An Interactive Control Approach to 3D Shape Reconstruction

Bipul Islam, Ji Liu, Anthony Yezzi, Romeil Sandhu

Abstract— The ability to accurately reconstruct the 3D facets
of a scene is one of the key problems in robotic vision.
However, even with recent advances with machine learning,
there is no high-fidelity universal 3D reconstruction method
for this optimization problem as schemes often cater to specific
image modalities and are often biased by scene abnormalities.
Simply put, there always remains an “information” gap due
to the dynamic nature of real-world scenarios. To this end,
we demonstrate a feedback control framework which invokes
operator inputs (also prone to errors) in order to augment exist-
ing reconstruction schemes. For proof-of-concept, we choose a
classical region-based stereoscopic reconstruction approach and
show how an ill-posed model can be augmented with operator
input to be much more robust to scene artifacts. We provide
necessary conditions for stability via Lyapunov analysis and
perhaps more importantly, we show that the stability depends
on a notion of absolute curvature. Mathematically, this aligns
with previous work that has shown Ricci curvature as proxy
for functional robustness of dynamical networked systems. We
conclude with results that show how our method can improve
standalone reconstruction schemes.

I. INTRODUCTION

Sensing the spatial particulars and inferring information
about a real-world scene from images is a classical problem
in robotic vision with a multitude of uses ranging from
motion planning, situational awareness, to medical imaging
[1], [2], [3]. This said, reconstruction of a complex 3D
scene from 2D images is a difficult task due to the amount
of uncertainties that must be accounted for in real-world
scenarios. Although much progress have been made over the
last few decades, reconstruction methodologies often fail as a
result of imaging artifacts including, but not limited to, noise,
occlusions, clutter, and non-uniform illumination. In short, no
universal algorithm exists which can work seamlessly across
all image modalities [4]. To combat such risk complexities,
there is a need for domain experts or an operator who is able
to provide an estimate of the ideal result and subsequently
able to verify the quality of reconstruction. Here, we aim to
“inject” 2D operator inputs in-loop to drive a (multi-agent)
3D surface deformation while ensuring the resulting system
is stable in the sense of Lyapunov [5]. While this work
builds off of our previous work in image segmentation [4]
and reconstruction [1], there lies a few tacit yet important
discerning caveats. Firstly, we show that 2D operator inputs
of a given set of images can be aptly “mapped” to 3D
world and such inputs, are stable. Mathematically, this not
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Fig. 1: Schematic outline of interactive feedback control
stereoscopic reconstruction framework.

a trivial issue as any input on a 2D background should also
be corroborated by a 3D action on infinitely large (“blue
sky”) background (e.g., specifying the 3D action location
based on 2D background input is ill-posed). From a stability
perspective, such singular 2D actions affect not only a 3D
surface deformation, but indirectly affect other 2D passive
sensors via 3D-to-2D projections during the reconstruction
process. Secondly, the control laws are developed in-part
based on a notion of absolute principle curvature which is
a main underlying theme of this work (e.g., confluence of
geometry & control). Thirdly, curvature can be shown to
relate to a notion of “trust” in the sense of how quickly
our reconciled solution converges from both the operator
and autonomous perspective. This will be stylized in detail
in future work, but is presented here to place this work
and contributions in context. We now briefly revisit a few
techniques as it pertains to this work.

A. Brief 3D Reconstruction Literature Review

Most modern scene reconstruction methods use the pop-
ular deep (reinforcement) learning variants and are often
characterized by the requirement of massive training samples
[6], [7]. Some examples of such systems are ScanNet [6]
that uses over 2.5 million scenes to train a system that
can understand indoor scenes to [7] where authors furnish
a synthetic dataset in order to develop an understanding
of surface normal prediction, semantic segmentation, and
object boundary detection. Generally, such schemes are
highly dependent on the training quality. To combat this, [8]
explores the use of supervision as an alternative for expensive
3D annotation from which perspective projection and back
propagation are employed. On the other hand, such methods



use local correspondence matching and hence, are fallible
to drawbacks resulting from scene abnormalities (e.g., noise,
non-uniform illumination [9]). In regards to robotic vision,
such correspondence-based solutions generally involve the
well-known concept of SLAM (Simultaneous Localization
and Mapping) [10], [11], [12]. This said, SLAM-based
methods traditionally suffer from the requirement of high
computational power for sensing a sizable area and process
the resulting data to perform both mapping and localization.
Also, there is a tacit requirement that input scene images
should have overlap from image-to-image. To this end, SFM
(Structure From Motion) based methods provide a relaxed
version of this problem [13], [14] (i.e., Google uses this
approach in their popular street-view application on Google
maps [15]). More recently, [16] explores a recurrent neural
network (3D-R2N2) by employing shape priors in which one
learns 2D to 3D mapping from images of objects to their
underlying 3D shapes from large collections of synthetic
data. In particular, the authors have been seemingly able to
show their method outperforming SLAM or SFM (albiet with
learnt knowledge) when there is lack of texture or baseline.

