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This work presents a decentralized multi-agent navigation approach that allows agents to coordinate their

motion through local communication. Our approach allows agents to develop their own emergent language of

communication through an optimization process that simultaneously determines what agents say in response

to their spatial observations and how agents interpret communication from others to update their motion. We

apply our communication approach together with the TTC-Forces crowd simulation algorithm (a recent, high

performing, anticipatory collision technique) and show a significant decrease in congestion and bottle-necking

of agents, especially in scenarios where agents benefit from close coordination. In addition to reaching their

goals faster, agents using our approach show coordinated behaviors including greeting, flocking, following, and

grouping. Furthermore, we observe that communication strategies optimized for one scenario often continue to

provide time-efficient, coordinated motion between agents when applied to different scenarios. This suggests

that the agents are learning to generalize strategies for coordination through their communication “language".
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1 INTRODUCTION

Capturing the efficient, coordinated behavior common in human motion is important to a number
of fields such as architecture, video games, movies, and virtual reality. Whether for simulations by
architects to design buildings that provide better flows to dense crowds or for computer games with
scores of moving characters, allowing simulated agents to navigate efficiently in a shared space
is an important aspect of providing believable, natural, and socially coherent motion for virtual
characters.

While there has beenmuch recent work on how simulated agents canmake independent decisions
in the process of navigation, not as much is known about how to best allow agents to communicate
with each other in ways that can improve the efficiency of navigation. Agents who are able to
“talk" to their nearby neighbors should, in theory, be able to exchange critical information needed
to better coordinate their motion and avoid potential bottlenecks, deadlocks, and other sources of
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Fig. 1. Simulation of our results for C-TTC (top) compared to a crowd simulation of TTC-Forces [Guy and
Karamouzas 2015] (bo�om). (A) and (C) compare the two simulations at 7.3 seconds. Note how C-TTC
has partitioned the agents into two groups: a queued group to the side of the door, and a laning group
passing through the doorway. Inset figure (B) and (D) compare the two simulations at 19.7 seconds when our
simulation has finished and while TTC-Forces is in the bo�leneck.

congestion. However, a key difficulty in creating such an explicit communication infrastructure is
the inherent complexity in designing a protocol for such a system while still maintaining a fast,
scalable simulation.
In this paper, we use an optimization-based approach to automatically learn a communication

policy between agents that explicitly communicates on channels for local motion planning. The
result is the efficient, coordinated motion seen in Figure 1. We refer to this as an "emergent"
communication approach because its protocol and channels have no predetermined semantics.
Therefore, that system is allowed to learn both what is shared between agents and how that
information is used to affect motion. We propose a unified learning framework that allows agents to
simultaneously solve both problems. All of our agents follow the same learned communication policy
allowing the development of emergent social norms based on a mutually consistent interpretation
of the shared signals (see Figure 2).
Our work has three primary contributions:

• First, we present C-TTC, an algorithm for multi-agent navigation that allows (multi-channel)
communication between neighboring agents. We show our method can provide more efficient
and coordinated motion than the original TTC-Forces algorithm without communication.
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Fig. 2. A communication model (top) optimized and visualized on the Doorway scenario (D) compared to TTC-
Forces (bo�om). Each vertical frame is at an equivalent time-step. Our method learned to use communication
for partitioning the agents into groups where some wait and others follow their lane through the bo�leneck.
The red agents are communicating that they are waiting, blue agents are pursuing their goal, and cyan agents
are preventing crossing into an opposing lane. Once it is efficient to pass, the waiting agents are spatially
signaled to pass and then communicate they are pursuing their goal. In contrast, TTC-Forces struggles to
form lanes in the dense doorway.

• Second, we show that communication enhanced simulations retain and reinforce the coor-
dination already seen in TTC (e.g., lane formation), while also introducing new types of
coordinates behaviors such as grouping up, and waiting for their turn.
• Third, we show the learned communication strategies generalize well, with communication
policies trained on one scenario often improving the navigation behavior in new, unrelated
scenarios.

