SPNets: Human-like Navigation Behaviors with Uncertain Goals

Nicholas Sohre
sohre007@umn.edu
University of Minnesota CSE Dept
Minneapolis, Minnesota

Scene Representation Network

100 RELU
150 RELU
200 RELU

9o

E( ) Scene Representation

Stephen J. Guy
sjguy@umn.edu
University of Minnesota CSE Dept
Minneapolis, Minnesota

Planning Network

(mlv Y6 32192)

(A

200

500 RELU
300 RELU
100 RELU

Isovists
(x.y. 60 ray each)

St (9%,9%)
Gaussian

Potential Waypoints

Figure 1: SPNet Network Structure: Isovist feature rays from the path history are transformed by the scene representation
network and accumulated into a scene representation. The planning network predicts two potential actions it thinks are
likely to lead to efficient paths given the representation, along with a relative confidence between the two choices.

ABSTRACT

Most path planning techniques use exact, global information of the
environment to make optimal or near-optimal plans. In contrast,
humans navigate using only local information, which they must
augment with their understanding of typical building layouts to
guess what lies ahead, while integrating what they have seen al-
ready to form mental representations of building structure. Here,
we propose Scene Planning Networks (SPNets), a neural network
based approach for formulating the long-range navigation problem
as a series of local decisions similar to what humans face when
navigating. Agents navigating using SPNets build additive neural
representations of previous observations to understand local obsta-
cle structure, and use a network-based planning approach to plan
the next steps towards a fuzzy goal region. Our approach repro-
duces several important aspects of human behavior that are not
captured by either full global planning or simple local heuristics.
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1 INTRODUCTION

The interactive simulation of human motion is important in many
scenarios, with applications ranging from video games to building
design and smart city planning all benefiting from high-quality
human movement and behavior. Recent years have seen many
exciting advances centered around developing more human-like ap-
proaches in areas such as collision avoidance [Dutra et al. 2017] and
character animation [Lee et al. 2019]. However, there has not been
similar progress in developing human-like approaches to mid-level
task of determining how an agent plans long-term paths through
an environment. Here, we work to close that gap by proposing a
human-like approach to global navigation planning.

When navigating in new or unfamiliar environments, humans
must develop long term navigational plans to reach their goals,
while only seeing local information (e.g., doors, walls, and hallways),
and are often uncertain about the precise goal locations. Cognitive
Science has revealed several key components of human navigation
behaviors, such as looking for long goal directed avenues [Bailenson
et al. 2000; Lima et al. 2016] and the use of fuzzy mental maps to
aid in decision making [Epstein et al. 2017; Kaplan et al. 2017].
In this article, we propose the Scene-Planning Network (SPNet)
framework. SPNet emulates the human-like approach to global
navigation through a custom neural network structure that first
builds up an additive representation of the places an agent has
explored so far, and then leverages that representation, together
with uncertain goal locations, to develop a (stochastic) plan of what
next action is likely to make progress toward the goal. Our approach
captures several important behaviors that are not possible with
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either full global planning or simple local heuristics: SPNet agents
will integrate the history of what they have seen to improve their
navigation, make different decisions in response to varying levels
of certainty with the task at hand, and will stochastically follow a
variety paths in situations where multiple different paths to reach
the goal are reasonable. Importantly, the training approach used
in SPNet reaches human-like performance on these tasks without
requiring any human training data, allowing the approach to be
easily adopted in a variety of applications.

2 RELATED WORK

Our method draws from research in Computer Graphics, Deep
Learning, and Cognitive Science. Here we examine some closely
related work from these fields.

2.1 Local & Global Navigation

Previous work in human-like navigation has considered both local
and global contexts. Related work in local navigation has focused
on realistic behaviors [Kapadia et al. 2015; Karamouzas et al. 2017;
McDonnell et al. 2008], often with data-driven [Charalambous and
Chrysanthou 2014; Karamouzas et al. 2014; Wang et al. 2016] or
geometric [van den Berg et al. 2008] reactive approaches. Others
have looked to produce realistic local behaviors by modeling prob-
lems similarly to what humans experience [Lee et al. 2019; Ondfej
et al. 2010]. Here, we take a similar approach, broadening the scope
to considering compelling human-like behavior in the context of
global navigation.

