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either full global planning or simple local heuristics: SPNet agents

will integrate the history of what they have seen to improve their

navigation, make different decisions in response to varying levels

of certainty with the task at hand, and will stochastically follow a

variety paths in situations where multiple different paths to reach

the goal are reasonable. Importantly, the training approach used

in SPNet reaches human-like performance on these tasks without

requiring any human training data, allowing the approach to be

easily adopted in a variety of applications.

2 RELATED WORK

Our method draws from research in Computer Graphics, Deep

Learning, and Cognitive Science. Here we examine some closely

related work from these fields.

2.1 Local & Global Navigation

Previous work in human-like navigation has considered both local

and global contexts. Related work in local navigation has focused

on realistic behaviors [Kapadia et al. 2015; Karamouzas et al. 2017;

McDonnell et al. 2008], often with data-driven [Charalambous and

Chrysanthou 2014; Karamouzas et al. 2014; Wang et al. 2016] or

geometric [van den Berg et al. 2008] reactive approaches. Others

have looked to produce realistic local behaviors by modeling prob-

lems similarly to what humans experience [Lee et al. 2019; Ondřej

et al. 2010]. Here, we take a similar approach, broadening the scope

to considering compelling human-like behavior in the context of

global navigation.

Graph search has been used for global navigation in interac-

tive games, VR, and animation to allow virtual characters to plan

over a graph-like representation of their environment, producing

graph-optimal global routes to their goals, [Botea et al. 2013; van

Toll et al. 2016]. Other works have focused on acceleration tech-

niques [Lee and Lawrence 2013], or exploiting heuristics and opti-

mized structures to accelerate the search [Kallmann and Kapadia

2014]. Planners such as Rapidly-exploring Random Trees and its

variants [LaValle 1998] use a sampling based approach to build

plans in continuous environments under control constraints, while

others apply computer vision to directly predict next actions [Ra-

biee and Biswas 2019], perform waypoint navigation [Bansal et al.

2020], or vision-based navigation [Gupta et al. 2017].

Very related to our work is the area of agent-centered search.

Works in this field provide approaches for real-time heuristic search

under local information and time constraints. Approaches such as

D* Lite [Koenig and Likhachev 2002] and LRTA* [Korf 1990] in-

crementally learn heuristic information in an online fashion, and

extensions focus on improving convergence properties [Hernán-

dez and Meseguer 2005], learning speed ( [Koenig and Sun 2009;

Sturtevant and Bulitko 2011]), and memory efficiency [Bulitko and

Björnsson 2009]. LRTS provides a learning framework with a tun-

able relationship between performance and optimality [Bulitko

2004]. Here, our work will focus on creating human-like behavior

(as opposed to guarantees on heuristic admissibility) while allowing

the goal to be fuzzy (our agents only have a distribution describing

where the goal may be).

2.2 Deep Learning

Deep Learning (DL) techniques have been broadly applied to train

large neural networks in many fields [Sze et al. 2017]. Approaches

for navigation can either be supervised with known training data

(as in [Pfeiffer et al. 2017]), or the network can be trained to optimize

path cost using reinforcement learning (as in [Tamar et al. 2016]

and [2018]). Deep reinforcement learning (DRL) has recently shown

promise for navigation as a fine-tuning final step, as was done

in [Pfeiffer et al. 2018] and [Luo et al. 2020]. Very recent work has

sought to improve the practicality of DRL navigation by augmenting

it with classical, analytical planners( [Chaplot et al. 2020]). Neural

networks have also proven useful in transforming raw input into

rich and meaningful representations [Cai et al. 2019; Doersch 2016].

Additionally, works such as [Peters and O’Sullivan 2002] have used

learning techniques to model ways people understanding sensory

information. Eslami et al. used an additive representation network

to encode virtual scene descriptors that can be used to query views

from novel perspectives [Eslami et al. 2018]. A similar cognitive

structure has recently be used for efficient robot navigation on a

grid [Gupta et al. 2017]. We adapt a similar architecture to build

scene representations in a continuous environment.

3 LOCAL-GLOBAL PLANNING

Like humans, SPNet agents are assumed to have only local, limited

information about their environment and imprecise knowledge

of their long term goals. The agent’s task, then, is to integrate its

local observations, together with a learned understanding of typical

building layouts, to plan efficient paths toward likely goal locations.

We assume the agent is updated in real-time following a sense-plan-

act loop where it computes its direction of travel frequently based

on its history of recent observations.

This section details the underlying problem formulation and path

execution strategy of the SPNet framework. In the next section we

will introduce a novel network structure which makes the actual

predictions of the next optimal step for the agent.

3.1 Problem Formulation

Given a single agent tasked with navigating to given goal whose

location is not precisely known, we represent each aspect of the

problem as follows:

Agent Representation. The agent is represented by a circle with a

radius A large enough to encompass the collision model associated

with the agent’s animation.

