underlying
framework or algorithms, as discussed in Section IV-C.

We utilize the same environment as in Figure 8d, but with
a non-uniform distribution p(x), as shown in Figure 10d. In
this example, we take p(x) to be a two-dimensional Gaussian
distribution with mean µ = [142, 75]

T and covariance matrix
Σ = 10I2×2.

Table II summarizes the Q-tree search results for various
values of β. Normalized leaf-node cardinalties shown in Tables
I and II differ due to the difference in p(x) in the sense
that regions with p(x) = 0 do not contain any information
regarding Y , as seen by (35) and the subsequent discussion.
Finally, visualizations of the resulting solutions obtained from
the Q-tree search algorithm are provided in Figures 10a-10c.

TABLE II
NORMALIZED LEAF-NODE CARDINALITY AND RELEVANT INFORMATION

FOR SOLUTIONS RETURNED BY Q-TREE SEARCH AS A FUNCTION OF β
FOR NON-UNIFORM p(x).

β/102 %|ΩX | I(T ;Y )/I(X;Y )

1.5 0.19 0.7733
1.6 0.22 0.8513
2 0.28 0.9255
20 0.63 0.9912

100 0.86 0.9998
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These figures corroborate the previous observations, where we
can clearly see that the algorithm refines only regions for
which p(x) > 0. Furthermore, the refinement is progressive
and of increasing resolution as β → ∞.

C. Generalization to Other Environments and Algorithmic
Complexity

In the previous section, we presented an example which
demonstrates the utility of the Q-tree search algorithm, as
applied to a 256×256 example. In this section, we present
results which show that the algorithm can be used for larger
maps, as well as establish results for a number of additional
environments.

In order to better understand the behavior of the Q-tree
search algorithm, we consider results obtained by averaging
over randomly generated 128×128 environments. Table III
summarizes these results, obtained by averaging the perfor-
mances of the Q-tree search algorithm over 100 randomly
generated environments for various β. The table shows how
both the relevant information and the number of leaf nodes of
the solution returned by Q-tree search increases with β. These
trends are a direct result of the properties of the problem (21)
in that, as β is increased, the IB method will look for solutions
that are progressively more informative regarding the relevant
variable, at the cost of increased leaf node cardinality.

What is less obvious, however, is the reduction in the
variance with increased β. This observation is a result of
the interplay between the input distribution p(x, y) and the
value(s) of β. Namely, while the amount of relevant infor-
mation contained in the compressed representation increases
with increased β, the actual amount of retained information,
and subsequently the cardinality of the set of leaf nodes,
for fixed β, is dependent on the specific p(x, y) considered.
That is, by fixing β and varying the distribution p(x, y), one
will obtain solutions that, in general, differ in the values
of |ΩT | and I(T ;Y ). As β is progressively increased and
the solution gradually retains more relevant information, the
particular values of β which create changes in I(T ;Y ) are
unknown and are a function of p(x, y) (see, for example,
[27], [32] and references therein). Recall, though, that all
relevant information is retained as β → ∞, regardless of the
distribution p(x, y). Thus, as β increases, the dependence of
the solution on the distribution p(x, y) is effectively reduced,
since all solutions at high enough β will retain all relevant
information. In contrast, the influence of p(x, y) is more

TABLE III
AVERAGE Q-TREE SEARCH RESULTS OBTAINED BY AVERAGING OVER 100
RANDOMLY GENERATED 128×128 ENVIRONMENTS ASSUMING UNIFORM

p(x). TABULAR ENTRIES SHOW MEAN ± STANDARD DEVIATION.

β/102 |ΩT |/|ΩX | I(T ;Y )/I(X;Y )

0.5 0.3439± 0.4608 0.3582± 0.48
0.505 0.7152± 0.4157 0.7462± 0.433
0.51 0.9460± 0.0956 0.9851± 0.0995

0.515 0.9561± 0.0027 0.9951± 0.0004
0.601 0.9649± 0.0025 0.9967± 0.0003
0.878 0.98± 0.0018 0.9987± 0.0001
100 1.0± 0 1.0± 0

(a) (b)

(c) (d)

Fig. 11. Visualizations of Q-tree search solutions returned at various β
together with original (uncompressed) map. Shading of red scales with the
probability of occupancy. Map size is 512×512. (a) β = 300 representation
and (b) original map for uniform p(x). (c) β = 1 × 103 representation and
(d) original map with p(x) when p(x) is non-uniform.

predominant at lower values of β, since changes in p(x, y)
alters the values of β at which the transitions in information
retention occur, leading to higher variability in the solutions
obtained.

