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Abstract— Existing strategies for controlling lower-limb
robotic exoskeletons place different emphasis on the user’s in-
tentions considered at various resolutions, from high-level goals
(increase speed) to mid-level actions (increase stride length) to
low-level joint behaviors (increase hip flexion). While sensors
onboard the exoskeleton sense the human only indirectly, via the
human-robot interface, they offer advantages over more direct
methods in terms of the time required to don the device. In this
study, exoskeleton users, both able-bodied and having spinal
cord injury, were asked to perform changes in their intended
gait speed. Onboard sensor measurements were used offline to
test an intent identification algorithm based on the Mahalanobis
distance. The algorithm’s goal is to identify an intent change
and correctly classify its type, but not to realize that change
via the exoskeleton. The algorithm correctly identified instances
in which the user desired to walk faster or slower than the
nominal speed in the device. For able-bodied subjects, the
average delay between the known intent change and correct
identification by the algorithm was 0.63 s. This delay for non-
able-bodied subjects was 0.93 s on average. These proof-of-
concept results show that intent identification based on the
Mahalanobis distance is possible, while analysis of the approach
suggests areas for further improvement.

I. INTRODUCTION

Control of robotic exoskeletons has been a recent topic of
debate [1], [2], with applications spanning worker assistance
in manufacturing to rehabilitation following neuro-muscular
injury [3], [4]. All face similar constraints and challenges
associated with physical human-robot interaction - the robot
must ensure user safety in addition to mediating and enacting
some agreed-upon goal. For lower extremity exoskeletons,
this goal, in general, is to walk, but may include further
details about the nature of the gait. Any user preference
regarding the way in which the exoskeleton should move is
referred to as “intent.” This work is specifically focused on
determining, but not enacting the user’s intended gait speed.

Instead of explicitly identifying user intentions, many
exoskeletons tightly couple human intent with the control
law [5], [6]. For instance, in individuals with asymmetric
gait, Complementary Limb Motion Estimation (CLME) [7]
determines the more affected leg’s motion from that of the
less affected leg assuming common intent on both sides
updated every stride. Control is even further interwoven with
the user’s intentions for direct volitional control strategies in
which exoskeleton joint motion is caused by the excitation of
electrical signals from the user’s muscles (electromyography
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Fig. 1. Able-bodied exoskeleton user walking in EksoGT.

- EMG) [8], [9] or brain (electroencephalography) [10]-
[12]. While more directly sensing user intentions, direct
volitional control requires additional sensors to be placed
on the human body, which can consume valuable therapy
time in clinical settings. Furthermore, EMG-based methods
can be challenging for individuals with chronic spinal cord
injury (SCI) due to lack of ability to reliably control muscle
contraction. Finally, EMG-based methods can be grouped
with other methods like admittance/impedance shaping and
gravity compensation that react to intended joint-level mo-
tions, but do not attempt to decipher the user’s higher-level
motion goals (i.e., to change gait speed) [13]-[15].

Recent work has shown that changes in user-intended
walking speed cause detectable differences in the output of
sensors already embedded in the exoskeleton [16]. Specifi-
cally, joint motor positions and commanded motor currents
vary in systematic ways when the user wishes to speed up
or slow down. These results suggest that a model could be
trained on the expected values of the onboard sensor readings
during constant-intent walking. During testing, new data that
are statistically different from the expected values would
indicate that an intent change has likely occurred, though the
accuracy of such an indicator may depend on the AAD used.
One statistical tool for identifying outliers of a multivariate
Gaussian random variable is the Mahalanobis distance [17].
Unlike hypothesis testing in which multiple samples of the
dependent variable are required, the Mahalanobis distance
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allows a single data point to be compared to the distribution
in question. Since data from the exoskeleton arrive one
time-step at a time, this is the critical reason for using the
Mahalanobis distance. This metric is the multivariate analog
of expressing how many standard deviations a sample is from
the mean of a univariate distribution. Where the standard
deviation scales the univariate distance by the amount of
variance in the distribution, the Mahalanobis distance takes
into account both the variance and covariances of each di-
mension of the distribution. This is particularly advantageous
for exoskeleton sensor data because the position and current
draw at one joint are likely to be highly correlated with those
at other joints.