The rest of the paper is organized as follows: In Section 2, we review related works involving
planning, communication, and learning. We describe in Section 3 our method for coordinated crowd
planning by optimizing a communication model. Reported in Section 4 is our implementation and
its parameters, including TTC-Forces and PSO for the required collision avoidance and optimizer
to use our work. Experimental results demonstrate the tested scenarios, communication, motion
efficiency, and scalability of our work in Section 5. A discussion of the limitations and impact of
our work is in Section 6.

2 RELATED WORK

There are many works on local multi-agent navigation or collision avoidance, each of which
addresses the problem of finding collision-free paths for agents in a scene which have competing
routes to their goals. As relevant to this work, these algorithms use a broad variety of strategies for
agent dynamics. Reactive methods (e.g., [Karamouzas et al. 2009, 2014; Paris et al. 2007]) rely on
forces which repel agents away from collisions, often with analogies to animals [Reynolds 1987], or
social structures [Helbing and Molnar 1995]. Geometric methods such as RVO [van den Berg et al.
2008] and ORCA [van den Berg et al. 2011], under minimal assumptions, optimize for a guaranteed
set of collision-free paths. Data-driven algorithms attempt to model aspects of human behavior
such as their anticipation [Karamouzas et al. 2014], efficiency [Berseth et al. 2014], or patterns of
escape [Helbing et al. 2000].
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Other multi-agent navigation works have proposed methods of local navigation by augmenting
the agents’ behaviors with coordination or communication. For example, several authors have used
approaches relying on predefined methods of coordination such as forming groups of agents guided
by hierarchical rules [Musse and Thalmann 2001], communicating escape routes or roles [Pelechano
and Badler 2006], and modeling group interactions [Qiu and Hu 2010]. Using globally coordinated
methods is particularly helpful to local navigation for planning around dynamic obstacles [Kapadia
et al. 2013], local interactions of variable density [Loscos et al. 2003], or forming dynamic struc-
tures [Alonso-Mora et al. 2012]. A universal approach to coordinated group behaviors attempts to
composite behaviors onto any preexisting simulation by influencing nearby agents [Schuerman
et al. 2010; Yeh et al. 2008] or by influencing nearby agents using a specific method such as velocity
obstacles [Kimmel et al. 2012; Ren et al. 2017].
A number of papers have studied the benefits of communication when designed for multi-

agent systems. Some works have explored human-designed direct communication with assigned
meanings [Balch and Arkin 1994], implicit methods that assume a shared algorithm [Godoy et al.
2018, 2016], or methods of indirect cooperation like stigmergy [Beckers et al. 1994]. Deciding when

communication is beneficial has been addressed in the literature for non-continuous, infrequent,
discretely defined communication policies [Best et al. 2018].
The learning community has used reinforcement learning [Foerster et al. 2016; Ghavamzadeh

and Mahadevan 2004; Guestrin et al. 2002; Martinez-Gil et al. 2014; Sukhbaatar et al. 2016; Xuan
et al. 2001] and evolutionary techniques [Buzing et al. 2005; Quinn 2001; Wong et al. 2015] to
solve more general forms of communicating agents to apply to separate or broader problem
domains. Other approaches optimize communication for coordinating control policies between
agents [Ghavamzadeh and Mahadevan 2004]. Note that in many of these works, the domains
studied (e.g., logic puzzles) do not apply well to navigation as they are neither real-time nor in
a continuous space [Foerster et al. 2016; Ghavamzadeh and Mahadevan 2004; Sukhbaatar et al.
2016]. Some papers [Hettiarachchi 2010] also explored the use of evolutionary algorithms to
optimize direct communication between agents, often in the pursuit of analyzing the origins of
communication [Buzing et al. 2005; Quinn 2001]. Some reinforcement learning approaches have
also directly addressed the pedestrian planning problem without communication [Martinez-Gil
et al. 2014].

3 APPROACH

We consider the problem of moving agents towards their goals while avoiding collisions with
agents and environmental obstacles. Each agent i is circular with a collision radius, ri , position, ®pi ,

velocity, ®vi , force, ®Fi and goal position, ®дoal i . Obstacles in the environment are modeled as blocks
with width and height s . Each agent must have a collision free path which reaches their goal in a
time-efficient manner.

