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30 Abstract. Remote sensing radar techniques provide highly detailed imaging.
31 Nevertheless, radar images don’t offer directly retrievable representations of shape
32 within the scene. Therefore, shape reconstruction from radar typically relies on
33 applying post-processing computer vision techniques, originally designed for optical
34 images, to radar imaging products. Shape reconstruction directly from raw data
35 would be desirable in many applications, e.g. in computer vision and robotics. In
36 this perspective, inversion seems an attractive approach. Nevertheless, inversion has
2373 seldom been attempted in the radar context, as high frequency signals lead to energy
39 functionals dominated by tightly packed narrow local minima. In this paper, we take
40 the first step in developing a framework in which radar signals and images can be
41 jointly used for shape reconstruction. In particular, we investigate the feasibility of
42 shape reconstruction by inversion of pulse-compressed radar signals alone, collected
43 at sparse locations. Motivated by geometric methods that have matured within the
44 fields of image processing and computer vision, we pose the problem in a variational
45 context obtaining a partial differential equation for the evolution of an initial shape
46 toward the shape-reflectivity combination that best reproduces the data. While doing
47 so, we highlight several non-obvious difficulties encountered and discuss how to surpass
48 them. We illustrate the potential of this approach through three simulated examples
49 and discuss several implementation choices, including boundary conditions, reflectivity
?1) estimation, and radiative models. The success of our simulations shows that this
52 variational approach can naturally accommodate radar inversion and has the potential
53 for further expansion toward active surfaces and level set applications, where we believe
54 it will naturally complement current applications with optical images.
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1. Introduction

Inverse methods, where measured data are compared with simulated output from a
model to recover the optimal values of the parameter set controlling the response of such
model, have been widely applied in many disciplines (Groetsch 1984, Tarantola 2005).
For example, geophysics (Loke & Barker 1996, Herman 2001, Park et al. 1999, Louie
2001), engineering and non destructive testing (Sambuelli et al. 2011, Cosentino
et al. 2011), medicine (Hounsfield 1973, Bertero & Piana 2006, Comelli et al. 2020),
computer vision (Hailin et al. 2002, Yezzi & Soatto 2003), and remote sensing
(Deepak. 1977).

Inversion techniques have also been applied to tackle shape reconstruction. These
include the variational approaches (commonly encountered in computer vision) which
express the iterative optimisation in form of a partial differential equation (PDE);
Active Surfaces and Level Set Methods being among the most popular. In the context
of computer vision, active surfaces have been exploited both for the segmentation
of data volumes (Yezzi et al. 1997, Cheng et al. 2009, Haukas et al. 2013, Shafiq
et al. 2015, Comelli et al. 2020) and for the reconstruction of the three-dimensional
shape of an object of interest using images acquired from sparse cameras (Yezzi &
Soatto 2003, Hailin et al. 2002, Jin et al. 2003, Gallego et al. 2011). These methods
rely on partitioning the 3D space by means of a surface which is iteratively evolved
until it wraps around the object of interest. Typically, the task is posed as a classic
local optimisation scheme, where the geometric surface is evolved in order to minimise
an energy. While shape reconstruction from images finds several applications, e.g. in
robotics and computer vision, optical approaches have many limitations. The inclusion
of radar sensing within such inversion frameworks would be very desirable, as radar can
easily be employed at night time and can probe a scene even when weather conditions
would hinder optical alternatives. However, before visible/radar joint inversion can
be tackled, it is necessary to investigate the feasibility of handling radar data within
existing variational schemes. In particular, candidate adaptations of such inversion
schemes should be sufficiently stable to allow shape reconstruction from radar data alone.
We devise an inversion approach to simultaneously reconstruct shape and
reflectivity of a three-dimensional structure (scene) directly from measured
radar data (i.e. high frequency back scattered electromagnetic signals),
collected at sparse locations. Our approach to the problem will blend concepts from
different scientific domains. As such, before fully describing our contribution (section
1.3), we provide a brief introduction from the domains of radar remote sensing and
waveform inversion.
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1.1. Radar Remote Sensing

Established radar imaging techniques leverage recording the reflected echo signal, most
often a linear chirp signal (e.g figure la), back-scattered toward the emitting antenna.
Echoes recorded at multiple locations, either by antenna arrays or by moving antennas
are used to acquire multi-view information from which an image of the illuminated
scene is formed. Historically the development of this technology was application-
specific and implementation choices were dominated by hardware capabilities. A
wide variety of approaches to the image formation exist nowadays (Curlander &
McDonough 1991, Carrara et al. 1995, Soumekh 1999), and a thorough review is beyond
the scope of this paper.