The preliminary study reported herein develops a statistical
model for the onboard sensor measures of the EksoGT
exoskeleton (Fig. 1), assuming they follow a multivariate
Gaussian distribution at every time step in the gait cycle
during constant-intent walking. After establishing the va-
lidity of this assumption, the model is built by estimating
the appropriate Gaussian distributions at each time step of
each gait phase based on samples from a training data
set. Subsequently, data are compared to the model using
the Mahalanobis distance to determine the likelihood that
user intent has changed. Data for both model training and
model evaluation are taken from experiments reported in
[16]. The results are compared across exoskeleton users with
and without a chronic SCI and across crutch use and walker
use.

II. METHODS: DATA COLLECTION

Data were collected while three able-bodied (AB) and
three non-able-bodied (NAB, chronic SCI) exoskeleton users
made changes in their intended gait speeds. All subjects gave
informed consent to participate in the study approved by
the IRB of the University of Notre Dame (Protocol 18-04-
4650). One NAB subject had an injury at T5, one from T8 to
L2, and the third was not reported. No further demographic
details were collected. All subjects had substantial experience
using the EksoGT exoskeleton, by Ekso Bionics (Fig. 1).
The EksoGT has four powered degrees of freedom (DOF):
two revolute hip joints and two revolute knee joints, all in
the sagittal plane. Each ankle joint contains a passive spring
with an adjustable center point to allow for flexion/extension.
The onboard computer records at 500 Hz the joint (motor
encoder) angle and commanded motor current for each
powered DOF. Each foot contains two resistive force sensors
- one at the toe and one at the heel.

For all trials, the EksoGT employed a finite-state control
strategy. This strategy prevents collapse of the joints during
stance and has predefined trajectories for swing, providing
corrective input at the joints when the user deviates from
them. In double support, the controller provides vertical sup-
port to both legs, and the user must shift weight to the leading
leg to initiate swing of the trailing leg. Experiments were
performed across a six-meter, flat, straight walkway. Subjects
donned the exoskeleton and were allowed to perform several
walkway warm-up laps to adjust to the exoskeleton before

beginning trials. Although no minimum or maximum warm-
up time was enforced, most subjects either did not use the
warm-up time or completed only a couple of lengths to
warm up. Trials were completed with two AADs - crutches
and a walker. When the AAD changed, subjects were again
given the option to complete warm-up laps to adjust to the
new equipment. Each official trial began with the subject
walking naturally in the device across the walkway before
receiving a single verbal command to speed up, slow down,
or make no change in gait speed near the halfway point
along the walkway. This protocol ensured that the subject
had several steps to get up to steady-state speed prior to the
intent command and several steps after the intent command
before needing to slow down to stop.

One trial set consisted of three repetitions of each com-
mand with each AAD (trial order varied with subject) for
a total of eighteen trials per subject. The command order
was pseudo-randomized within each trial set so that subjects
could not anticipate the upcoming command. The eight joint
values (motor positions and commanded motor currents for
both left and right knee and hip joints) were tracked by the
intent recognition algorithm to determine an intent change.
Trials with the “no change” (NC) command were used to
train a constant intent model. Trials with the “speed-up”
(SU) and “slow-down” (SD) commands were used to test
the intent identification algorithm.

III. METHODS: MODEL BUILDING

A. Modeling Assumptions

Consider the vector of eight joint-measurement values as
a random variable, * € RS®. This work assumes that the
variable follows a multivariate Gaussian distribution whose
mean and covariance depend on the position in the gait cycle
when the user is walking with constant intent according to