In addition to the above discussion pertaining to averaged
results, we also present a region-agnostic and region-specific
abstraction case applied to a 512×512 map shown in Fig-
ures 11a-11d, illustrating the applicability of the Q-tree search
algorithm to larger grid sizes. However, in order to appro-
priately address the scalability of the presented algorithms,
we provide some comments on algorithmic complexity. To
this end, note that the complexity of Q-tree search algorithm
is given by O(N̂), where N̂ = |Nleaf (TW)|. To arrive at
this result, we note that the function populateQ(·, ·) in
Algorithm 2 performs Ñ = |N (TW)| operations, where Ñ
and N̂ are related by a constant factor. In addition to this, Q-
tree search may, in the worst case, expand Ñ − N̂ nodes. This
process requires O(N̂) computations, resulting in the overall
complexity of the algorithm on the order of O(N̂).

To conclude this section, we present an additional set of
results to demonstrate our approach on robotic applications.
Particularly, we consider the use of abstract representations for
the purpose of indoor occupancy grid compression and path-
planning for autonomous agents. These results are shown in
Figures 12a-12d. It is noted that a high degree of compression
is achievable for the indoor occupancy grid in Figure 12a-12b
without the loss of any relevant information. Specifically, we
note that approximately 10.5% of the original space nodes
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were needed in order to retain all information regarding
occupancy. This represents a rather drastic reduction in the
number of nodes required to represent the space, which
can then help simplify other tasks such as path-planning –
an idea we exploit in Figures 12c-12d. The path-planning

(a) (b)

(c) (d)

Fig. 12. Application to robotics examples. (a)-(b) Indoor occupancy grid
compression for β = 490 and β = 30 × 103 with uniform p(x). (c)-(d)
Sample paths on abstract representations for β = 300 and β = 14.9 × 103

with uniform p(x).

example shown in Figures 12c-12d shows the applicability
of our framework to planning problems. In this example,
an autonomous agent is required to navigate from a given
start location to a goal position while finding a path that
minimizes the sum of occupancy values of cells along the
path. We utilize Dijkstra’s graph-search algorithm to plan the
paths in the reduced graphs. In the example, the abstractions
are generated by employing our framework, where then a
corresponding reduced graph can be constructed and used for
path planning. Thus, by means of abstraction, we decreases
the computational time required as compared to solving the
problem on the original representation/resolution, since the
reduced graph contains fewer nodes/vertices.

VI. CONCLUSIONS

In this paper, we have developed a novel framework for
the emergence of abstractions that are not provided to the
agent a priori but, instead, arise as a result of the avail-
able agent computational resources. We utilize concepts from
information theory, such as the information bottleneck and
agglomerative information bottleneck methods, to formulate
a new optimization problem over the space of trees. The
structural properties of the framework were discussed with

applications to bounded rationality and information-limited
agents. Finally, we propose and analyze two algorithms, which
were implemented to obtain solutions for a number of two-
dimensional environments with applications to robotics.

The importance of this work lies in the development of a
framework that allows for the emergence of abstractions in
a principled manner. The proposed algorithms demonstrate
the utility of the approach, requiring only the specification
of a relevant variable that contains the information we wish
to retain in the resulting compressed representation. The
framework then searches for trees that not only compress
the original space, but maximally preserve the information
regarding the relevant variable. The results can be utilized
in decision-making problems to systematically compress the
given state representation or in path-planning algorithms to
develop reduced complexity representations of the original
planning space.