Nevertheless, this paper does not argue the rigors of
the underlying reconstruction method itself and our par-
ticular focus on our previous work [1] is in-part due a
correspondence-free method, independence to local (image-
gradient) structure, and dependence on geometric techniques
connected to image segmentation [17], [21], [22]. Undoubt-
edly, each approach whether it be SLAM-based, deep (re-
inforcement) learning variants, and/or geometric methods
work optimally with respect to the prospective operating
environment (e.g., space, low-power requirements compared
ground-based robotic vision). At the same time, any such
reconstruction are not infallible to errors that arise in real-
world dynamic scenes from a human-perception standpoint.
This said, human-perception is also fallible and any operator
input based on a visual estimate is prone to errors. Philo-
sophically, we make the argument that terms such as over-
fitting and uncertainty are in part, perceived by an expert who
generally acts as a passive entity in such methods. Thus, the
problem we seek to resolve is to not only rectify the expected
and ideal reconstruction in real-time [23], but provide the
necessary feedback control characterization when invoking
operator input [24].

The remainder of the paper is organized as follows: In
the next, we introduce stereoscopic reconstruction via classic
image segmentation. Then Section III provides a control
framework along with the necessary conditions for stability.
Section IV presents experimental results. From this, we
conclude with future work in Section V.

II. FROM SEGMENTATION TO 3D RECONSTRUCTION
This section presents a general introduction to geometric
stereoscopic segmentation.

A. Geometric 2D Image Segmentation

Let us begin with the classic binary problem of segmenting
an image [/ : Q — R” into a foreground and background

described by functionals 7, : {, Q— R and r,: {, Q— R
which measure the similarity of of the image pixels with
a statistical model over the regions R and R€, respectively.
Here, { corresponds to the photometric variable of interest.
Then, one can define a partitioning problem where the op-
timal partition between foreground/background is described
by a partial differential equation [22], [26]; i.e.,
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where B : R?> — R can be considered “forces” along the
curve (partition boundary) that describe the direction of the
corresponding evolution in the normal N direction. While a
complete review of such methodology is beyond the scope of
this note, we do refer the reader to several seminal references
[17], [21]. For the case image segmentation, it suffices to
understand that the partitioning curve C “lives” in the 2D
image domain.

B. Stereoscopic 3D Reconstruction

Now, if we consider the problem of 3D reconstruction
from 2D images, one can redefine the functional in equation

(1) as follows:
N
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where the difference is the functional now depends on N
image observations ; and where a particular 2D image
silhouette curve ¢; is derived from a single 3D occluding
curve C (with a slight abuse of notion) on a given smooth
surface S in R3 with a corresponding 3D background B
treated as infinitely large sphere with angular coordinates
® = (y,v). That is, ¢ = m(C) where m; : R3 +— Q; is
the realization of the i-th pin-hole camera (sensor) that
projects the 3D world onto the 2D domain. Similarly, the
background can be related in a one-to-one manner with
the image coordinates X; of each observation through the
mapping O; (“blue sky” assumption). To be more precise,
x = (x,y,z) is surface coordinates of § in R and further
note that x; = (x;,;,z;) denote the same points expressed in
i-th calibrated camera coordinates relative to the i-th image.
Moreover, X; = (£;, ¥i) = (xi/zi,yi/z) is the aforementioned
perspective projection due to the i-th pin-hole camera 7;. In
turn, r, and r, redefined to be radiance functions. That is,
the foreground object of interest supports a radiance function
of r,: § — R with the usual area element dA. Similarly, the
background supports a different radiance function r,: B — R.
As such, for a given 3D surface, it is possible to partition
each image domain €; of [; into a foreground object region
R; = m;(S) C Q; and the corresponding background region
R¢{. Note, the operator 7; is not one-to-one and, hence non-
invertible. However, we can define a back projection operator
71:[1 using the back tracing of rays from image to the surface,
i.e, we have m;~ ! : R; — § which is a pseudo one-to-one
operation.
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Putting this together, assuming the calibrated cameras, the
deformation of the surface towards a reconstructed shape
based on a set of N image observations can be shown to
be of the following form:

R

Z

where we define a visibility characteristic function y; from
a given location x; on a surface § as:

1, ifx;en '(R)
xix) = {0, if x; ¢ 7w (R;).