:B(pﬂf) NN(H’(pvt)’E(pat))v (L
where p represents the gait phase

1 if Right Double Support
2 if Right Single Support
3 if Left Double Support
4 if Left Single Support

and t € N represents the number of time steps since that
phase began. Right/Left Double Support is defined as the
double support phase in which the right/left leg is leading.
As an example, the distribution of « at the twentieth time step
within the Left Double Support phase would be described by
N (1(3,20),3(3,20)). This model in Eq. (1) implies that
x(p,t) comes from a cyclostationary random process [18],
meaning that the distribution at each combination of p and
t is stationary as long as the user is walking with constant
gait intent. Furthermore, each mean and covariance can be
estimated by finding the sample mean and covariance at each
time step for a set of training observations. Update equations
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Fig. 2. Model structure. Each time step in each phase includes measurement mean g € RS and covariance X € R8%8,

estimate these means and covariances after the n'" training
observation according to
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B. Model Building

Data collected during NC trials with both AADs served as
the training data to build two types of models - an individual
model for each subject based on only that subject’s trials
and a single model trained on the trials of all subjects of the
same type (AB/NAB). Training data were organized in the
structure shown in Fig. 2 by determining to which of the four
gait phases data from each time step belonged (p = 1, 2, 3,4)
based on an empirically derived set of rules. A data point
was assigned to Right/Left Single Support (p = 2/4) if
the right/left foot sensors indicated ground contact but the
left/right foot sensors did not. If both left and right foot
sensors indicated ground contact, the hip and knee angles
were assessed to determine which leg was leading in double
support (p = 1 or 3). A leg was determined to be leading
if the hip angle was within 10 degrees of the knee angle
because they are nearly the same only at the beginning of
the leg’s stance phase. For each model phase, ¢ was tracked
by counting the number of time steps since the phase’s
beginning, and it was reset to ¢ = 1 when the incoming
data switched to a new phase.

The number of observations n for each unique combina-
tion of p and ¢t was stored to inform model updating per
Egs. (2) and (3). Once all training data were added, the
model was reduced to include only time steps containing at
least 10% of the maximum number of observations for each
phase. This heuristic rule eliminated outlying observations
in which the user was standing still or turning around, as
opposed to walking steadily. Each full gait phase observation
contained a variable number of time steps of data, even in
the training data set. The standard deviation in the number
of time steps in these observations was calculated to serve as
the threshold of the timing offset that incoming data could
have with respect to the model before being considered an
indication of changed intent. For example, when the number
of time steps in Right Double Support exceeded the mean
plus one standard deviation of the model, the user was likely
trying to slow down. If the number of time steps was fewer
than the mean minus one standard deviation of the model, the

user was likely trying to speed up. Again, to reduce outliers
in the calculation of the timing offset threshold, observations
with fewer than 20 or greater than 500 time steps (fewer
than 0.04 s or greater than 1 s) were not considered as full
observations of the phase.

C. Assessing Modeling Assumptions

If the random variable & follows a Gaussian distribution,
the Mahalanobis distance,

M= (z—p)'S(z - p), @

of samples from a will follow a x? distribution with the
number of DOF equal to the dimension of x. A quantile-
quantile (Q-Q) plot is one way to test that a set of samples
follows a given distribution. For a cumulative distribution
function (CDF) ®(x), quantiles are given by the inverse
of ®. That is, for any probability p € (0,1), the quantile
corresponding to p is given by x = ®*(p) [17]. When the
quantiles of two sets of samples are equal for all values of p
in (0,1), the samples are from the same distribution, and the
Q-Q plot will align with y = x. During model building, the
Mahalanobis distances for all data at a single combination of
p and t were computed. These distances served as a sample
set for comparison to 1,000 random samples of the 8-DOF
x? distribution.

IV. REAL-TIME INTENT IDENTIFICATION ALGORITHM

To simulate real-time intent identification, testing data
were analyzed one data point at a time without reference to
future time steps according to the block diagram in Fig. 3.
For each data point, the current gait phase p and time
step t were determined in the same manner as for model
building. If this p and ¢ combination existed in the model,
the current data point was compared to that part of the model
by assessing the Mahalanobis distance between it and the
Gaussian distribution (Fig. 3). The Mahalanobis distances of
samples from a normal distribution follow a x? distribution.
Therefore, evaluation of the X2 CDF for a Mahalanobis
distance gives the probability that any other Mahalanobis
distance for the given distribution will be smaller than the
one being evaluated. Essentially, it provides the likelihood
that another sample would be closer to the mean of that
distribution than the point being evaluated. Further extrap-
olated, a value of one implies that the given data point is
certainly not a sample from the model distribution and should
be considered an indicator of changed intent. Likewise, a
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Fig. 3.