Graph search has been used for global navigation in interac-
tive games, VR, and animation to allow virtual characters to plan
over a graph-like representation of their environment, producing
graph-optimal global routes to their goals, [Botea et al. 2013; van
Toll et al. 2016]. Other works have focused on acceleration tech-
niques [Lee and Lawrence 2013], or exploiting heuristics and opti-
mized structures to accelerate the search [Kallmann and Kapadia
2014]. Planners such as Rapidly-exploring Random Trees and its
variants [LaValle 1998] use a sampling based approach to build
plans in continuous environments under control constraints, while
others apply computer vision to directly predict next actions [Ra-
biee and Biswas 2019], perform waypoint navigation [Bansal et al.
2020], or vision-based navigation [Gupta et al. 2017].

Very related to our work is the area of agent-centered search.
Works in this field provide approaches for real-time heuristic search
under local information and time constraints. Approaches such as
D* Lite [Koenig and Likhachev 2002] and LRTA* [Korf 1990] in-
crementally learn heuristic information in an online fashion, and
extensions focus on improving convergence properties [Hernan-
dez and Meseguer 2005], learning speed ( [Koenig and Sun 2009;
Sturtevant and Bulitko 2011]), and memory efficiency [Bulitko and
Bjornsson 2009]. LRTS provides a learning framework with a tun-
able relationship between performance and optimality [Bulitko
2004]. Here, our work will focus on creating human-like behavior
(as opposed to guarantees on heuristic admissibility) while allowing
the goal to be fuzzy (our agents only have a distribution describing
where the goal may be).
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2.2 Deep Learning

Deep Learning (DL) techniques have been broadly applied to train
large neural networks in many fields [Sze et al. 2017]. Approaches
for navigation can either be supervised with known training data
(as in [Pfeiffer et al. 2017]), or the network can be trained to optimize
path cost using reinforcement learning (as in [Tamar et al. 2016]
and [2018]). Deep reinforcement learning (DRL) has recently shown
promise for navigation as a fine-tuning final step, as was done
in [Pfeiffer et al. 2018] and [Luo et al. 2020]. Very recent work has
sought to improve the practicality of DRL navigation by augmenting
it with classical, analytical planners( [Chaplot et al. 2020]). Neural
networks have also proven useful in transforming raw input into
rich and meaningful representations [Cai et al. 2019; Doersch 2016].
Additionally, works such as [Peters and O’Sullivan 2002] have used
learning techniques to model ways people understanding sensory
information. Eslami et al. used an additive representation network
to encode virtual scene descriptors that can be used to query views
from novel perspectives [Eslami et al. 2018]. A similar cognitive
structure has recently be used for efficient robot navigation on a
grid [Gupta et al. 2017]. We adapt a similar architecture to build
scene representations in a continuous environment.

3 LOCAL-GLOBAL PLANNING

Like humans, SPNet agents are assumed to have only local, limited
information about their environment and imprecise knowledge
of their long term goals. The agent’s task, then, is to integrate its
local observations, together with a learned understanding of typical
building layouts, to plan efficient paths toward likely goal locations.
We assume the agent is updated in real-time following a sense-plan-
act loop where it computes its direction of travel frequently based
on its history of recent observations.

This section details the underlying problem formulation and path
execution strategy of the SPNet framework. In the next section we
will introduce a novel network structure which makes the actual
predictions of the next optimal step for the agent.

3.1 Problem Formulation

Given a single agent tasked with navigating to given goal whose
location is not precisely known, we represent each aspect of the
problem as follows:

Agent Representation. The agent is represented by a circle with a
radius r large enough to encompass the collision model associated
with the agent’s animation.

Environment Representation. The agent’s environment is defined
by a series of line-segments which represent impassible obstacles,
and the agent is assumed to be able to move otherwise freely and
continuously in R?. An example map can be seen in Figure 2.

Goal Representation. An agent is not given the exact location of
its goal, but rather only a general fuzzy notion of its location. We
represent this as 2D Gaussian distribution centered at (pix,p1y), with
a standard deviation of ¢ in each dimension.

Sensing and memory. An agent can only directly observe the
portion of line segment obstacle walls which are visible from its
current position. In practice, we represent this as a series of i rays
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Figure 2: Feature Representation. The goal distribution is
shown as 1 and 2 standard deviation rings (o= 2m).

centered on the agent, whose length is the distance to the wall.
Together these rays form a visibility isovist from the point of view
of the agent. An example isovist can be seen in Figure 2 (blue rays).
At any moment, the agent is assumed to have access not only to
its current visibility isovist, but also up to the last n isovists it has
previously seen. In this way, agents have memory of the past.