Environment Representation. The agent’s environment is defined

by a series of line-segments which represent impassible obstacles,

and the agent is assumed to be able to move otherwise freely and

continuously in R2. An example map can be seen in Figure 2.

Goal Representation. An agent is not given the exact location of

its goal, but rather only a general fuzzy notion of its location. We

represent this as 2D Gaussian distribution centered at (`G ,`~ ), with

a standard deviation of f in each dimension.

Sensing and memory. An agent can only directly observe the

portion of line segment obstacle walls which are visible from its

current position. In practice, we represent this as a series of 8 rays
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Thalmann 2001]. Expanding the network input to include the rela-

tive position and velocity of other agents could combine local and

global planning into an integrated network. While SPNet is already

realtime for a single agent, faster performance may be needed to

support large crowd simulations with thousands of agents in a

shared scene. Here, it may be possible to accelerate isovist con-

struction using spatial data structures, and to speed up network

computation by using GPUs.

In conclusion, we have presented SPNet, a comprehensive frame-

work for human-like global navigation under local information

in building environments. The result is a real-time system capa-

ble of intelligent navigation behaviors, including exploration and

backtracking, environment familiarity, varied routes per task, and

efficient but sub-optimal routes toward fuzzy goals.
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A EXECUTION DETAILS

Algorithms 1 & 2 detail the SPNet execution strategy. Because SPNet

executes very quickly, it is possible to plan fully to the goal and

smooth away minor inefficiencies in the resulting path. Here, we

generally avoid such smoothing techniques as they can suppress

desired exploration behaviors. One exception is that if a network

predicts visiting a node it has already visited (or a node for which

the agent has already seen all of the node’s neighbors), the we allow

the agent to move directly toward the next predicted node as soon

as it comes into view. In practice, the particular character animation

system used may provide some additional path smoothing as the

character animates between nodes.

Algorithm 1: SPNet

Input: map (Walls and Nodes), start (Node), goal (Node),

goalRegionMean (Position), goalRegionSigma (float)

Output: path (Node List)

#global maxVisitCount = 3;

/* visit count for each node */

#global visits = [0] * map.numNodes;

/* path is full route (will include back-tracking sequences) */

path = [];

/* history is path with cycles removed */

history = [];

current = start;

while current != goal do
next = SPNetStep(map,current,goalRegionMean,

goalRegionSigma,history,path);

path.push(next);

current = next;

end

return path;

B NETWORK DETAILS

B.1 Training Details

The network was trained on 10 cores of an 2.3 GHz Intel(R) Xeon(R)

CPU. Training was run for 230 epochs that iterated through all

Figure 9: Training Loss: Total training loss (outset) and just

the predictions loss Lpred (inset) throughout training.

Algorithm 2: SPNet Step

Input: map (Walls and Nodes), current (Node), goal(Node),

goalRegionMean (Position), goalRegionSigma (float),

history (Node List), path (Node List)

Output: next (Node) visits[current]++;

if isVisible(goal) then

next = goal;

else
/* gets all visible nodes from current node visited less

than maxVisitCount times */

candidates = map.getVisibleNodes(current,

maxVisitCount);

if candidates.size == 0 then
/* retrace our steps */

next = history.pop();

else
position = getNetworkPrediction(current,

goalRegionMean, goalRegionSigma, candidates,

path);

next = map.getClosestNode(position);

history.push(current);

end

end

return next;

the training data, with each epoch taking about 3 minutes, and the

entire run taking 12 hours. As can be seen in Figure 9, most of the

improvements in loss came at the start of training, but the longer

run ensured the network had sufficient time to converge.

Training was performed across 5 maps and included all possible

paths with a history of length three for a total of 2,315,665 training

examples, each of which was sampled with three levels of goal

uncertainty (sampled from 0, 1, and 2m gaussian distributions re-

spectively), leading to about 7 million samples trained each epoch.

Epochs were trained in batches of size 100,000 using the Keras

framework with the ADAM optimizer and a dynamic learning rate

that started at 3e-4 and ended at 1e-5.

To improve numerical stability, isovist ray lengths are normalized

to lie on the interval [0, 3] by dividing by 1/3 of the maximum

length of 30m. Unless otherwise stated below, the network was

trained with a goal uncertainty f ∈ {0, 1, 2}meters, and a maximum

path history of size 3. We note that while 2m may seem like a

small distance, in practice sampling from a 2D gaussian with i.i.d

dimensions at f = 2< often yields points significantly farther than

2m from the mean (in fact, the 1 std dev circle having diameter 4m

will probabalistically contain less than half of sampled points). As

discussed in Section 5.2, the network was able to extrapolate good

behavioral performance beyond the uncertainties and history sizes

on which it was trained.