The Synthetic Aperture Radar (SAR), in all its flavours, might be considered a
good example of this entire class of applications (Curlander & McDonough 1991, Carrara
et al. 1995, Soumekh 1999). SAR leverages a moving antenna, emitting pulses at regular
intervals to illuminate the scene from multiple viewpoints. Fundamental aspects of each
data acquisition are the choice of working parameters related to the emitted signal,
such as: frequency band, pulse duration; as well as geometric parameters, such as the
number and locations where the signal is emitted/collected and antenna orientation,
all of which rule the achievable resolution of the produced image. In Stripmap mode
SAR (Munson, Jr 1987) for example, the antenna moves along a straight line and has a
fixed orientation with respect to direction of the movement. In spotlight mode SAR, the
antenna is moved instead along a linear or circular trajectory while the beam is steered
to point the scene (Curlander & McDonough 1991, Carrara et al. 1995, Soumekh 1999).
Concerning data processing, if we focus on just one of these approaches, the “holographic
approach” (Farhat 1975), for example, we must emphasise that in order to translate the
data from the aperture-range domain (i.e the antenna locations - distance to the scene),
to the space-space domain (i.e. the image), signal processing techniques (typically, pulse
compression and Stolt formatting), although involved, are sufficient to achieve the final
result and no inversion is necessary. This consideration remains true for the most recent
Volumetric SAR (VOLSAR) which exploits the holographic approach to produce a three
dimensional reflectivity volume (Barnes & Prasad 2018). It is a common denominator of
all radar-based approaches to search for ever higher resolutions of the produced image.

Ultimately, the key aspect of SAR processing is that, in order to form such an
image and correctly achieve the maximum pixel-wise resolution, the information from
the echoes at different antennas must be coherently summed (i.e. phases must be
synchronised to the wavelength level). Such a careful handling of signal phases requires
extremely precise control of the antenna collocation, which becomes a limitation as the
frequency band of the emitted signal increases.

Shape reconstruction has been investigated in the radar imaging context as well.
For example, (Das & Boerner 1978) proposed an approach based on the Radon transform
showing that the challenge is equivalent to the problem of image reconstruction from
projections. In this early approach radar signals were Fourier transformed to the
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frequency domain, and only a subset of frequencies were considered for the shape
reconstruction. Gonzalez-Valdes et al. (2013) used an iterative algorithm coupled with
a frequency hopping strategy to retrieve the shape of a two dimensional perfect electric
conductor body from data collected at several transmitting—receiving antennas placed
around it. Shape reconstruction finds application also for the determination of asteroids
shape from delay-Doppler radar images (Hudson 1993, Brozovic et al. 2009). These
methods are related to techniques in inverse SAR (Walker 1980). SAR interferometry
(ifSAR) (Bamler & Hartl 1998) is routinely used to obtain land digital elevation
models (DEM), or to monitor elevation changes over time from a reference DEM. This
approach leverages phase difference between pairs of SAR images obtained from data
collected either at slightly displaced trajectories or at different times. Three dimensional
reconstruction is also tackled combining SAR and polarimetry (Cloude 2010), as
polarization effects experienced by electromagnetic waves when reflected by the scene
carry a wealth of information about the 3D nature of the scene. With these approaches,
3D images (i.e. data volumes) can be successfully obtained (Hamasaki et al. 2005).
Additional methodologies attempt extracting complex geometric features adopting
stereo or stereogrammetry based strategies (Koyama et al. 2016, Bagheri et al. 2018).