Our method, C-TTC, approaches this problem by adding a communication layer that is used to
modify the behavior of an underlying collision avoidance model, in this case the TTC-Forces method
[Guy and Karamouzas 2015] (See Figure 3). At a high level, C-TTC combines two forces: an avoidance

force ®Fai and a coordination force ®Fci . ®Fai exists to repel agent i away from imminent collisions

but towards their goal, thus guaranteeing that agents eventually reach their goals. ®Fci coordinates
the collision avoidance of each agent so as to have more efficient motion (see Algorithm 1). This
coordination force is influenced according to some matrix of parameters, M . These parameters
weight the interaction between agents’ observations of each other, their emergent communication,
and how they change their motion based on that communication. Therefore, a key aspect of C-
TTC is choosing the communication parametersM that produce efficient and coordinated paths.
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Fig. 3. Flowchart of C-TTC’s agent dynamics. We allow the communication features, analogously thought
of as “audio", to affect only the forces of the agents, thus emphasizing the communication’s effect on
coordination. The spatial observations are analogously thought of as “visual" features that can only affect the

communication. How these input features affect ®Fc and ®c ′ is parameterized by M , which we optimize for.
Everything inherent to TTC, including its input features, is represented within its box.

Different scenarios will have different optimal parameters. Our framework can allow both an
“expert"M optimized for an expected environment or a generalizedM that supports a wide range
of scenarios.

Algorithm 1 Coordinated TTC

Require: M ← communication matrix
Require: A← set of communicating agents
Require: Avoid← TTC (force-based collision avoidance)
Require: Integrate← Numerical integrator of physics
1: procedure CTTC (M , A)
2: for all i ∈ A do

3: ®Fai ← Avoid(i,A)

4: ®Fci ← C-Offset(M, i,A) ⊲ See Algorithm 2

5: ®Fi ← ®Fci + ®Fai
6: ®p ′i ← Integrate( ®Fi )

7: for all i ∈ A do

8: ®pi ← ®p
′
i

9: ®ci ← ®c
′
i

3.1 Decentralized Communication

During every time-step of C-TTC, coordination forces are augmented onto the underlying force-
based collision avoidance algorithm (TTC-Forces). The augmentation is done by simply adding the

forces (line 5 of C-TTC) of the collision avoidance, ®Fai with our coordination force, ®Fci (Algorithm 2).
To compute the coordination force, each agent searches for its nearest neighbor (line 2 of Algorithm
2), computes its coordinate frame Ti (line 3), computes each of the spatial input features with
respect toTi (lines 4), and then computes its coordination force and its own “speech" for the next
time-step (line 5). Every time-step the 2D coordinate frame, Ti , of the agent is reset by facing it
towards the next node in its route and defining the right face of the agent as the cross-product of
the facing direction with the canonical up vector. When there are likely no potential interactions
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Algorithm 2 Coordination Offset

Require: M ← communication matrix
Require: A← set of communicating agents
Require: i ← current agent to offset
1: function C-OFFSET(M , i , A)
2: j ← nearest(i,A)
3: ComputeTi

4: Compute spatial features ®o ij =
[

θ ij , s
i
j ,ϕ

i
j ,d

i
j ,дi

]T
w.r.t.Ti

5:

[

®c ′i
®Fci

]

← Clamp

(

M ·

[

®c j
®o ij

] )

6: if ‖ ®дoal i − ®pi ‖ ≤ near then

7: return ®0
8: else

9: return ®Fci

between agents (i.e. when an agent is near its goal), there is no coordination force as it could only
coordinate an agent away from its goal (line 6). However, for the sake of continuity with other
agents, agents will continue to communicate even when they have reached the goal (if needed,
they are able to communicate this fact with дi ). The semantics of the communication channels
emerge automatically through the optimization process of optimizingM ; there is no predetermined
meaning to the resulting channels.
For the entire course of a simulation, each agent shares the same parameter setM , which is a
(m + 2) × (m + 5) matrix whose parameters are optimized as described in Section 3.2. There are
multiple kinds of input features toM , as represented by Figure 4. Each agent holds anm-dimensional
vector ®ci that represents their current projected “audio", as well as ®c ′i which buffers in updates from
the model each time-step (line 5 of Algorithm 2 and line 8 of Algorithm 1). This vector always