I Indicate Speed Up |1—Yes

Real-time intent identification flow chart. Question A: Is difference in number of time steps between previous phase and model for that phase

greater than one standard deviation of number of time steps for this phase from training set? Question B: Is difference between current ¢ & number of
time steps in model for this phase greater than one standard deviation of number of time steps for this phase from training set?

value of zero implies that the data point is the exact mean
value of the model distribution and should be considered an
indicator that intent has not changed.

The Mahalanobis distance signal was filtered with a third-
order low-pass Butterworth filter with a cut-off frequency
of 2Hz to avoid triggering intent changes more than twice
per second. When a single time step of the filtered value
exceeded a threshold, an intent change was signaled. The
algorithm was tested with threshold values of 0.5 and 0.6,
which correspond to Mahalanobis distances of roughly 7.5
and 8.5, respectively, in combination with the two variations
of training data sets.

Recall, as a distance metric, the Mahalanobis distance is
strictly positive, so it cannot differentiate between SU and
SD cases. The type of change can, however, be determined
by the timing offset between the most recent phase and the
model. The type of intent change was determined based on
timing changes at the end of each gait phase (“Question A”
and “Question B” in Fig. 3). The result is that an intent
change can be signaled at any time step, but the type of
intent change (SU/SD) can only be modified once per gait
phase (four times per stride). When a gait phase observation
has the same number of time steps as the modeled training
data, there is always a Gaussian distribution model available
to take the Mahalanobis distance. In this case, if the filtered
Mahalanobis distance rises above the threshold value at any
point, an intent change is flagged, and the algorithm assigns
the type of intent change as the most recently indicated type.

To assess the intent identification algorithm’s performance,
the identification delay was calculated for each trial as the
amount of time after the intent command was issued that the
algorithm first identified an intent change of the correct type.
The number of true positive, true negative, false positive,
and false negative identification outcomes were tabulated
to assess accuracy. To compare results with the current
estimated walking speed, the step speed was calculated at
the beginning of every double-support phase based on the

Q-Q Plot of Training Data
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Fig. 4. Q-Q plot of sampled Mahalanobis distance & 8-DOF x?2
distribution. Sample data marked by +.

geometric configuration of the exoskeleton and the time since
the last heel-strike.

V. RESULTS

For trials with single user training data, AB subjects had
an average of 47 non-outlying observations of each phase
(max 52, min 39), and NAB subjects had an average of 74
(max 92, min 41). For multi-user training data, the cohort
averages were 141 and 220 per phase for the AB and NAB
cohorts, respectively (about 3 times each individual average).

The Q-Q plot for the sampled training data and the 8-DOF
x? distribution is shown in Fig. 4 for a single AB subject.
When viewing all of the data, it is clear that the tail end
does not align with the x? distribution. For smaller values of
the Mahalanobis distance (roughly less than 15, or the 0.9
quantile), there is much better alignment between the two
distributions (Fig. 4). This level of agreement between the
quantiles of the two sample sets indicates that the Gaussian
assumption is likely appropriate for the majority of the data.

The Mahalanobis distance-based intent recognition output
is summarized with the example in Fig. 5. The step speeds
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Fig. 5. Example intent identifier’s binary output during AB SU trial
consisting of 17 steps. Identifier trained on data only from this subject.

are plotted in orange against the y-axis on the right. The
subject begins a trial from rest, so the first steps are quite
slow. After getting up to speed, the subject reaches the
average step speed from the training data, around 0.5 m/s.
After the commanded intent change to speed up is given,
as indicated by the “Trial-based Ground Truth” red line’s
change from zero to one, the step speed increases slightly.
The blue square wave showing the binary output of the
intent identifier against the y-axis on the left indicates a
difference between the new data and the model when the
user first begins walking. The blue circles on the x-axis
indicate that the steps are slower than the training data. In
the middle of the trial, the identifier accurately determines
that the user likely has the same intended gait speed as the
training model by not indicating a difference. Several times
before the commanded intent change, the identifier briefly
identifies a speed-up intent change, and this is discussed
further in the next section. Finally, after the intent command,
the identifier recognizes a change and indicates that the user
intends to walk faster than the model.