This can be re-written in terms of the smooth regularized-
Heaviside function H along with (outward) surface normals
N at each point x; of the surface S:

xi=1-H(x;-N)

Given the above, we are now able to formulate a control-
based reconstruction scheme from which a given physical
2D action, based on visual perception (information), can be
used to interactively “sculpt” a 3D shape in collaboration
with the above autonomous 3D reconstruction algorithm.

IIT. CONTROL-BASED RECONSTRUCTION

Let us begin by redefining the general form of a surface
reconstruction evolution above in level-set notation as fol-
lows:

N
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where y; : R? — R is the surface gradient information
computed from the photometric image data, ¢ : R® — R
is a level-set function, and &(.) is the classical Kronecker
delta function. Hence, to “close the loop” that incorporates
a physical 3D operator performing 2D inputs in order to
control the 3D evolution dynamics of the evolving surface,
one has
d¢ &
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where F; is the to be defined control law that drives ¢
towards the ideal (perfect) surface ¢* as r — co. The
definition of an ideal surface is this note is a result with
no errors. For this work, we use the mean-separable
segmentation energy [21] as our reconstruction model. From
this, Vi, % -Xj can be expressed in terms of curvature for
points on the surface which leads us to the following Lemma.

Lemma IIL.1 For a given characteristic function X; and a
point X; € S that lies on the corresponding surface “imaged”
from a given camera w;, we have that

Vai-%i = — K |[xil* 8 (xi - N). ®)

Proof: Following the nomenclature defined above and noting
II(x,x) is the second fundamental form [14], [27], we have

Vidioxi = (Vo (1= H(xi-N)),x)
= —(8(x; 'N)in(xi'ﬁ)7xi>
= —S(Xi'ﬁ)<vxi(xi'l_\7)7xi>
(
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where k, is the normal curvature in a particular viewing
direction x; on the corresponding surface S. From this, we
can rewrite y; as the following:
Y 2
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Furthermore, as we aim to define a control law F; such
that limy_,. ¢ (x) — ¢*(x), we define the error between our

current estimate and ideal shape (no errors) as

E (x,1) 1= H(¢(x,1)) — H(9" (x)). (8)

In doing so, we are now able to define the existence of the
control law F; via Lyapunov method of stabilization.

Theorem IIL.1: Let us assume z; > 1 and ||x;||> <z} as well
as let Kyay and Ky, be the the principle maximum curvature
and principle minimum curvature at a given point X; with
respect to an imaging referential camera T, respectively.
Then the control law

F=- ‘ ﬁi | KabsEe (9)

where Kups =| Knin | + | Knax |, asymptotically stabilizes
the system given in equation (4) from the current evolving
surface @ (x,t) to the ideal surface, ¢*(x) as t — oo.

Proof: We choose the Lyapunov function V(E,,t) € C!
defined in terms of E,(x,t) as

1
=5 [ B0 P (10)
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Differentiating V with respect to time ¢ we get:
0
Vv / E, aEed
a9t Jsus 3t
—/E (1D

llfz+F]5(¢)]dx

—/ES

The simplification over the union SUS* results from the
application of the Kronecker delta function. Moreover, one



(b) Repair

(c) Consolidate (d) Final

Fig. 2: A summary of operators actions to maneuver out
of the local minima in a complex occluded scene. The
images (A), (B), and (C) are views of the model after each
of interaction milestones. Sub-figure (C) shows the final
reconstruction.

can show that resulting system is stable (i.e., V has a negative
semidefinite derivative):
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In particular, the above control law will be dependent on
curvature. While beyond the scope of this note, one can show
exponential convergence whereby higher curvature coincides
with faster convergence rates. While we have not included
this derivation in the present work due to scope and for sake
of clarity, we will expound upon this in future work. This
said, we present such comments to better highlight important
caveats in terms of geometry and control as well as how one
can start to define notions of “trust” (from a reconciliation of
an operator augmentation) to that of a geometric (curvature)
quantity. We would like to highlight there exists analogous
behavior in networked dynamical systems in which one
is able to use discrete Ricci curvature as a measure for