begins the simulation initialized to ®0 for every agent. Furthermore, each agent computes input
spatial features that it “observes" of j, with respect to i’s own coordinate frame,Ti .
Each agent receives their input features only from their nearest neighbor, who is referred to as

agent j in Algorithm 2. This is because we require a fixed size input out of the variable number of
possible inputs from all agents. Furthermore, finding just the nearest neighbor can be efficiently
computed with spatial data structures, such as a k-d tree or bounding volume hierarchy, just like
with TTC-Forces. Importantly, by reducing the variable number of observable inputs to a fixed
size provides ourM some invariance to the number of agents in a scenario. Many functions could
provide this invariance to the number of agents, such as observing the k nearest neighbors, k
"loudest" neighbors where you observe agents with the maximum ®c j norm weighted by distance,
or a distance weighted sum of the neighbors; but, we found the nearest neighbor to be satisfactory
in practice. Further, we use only the one nearest neighbor, in contrast to a k nearest neighbors to
allow for easier optimization ofM . Using any value of k would be a large number of parameters to
optimize for, because the dimensionality ofM would grow quadratically: (mk + 2) × ((m + 5)k). By
using a k of 1 we therefore have a dimensionality of 4 × 7 with the 2 × 5 bottom right parameters
set to zero.

In combination, we refer to ®c j and ®o
i
j in Algorithm 2 as the input features to an agent. The former

are the communication features “spoken" by agent j, and the latter are the spatial features of j

observed by agent i . Furthermore, ®c ′i refers to agent i’s output communication and ®Fci their output
coordination force. Referring to equation 1,Mc andMo are therefore the partitions ofM where
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Fig. 4. Representation of the communication and spatial features of Algorithm 2. The audio feature is received
from the nearest agent j. Many of the non-linear operations on the diagrammed spatial observations are
to make them relative to agent i’s coordinate frame Ti . More non-linear functions are applied to specific
features to simplify the model’s training and encourage coordinated behavior.

the communication and observations respectively affect agent i’s communication.MF is then the
communication’s effect on the motion of the agent i . The resultingM is of the following form:

[

®c ′i
®Fci

]

= Clamp

( [

Mc Mo

MF 0

] [

®c j
®o ij

] )

. (1)

We use zeros for all values in the bottom right ofM , as can be seen in equation 1, to reduce the
number of parameters to optimize. Moreover, this is done to focus on the effect of communication
and to avoid being redundant with TTC-Forces. The 0 partition, were it not zero, would only be
affected by the observations of the agent i , and not its communication with some other agent j.
Using zeros for the partition forces the agents to communicate in meaningful ways instead of just
using their spatial context.

BecauseM is linear the spatial input features, ®o ij have been carefully chosen and non-linearized

to increase the distinctiveness of communication between agents and be analogous to sensory
inputs. However, the semantics ofM are not predetermined, and the behaviors seen in our results
are completely emergent of the optimization. (See Section 5.)

The first k input dimensions ofM correspond to agent i listening to its nearest neighbor j’s com-
munication values c j . This is analogous to the sense of hearing in biological agents. The remaining
dimensions represent the spatial observations of the environment by agent i , often specifically
observing j. Informally, those observations are analogous to the visual and kinesthetic senses in
biological agents. A particularly important spatial feature we found to include is the distance of an
agent to its goal with some non-linearity. This is so that agents can bias towards behaviors that are
independent of their neighbor. Another feature we found important is to have some representation
of the relative orientation of the listened-to agent rather than relative displacement.

Finally, a collision avoidance force, ®Fai (from TTC-Forces) is augmented by a force ®Fci . We clamp
®Fci to the range [-1, 1] to allow ®Fai to avoid collisions. We also clamp ®ci to the same range to prevent
divergence of ®ci propagating across agents indefinitely. The non-linearity provided by the clamp
helps to give the useful behaviors seen in our results; theoretically, other sigmoidal non-linear
functions could be used in the same range. Note that agents can still propagate their ®ci values;
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20:8 Dalton Hildreth and Stephen J. Guy

many of the visualizations found in the Section 5 highlight this when agents switch colors, show a
near lack of color, or grow in intensity as they move in some direction.