For all results, we use i = 60 rays to capture the local visibility
isovist. The agent’s memory length n is capped at 3 in training, but
is allowed to grow to larger values in execution.

3.2 Execution Strategy

The optimal path between any two points in a 2D map can always
be found by connecting straight lines between corners or ends of
walls [Lozano-Pérez and Wesley 1979]. We refer to any such (poten-
tially optimal) point as a navigation node, and statically compute
all such navigation nodes for any map (purple x’s in Figure 2). This
discretizes the continuous navigation problem without sacrificing
any potential path quality by choosing between reachable navi-
gation nodes. We move navigation nodes to be r away from the
closest wall to account for the agent’s radius.

Our fundamental execution strategy is as follows. Given a set of
navigation nodes, a start node, and a goal distribution, our agents
utilize a neural-network to select the next navigation node to travel
to. At each step, given the current and recent local visibility isovists,
the network predicts the next optimal node position. The agent
then moves to whichever of the neighboring navigation nodes
(e.g., currently visible nodes) is closest to the network’s prediction.
To guarantee the agent eventually reaches the goal (and avoids
infinite travel loops), we introduce a maxVisitCount parameter,
which specifies the maximum number of times the agent can visit
the same node before the node is removed from consideration. A
more in-depth description of execution can be found in Appendix A.

4 LEARNED NAVIGATION

SPNet’s novel network-based formulation encapsulates both the
process of the agent building a mental map of the environment
and planning the next best location towards which to move. In this
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section we both describe the network architecture and discuss the
training approach.

4.1 Network Structure

The structure of our prediction network (shown in Figure 1) draws
on the idea of mental maps. Rather than taking in a visibility isovist
(or series of isovists) and directly predicting the next location, we
divide the tasks into separate responsibilities: a Scene Representa-
tion Network whose job is to build a representation of map seen so
far, and a Planning Network, which takes this representation along
with the (fuzzy) goal location and predicts the next step to take.
This separation of responsibilities also leads to greater flexibility in
how the network is used in execution.

We implement the Scene Representation Network using a three
layer neural network (500-300-100 nodes respectively), with a ReLU
activation function between each layer. The input of this network
is the normalized 60 isovist ray lengths, together with the x and y
offset of where the isovist was seen relative to the agent’s current
position. The output of this network is a 200 valued feature vector
which represents the environment. The Scene Representation Net-
work is run once for each isovist in the agent’s path history, defined
as the most recent n isovists (and their offsets) that the agent has
seen. The resulting encoding from each isovist are then summed
to produce the final 200-dimensional scene representation vector.
Critically, this additive representation does not require the agent to
use a fixed path history size in execution or training. Summing the
Scene Representation Network output over more or fewer previ-
ously observed isovists will change the agents behavior in a natural
fashion. This behavior tuning is discussed further in Section 5.2.

The Planning Network combines the 200-dimensional scene
representation together with the goal region to determine the likely
next actions. The goal input is represented as three parameters
defining a Gaussian which describes a distribution over possible
goal locations. These values are concatenated with the encoding,
and the resulting 203 dimensional vector is then passed through
another three layer network (100-150-200 nodes respectively), with
a ReLU activation function between each layer. The output of this
network encodes the next step for the agent to take.

4.2 Navigation Prediction

Rather than producing a single 2D coordinate for the next naviga-
tion step, our network outputs a stochastic prediction split over two
alternatives: pg = (xo, yo) and p1 = (x1,y1) represent the probable
offsets (relative to the agent) of optimal next navigation nodes, and
¢ ranges continuously from 0 to 1 represent the network’s choice
between po and p; (0 for choice 0, 1 for choice 1).

We train this output using a three-part loss function:

L(po, p1, ¢ Y) = kmLmin + kaLavg + kapred (1

with po, p1, and c as defined above, y as the true optimal prediction
for this scenario, and ky, kq, and kp as tuning parameters that
relatively weight the three components of the loss.