For each AB subject, the NC trials contributed on average
42 observations to each time step (max 53, min 9) to estimate
each Gaussian model. For each NAB subject, the NC trials
contributed on average 65 observations (max 105, min 10).
NAB subjects had more observations because their smaller
step lengths resulted in more steps per trial [16]. Table I
shows the average time in seconds after the intent command
was given that the intent identifier indicated an intent change
of the correct type. These identification delays are also
tabulated as a percentage of the average step duration for
each subject group to indicate the likely number of steps
from intent command to intent identification. Results are
averaged by the types of user (AB/NAB), intent command
(SU/SD), and AAD (crutches/walker). Training and testing
were repeated for each of the four combinations of training
set and indicator threshold.

The number of true/false positive/negative results are pre-
sented in Table II. Before an intent command is given, true
negative and false positive are the only possible outcomes, so

these results are expressed as percentages of the total number
of pre-command time steps. Similarly, the possible outcomes
after an intent command is given are true positive and false
negative, so these results were expressed as percentages of
the total number of post-command time steps.

VI. DISCUSSION
A. Normality Assumptions

The Q-Q plot in Fig. 4 indicates that the training data
are not entirely Gaussian distributed, but that the Gaussian
assumption is valid even past the 0.75 quantile. In other
words, at Mahalanobis distances lower than 15, the Gaussian
assumption is likely appropriate, but not at larger values.
This result does not invalidate the methodology because the
intent change thresholds are set at the 0.5 quantile. Even in
the region where the Gaussian assumption breaks down, the
outliers of the Mahalanobis distance are above the y = z line,
which means that the identifier will consider high values to
be at an even greater quantile than they truly are - magnifying
the indication of an intent change.

B. Algorithm Structure

The intent identification algorithm successfully reported
when users walked at speeds other than those in the training
data and distinguished between speed-up and slow-down
intentions. By indexing the model in time, the algorithm
identified changes in both the shape of the data trajectories
(via the Mahalanobis distance) and the timing (given by the
speed-up/slow-down indicator).

C. Identification Delay

Trial numbers were insufficient to assess statistical sig-
nificance of the values reported in Tables I & II (12 intent
changes per subject). Trends in the results, however, suggest
that the identification delay was always smallest for speed-up
trials. This is surprising because previous analysis showed
that subjects were able to reduce their speed more than
they were able to increase their speed in the exoskeleton
[16]. One possible explanation is that during speed-up trials,
subjects significantly changed the trajectories of the onboard
sensor measurements, but not in a way that produced a
large increase in walking speed. This explanation highlights
the promising possibility that this algorithm can identify an
intent to change speed before the speed has actually changed.
Another trend was that regardless of intent change type,
identification delay was nearly always greater for walking
with crutches than with a walker (except for AB subjects
slowing down). Subjects indicated different AAD preferences
during testing, but these preferences were not recorded. It is
possible that walking with the non-preferred device increased
variance and thus, negatively affected identification.

The identification delay was heavily dependent on the
threshold for the change indication. For both individual and
group models, the lower threshold of 0.5 resulted in reduced
identification delay and correspondingly, reduced percentage
of false negatives in Table II. It also, though, increased the
number of false positives prior to the intent command being
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TABLE I
AVERAGE TIME LAG FROM INTENT COMMAND, SPEED UP (SU) OR SLOW DOWN (SD), TO CORRECT INTENT CHANGE IDENTIFICATION FOR
ABLE-BODIED (AB) & NON-ABLE-BODIED (NAB) SUBJECTS USING BOTH TYPES OF AMBULATORY ASSISTIVE DEVICE (AAD). TIMES ARE SHOWN

FOR THE AVERAGE £ ONE STANDARD DEVIATION AS WELL AS THE MEAN VALUE EXPRESSED AS A PERCENTAGE OF THE AVERAGE STEP DURATION.