APPENDIX A
PROOF OF THEOREM 1

Note that

∆LY (Tqi , Tqi+1 ;β) ≤

∆LY (Tqi , Tqi+1 ;β) +

n∑
τ=1

QY (Tqi+1 , Tqi+2
τ

;β), (36)

since QY (Tqi+1 , Tqi+2
τ

;β) ≥ 0. In the Greedy search
algorithm, a node is expanded, adding {t′1, . . . , t′n} to
N (Tqi) to obtain N (Tqi+1), if ∆LY (Tqi , Tqi+1 ;β) > 0. If
∆LY (Tqi , Tqi+1 ;β) > 0 then by (36) and (27) it follows that

0 < ∆LY (Tqi , Tqi+1 ;β) +

n∑
τ=1

QY (Tqi+1 , Tqi+2
τ

;β)

= QY (Tqi , Tqi+1 ;β),

and therefore QY (Tqi , Tqi+1 ;β) > 0. Hence nodes expanded
by the Greedy search algorithm will also be expanded by
Q-tree search. Since the two algorithms are initialized at a
common Tq0 ∈ T Q, it follows that Tq∗G ⊆ Tq∗Q .

APPENDIX B
PROOF OF LEMMA 1

The proof is given by induction. We first establish necessity
and sufficiency for some t ∈ N�−1(TW), where � > 0 is the
maximum depth of TW .
(⇒) Assume Q̂Y (t;β) > 0 for some t ∈ N�−1(TW). We thus
have

0 < Q̂Y (t;β) = max
{
∆L̂Y (t;β) +

∑
t′∈C(t)

Q̂Y (t
′;β); 0

}
.

Hence,
∆L̂Y (t;β) +

∑
t′∈C(t)

Q̂Y (t
′;β) > 0.

Since t ∈ N�−1(TW) it follows that t′ ∈ C(t) ⊂ Nleaf(TW)
and thus Q̂Y (t

′;β) = 0, which implies that ∆L̂Y (t;β) =
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Q̂Y (t;β) > 0. Now consider the tree Tq ∈ T Q such that
Nleaf(Tq(t)) = C(t). Then, for the subtree Tq(t) ⊆ TW

∑
z∈Nint(Tq(t))

∆L̂Y (z;β) = ∆L̂Y (t;β) > 0.

(⇐) Assume there exists a tree Tq ∈ T Q such that
∑

z∈Nint(Tq(t))

∆L̂Y (z;β) > 0.

Note that, since t ∈ N�−1(TW) then N (Tq(t)) = {t} ∪ C(t),
with Nint(Tq(t)) = {t} and Nleaf(Tq(t)) = C(t) ⊂ Nleaf(TW).
Therefore,

0 <
∑

z∈Nint(Tq(t))

∆L̂Y (z;β) = ∆L̂Y (t;β),

and

Q̂Y (t;β) = max
{
∆L̂Y (t;β) +

∑
t′∈C(t)

Q̂Y (t
′;β), 0

}
,

= max
{
∆L̂Y (t;β), 0

}
,

= ∆L̂Y (t;β) > 0.

Furthermore, for the tree Tq we have∑
z∈Nint(Tq(t))

∆L̂Y (z;β) = Q̂Y (t;β) and since
t ∈ N�−1(TW), for any other tree Tq̃ such that
Tq̃(t) �= Tq(t), it holds that Nint(Tq̃(t)) = ∅, which implies that∑

z∈Nint(Tq̃(t))
∆L̂Y (z;β) = 0 ≤ Q̂Y (t;β). Thus, the lemma

is true for all nodes t ∈ N�−1(TW).

We now establish necessity and sufficiency for all k ∈
{1, . . . , �− 1}. To this end, assume that for some k ∈
{1, . . . , �− 1} and any t′ ∈ Nk(TW), Q̂Y (t

′;β) > 0
if and only if there exists a tree Tq ∈ T Q such that∑

z∈Nint(Tq(t′))
∆L̂Y (z;β) > 0. Furthermore, if Q̂Y (t

′;β) >

0 then there exists a tree Tq∗ ∈ T Q such that∑
z∈Nint(Tq∗(t′))

∆L̂Y (z;β) = Q̂Y (t
′;β), and for all other

trees Tq̃ ∈ T Q with t′ ∈ N (Tq̃) and Tq̃(t′) �= Tq∗(t′),∑
z∈Nint(Tq̃(t′))

∆L̂Y (z;β) ≤ Q̂Y (t
′;β). Using this hypothesis,

we prove that the lemma also holds for all t ∈ Nk−1(TW).