3.2 Learning

Our evaluation function, shown in Algorithm 3, computes C-TTC’s forces every time-step in the
form of Algorithm 1. For any given scenario, the following is a summary of how we train an expert
model for some scene for use in C-TTC: Many simulations using C-TTC are run to sample and
optimize the parameters ofM for interaction overhead. Each simulation begins with every agent
individually planning a route over a road-map of the environment. During the simulations, anytime
an agent cannot see their planned route due to being offset by dynamic interactions they re-plan
their route the next time-step. (For performance reasons, a limited number of agents re-plan per
simulation time-step and the rest are queued.) Each agent then progresses towards their goals,
handling collisions via TTC-Forces as augmented by the communication forces.
The goal of our learning system is to solve the following optimization problem for a given

scene S :

MS = argmin
M

fS (M) (2)

whereMS defines an expert communication model for the scene S , although it can be applied to
any other scene because Algorithm 2 is agnostic to the scene’s initialization and total number of
agents.

Definition: Interaction Overhead. This work defines the interaction overhead of agents similarly
to [Godoy et al. 2018]. The interaction overhead of the simulation represents the aggregate overhead
of each individual agent. The overhead of an agent is the amount of simulated time it took to reach
its goal less the time it would take to follow its optimal path:

Oi = Time(i) −MinTimeToGoal(i) (3)

O = Ei ∈A[Oi ] + 3σi ∈A(Oi ) (4)

This captures not only the total time it would take for about 90% of agents to reach their goals
(Chebyshev’s Inequality), but also gracefully encourages coordinated fairness across agents (fairness
being that each gets a similar amount of overhead). This naturally avoids issues with penalizing
the last agent taking an outlying length of time, while still penalizing for larger groups arriving
much later than the average. This encourages the optimization to minimize the total arrival times
of agents and equally weight the amount of overhead each receives.

A gradient free optimizer is used to optimize the communication parameters,M , by repeatedly
running the simulation given different samples. The training will minimize O for communication
and return the optimal OS and corresponding parametersMS that produced it.
A global optimizer is required to optimizeM because the optimization landscape was found to

be noisy, and it needed to quickly explore many drastically different parameters forM . Of course,
whenM is 0 the communication simulation will perform exactly the same as TTC-Forces. So, our
optimization was centered on TTC-Forces by exploring within a window around 0.

4 IMPLEMENTATION DETAILS

4.1 C-TTC Parameters

Some of the non-linearities we chose for each of the spatial features were specifically to make
our method more efficient, particularly using softsign on the goal distance or inverse distance for
the relative position. As partially depicted in Figure 4, we defined our spatial features of relative
velocity (θ ij and s

i
j ), relative position (ϕij and d

i
j ), and goal distance (дi ) as follows.
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Algorithm 3 Crowd Simulation Evaluation

Require: M ← communication matrix
Require: S ← initial scene configuration
1: function fS (M)
2: A← S .aдents

3: for all i ∈ A do

4: Plan(i)

5: time ← 0
6: while time < MaxTime(S) ∧ (∃i ∈ A ¬Done(i)) do
7: C-TTC(M,A) ⊲ See Algorithm 1
8: if Done(i) then
9: Oi ← time −MinTimeToGoal(i)

10: time ← time + δt

11: for all i ∈ A do

12: if ¬Done(i) then

13: Oi ← P ‖ ®дoal i − ®pi ‖ + time −MinTimeToGoal(i)

14: return O ← Ei ∈A[Oi ] + 3σi ∈A(Oi )

15: function Done(i)

16: return ‖ ®дoal i − ®pi ‖ ≤ ϵ

Given that the relative velocity of agent j with respect to agent i is ®vij = Ti · ( ®vj − ®vi ) then the

relative speed between them, which relates the magnitude of correction potentially needed to align
two agents, is the following:

sij = ‖ ®v
i
j ‖ = ‖Ti · ( ®vj − ®vi )‖ (5)