Identification Delay [s]

Multi-user Training

Threshold at 0.5

[s £ s, % avg. step dur.]

Threshold at 0.6

[s & s, % avg. step dur.]

Threshold at 0.5

[s £ s, % avg. step dur.]

0.10 = 0.11, 12%

0.35 £+ 0.26, 42%

0.27 £ 0.21, 32%

0.68 £+ 0.24, 83%

0.82 £+ 0.42, 99%

0.81 £ 0.43, 98%

0.28 + 0.52, 34%

0.83 + 1.61, 101%

0.81 + 1.61, 98%

0.57 £ 0.32, 69%

1.52 £+ 1.54, 184%

1.35 £ 1.64, 164%

0.19 £+ 0.30, 15%

0.73 £+ 0.58, 59%

0.22 £ 0.21, 18%

1.04 £+ 0.87, 84%

1.42 £+ 0.96, 114%

1.34 £+ 0.98, 107%

0.50 + 0.57, 40%

0.86 &+ 0.88, 69%

0.66 + 0.82, 53%

Subject AAD Intent Single User Training
Change Threshold at 0.6
[s & s, % avg. step dur.]
Walker SU 0.15 £ 0.12, 18%
AB SD 0.68 + 0.24, 83%
Crutches SU 0.34 £ 0.5, 41%
SD 0.57 £ 0.32, 69%
Walker SU 0.22 + 0.32, 18%
NAB SD 1.15 £ 0.87, 92%
Crutches SU 0.54 £ 0.60, 43%
SD 1.46 £ 1.27, 117%

1.45 £ 1.27, 116%

1.60 £ 0.43, 128%

1.42 £ 0.39, 114%

TABLE II
CONFUSION MATRIX VALUES (TRADITIONAL TRUE/FALSE (+)/(-) CLASSIFICATIONS DEFINED IN TEXT) FOR ABLE-BODIED (AB) &

NON-ABLE-BODIED SUBJECTS (NAB) WITH INDIVIDUAL & GROUP TRAINING SETS USING TWO THRESHOLDS.

. - Speed Up Slow Down
Subject | Training Data | Threshold e ——free 7T True (+) | False () | True (-) | False (+) | True (+) | False ()
F—— 06 3% 6% 33% 2% % 3% 4% %
\B 05 36% 4% 93% % 3% 2% %% %
Grou 06 56% 2% % % 59% 3% % 2%
05 5% 35% 5% 5% 9% 51% 4% 6%
P 06 55% 5% 4% 36% 54% 36% 5% 35%
NAB 05 7% 3% 7% 29% 36% 4% 0% 30%
Grou 06 5% 5% 3% 7% 1% 39% 50% 0%
05 36% 4% 60% 0% 350% 350% 59% 1%

given. The lower threshold reduces the deviation from the
training set at which the identifier will allow the gait to be
considered the same. Since it is possible that subjects walked
faster than the training data even before the intent command
to speed up was given, the identifier is possibly more accurate
in identifying gait differences from the “trial-based ground
truth”. After the intent command is given, however, there
has definitely been an intent change. There should be greater
confidence, then, given to results for true positives or false
negatives than for false positives and true negatives.

The two sets of training data also had an effect on the
identification delay. The model trained on all of the subjects
generally had a larger identification delay and resulted in
fewer positive results overall, both true and false. In fact, the
multi-user training experiments each resulted in four trials
in which the correct intent change type was never identified
(two each for AB and NAB subjects). Both of these trends
suggest that the increased variance in the training data set
caused by the inclusion of data from multiple users caused
the identifier to be less likely to indicate an intent change
even when it would be accurate to do so.