Each of the three components of the loss function serves a dif-
ferent purpose. The first term:

Liin (po. p1.y) = min(sollpo — yll. s1llp1 = yll) (2
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Figure 3: Prediction under Ambiguity. The agent (blue) navi-
gates to its goal (green) from 2 locations in a courtyard-style
map. Blue lines terminate at predictions (larger grey circle
— more confident prediction). Unambiguous scenarios pro-
duce greater confidence in the chosen direction.

measures how close the better of the two predictions is to the opti-
mal next node. The s; terms, computed as s; = 5 * sigmoid(||p; —
yl| = llpa — yll) where p, is the agent position, add penalties to
discourage overly short predictions. The min() ensures this compo-
nent of the loss only provides a reward for improving the better of
the two predictions. This allows the network to split the prediction,
as there is no penalty for the wrong half of the split. Combined
over training data representing ambiguous scenarios, the two pre-
dictions are driven towards different, but equally promising next
steps.

Simply optimizing the better of two predictions during training
is insufficient when one of the two predictions is much further
away from the correct node than the other. The second loss term,
Layg, addresses this by providing a small penalty for the average of
the two predictions:

Lavg (po. p1.y) = (llpo — yll + llp1 — yll) /2 3)

This term must have a small weight to ensure the primary loss
comes from Ly,;, to maintain split predictions.

The network also must learn to indicate which of the two predic-
tions is the correct using an output value c. This is accomplished
via the third loss term, Lpeq:

Lpred (o, 1, ¢ y) = |(c = sigmoid([lpy = yll = llpo = yIDI, ~ (4)

where the sigmoid function, 1/(1+e ™), maps the relative difference
between the errors of the two options to the continuous domain
[0, 1]. This loss will be driven to zero when ¢ matches the (sigmoid
of) the relative error. When c is exactly 0 or 1, the agent should
move to pg or p; respectively. When c is between these values, the
network can stochastically select an option, leading to a spread of
reasonable paths. Unless otherwise stated, for all results we used a
km 0f 0.999, a kg of 0.001, and a k;, of 10.

Figure 3 shows the effect of the network’s split prediction. At the
top left of the map, the network does not have enough information
to know which side of the courtyard is most optimal, and bifurcates
the prediction between the two hallways. When the agent is in a
less ambiguous part of the building, the network is more confident
in the next step. We performed a user study to compare SPNet paths
to those taken by real humans for the same tasks (see Appendix E).
As Figure 4 shows, in this and other ambiguous scenarios, both user
and SPNet paths bifurcate similarly.

Nicholas Sohre and Stephen J. Guy

T ] 1|
] % |
s s

’ User —— SPNet SPNet Optimal |

—

Figure 4: Human-Like Behavior: SPNet produces efficient,
human-like paths both for maps on which it was trained
(left), and maps not seen in training (right).
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Figure 5: Training Profile Comparisons. A + or — in a condi-
tion label denotes presence or absence of an SPNet network
feature respectively. "S" and "H" represent split predictions
and path history respectively.

4.3 Data Generation & Training

The Scene Representation Network and the Planning Network are
trained together as one system. The training data is generated by an
exhaustive sampling of every reachable start-goal pair of navigation
nodes in training maps (see Appendix D for dataset details). Given
a start-goal pair, we permute possible path histories to generate
training rows.

In training, the network is never given the actual goal position,
but a distribution with a mean sampled from a gaussian centered
at the true goal location with uncertainty o. In order to integrate
this uncertain representation into a gradient-based optimization
architecture, we employ a custom network layer which samples
the fuzzy goal region to generate a specific training instance (the
dark shaded box in Figure 1). Importantly, the o used to perturb the
goal location is also an input to the navigational network, enabling
the input o to be used as a run-time tuning parameter that controls
how much the agent is willing to explore.

The network weights are trained using Keras [Chollet et al. 2015]
using stochastic minibatch gradient decent with an ADAM opti-
mizer. Further training details are given in Appendix B.1.
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Figure 6: Effect of Goal Uncertainty: The right path has o
= 2.5m and the left has no goal uncertainty. The high un-
certainty case produces exploratory behavior as the agent
searches for the goal, while the agent on the right heads di-
rectly for the certain goal location.

5 RESULTS & ANALYSIS
5.1 Network Analysis

As discussed above, allowing the network to split its prediction lead
to more human-like behaviors. Additionally, these split predictions
improve the training performance of the network. Figure 5 shows a
comparison of the SPNet network trained on a single map with 6m
of goal uncertainty with and without split predictions. With split
predictions enabled, there is over a 60% reduction in the final loss
L (from 3.68 down to 2.26). Similarly, the additive representation
enabling path history also led to improved loss in training. Figure 5
shows that incorporating path history lead to an additional 15%
reduction in the training loss.