(⇒) Consider t ∈ Nk−1(TW) and assume that Q̂Y (t;β) > 0.
Define the set

S =
{
t′ ∈ C(t) : Q̂Y (t

′;β) > 0
}
⊂ Nk(TW).

If S = ∅ then from Definition 8, 0 < Q̂Y (t;β) =
max{∆L̂Y (t;β), 0}, and therefore Q̂Y (t;β) = ∆L̂Y (t;β) >
0. Now, consider any tree Tq ∈ T Q such that Tq(t) has node
set N (Tq(t)) = {t} ∪ C(t). Note that Nint(Tq(t)) = {t} and
Nleaf(Tq(t)) = C(t). Thus, for the subtree Tq(t),

∑
z∈Nint(Tq(t))

∆L̂Y (z;β) = ∆L̂Y (t;β) = Q̂Y (t;β).

Therefore Q̂Y (t;β) > 0 implies that there exists a tree Tq ∈
T Q such that

∑
z∈Nint(Tq(t))

∆L̂Y (z;β) > 0.

Now consider S �= ∅. By hypothesis, there exists a tree
Tq∗ ∈ T Q such that

∑
z∈Nint(Tq∗(t′))

∆L̂Y (z;β) = Q̂Y (t
′;β), ∀t′ ∈ S.

Consider a tree Tq ∈ T Q such that Tq(t) has the properties

Nint(Tq(t)) = {t}
⋃
t′∈S

Nint(Tq∗(t′)),

and

Nleaf(Tq(t)) = (C(t) \ S)
⋃
t′∈S

Nleaf(Tq∗(t′)).

Therefore, using the fact that
∑

z∈Nint(Tq∗(t′))
∆L̂Y (z;β) =

Q̂Y (t
′;β), for all t′ ∈ S, we have
∑

z∈Nint(Tq(t))

∆L̂Y (z;β)

= ∆L̂Y (t;β) +
∑
t′∈S

∑
z∈Nint(Tq∗(t′))

∆L̂Y (z;β),

= ∆L̂Y (t;β) +
∑
t′∈S

Q̂Y (t
′;β).

Also note that Q̂Y (t
′;β) = 0 for all t′ ∈ C(t) \ S and hence,

∑
z∈Nint(Tq(t))

∆L̂Y (z;β) =

∆L̂Y (t;β) +
∑
t′∈S

Q̂Y (t
′;β) +

∑
t′∈C(t)\S

Q̂Y (t
′;β).

Furthermore, note that from Definition 8, if Q̂Y (t;β) > 0 then

Q̂Y (t;β) = ∆L̂Y (t;β) +
∑

t′∈C(t)

Q̂Y (t
′;β),

and thus,
∑

z∈Nint(Tq(t))

∆L̂Y (z;β) = Q̂Y (t;β) > 0.

Therefore, it follows that if Q̂Y (t;β) > 0, there ex-
ists a tree such that

∑
z∈Nint(Tq(t))

∆L̂Y (z;β) > 0 and∑
z∈Nint(Tq(t))

∆L̂Y (z;β) = Q̂Y (t;β). Furthermore, consider
any Tq̃ ∈ T Q such that Tq̃(t) �= Tq(t). Then

∑
z∈Nint(Tq̃(t))

∆L̂Y (z;β) =

∆L̂Y (t;β) +
∑

t′∈C(t)∩Nint(Tq̃(t))


 ∑

z∈Nint(Tq̃(t′))

∆L̂Y (z;β)


 .

Note that t′ ∈ Nk(TW) and that
∑

z∈Nint(Tq̃(t′))

∆L̂Y (z;β) ≤ Q̂Y (t
′;β).
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Consequently,
∑

z∈Nint(Tq̃(t))

∆L̂Y (z;β)

≤ ∆L̂Y (t;β) +
∑

t′∈C(t)∩Nint(Tq̃(t))

Q̂Y (t
′;β),

≤ ∆L̂Y (t;β) +
∑

t′∈C(t)

Q̂Y (t
′;β),

= Q̂Y (t;β).