Then sij is used to compute the goal-oriented velocity alignment of the two agents, which corresponds

to how much agent j is moving in the way of agent i:

θ ij = fi · ( ®vj − ®vi )/s
i
j = (Ti · ( ®vj − ®vi )/s

i
j )y (6)

where ®fi is the facing ofTi and the canonical y axis ofTi ’s coordinate frame. This vector can be
understood as the vector pointing towards the goal in Figure 4, thus the goal-alignment of this
feature.
The goal-oriented positional alignment, ϕij , corresponds to how much agent j is in the way of

agent i’s path. dij , the proximity, emphasizes closer agents (this can be thought as "louder"). Both of

these are defined similarly to θ ij and s
i
j , respectively:

ϕij = fi · (®pj − ®pi )d
i
j = (Ti · (®pj − ®pi )d

i
j )y (7)

dij = ‖ ®p
i
j ‖
−1
= ‖Ti · (®pj − ®pi )‖

−1 (8)

where the relative position of agent j with respect to i is ®pij = Ti · (®pj − ®pi ). Note the difference

between dij and s
i
j is that d

i
j takes the inverse distance to emphasize closer agents.

The last spatial input feature, дi , is agent i’s distance to its own final goal:

дi =
‖ ®дoal i − ®pi ‖

1 + ‖ ®дoal i − ®pi ‖
(9)
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It is non-linearized with softsign to provide a mostly uniform value toM when the agent is far away
from its destination, but an increasingly closer to 0 value as it approaches its goal. This uniform
value can then be used as a consistent bias, without overpowering the other input features.

For our results, we use a 2-dimensional vector for ®c . The penalty in Algorithm 3, P , for agents
not finishing within the allowed time we set to 2 because it worked well with our optimizer (larger
values discourage divergent behavior more strongly). We fixed the value of δt to 60 Hz time-steps.

4.2 Collision Avoidance: TTC-Forces

Our approach builds off of a baseline collision avoidance algorithm. We assume that it is a force-
based algorithm that allows our method to impart an additional coordination force. Here, we use
the recent TTC-Forces method [Guy and Karamouzas 2015] because it has shown to have good
behavior in practice, and is closely inspired by recent findings of the key PowerLaw relationship
that underlies human collision avoidance [Karamouzas et al. 2014].

TTC-Forces completely routes agents with forces to their goals without collisions by predicting
the future moment of collision τ . For any agent i , TTC-Forces calculates two combined forces: an

avoidance one, ®Fai , which repels agent i away from potential collisions as a approximate power

law of τ , and a goal one, ®Fдi , which pulls the agent towards their planned motion. After a time
horizon, τH , of 5 seconds TTC-forces ignores collision, which balances the assertiveness and
conscientiousness of the agents potential collisions [Guy and Karamouzas 2015]. The avoidance
force is then the following:

®Fai =
τH − τ

τ
·
®d

‖ ®d ‖
(10)

where ®d = (®pj + ®vjτ ) − (®pi + ®viτ ) is the direction to push agents away from their future collision.
The interplay of these forces can be tuned with a constant k that defines the strength of the goal
force, which we set to 2 as it balances the two forces well [Guy and Karamouzas 2015]. With that,
the goal force can be defined as such:

®Fдi = k
(

®vдoal − ®vi
)

(11)

Furthermore, the combined forces are limited to some maximum Fmax , which we set to 20 because
this reasonably balances the stability of the numerical integrator.
To avoid artifacts of symmetric scenes we add a small amount of uniform noise each time-step

in the form of a perturbation force. This and any other randomness is seeded with the same value
across every training iteration so as to replicate the best iteration for our final renderings.