#iteratior

Fig. 3: The overall sequence w.r.t. to energy minimization
of operator action corresponding to Figure 2b. (A ) Incision,
(B) Repair, (C) Consolidate.

network robustness [28]. In such work, one can leverage the
concept of k-convexity similarly to above to define positive
correlation between Boltzmann entropy, curvature, and rate
functions from thermodynamics. Ultimately, this work will
seek to build upon this area and in particular, explore notions
of “trust” in the sense of geometric quantities such as
curvature. Nevertheless, in designing operator guided inputs,
we note perfect knowledge of ideal surface is not readily
available (even from a human visualization perspective) due
a myriad of reasons including, but not limited to, occlusions,
clutter, and/or inability to define a well-posed model across
image modalities. As such, we allow an operator (whom is
also prone to errors) to make interactions with the system in
order to reconcile one’s belief with built autonomy towards
an estimate of the ideal surface. For sake of brevity and scope
of this note, we refer the reader to [4] for construction of
such a framework with slight caveats that do not detract from
the overall contribution of this paper.

I'V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we demonstrate the proposed algorithm
on a variety of scenarios. In all demonstrated results, green
patches, or marks, are made by the user to denote regions
in the foreground. Similarly, red denotes regions on images
that are to be considered a part of the background. In images
where silhouettes are displayed, the yellow silhouette denotes
the autonomous surface while the estimate of ideal surface is
always presented in cyan. Each reconstruction utilizes N = 36
images with the resulting MATLAB code run on an iMac 4.2
Ghz Core i7 with 32GB memory.

We begin with an example that highlights the method in
face of occlusions by objects obfuscating several different
imaging views. This can be seen Figure 2 along with how
such inputs affect the energy minimization landscape in
Figure 3. Here, naive reconstruction fails due to ambient
occlusion whose intensity is similar to the background. While
there exists varying approaches and shape prior models
to overcome such a problem, defining such models for
particular scenarios becomes quite cumbersome and yet, may
not yield stable results. We are able to properly reconstruct
the shape through operator input with a simplified model



Fig. 4: 3D reconstruction of a cup in clutter and camera miscalibration. Top row: Sequence of user initiated operations to
reorient the flow at multiple time instances. Bottom row: Final silhouette curves and reconstruction. Note: Yellow Curve is
Autonomous Surface, Blue Curve is Ideal Estimate, Green is Foreground Interaction, Red is Background Interaction.

Fig. 5: Example where interactions are added to the wing-
tips which are darker than ambient clutter of clouds and
additional shape complication due drone thinness in wings.

as defined in [21]. For this experiment, the user made 12
interactions for the foreground and 47 interactions for the
background. In particular, in regards to the operator input
and its impact on the energy landscape, the user actions can
be partitioned into 3 milestones: initial incision (Figure: 2a),
followed by a repair of the surface (Figure: 2b), and then,
consolidating the surface by helping it “free” itself from
scene anomalies (Figure: 2c).

More importantly, irrespective of the underlying model
chosen for reconstruction, there will exist assumptions that
are violated possibly due variety of image artifacts such as
noise, clutter, and/or model assumptions itself. That is, for
the chosen reconstruction autonomous model, we make the
classic assumption that the scene is “mean-separable” and
piecewise constant. Of course, while there exists other more
advances models, such a model helps illustrate where opera-
tor feedback may override basic fallible assumptions. Figure
6 presents a scene in which such piecewise assumption is
violated along minor camera miscalibrations.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed a feedback control
framework to guide the dynamics of an evolving surface in
the context of multi-view stereoscopic reconstruction. This
is done to ensure robustness in presence of low-fidelity
datasets. From an optimization standpoint, the reconstruction
minima which we often seek (due to modeling imperfections)
may not coincide with user expectations. As opposed to
defining complex models for which overfitting may arise,
we incorporate a user-defined input in-loop and “on-the-fly”
from a feedback control perspective. We show the resulting
framework is stable via Lyapunov analysis and from a
practical standpoint, there is an increase in efficiency through
a human-autonomous collaboration in shape reconstruction.
Mathematically, the thematic interest is the interplay of
geometry and control, namely how notions of curvature from
geometry infer convergence and for this note, a notion of
autonomous trust to user-input. This said, future work will
entail a much closer analysis in regards to how Gaussian
curvature infers convergence as well as the study of a
problem in a distributed optimization sense, non-constant and
time-delayed inputs as well as the inclusion of stochastic
optimal control to further characterize operator uncertainty.
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