Summarising, shape reconstruction in radar applications is mostly achieved starting
from images. Formation of such images requires careful processing and a regular
acquisition geometry of the synthetic aperture in order to achieve the necessary coherent
summing. Only after image formation is the shape reconstruction challenge finally cast
into an inversion framework. An interesting observation about shape reconstruction
from SAR images is brought by Thomas et al. (1989). They leveraged active surfaces for
reconstruction of land topography exploiting the difference in shading between multiple
SAR images and pointed out that the geometry can only be recovered with much lower
resolution when compared to the initial images. Indeed, SAR images typically possess
a detailed pixel-level granular structure (speckle), which requires strong regularisation
in order to make the energy functional sufficiently smooth for stereo reconstruction and
local minimisation techniques. The key lesson is that the level of detail needed to
make radar images most useful for human visual inspection is unnecessary to
reconstruct the general shape of a scene, and we could therefore conceptually
avoid coherent summation. In turn, this means we could build our shape
reconstruction on the inversion of individual echo signals, avoiding image
formation entirely.

1.2. Inversion of oscillating signals

Limited preliminary work (Bignardi et al. 2012, Cook et al. 2014, Yildirim & Yezzi 2018)
has demonstrated that shape reconstruction directly from remotely sensed oscillating
signals is feasible, provided that a proper energy functional is defined. To construct
a well behaved radar-based energy functional we must first deal with the oscillatory
nature of radar signals. In this sense, an interesting example is found in geophysics,
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in the context of Full Waveform Inversion (FWI). In FWI, seismic signals collected
by an array of geophones are used in the framework of inversion to infer the P-waves
velocity distribution in the subsurface (Virieux & Operto 2009, Raknes & Arntsen 2014).
FWI tackles such a task by minimising the distance between measured and simulated
seismograms (either expressed in time or frequency domain), leveraging a residual error
function £ posed in least squares form. Considering just one receiver:

E={((u-u’), (u-1u")= / (u(s) —u’(s)) (u(s) —u’(s))"ds, (1)

where s is either time or frequency. To be successful, the local optimisation requires
a smooth energy functional and the initial model must be already in the basin of
attraction of the global minimum. Unfortunately, an energy defined as in equation (1),
based on the difference of oscillating signals possesses a large number of local minima.
A difficulty strictly related to this aspect is the commonly known “cycle skipping”,
effectively illustrated in figure 7 of Virieux & Operto (2009). This phenomenon is
easily understood considering the frequency domain. While cycle skipping typically
affects several frequencies simultaneously, let’s consider just one as example. When the
harmonic of the simulated signal nearly matches the corresponding harmonic in the
data, but shifted by an integer number of periods, the energy minimisation will push
the contribution of that frequency to the energy functional toward a local minimum
and therefore, to a incorrect model. It is important to note that cycle-skipping
affects both the time and frequency domain; and becomes increasingly severe
as frequency increases. In the frequency range typically investigated by FWI (i.e. <
100 Hz), the initial model already needs to be "very good” (typically a smooth version
of the reality) for the inversion to succeed.

Since radar sensing leverages a much higher frequency range, managing
cycle skipping is crucial to the feasibility of our application. Therefore, in
the “Method” (section 2) we will illustrate such a phenomenon in the radar
inversion context (figure 1a,b), and propose a strategy to tackle this issue.

1.3. Motiwwation and contribution of the present work

Optical devices provide information on two lateral dimensions (i.e. the two dimensions
in an image). Radar conveys information on the range (i.e. depth), which is precisely
the dimension that is lost in optical imaging. Therefore, combining optical and radar
data would convey, in principle, complementary information that could be powerfully
exploited within the context of a unified inversion framework. In our view, active
surfaces and the level set method would provide the ideal environment, as they can
naturally handle topological changes of the geometric model (i.e. the shape) being
reconstructed. However, in order to explore the feasibility of using these mathematical
frameworks with radar data, we first investigate the simplified case in which the surface
of interest is parametrized in form of a graph of a function. While with this simplification
the surface is not technically an active surface anymore, its evolution still belong within
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the general family of variational methods and more importantly, conclusions can be
easily generalised to Active Surfaces.

Developing a unified framework requires investigating the mathematical foundation
to include radar information in the variational approach, and this task represents a
stand-alone reconstruction problem.

In this paper, we leverage radar signals (i.e. high frequency back scattered
electromagnetic signals) emitted and received by a set of sparse antennas to reconstruct
shape and reflectivity of a three-dimensional structure. We develop a time domain
approach to the reconstruction problem by leveraging time-domain signals after pulse
compression. Methods motivated by a similar philosophy can also be formulated in
the frequency domain, and we indeed develop such a strategy by leveraging stretch
processing in a concurrent companion paper (Yildirim et al. 2020). This paper (and its
companion paper) take a first step towards establishing a framework in which optical
approaches and radar can naturally blend and where well established approaches from
computer vision can be fully exploited.