5.2 Behavioral Analysis

Our problem formulation and custom network structure allows
SPNet agents to display several human-like navigation behaviors
that are not possible either with optimal planning techniques or
simple local heuristics. SPNet agents respond only to their local
conditions, explore in search of vague goals, integrate their observa-
tions over time, and intelligently backtrack when they get stuck in
local minima. The framework runs in real-time, with a full planning
step taking 1-2ms (see Appendix B.2 for runtime details).

As the SPNet predictions are a distribution over two likely pos-
sible actions, stochastically selecting one can create a natural di-
versity of paths. Because the choice of which node to go to next
follows the distribution predicted by the network, the agent paths
tend to vary more in ambiguous situations (see Figure 4).

Figure 6 shows a SPNet agent navigating past a fork juncture
on an apartment-style map. Here, when the goal uncertainty is
small (left), the agent navigates straight to the goal, taking a near-
optimal path. While this path might be expected from a person who
is very familiar with both this building and the exact goal location,
its not very reflective of the ambiguity inherent in the navigation
task. Increasing the goal uncertainty (right) naturally leads to an
exploration behavior.

SPNet agents have two main tunable parameters which can
control the behaviors: the size of the goal region o (creating less
certainty in the agents decisions), and the maximum path history
n (creating more intelligent backtracking behaviors). These two
parameters can also interact with each other. For example, for low
o, paths are more efficient regardless of the size of the path history.
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Figure 7: Effect of Behavioral Parameters. Goal uncertainty
and history size can be tuned to affect agent behavior. Large
uncertainty leads to exploratory behavior, and increasing
the history size leads to more optimal paths.
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Figure 8: Generalization: Simulated trajectories are shown
for an environment not seen in training. Blue dots and green
stars indicating the start and goal locations respectively.

When the goal region grows larger, path history becomes more
important, especially as the agent needs to reason about which
previously explored paths are unlikely to lead to the goal.

Figure 7 explores the interaction of goal uncertainty and path
history by comparing SPNet paths to optimal averaged over 200
random tasks spread over the 5 training maps. A larger history
size increases path optimality across goal uncertainties, even for
history sizes and uncertainties beyond those used in training. A
2-way ANOVA reveals that goal uncertainty has a more significant
effect on the agent’s path than history (history F=2.4, p < 0.1, uncer-
tainty F=7, p<0.05). These results confirm the ability of the scene
representation and planning networks to generalize outside the
range of parameter values used in training.

Figure 8 (and Appendix C.3) show SPNet agents navigating in a
variety of challenging paths on untrained maps. The agents typi-
cally find relatively efficient and natural paths that reach their goal
despite having never seen the map in training.

6 LIMITATIONS & FUTURE WORK

While SPNet covers an important aspect of a human-like global
navigation, it focuses on single agent navigation. Planning in envi-
ronments with multiple agents typically require specialized search
techniques [Atzmon et al. 2020] or hierarchical models [Musse and
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Thalmann 2001]. Expanding the network input to include the rela-
tive position and velocity of other agents could combine local and
global planning into an integrated network. While SPNet is already
realtime for a single agent, faster performance may be needed to
support large crowd simulations with thousands of agents in a
shared scene. Here, it may be possible to accelerate isovist con-
struction using spatial data structures, and to speed up network
computation by using GPUs.

In conclusion, we have presented SPNet, a comprehensive frame-
work for human-like global navigation under local information
in building environments. The result is a real-time system capa-
ble of intelligent navigation behaviors, including exploration and
backtracking, environment familiarity, varied routes per task, and
efficient but sub-optimal routes toward fuzzy goals.
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A EXECUTION DETAILS

Algorithms 1 & 2 detail the SPNet execution strategy. Because SPNet
executes very quickly, it is possible to plan fully to the goal and
smooth away minor inefficiencies in the resulting path. Here, we
generally avoid such smoothing techniques as they can suppress
desired exploration behaviors. One exception is that if a network
predicts visiting a node it has already visited (or a node for which
the agent has already seen all of the node’s neighbors), the we allow
the agent to move directly toward the next predicted node as soon
as it comes into view. In practice, the particular character animation
system used may provide some additional path smoothing as the
character animates between nodes.