B.2 Runtime Breakdown

The runtime of SPNet planning is dominated by three major com-

ponents. Figure 10 shows the runtime breakdown of each for maps

of various sizes. All experiments were run on a desktop PC with

an Intel i7 4770K CPU and 16GB of memory. While computing







MIG ’20, October 16–18, 2020, Virtual Event, SC, USA Nicholas Sohre and Stephen J. Guy

Figure 17: User Study: Snapshot from the user-study tasks.

Participants were asked to navigate to a goal whose relative

position was indicated by by the green dot in the minimap

in the lower right.

D DATASETS

While we employ a supervised learning approach, it would be

impractical to gather enough human trajectory data to demonstrate

good behavior on a meaningful percentage of the potential tasks.

For example, the 6 maps we use in our training dataset contain

6.9 million training examples of different start goal pairs permuted

with possible previous observations. In order to create this data,

we instead use a graph-optimal search to determine the optimal

path from start to goal, and use the resulting step-wise decisions in

training.

While the SPNet network is trained on optimal paths, our goal

is not to produce purely optimal behavior. Rather, attempting to

be globally optimal while restricting the network to only local,

uncertain information results in paths with human-like sub-optimal

behaviors, even on maps used in training.

To facilitate training and evaluation, we create a dataset of en-

vironments based on real floor plans from a variety of buildings

of different shapes and sizes (see Figures 19 and 20). Maps used in

training the network include three smaller buildings, two larger

buildings, and a small test map made by hand. This dataset consists

of a wide range of different environments, with very different types

of layouts, and very different sizes (see Table 2). Additionally, we

withheld a set of maps from training to be used in analysis of how

the method performs in untrained scenarios. All maps are rendered

in Figures 20 and 19.

E USER STUDY

To validate the human-like properties of SPNet paths, we gathered

human paths via a user study approved by the Institutional Review

Board (IRB). During the the study, participants performed naviga-

tion tasks via a 3D game-like interface in a web browser (on their

own machines) through a rendering of the maps in Table 2. A min-

imap displayed a live update of the relative goal location, but not

walls in order to provide some natural uncertainty in the exact goal

location (see Figure 17). Participants were asked to aim to complete

15 navigation tasks, but were allowed to do as many or few as they

chose, with the average user completing 16.9 navigation tasks (see

0

25

50

75

100

Optimal SPNet User
Navigation Method

P
at

h
 L

en
g

th
 (

m
et

er
s)

Figure 18: Path Length Comparison: Human users take

longer paths than the graph-optimal sequence. For trained

maps, SPNet path lengths are close to graph-optimal, but

on new maps SPNet paths are closer to the paths taken by

humans.

Table 1 for additional details). Each user was given a sample “warm-

up" task to acclimate to the controls. As the user moved through

each task, their trajectory was tracked at a frequency of 10 samples

per meter displacement. Trajectories for the same tasks were gen-

erated using SPNet, with the goal region centered on the true goal

position. Before performing analyses, both user and simulated paths

are put through a low-pass running median filter as implemented

in the runmed function of the R statistical programming language

with k=11 to remove any small jittering in the paths. Users took

one of two versions of the study: the first consisted of randomized

hand-picked tasks for qualitative comparison (879 trajectories cap-

tured), and the second consisted of random tasks across all maps

for quantitative comparisons (394 trajectories captured).

Quantitatively, we see SPNet has more similar path lengths to

humans than graph-optimal planning. Figure 18 shows that path

lengths of SPNet agents are more similar to study participants than

paths generated using the graph-optimal routing. An ANOVA with

Tukey post-hoc analysis shows strong separation between optimal

path lengths and user path lengths as well as SPNet path lengths

(? < 0.05), while showing the User and SPNet distributions as

similar (? 0.43). Qualitatively, the user study results show SPNet

captures the natural, efficient, and varied paths real humans take.

Figure 4(left) shows SPNet on an ambiguous task in the Courtyard

map, which was included in training. Here, SPNet agents follow

different paths that encompass the majority of the types taken

by the users in the study. In a similarly ambiguous task on the

untrained University Labs map, Figure 4(right), SPNet agents are

capable of finding both homotopies portrayed in human routes. In

practice, we find SPNet agents tend to produce compelling split

predictions in untrained environments, but are overly confident

between the two choices as compared to maps seen in training.

Therefore, while SPNet agents show exploration behaviors, and

human-like path lengths in both trained and untrained maps, it

may be best in practice to train on maps when possible to ensure

more path variety.
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Below we show the maps used in training (Figure 19) and test-

ing (Figure 20). All environments were based on real floor plans,

abstracting away irrelevant obstacle detail.

●

●

(a) Simple

●

●

(b) Apartment

●

●

(c) House

●

●

(d) Courtyard

●

●

(e) Medical

Figure 19: Training Maps.
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(a) Office

●

●

(b) University Labs

●

●

(c) Business Park

●

●

(d) Conference

Figure 20: Testing Maps.