In what follows we describe a general approach for embedding high-frequency signals
in a local inversion mathematical framework. What we obtain, is a variational method
from which a partial differential equation for the evolution of an initial shape toward
the shape that best reproduces the radar data is obtained.

Therefore, differently from traditional radar approaches, which focus on image
formation first, and differently from the computer vision domain where PDE methods on
images are well established and do not pose any challenge, we tackle the reconstruction
problem directly by inverting the signals back-reflected from the scene. Even with the
graph surface simplification, we show that inclusion of such highly oscillating signals in
variational methods and PDE poses several nontrivial challenges that must be carefully
addressed before moving toward active surfaces, which will be a matter for future work.
In the following, we illustrate both challenges and solutions by means of three examples
possessing increasing level of sophistication. We emphasise that the graph surface is
used only for mathematical convenience and not to tackle radar applications for which
a well established approach already exists (e.g. land topography estimation). On the
contrary, our interest is in 3D shape reconstruction as it is often encountered in robotics
and computer vision applications. In examples 1 and 2, we use two different radiative
assumptions and show how a piece-wise constant reflectivity can be estimated. While
in these examples the shape to be reconstructed is relatively simple, in Example 3 we
show how both shape and reflectivity can be retrieved even for a shape model possessing
high curvature features and occluded visibility. In addition, example 3 will investigate
the case of noisy simulated data.

2. Method

We consider a scene/object probed by a set of A sparse radar antennas or alternatively,
by one antenna moving along an irregular trajectory and probing the object from A
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locations. We assume that a linear frequency modulated (LFM) chirp pulse is emitted,
and the corresponding echo is recorded at same location x,, where index a identifies
a specific location. Recording locations, as well as the parameters characterising the
emitted signal are assumed known. With this premises, we assume our data to comprise
A time series, after pulse compression has been applied. In the following we will refer
to these quantities as “raw signals” or “raw data”. In our inversion scheme, we consider
a model in which the back scattering object can be represented by a smooth surface
S on which a smooth, complex reflectivity ¢g (viz. a continuous distribution of point
scatterers), is defined. Such surface is iteratively evolved in order to minimise the
following general energy functional:

E (u(S,G),u) = € (u(S,G),u°) + %RS + %RG , 2)

where u°

is an observable derived from the raw data and u(S,G) is the corresponding
simulated signal, which depends on the surface S and through the quantity G = gg*,
on the reflectivity defined on it. From now on, we will refer to u® as the “preprocessed”
signal (or data) and to G as the “reflectivity function”. & (u(S,G),u°) is the error
function (or misfit) between u(S,G) and u; i.e. the distance in the data space, which
we will later cast in least squared form, while (S,G) corresponds to a point in the
the parameter space ( i.e. the space of all possible scene geometry and reflectivity
combinations). The Rs, Rg are regularisers to enforce smoothness on the shape and
reflectivity function while a; and as are weighting constants.

To build a successful inversion we must define a proper energy functional as smooth
and convex as possible. Following Oliver (1989), there is direct connection between the
time signature from a point scatterer and its location in space. Besides terms affecting
amplitude, the echo of a LFM chirp produced by a single point scatterer (figure la),
after conversion to baseband and pulse compression (figure 1b), corresponds to