Algorithm 1: SPNet

Input: map (Walls and Nodes), start (Node), goal (Node),
goalRegionMean (Position), goalRegionSigma (float)

Output: path (Node List)

#global maxVisitCount = 3;

/* visit count for each node */

#global visits = [0] * map.numNodes;

/* path is full route (will include back-tracking sequences) */

path = [J;

/* history is path with cycles removed */

history = [];

current = start;

while current != goal do
next = SPNetStep(map,current,goalRegionMean,

goalRegionSigma,history,path);
path.push(next);
current = next;
end
return path;

B NETWORK DETAILS

B.1 Training Details

The network was trained on 10 cores of an 2.3 GHz Intel(R) Xeon(R)
CPU. Training was run for 230 epochs that iterated through all

Loss
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Epochs

Figure 9: Training Loss: Total training loss (outset) and just
the predictions loss L4 (inset) throughout training.
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Algorithm 2: SPNet Step
Input: map (Walls and Nodes), current (Node), goal(Node),
goalRegionMean (Position), goalRegionSigma (float),
history (Node List), path (Node List)
Output: next (Node) visits[current]++;
if isVisible(goal) then
‘ next = goal;

else
/* gets all visible nodes from current node visited less

than maxVisitCount times */

candidates = map.getVisibleNodes(current,
maxVisitCount);

if candidates.size == 0 then

/* retrace our steps */

next = history.pop();

else

position = getNetworkPrediction(current,
goalRegionMean, goalRegionSigma, candidates,
path);

next = map.getClosestNode(position);

history.push(current);

end
end
return next;

the training data, with each epoch taking about 3 minutes, and the
entire run taking 12 hours. As can be seen in Figure 9, most of the
improvements in loss came at the start of training, but the longer
run ensured the network had sufficient time to converge.

Training was performed across 5 maps and included all possible
paths with a history of length three for a total of 2,315,665 training
examples, each of which was sampled with three levels of goal
uncertainty (sampled from 0, 1, and 2m gaussian distributions re-
spectively), leading to about 7 million samples trained each epoch.
Epochs were trained in batches of size 100,000 using the Keras
framework with the ADAM optimizer and a dynamic learning rate
that started at 3e-4 and ended at 1e-5.

To improve numerical stability, isovist ray lengths are normalized
to lie on the interval [0, 3] by dividing by 1/3 of the maximum
length of 30m. Unless otherwise stated below, the network was
trained with a goal uncertainty o € {0, 1, 2} meters, and a maximum
path history of size 3. We note that while 2m may seem like a
small distance, in practice sampling from a 2D gaussian with i.i.d
dimensions at o = 2m often yields points significantly farther than
2m from the mean (in fact, the 1 std dev circle having diameter 4m
will probabalistically contain less than half of sampled points). As
discussed in Section 5.2, the network was able to extrapolate good
behavioral performance beyond the uncertainties and history sizes
on which it was trained.

B.2 Runtime Breakdown

The runtime of SPNet planning is dominated by three major com-
ponents. Figure 10 shows the runtime breakdown of each for maps
of various sizes. All experiments were run on a desktop PC with
an Intel i7 4770K CPU and 16GB of memory. While computing
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Table 1: User study and participant summary.

Users Tasks Avg. Game Experience
Samples/Task (hrs/mo)
Trained Untrained None/Rare 1-4 5-20 20+
Study 1 (selected tasks) 48 8 2 40.45 13 1 9 15
Study 2 (random tasks) 27 25 15 9.85 7 5 9 6
3 | | 9
L2 | | 2  Sub Task 50 50
V; 1 [] ot Scene Net
[ M Goal Check
83 | = MIsovists
2 [ A Planning Net
1 || )

00 05 10 15 20
Time (milliseconds)

Figure 10: SPNet Runtime: Average total runtime for each
step of planning in SPNet across history and map size. 50
random tasks were executed for a small (House) and large
(Business Park) map to generate timing samples. Runtime
cost is primarily split between executing the prediction net-
work, scene network, and computing isovist features.

isovists takes longer on larger maps as more visibility checks are
needed, the planning network runtimes are fairly constant. Longer
path histories add incremental cost as the scene representation
network is run once per recalled isovist. Even for very large maps,
SPNet runs in realtime, taking less than 2ms to output a next step.
If faster performance is required, isovists can be precomputed for
each navigation node.

