


use local correspondence matching and hence, are fallible

to drawbacks resulting from scene abnormalities (e.g., noise,

non-uniform illumination [9]). In regards to robotic vision,

such correspondence-based solutions generally involve the

well-known concept of SLAM (Simultaneous Localization

and Mapping) [10], [11], [12]. This said, SLAM-based

methods traditionally suffer from the requirement of high

computational power for sensing a sizable area and process

the resulting data to perform both mapping and localization.

Also, there is a tacit requirement that input scene images

should have overlap from image-to-image. To this end, SFM

(Structure From Motion) based methods provide a relaxed

version of this problem [13], [14] (i.e., Google uses this

approach in their popular street-view application on Google

maps [15]). More recently, [16] explores a recurrent neural

network (3D-R2N2) by employing shape priors in which one

learns 2D to 3D mapping from images of objects to their

underlying 3D shapes from large collections of synthetic

data. In particular, the authors have been seemingly able to

show their method outperforming SLAM or SFM (albiet with

learnt knowledge) when there is lack of texture or baseline.

Nevertheless, this paper does not argue the rigors of

the underlying reconstruction method itself and our par-

ticular focus on our previous work [1] is in-part due a

correspondence-free method, independence to local (image-

gradient) structure, and dependence on geometric techniques

connected to image segmentation [17], [21], [22]. Undoubt-

edly, each approach whether it be SLAM-based, deep (re-

inforcement) learning variants, and/or geometric methods

work optimally with respect to the prospective operating

environment (e.g., space, low-power requirements compared

ground-based robotic vision). At the same time, any such

reconstruction are not infallible to errors that arise in real-

world dynamic scenes from a human-perception standpoint.

This said, human-perception is also fallible and any operator

input based on a visual estimate is prone to errors. Philo-

sophically, we make the argument that terms such as over-

fitting and uncertainty are in part, perceived by an expert who

generally acts as a passive entity in such methods. Thus, the

problem we seek to resolve is to not only rectify the expected

and ideal reconstruction in real-time [23], but provide the

necessary feedback control characterization when invoking

operator input [24].

The remainder of the paper is organized as follows: In

the next, we introduce stereoscopic reconstruction via classic

image segmentation. Then Section III provides a control

framework along with the necessary conditions for stability.

Section IV presents experimental results. From this, we

conclude with future work in Section V.

II. FROM SEGMENTATION TO 3D RECONSTRUCTION

This section presents a general introduction to geometric

stereoscopic segmentation.

A. Geometric 2D Image Segmentation

Let us begin with the classic binary problem of segmenting

an image I : Ω 7→ R
n into a foreground and background

described by functionals ro : ζ , Ω 7→ R and rb : ζ , Ω 7→ R

which measure the similarity of of the image pixels with

a statistical model over the regions R and Rc, respectively.

Here, ζ corresponds to the photometric variable of interest.

Then, one can define a partitioning problem where the op-

timal partition between foreground/background is described

by a partial differential equation [22], [26]; i.e.,

E =
∫

R
ro(I(x),C)+

∫

Rc
rb(I(x),C)dΩ (1)

∂E

∂C
= β~N

where β : R2 7→ R can be considered “forces” along the

curve (partition boundary) that describe the direction of the

corresponding evolution in the normal ~N direction. While a

complete review of such methodology is beyond the scope of

this note, we do refer the reader to several seminal references

[17], [21]. For the case image segmentation, it suffices to

understand that the partitioning curve C “lives” in the 2D

image domain.

B. Stereoscopic 3D Reconstruction

Now, if we consider the problem of 3D reconstruction

from 2D images, one can redefine the functional in equation

(1) as follows:

E =
N

∑
i=0

∫

Ri

ro(Ii(x̂i),π
−1
i (x̂i), ĉi)+

∫

Rc
i

rb(Ii(x̂i),Θi(x̂i), ĉi)dΩi

(2)

where the difference is the functional now depends on N

image observations Ii and where a particular 2D image

silhouette curve ĉi is derived from a single 3D occluding

curve C (with a slight abuse of notion) on a given smooth

surface S in R
3 with a corresponding 3D background B

treated as infinitely large sphere with angular coordinates

Θ = (γ,υ). That is, ĉi = πi(C) where πi : R
3 7→ Ωi is

the realization of the i-th pin-hole camera (sensor) that

projects the 3D world onto the 2D domain. Similarly, the

background can be related in a one-to-one manner with

the image coordinates x̂i of each observation through the

mapping Θi (“blue sky” assumption). To be more precise,

x = (x,y,z) is surface coordinates of S in R
3 and further

note that xi = (xi,yi,zi) denote the same points expressed in

i-th calibrated camera coordinates relative to the i-th image.

Moreover, x̂i = (x̂i, ŷi) = (xi/zi,yi/zi) is the aforementioned

perspective projection due to the i-th pin-hole camera πi. In

turn, ro and rb redefined to be radiance functions. That is,

the foreground object of interest supports a radiance function

of ro: S → R with the usual area element dA. Similarly, the

background supports a different radiance function rb: B→R.