4.3 Optimization: PSO

Because we use an optimization-based learning approach, choosing a good optimizer is central to
achieving good coordination behavior with our framework. Here, we choose the Particle Swarm
Optimization (PSO) approach [Zambrano-Bigiarini et al. 2013], as it is a global-optimization method
that does not require our objective function to be smooth or differentiable. Additionally, PSO can
handle well the presence of multiple local minima which can occur in our training. For similar
reasons, PSO has recently been popular in various optimization-based animation work, and has
been used directly for optimizing the paths of simulated crowds [Wong et al. 2015].
Briefly, PSO uses a constant number of particles each with a high-dimensional position and

velocity that represents a sample of a function that is being optimized. It then operates by randomly
exploring the optimization space in directions towards previously found minima. PSO’s particles
initially randomly sample from -1 to 1 in each dimension of the optimization space. This initial
range does not limit the model during the entire optimization; therefore, our optimized models
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Fig. 5. Illustrations of the test scenes: Circle (A), Intersection (B), Simple Doorway (C), Doorway (D), Crowd
(E), Hallway (F), Asymmetric (G), Escape (H). Each scenario is fully detailed in Table 1.

M can contain values larger than 1. The samples are iteratively pulled towards the minima found
by each particle to improve an evaluation function, in our method, this is the f of Algorithm 3.
Our implementation of PSO uses 40 particles and a maximum of 225 iterations for a total of 9000
function evaluations of f . The evolution of each particle is balanced by an inertial hyper-parameter,
wi , which maintains the motion of the particles, and two more weights,wl andwд , which control
the gravitation of the particles towards discovered minima. We tuned these hyper-parameters
to be wi = 0.729, wl = 1.494, and wд = 1.494 as suggested by the heuristics of [Trelea 2003]. A
topology connects the particles with some neighborhood set, which defines the neighborhood’s
global minimum forwд . We used a fully connected, global topology.

5 RESULTS

We tested eight scenarios, each of which we chose to cover a broad range of interactions (see 5 for
a visual summary of the diversity). For example, we widely varied the number of agents ranging
from 3 in Scene G to 200 in Scene E. Some scenes had no obstacles (Scenes B, E, and G) and others
had many to produce congestion (Scenes A, C , D, and F ). We also varied density of agents with
particularly sparse scenarios such as E andG or dense scenarios such as B and F . Furthermore, due
to their simplicity, Scenes E, G, and H are all scenes that TTC-Forces already performs reasonably
well on, and our method performs similarly. The other scenes, which often contain bottlenecks
(Scenes C and D) or dense environments (Scenes A, B, and F ), our method performs significantly
more efficiently.
As specified in Table 1, we limit the length of every simulation to a specific number of time-

steps. This is to prevent the simulation from running indefinitely when an agent attempts a poor
coordination strategy that navigates away from its goal. It also allows the optimization to run in a
reasonable length of time and not too heavily weight testing runs in which agents get stuck. As a
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Table 1. Summaries of each scenario that was trained and tested on. |A| refers to the quantity of agents in
the scene. Max time is how long the agents have to reach their goals before terminating the simulation and
penalizing their lack of completion.

Name Scene |A| Max Time Details

Circle A 60 40s 60 random .3m posts
Intersection B 56 40s Mirrored goals
S. Doorway C 4 30s 2 on 2
Doorway D 40 100s 20 per side
Crowd E 200 30s Random goals
Hallway F 40 90s Initially dense

Asymmetric G 3 40s 1 on 2
Escape H 65 60s one way

❍�✁✁✂�② ✭✄☎■✆t✝✞✟✝✠t✡☛✆ ✭☞☎

Fig. 6. Highlights of the emergent behavior of CTTC on the Intersection (B) and Hallway (F ) scenes. The top
subfigure highlights the biasing that agents will learn for coordinated group motion, reminiscent of flocking.
Emergent lane behavior is accomplished in the bo�om subfigure, ostensibly by agents communicating
magnetically; red a�racts red and red repels green.

heuristic, these times were chosen to be slightly more than the total time it took for TTC-Forces to
finish.
To allow for easy comparison across scenarios, we also define Ô as the overhead of C-TTC

normalized to the overhead of TTC-Forces:

Ô =
OC-TTC

OTTC
(12)

A simulation usingMS is rendered and cross-validated for each scenario to evaluate how well this
trained model generalizes, and to see the semantic nature of the agents’ communication in contrast
to the baseline of TTC-Forces. Some of these renderings can be seen in Figure 6 and the resulting