(⇐) Let t ∈ Nk−1(TW) and assume that there exists a tree
Tq ∈ T Q such that

∑
z∈Nint(Tq(t))

∆L̂Y (z;β) > 0,

and consider any t′ ∈ Nint(Tq(t))∩C(t) ⊂ Nk(TW). From the
hypothesis we have that

∑
z∈Nint(Tq(t′))

∆L̂Y (z;β) ≤ Q̂Y (t
′;β).

Therefore,
∑

z∈Nint(Tq(t))

∆L̂Y (z;β) =

∆L̂Y (t;β) +
∑

t′∈C(t)∩Nint(Tq(t))


 ∑

z∈Nint(Tq(t′))

∆L̂Y (z;β)


 ,

which yields

0 <
∑

z∈Nint(Tq(t))

∆L̂Y (z;β) ≤

∆L̂Y (t;β) +
∑

t′∈C(t)∩Nint(Tq(t))

Q̂Y (t
′;β) +

∑
t′∈C(t)\Nint(Tq(t))

Q̂Y (t
′;β)

︸ ︷︷ ︸
≥ 0

.

Hence,

0 < ∆L̂Y (t;β) +
∑

t′∈C(t)

Q̂Y (t
′;β) ≤ Q̂Y (t;β).

Therefore, the existence of a tree Tq ∈ T Q with∑
z∈Nint(Tq(t))

∆L̂Y (z;β) > 0 where t ∈ Nk−1(TW) implies
Q̂Y (t;β) > 0.

Thus, we have shown that the lemma holds for k− 1 and for
all t ∈ Nk−1(TW).

APPENDIX C
PROOF OF LEMMA 2

Let t ∈ N (TW) be any node such that t ∈ Nleaf(Tq′) ∩
Nint(Tq∗), where Tq′ ⊂ Tq∗ . Note that Q̂Y (n;β) > 0 for all
n ∈ Nint(Tq∗(t)) and Q̂Y (n;β) = 0 for all n ∈ Nleaf(Tq∗(t)),

which follows from the design of the Q-tree search algorithm.
Thus, we have that

∑
z∈Nint(Tq∗(t))

∆L̂Y (z;β) = Q̂Y (t;β) > 0,

which holds for all t ∈ Nleaf(Tq′) ∩ Nint(Tq∗). Furthermore,
using (34),

LY (Tq′ ;β) +
∑

t∈Nleaf(Tq′ )∩Nint(Tq∗ )

∑
z∈Nint(Tq∗(t))

∆L̂Y (z;β) =

LY (Tq∗ ;β).

The above is equivalent to

LY (Tq′ ;β) +
∑

t∈Nleaf(Tq′ )∩Nint(Tq∗ )

Q̂Y (t;β) = LY (Tq∗ ;β).

Lastly, it is known that Q-tree search did not terminate at Tq′ .
Thus,

∑
t∈Nleaf(Tq′ )∩Nint(Tq∗ )

Q̂Y (t;β) > 0, where Nleaf(Tq′)∩
Nint(Tq∗) �= ∅ if Tq′ �= Tq∗ , and therefore

LY (Tq′ ;β) < LY (Tq∗ ;β).

APPENDIX D
PROOF OF THEOREM 2

Let t ∈ Nint(Tq̃) and consider the tree Tq̄ ∈ T Q with node
set N (Tq̄) = {t}∪N (Tq̃) \N (Tq̃(t)). We have from (34) that

LY (Tq̄;β) =
∑

z∈Nint(Tq̃)\Nint(Tq̃(t))

∆L̂Y (z;β).

From the above expression and (22) and (31), we have

LY (Tq̃;β) = LY (Tq̄;β) +
∑

z∈Nint(Tq̃(t))

∆L̂Y (z;β).

Since Tq̃ is minimal, for any subtree Tq̄ we have LY (Tq̄;β) <
LY (Tq̃;β), and therefore

∑
z∈Nint(Tq̃(t))

∆L̂Y (z;β) > 0, ∀t ∈ Nint(Tq̃).