ngS(t/, 74) = sinc [BT (t' — 74)] exp (—iweTq) , (3)
where t' is time, 74 is the round-trip delay-time, w,. is the carrier frequency, and [ is
the chirp rate. 7, may be related to the distance r = ||x — x,|| between the locations
of the point scatterer x and the antenna by 7, = 2r/C (with C' denoting the speed
of light). This allows us to switch between time and range. In the following, we
will often use range to label the figures’ horizontal axis, as its interpretation is more
intuitive with respect delay time. We can expect the echo from the entire object to
be well modelled as a superposition of terms like (3). When we introduced the cycle
skip phenomenon, we highlighted that a least squared minimisation built on differences
between oscillating functions leads to an energy possessing numerous local minima,
and that this problem worsens as the frequency increases. Therefore, we can easily
anticipate that the corresponding energy functional would present an intractable number
of local minima if raw data were considered as they are. Intuitively, to be in the basin
of attraction of the global minimum would require providing an initial shape within
a few wavelengths (\) of distance from the true model. In other words, we would
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Figure 1. (a) Example of Linear Frequency Modulated signal in the C band (LFM
up-chirp). Frequency increases from f;n = 4GHz t0 frmae = 6 GHz (wavelength
A € [5,7.5]em), over a 50us active time (first 1.5 us are shown). (b) Signature of a
point scatterer. The result after pulse-compression on the LFM signal shown in (a),
corresponding to equation (3) computed at 74 = 0, is shown in black. The same pulse,
delayed by 4.5 periods (14 = 4.5/ finin), i.e. about 22.5 em apart, is shown in red. (c)
Example of energy function (equation 1) for the simple case of a lone point scatterer
scene, as a function of the distance between the true location of the scatterer and
the initial input provided to a hypothetical inversion. The red dot shows the energy
location corresponding to signals in figure (b), where u and ug are associated to the
red and black line, respectively. Despite the small delay, configuration in (b) is already
in the basin of attraction of a local minimum. Notably, energy is dramatically non-
convex and the multiple narrow local minima are the practical manifestation of cycle
skipping at such high frequencies. Under these conditions, inversion would remain
trapped around the initial model and fail.

already know the shape. For example, let’s consider a scene consisting of just one point
scatterer probed using the C-band LFM chirp of figure 1 (frequency band 4-6 GHz
and pulse duration 50 us). The antenna is considered to be at a distance of 20 Km.
Figure 1c shows the energy functional (equation 1), as a function of the distance of a
hypothetical initial guess from the true location. Notably, not only does the function
present numerous close local minima, but it is also not convex. In this simple example,
the inversion would lead to the correct solution only if the initial model (i.e. the scatterer
location) was chosen within four wavelengths (ca. 20 cm) from the true position. The
red dot highlights the energy value computed using the black and red pulses of figure 1b
as true and simulated signals, respectively. The initial guess is only 22.5 em (4.5A) from
the true location, yet the inversion is already destined to an unwanted local minimum.
Even worse, since minima are narrow and tightly packed, an inversion would barely
move from the provided initial guess.

A consideration to make is that historically, radar imaging focused on achieving
the maximum pixel-wise resolution, for which the coherent sum of signals like
equation (3) is a fundamental element. The price is that at a very small scale,
the constructive/destructive interaction of point spread functions from different point
scatterers is responsible for the speckle formation. In contrast, such a level of resolution
is not actually necessary for shape reconstruction. In fact, amending for the presence of
speckle is the main reason why the Shape from Shadows approach (Thomas et al. 1989)
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requires strong regularisation, eventually resulting in lower resolution. Following this
consideration, note that if we consider the squared form of equation (3) the term
oscillating with w,. cancels and we are left with

Pt —14) = ¢ ¢* = sinc® [BT (' — 14)] . (4)

Nevertheless, equation (4) still retains an oscillating behaviour that must be properly
addressed. When the echo from the entire surface is considered, we can lessen the
oscillations introduced by terms such as (4) by smoothing the signals with a moving
averaging window. Therefore the back-scattered, pulse compressed echoes ¢, (T)
recorded on the interval [t,in, tmaez] Dy antenna a will be preprocessed according to

. 1 t+AT/2
u, (t) = — bq (1) ok () w(t)dt', 5
O=57 ], @6 )
while the response of our model (i.e. the forward model) can be computed according to
1 /HAW [ / GRuw(t — 74(r))
Ug (t) = —= V Pt —14)dS| dt’, 6
=57 o0 T (¥ ~ ) ()

where AT is the window’s width, V is a binary visibility indicator function along
the surface, R is a radiative function which accounts for how the energy is
absorbed /irradiated by the surface and w is a temporal averaging window.