As such, for a given 3D surface, it is possible to partition

each image domain Ωi of Ii into a foreground object region

Ri = πi(S) ⊆ Ωi and the corresponding background region

Rc
i . Note, the operator πi is not one-to-one and, hence non-

invertible. However, we can define a back projection operator

π−1
i using the back tracing of rays from image to the surface,

i.e, we have π−1
i : Ri → S which is a pseudo one-to-one

operation.



Putting this together, assuming the calibrated cameras, the

deformation of the surface towards a reconstructed shape

based on a set of N image observations can be shown to

be of the following form:

∂S

∂ t
=

N

∑
i=0

βi ·

(

∇xi
χi ·xi

z3
i

)

~N

where we define a visibility characteristic function χi from

a given location xi on a surface S as:

χi(xxx) =

{

1, if xi ∈ π−1
i (Ri)

0, if xi /∈ π−1
i (Ri).

This can be re-written in terms of the smooth regularized-

Heaviside function H along with (outward) surface normals
~N at each point xi of the surface S:

χi = 1−H(xi ·~N)

Given the above, we are now able to formulate a control-

based reconstruction scheme from which a given physical

2D action, based on visual perception (information), can be

used to interactively “sculpt” a 3D shape in collaboration

with the above autonomous 3D reconstruction algorithm.

III. CONTROL-BASED RECONSTRUCTION

Let us begin by redefining the general form of a surface

reconstruction evolution above in level-set notation as fol-

lows:

dφ

dt
=

N

∑
i=0

ψi(x̂i,xi, t)δ (φ(x)) (3)

where ψi : R3 → R is the surface gradient information

computed from the photometric image data, φ : R3 → R

is a level-set function, and δ (.) is the classical Kronecker

delta function. Hence, to “close the loop” that incorporates

a physical 3D operator performing 2D inputs in order to

control the 3D evolution dynamics of the evolving surface,

one has

dφ

dt
=

N

∑
i=0

[ψi +Fi(φ ,φ
∗)]δ (φ) (4)

where Fi is the to be defined control law that drives φ
towards the ideal (perfect) surface φ ∗ as t → ∞. The

definition of an ideal surface is this note is a result with

no errors. For this work, we use the mean-separable

segmentation energy [21] as our reconstruction model. From

this, ∇xi
χi · xi can be expressed in terms of curvature for

points on the surface which leads us to the following Lemma.

Lemma III.1 For a given characteristic function χi and a

point xi ∈ S that lies on the corresponding surface “imaged”

from a given camera πi, we have that

∇xi
χi ·xi =−κu ‖xi‖

2 δ (xi ·~N). (5)

Proof: Following the nomenclature defined above and noting

II(xxx,xxx) is the second fundamental form [14], [27], we have

∇xi
χi ·xi = 〈∇xi

(1−H(xi ·~N)),xi〉

=−〈δ (xi ·~N)∇xi
(xi ·~N),xi〉

=−δ (xi ·~N)〈∇xi
(xi ·~N),xi〉

=−δ (xi ·~N)(∇xi
~NT

xi)
T

xi

=−δ (xi ·~N)[xi
T ∇x

~Nxi]

=−δ (xi ·~N)
[

u v
]

[

l m

m n

][

u

v

]

=−δ (xi ·~N) II(xi,xi)

=−δ (xi ·~N)
II(xi,xi)

xi
T xi

‖xi‖
2

=−δ (xi ·~N)κu ‖xi‖
2

(6)

where ku is the normal curvature in a particular viewing

direction xi on the corresponding surface S. From this, we

can rewrite ψi as the following:

ψi =−βi

δ (xi ·~N)κu ‖xi‖
2

z3
i

. (7)

Furthermore, as we aim to define a control law Fi such

that limt→∞ φ(xxx)→ φ ∗(xxx), we define the error between our

current estimate and ideal shape (no errors) as

Ee(x, t) := H(φ(x, t))−H(φ ∗(x)). (8)

In doing so, we are now able to define the existence of the

control law Fi via Lyapunov method of stabilization.

Theorem III.1: Let us assume zi ≥ 1 and ||xi||
2 ≤ z3

i as well

as let κmax and κmin be the the principle maximum curvature

and principle minimum curvature at a given point xi with

respect to an imaging referential camera πi, respectively.

Then the control law

Fi =− | βi | κabsEe (9)

where κabs =| κmin | + | κmax |, asymptotically stabilizes

the system given in equation (4) from the current evolving

surface φ(xxx, t) to the ideal surface, φ ∗(xxx) as t → ∞.

Proof: We choose the Lyapunov function V (Ee, t) ∈ C1

defined in terms of Ee(x, t) as

V =
1

2

∫

S∪S∗
‖Ee(x, t)‖

2
dx. (10)

Differentiating V with respect to time t we get:

∂V

∂ t
=

∫

S∪S∗
Ee

∂Ee

∂ t
dx

=
∫

S
Ee[δ (φ)

∂φ

∂ t
]dx

=
∫

S
Eeδ (φ)[

N

∑
i=0

[ψi +Fi]δ (φ)]dx

(11)

The simplification over the union S ∪ S∗ results from the

application of the Kronecker delta function. Moreover, one