Ô overheads from cross-validating can be seen in Figure 7.
For visualizing our communication, we mapped the two values of ®ci to the CIE-Lab color-space

with a brightness of L = 0.8. This lets a lack of communication be represented as a desaturated,
grey value. Furthermore, each combination of the communication dimensions is represented with
a different hue.
See Figure 2 and Figure 6 for highlights of the kinds of emergent coordination behaviors that

our method produces. For many of the simpler scenes the resulting communication is relatively
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Figure 9 shows the progressive minimization of normalized overhead over each scenario’s
training. For all models, the optimizer quickly finds a communication strategy that leads to better
times than TTC. Note that the early iterations often are better than TTC because we take the best
of 40 random particle samples (and then keeping that best for further iterations). Hhowever, further
training is clearly required to have more efficient and coordinated behaviors. Most improvement
is seen in the first third of iterations, by far most of the improvements are scene in almost every
training scenario.
We implemented Algorithm 3 with an efficient program capable of simulating hundreds of

agents at thousands of time-steps per second, thus leading to total training times on the order
of minutes or hours depending on the scenario. The exact timing of each function evaluation is
strongly dependent on our exact implementation, particularly for scenarios with many agents or
obstacles. The wall clock time for all 9000 simulations across 225 iterations is roughly 10 hours for
the circle scene (A), 80 minutes for the intersection scene (B), 6 minutes for the simple doorway
scene (C), 136 minutes for the doorway scene (D), 16 hours for the crowd scene (E), 89 minutes
for the hallway scene (F ), 3 minutes for the asymmetric scene (G), and 245 minutes for the escape
scene (H ). Although all scenarios find significant improvements over TTC-Forces within fractions
of those total times.

6 CONCLUSION

In this work we proposed C-TTC, an algorithm for coordinated multi-agent navigation by training
agents to use decentralized communication according to some centralized norms. In every scenario
we trained for, C-TTC coordinates agents more efficiently to their goals than without communica-
tion. Furthermore, the language of communication that the trained models of C-TTC have learned
show behavior with global semantics such as those in Figure 6 and in the supplemental Video. We
also showed for many of the scenes that the emergent communication policy the agents learned is
generally useful to transferred scenarios.
Our results have shown a promising step towards the robust integration of communication

with motion planning in crowds. C-TTC agents learn meaningful communication that improves
their performance in a dynamic environments in was which are not possible with spatial features
alone. There are many other aspects of multi-agent navigation where communication could lead to
improved behavior beyond what we address here. For example, learned communication could be
applied more globally to coordinate congestion around different exits. Effectively, communication
can potentially be used to create a network of agents to coordinate broader goals and actions solely
from local interactions.

Limitations. Our method, when transferred to new scenarios, does not always lead to better
performance than unmodified TTC-Forces, particularly when applied to scenarios very different
than the one it was trained on. Although we only tested TTC-Forces, we could apply our framework
to other collision avoidance methods such as Boids [Reynolds 1987] or ORCA [van den Berg et al.
2011]. However, in these cases, it will alter the underlying behavior and may reduce desirable
features such as violating the collision-free guarantees in ORCA, or the power law relationship
captured in the PowerLaw model [Karamouzas et al. 2014]. PSO as an optimization technique
has important limitations when applied to our problem. Even when well tuned, PSO would often
struggle to iteratively improve parameter setsM over time. Moreover, PSO is hard to tune due to
the time-consuming nature of simulating thousands of crowd simulations.

FutureWork. An important avenue for future work is better optimizing the coordination produced
by the communication mechanics. While our results show efficient behavior, there are many
potential parameters, different input features, and different optimization methods that could further
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exploit communication. We are particularly excited about drawing on ideas successful from neural
networks. For example, the non-linear pooling of nearby features or using neural networks for
each agent’s parameters instead of a linear transforms. Performance could perhaps be further
improved by providing each agent with memory to dynamically communicate, learn, and plan
across a changing network, producing global plans from their local interactions, though this
will raise new difficulties with training and generalization. Furthermore, agents could learn to
dynamically change theirM , perhaps by interpolating between separately trained experts, instead
of the centralized, static paramater set we use now. We are also excited about the potential of
multi-task/multi-objective approaches to optimization, as these provide a natural avenue to train
on multiple scenarios at once.
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