Since the evolution of a general three-dimensional surface is particularly involved
(the subject of a future paper in which Level Set Methods will be exploited for more
general surface modelling flexibility), for the purposes of the present investigation we
consider a simplified approach in which the surface is modelled as the graph of a function
z(x,y), i.e. S(z,y) = (z,y, 2(z,y)), representing heights over a fixed 2D spatial domain
) C R2. In turn this allows us to similarly parameterise the various functions defined
on the surface S as follows:

2: Q>R =z(x,y),
S:Q—-R? =S(x,y) = (z,y, 2(x,y))

0z 0z 0z 0z
. 3 _ _ | ==
N:Q—R —N(m,y)—(ax,ay )/H(axa )

r:Q—=R =r(zy = \/(x—xa) + (Y — ya)? + (2(z,y) — 24)?,
G: Q=R =G(x,y),
R:Q—=R =R(xz,y) ... may depend on both S(z,y) and N(z,y),
2r(z, y)
o
where N is the unit outward normal, and the integral of any generic function f on the

Ti: Q>R =1(z,y) =

evolving domain S (or on a portion of the same), can be rewritten as:

Lﬂwzéfwwm, ®)

(7)
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where || J|| = \/1 + (92/0x)* 4 (0z/dy)* is the Jacobian of the change from the
surface area dS to the 2D spatial measure dx. Finally, we are ready to introduce the
explicit form of our energy functional as:

A
o o2 , @ 2 o) 2
B =3 ool =5 [Ivelras+ S [ verPas. 9)
where the functional norm || - || is built from its related inner product < -, - > as follows
tmaz tmaz
(o= [ awsod 10t = [ oroe. o
tmin tmin

Equations (5)-(10) define our inversion framework. It is particularly worth noting
that in this form, the shape reconstruction problem is formulated in terms of signal
amplitudes, while the “phase curtain” (Barnes 2015), classically leveraged by SAR
imaging is actually not used. While this aspect may seem strange to a SAR expert, we
must emphasise that by posing the problem in the inversion framework and providing
an initial explicit shape to be optimised, we leverage information that is not available in
traditional approaches. On the one hand, dropping the coherent summation forces us to
perform the reconstruction to a lower resolution with compared to traditional SAR. On
the other hand, we gain the capability of using sparse antennas and avoid limitations
at very high frequencies.

In equation 6, the integral over a time window centred at ¢, translates to a sample
of the simulated preprocessed signal. Geometrically, such a time window identifies two
spherical shells of radius £ (¢ — AT/2) and £(¢t + A/2), and the echo from the portion
of surface included within these shells provides the most significant contribution to the
simulated sample. Nevertheless, the support of P is in general wider than any practical
choice of averaging window and the tails of this function, leaking outside the present
window span, are captured within neighbouring time windows and in turn, contribute
to neighbouring samples of the preprocessed signal. Conversely, part of the energy from
neighbouring windows may leak into the present one. Recalling that we assumed the
surface to be a continuous distribution of point scatterers, and recalling that the main
lobe of the sinc function (equation 3) associated to each scatterer approximately spans
half a wave length around its location, if the width of the averaging window is chosen
large enough, the sinc® term (i.e. P) may be substituted with the Dirac delta function
and speckle does not need to be modelled.