C FURTHER BEHAVIORAL ANALYSIS

C.1 Comparison to Local Heuristics

SPNets bridge the gap between global planning techniques and
local navigation heuristics. Human route selection studies have
revealed high-quality local route selection heuristics that strongly
influence human paths. Two of these techniques from the cognitive
science domain that can be directly implemented in the broader
navigation framework of this paper are:

e Traveling as far as possible towards a goal [Bailenson et al.
2000], which we will refer to as Closest-to-Goal (CTG)

e Maintaining a small relative angle in heading with respect to
the goal [Lima et al. 2016], which we will refer to as Angle-
to-Goal (ATG)

Figure 11 shows the results of replacing the network predictions
with CTG and ATG-based heuristics. When compared to the tasks in
the user study data (see Appendix E), both CTG and ATG had path
lengths which were more similar to human paths that the optimal
route selection. This result is consistent with the existing findings
in psychology of the general importance and applicability of these
local navigation heuristics to humans. On the tasks tested in the
user study, SPNet matches human path lengths as well as (or better
than) these heuristics, while exhibiting more natural behaviors

o .
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40 * 40
3 1 - 30
i .
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Optimal SPNet User ATG CTG
Navigation Method

Path Length (meters)
Path Length (meters)

Optimal SPNet User ATG CTG
Navigation Method

(a) Trained Maps (b) Untrained Maps

Figure 11: Differences from mean user path lengths on
Round 2 of the User study for trained and untrained map
sets.
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Figure 12: Effect of Path History: Two simulated trajectories
for the same task. The left path was generated by an agent
with no path history, and the right trajectory the agent in-
corporates the past three visited map nodes in planning,.

(ATG tends to oscillate and CTG can get stuck in obstacle local
minima) and supporting uncertain goals and memory integration.

Some over-fitting effects can be observed in trained maps where
SPNet produces path lengths closer to optimal than human paths,
while matching human path lengths better on untrained maps. This
suggests that techniques to help combat over-fitting such as larger
training data sets and early-stopping may further improve SPNet’s
path quality on trained maps. Alternatively, this over-fitting can be
exploited as a feature when agents should exhibit familiarity with
a particular environment.

C.2 Effect of History

Figure 12 shows an example of the key navigational behaviors
SPNet agents exhibit. On the left is an agent with a max path
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Figure 13: Effect of history size on path optimally averaged
across all paths with goal size o=2.
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Figure 14: Remembering the Past: Our representation net-
work allows for the integration of past observations that
influences future decisions, resulting in more human-like
path lengths on untrained maps.

history of 3 isovists and a relatively large goal distribution (o = 2m
of uncertainty, shown as the shaded circle at 1 std dev radius). After
initially exploring the room overlapping the bottom half of the goal
distribution, the agent rules out the area as a potential goal location
and remembers this as it travels up the left side of the environment.
In contrast, an agent who is using only its single, current isovist (no
path history) is unable to remember where it has been. Figure 12
right shows such an agent, who must return to places it had been
before, eventually finding a longer route to the goal.

We can effectively increase the size of the history simply by
summing additional encodings together before sending them to
the planning network. As shown in Figure 7 and Figure 14, this
additive encoding scheme allows the SPNet to make meaningful
use of additional history even outside the sizes it was trained on.
Figure 13 shows the effect of planning over longer histories on the
optimality of the resulting paths. Plans that account for more history
lead to more optimal paths, even when using longer histories than
were seen in training.
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Table 2: Datasets: the collection of maps analyzed in this
work. The table indicates the size of the maps, and the num-
ber of instances of training data that would be generated
from that map. The three largest maps and one smaller map
were excluded from training and used to test generalization.

Walls Nodes Size (m) Data(#) Use

Simple 29 28 12x8 16 K Train
Apartment 65 65 14x9 157 K Train
House 72 84 29x19 168 K Train
Courtyard 75 97 17x12 867K Train
Medical 101 109 23x27 1.1M Train
Office 84 95 28x17 781 K Test
University Labs 129 154 44x26 4.66 M Test
Business Park 161 197 33x27 4.60 M Test
Conference 276 332 61x33 1544 M Test

C.3 Generalizing to Large Maps

SPNet agents can perform well on large maps not seen in training
even for relatively long or complex tasks (Figures 16, 15).
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Figure 15: Selected SPNet trajectories on a business suites
map (history size 3, uncertainty = Om).
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Figure 16: Selected SPNet trajectories on a conference center
map (history size 3, uncertainty = Om).
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Figure 17: User Study: Snapshot from the user-study tasks.
Participants were asked to navigate to a goal whose relative
position was indicated by by the green dot in the minimap
in the lower right.