Hence, from Lemma 1, it follows that Q̂Y (t;β) > 0 for all
t ∈ Nint(Tq̃). Thus, all nodes in Nint(Tq̃) are expanded in Tq∗ ,
which implies that Tq∗ ⊇ Tq̃ . Then, either Tq∗ = Tq̃ , which
implies LY (Tq̃;β) = LY (Tq∗ ;β), or Tq∗ ⊃ Tq̃ , which, from
Lemma 2, implies that LY (Tq̃;β) < LY (Tq∗ ;β). However,
since Tq̃ is optimal, we have LY (Tq̃;β) ≥ LY (Tq∗ ;β),
leading to a contradiction. Thus, Tq∗ = Tq̃ and consequently
LY (Tq̃;β) = LY (Tq∗ ;β).

APPENDIX E
PROOF OF PROPOSITION 1

Assume β > 0, t ∈ Nint(TW) and p(x) = ε/N for all x ∈
Nleaf(TW(t)) with N = |Nleaf(TW(t))|. By (25) and Definition
7, we have

∆L̂(t;β) = p(t)

[
JSΠ(p(y|t′1), . . . , p(y|t′|C(t)|))−

1

β
H(Π)

]
,
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where, without loss of generality,
{
t′1, . . . , t

′
|C(t)|

}
= C(t).

Moreover, since p(t|x) is deterministic,

p(t) =
∑

x∈Nleaf(TW)

p(t|x)p(x) =
∑

x∈Nleaf(TW(t))

p(x) = ε,

and since p(x) = ε/N for all x ∈ Nleaf(TW(t)), it follows that

p(t′) =
ε

|C(t)|
, t′ ∈ C(t).

Consequently,

Π =

{
p(t′1)

p(t)
, . . . ,

p(t′|C(t)|)

p(t)

}
=

{
1

|C(t)|
, . . . ,

1

|C(t)|

}
,

and therefore,
H(Π) = log|C(t)|. (37)

Now define

as(y) �
∑

x∈Nleaf(TW(s))

p(x, y),

where y ∈ ΩY and s ∈ N (TW). Thus,
∑
y

at′(y) =
ε

|C(t)|
, (38)

and ∑
y

at(y) = ε,

for all t′ ∈ C(t). Since Nleaf(TW(t′)) ⊆ Nleaf(TW(t)), it follows
that 0 ≤ at′(y) ≤ at(y) ≤ ε. Thus, for t′ ∈ C(t) we have,
from the definition of the KL-divergence,

DKL(p(y|t′), p(y|t)) =
∑
y

p(y|t′) log p(y|t′)
p(y|t)

,

where

p(y|t) = 1

p(t)

∑
x∈Nleaf(TW(t))

p(x, y) =
1

ε
at(y),

and similarly,

p(y|t′) = 1

p(t′)

∑
x∈Nleaf(TW(t′))

p(x, y) =
|C(t)|
ε

at′(y).

Hence,

DKL(p(y|t′), p(y|t)) =
∑
y

p(y|t′) log |C(t)|at′(y)
at(y)

,

= log|C(t)|+
∑
y

p(y|t′) log at′(y)

at(y)
,

= log|C(t)|+ |C(t)|
ε

∑
y

at′(y) log
at′(y)

at(y)
. (39)

Since 0 ≤ at′(y) ≤ at(y) for all y ∈ ΩY we have from (38)
and (39) that
|C(t)|
ε

∑
y

at′(y) log
at′(y)

at(y)
≤ |C(t)|

ε

∑
y

at′(y) log
at(y)

at(y)
,

=
|C(t)|
ε

log (1)
∑
y

at′(y),

= 0.

From the previous expression, along with (39), it follows that

0 ≤ DKL(p(y|t′), p(y|t)) ≤ log|C(t)|, ∀t′ ∈ C(t). (40)

Using (40) and the definition of JS-divergence, we see that

JSΠ(p(y|t′1), . . . , p(y|t′|C(t)|) =
|C(t)|∑
i=1

Π(i)DKL(p(y|t′i), p(y|t)),

≤ log|C(t)|.

Therefore, from the non-negativity of the JS-divergence as
well as (37) and (40) we have,

− 1

β
ε log|C(t)| ≤

p(t)
[
JSΠ(p(y|t′1), . . . , p(y|t′|C(t)|))−

1

β
H(Π)

]

≤ β − 1

β
ε log|C(t)|.

Now taking the limit as ε → 0+ yields limε→0+ ∆L̂(t;β) = 0
for all β > 0.
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