The identification delay was generally greater for NAB
subjects. This trend is likely due to increased step-to-step
variance for NAB subjects in both the training and testing
data. For example, for a single combination of p and ¢, the
trace of the covariance matrix of the model for an AB subject
was 45, yet for an NAB subject was 72. Increased training
data variance reduces the likelihood the identifier will signal
an intent change, and increased testing data variance reduces

the accuracy of the flagged type of intent change. With
a maximum delay of 1.6 seconds for multi-user training,
the delay for NAB subjects was not excessive since 1.6
seconds represents 1.28 steps at the average step speed for
these subjects. This result is particularly exciting, considering
the challenges surrounding intent recognition for the SCI
population. The only commercially available exoskeleton
that considers user intent beyond shifting between finite
state controllers is the HAL exoskeleton, which initiates gait
cycles based on EMG [6]. Even so, it requires that users
present motor function of the hip flexors and knee extensors,
which is often not the case for individuals with complete SCI
[19].

It is unclear in current literature what an appropriate or
allowable delay in intent recognition would be when coupled
with the intensity of the robot’s response and the distribution
of false positives and false negatives. In terms of practical
algorithm implementation, the threshold for intent change
may need to be tuned to the user to achieve a comfortable
level of device responsiveness. While the device may begin
with a baseline set of training data for the given user type,
it will need to prioritize user-specific data to achieve the
desired level of identification delay and accuracy.

VII. ONGOING WORK

A key limitation of this algorithm is that the type of
intent change can only be identified once per gait phase.
An alternative to monitoring the timing offset of the most
recently ended phase would be to build a library of the
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expected sensor values for gaits at different speeds. When an
intent change is indicated, the data could then be compared
to the library to determine which new gait is most likely
the intended gait. This strategy, however, would require
gathering a large amount of training data to build the models
of each gait speed, a task that may be impossible for an
individual with SCI, but might be possible when pooling
data across multiple individuals with user-specific tuning
happening online. It is also not clear whether the sensor
values for a user resisting the current gait speed would
match those when the user and exoskeleton are walking in
agreement at a different speed. An approach without these
limitations would be to build only two secondary models,
one each for the expected model-data error for a given
type of intent change. Then, when an intent change occurs,
the model-data difference could be compared to both the
speed-up model and the slow-down model. The comparison
with the smallest Mahalanobis distance would indicate which
intent change type is most likely, and the timing offset at
the end of the gait phase could confirm. This strategy would
allow the type of intent change to be toggled at any time step,
would require minimal additional training data, and would
involve fusing two different indicators of the type of change.

Another limitation of this algorithm is that the model
remains the same for all comparisons after training. Updating
the model by adding in online data points (according to (2)
and (3)) every time an intent change occurs would allow
the algorithm to indicate an intent change, acclimate to the
new walking speed, and then indicate a subsequent intent
change in the same direction as the first. This ability to make
subsequent speed changes of the same type would allow the
user to achieve any walking speed as opposed to only being
able to walk at three unique speeds (the same as, faster, or
slower than the training set).

Finally, the algorithm, current or improved, requires val-
idation in real-time experiments. Experiments conducted on
a treadmill would facilitate recording of true gait speed and
assessing the algorithm’s sensitivity with respect to the size
of the gait speed change. Once the gait intentions are identi-
fied, the next step is to figure out how the exoskeleton should
respond. For instance, if the algorithm indicates that the user
would like to speed up, what combination of increased step
frequency and step length would be most comfortable for
the user? How much should the device aim to speed up and
over what time period should the speed increase be achieved?
Finally, the gait trajectories that accomplish these actions will
need to be calculated such that the speed transition is smooth
and continuous, a task which was addressed by [20] using
Fourier series and profile blending techniques. Future work
will focus on tuning the exoskeleton response, the indicator
threshold value, and model training scheme to maximize user
comfort with respect to device responsiveness.

In its preliminary form, the intent identification algorithm
based on the Mahalanobis distance has proven to be compu-
tationally simple, successful with minimal training data, and
potentially viable for individuals with spinal cord injury. The
methodologies described herein are platform independent,

though, so they provide an avenue for incorporating user
intent information already collected by onboard sensors
into intent-aware control schemes for any active assistance
device, possibly even prostheses.
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