D DATASETS

While we employ a supervised learning approach, it would be
impractical to gather enough human trajectory data to demonstrate
good behavior on a meaningful percentage of the potential tasks.
For example, the 6 maps we use in our training dataset contain
6.9 million training examples of different start goal pairs permuted
with possible previous observations. In order to create this data,
we instead use a graph-optimal search to determine the optimal
path from start to goal, and use the resulting step-wise decisions in
training.

While the SPNet network is trained on optimal paths, our goal
is not to produce purely optimal behavior. Rather, attempting to
be globally optimal while restricting the network to only local,
uncertain information results in paths with human-like sub-optimal
behaviors, even on maps used in training.

To facilitate training and evaluation, we create a dataset of en-
vironments based on real floor plans from a variety of buildings
of different shapes and sizes (see Figures 19 and 20). Maps used in
training the network include three smaller buildings, two larger
buildings, and a small test map made by hand. This dataset consists
of a wide range of different environments, with very different types
of layouts, and very different sizes (see Table 2). Additionally, we
withheld a set of maps from training to be used in analysis of how
the method performs in untrained scenarios. All maps are rendered
in Figures 20 and 19.

E USER STUDY

To validate the human-like properties of SPNet paths, we gathered
human paths via a user study approved by the Institutional Review
Board (IRB). During the the study, participants performed naviga-
tion tasks via a 3D game-like interface in a web browser (on their
own machines) through a rendering of the maps in Table 2. A min-
imap displayed a live update of the relative goal location, but not
walls in order to provide some natural uncertainty in the exact goal
location (see Figure 17). Participants were asked to aim to complete
15 navigation tasks, but were allowed to do as many or few as they
chose, with the average user completing 16.9 navigation tasks (see
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Figure 18: Path Length Comparison: Human users take
longer paths than the graph-optimal sequence. For trained
maps, SPNet path lengths are close to graph-optimal, but
on new maps SPNet paths are closer to the paths taken by
humans.

Table 1 for additional details). Each user was given a sample “warm-
up" task to acclimate to the controls. As the user moved through
each task, their trajectory was tracked at a frequency of 10 samples
per meter displacement. Trajectories for the same tasks were gen-
erated using SPNet, with the goal region centered on the true goal
position. Before performing analyses, both user and simulated paths
are put through a low-pass running median filter as implemented
in the runmed function of the R statistical programming language
with k=11 to remove any small jittering in the paths. Users took
one of two versions of the study: the first consisted of randomized
hand-picked tasks for qualitative comparison (879 trajectories cap-
tured), and the second consisted of random tasks across all maps
for quantitative comparisons (394 trajectories captured).

Quantitatively, we see SPNet has more similar path lengths to
humans than graph-optimal planning. Figure 18 shows that path
lengths of SPNet agents are more similar to study participants than
paths generated using the graph-optimal routing. An ANOVA with
Tukey post-hoc analysis shows strong separation between optimal
path lengths and user path lengths as well as SPNet path lengths
(p < 0.05), while showing the User and SPNet distributions as
similar (p 0.43). Qualitatively, the user study results show SPNet
captures the natural, efficient, and varied paths real humans take.
Figure 4(left) shows SPNet on an ambiguous task in the Courtyard
map, which was included in training. Here, SPNet agents follow
different paths that encompass the majority of the types taken
by the users in the study. In a similarly ambiguous task on the
untrained University Labs map, Figure 4(right), SPNet agents are
capable of finding both homotopies portrayed in human routes. In
practice, we find SPNet agents tend to produce compelling split
predictions in untrained environments, but are overly confident
between the two choices as compared to maps seen in training.
Therefore, while SPNet agents show exploration behaviors, and
human-like path lengths in both trained and untrained maps, it
may be best in practice to train on maps when possible to ensure
more path variety.
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Below we show the maps used in training (Figure 19) and test-
ing (Figure 20). All environments were based on real floor plans,
abstracting away irrelevant obstacle detail.
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Figure 19: Training Maps.
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Figure 20: Testing Maps.