Considering a realistic scene, this simplification implies that for a given finite
portion of surface included in the above mentioned shells the cumulative effect of the
sinc? tails leaking outside of the surface’s borders (in terms of delay-time or range),
should be negligible. Figure 2 summarises the result of a set of experiments performed
to prove that this simplification is indeed acceptable. We considered a squared patch
of 1 m? containing a sufficiently high number of randomly placed point scatterers (10
in the shown example), so to simulate a dense, yet realistic, distribution. Antenna is
assumed 20 K'm far from the patch centre. Figure 2a shows an example from the 10*
configurations generated by randomly placing 10* point scatterers. Subsequently, we
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31
32 Figure 2. Experiment confirming that the term P in equation (6) can be substituted
33 with a Dirac delta. a) Example of 10* randomly generated scatterers. b) Comparison
34 of functions ¢¢* (i.e. the quantity being integrated in equation 5) computed from
35 individual signals ¢ backscattered by the 10* scatterer configurations like the one
36 shown in (a), which highlights the change of regime at the distribution boundary. In
37 A . . .
38 all figures within this group delay times were converted to range as well as multiples
39 of the wave length. Radar parameters are the same as figure 1. The solid black line
40 and the dashed red lines represent average and standard deviation, respectively. c)
41 Detail of figure (b). Showing that beyond the patch boundary tails of the signal fall
42 under 2% of the maximum amplitude within 2-3X distance (few cm) and therefore are
43 of negligible concern to our approach. d) Integral values of signals. Histogram shows
44 the distribution of values around the average. Discrepancy is lower than 0.003%,
45 demonstrating that the time-windowing strategy is robust to short-scale features
46 (speckle).
47
48
‘5‘3 computed the echo ¢ from all the different patches as a superposition of terms like
51 equation (3), (same simulation parameters as in figure 1). Figure 2b shows (in grey
52 and normalised) the function ¢¢* computed for all the 10* scatterer configurations (i.e.
gi the quantity being integrated in equation 5). The mean and the standard deviation
55 are drawn in black and red, respectively. Ranges corresponding to the patch edges are
56 highlighted and the average amplitude within this interval (Ag) is used as normalisation
;73 constant. Notably, even though these functions are quite chaotic at the small scale, two
59 different regimes can clearly be observed. In particular, the amplitude suddenly drops
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at the patch’s edge. Figure 2c shows a magnification of the small squared portion at
the bottom left of figure 2b and shows that after just one wavelength (c.a. 5 c¢m) the
amplitude is reduced to 5% of Ay, confirming that sinc? tails are indeed negligible and
the use of the Dirac delta in place of P is justified. Additionally, these functions show
almost identical integral values (computed according to equation 5), with difference
smaller than 0.003% (figure 2d), confirming that the small-scale details of the scatterers
distribution has negligible effect on the preprocessed signals. It is worth mentioning
that in order to approximate a continuous distribution we repeated this experiment
with increasingly larger numbers of point scatterers: 10%, 10°, 108, and 107; obtaining
consistent results.

Moving forward, equation (9) represents the most general form of this optimisation
problem, where both z and G are evolved from an initial guess. Nevertheless, as we will
show later, given a reference shape the optimal GG can actually be directly estimated.
Therefore, in the following we will drop the optimisation of G and the corresponding
regularising term.

Implementation of such an inversion approach requires to perform several design
choices: 1) since the scene is a graph of a function, we must adopt a suitable boundary
condition at the surface edges. 2) decide which kind of averaging window is acceptable
and 3) establish the correct radiative model. In the following we will discuss these
aspects. Finally, due to the difficulty of obtaining a real-world dataset suitable for such
a unconventional radar data inversion, we illustrate the capabilities of our approach
through numerical simulations.

2.1. PDE-based variational approach

To obtain the evolution in the form of a continuous gradient descent PDE, we consider
the unknown function z to lie along a continuously deforming family of functions
z(x,y, ) where the additional variable T parameterises the family. As such, the energy
functional evaluated along this evolving family of functions now becomes a simple
scalar function of 7, whose derivative may be expressed in the following integral form
(following the same mathematical development taken, for example, in Kichenassamy
et al. 1995, Yezzi et al. 1997),

a_E:/(...)%dX’ (11)

or Q~~~ 0T

V.E

where all partial derivatives with respect to 7 inside the integral are isolated via
combinations of the chain rule and integration by parts into the single term % shown
above. The remainder of the integrand, which we denote by V,E represents the
functional derivative of E' (which, when set to zero, yields the classical Euler-Lagrange
equation from the Calculus of Variations) also known as the first variation. It can
be interpreted as an infinite dimensional gradient of E over the space of all possible
functions z (not to be confused with the two-dimensional spatial gradient of the function

Page 12 of 30
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z itself) with respect to the standard functional L? inner product and /or norm. As such,
we need to develop and manipulate

Z_f _ Z/tm (ua(t) — u(t)) a“a“ /Hvzl\ ds.  (12)

a=1 min

For simplicity, let’s first consider the derivative Ou,(t)/0T. Let’s define
Q = {x|(C/2)(t—AT/2) <r < (C/2)(t+ AT/2)}, the portion of 3D space
corresponding to delay times 75 € [t — AT/2,t + AT/2]. It can be demonstrated that,
using a delta function in place of P, for a specific instant ¢, integral (6) can be rewritten
as the integral on the portion of surface S N Q.

1 GwR
win) =57 [ v (13)

Considering dependencies in equations (7), we obtain:

Qualr) _ 1 U —4V@R||Jy| ﬁ% = dvdy

or AT
Gw [ R 8 8R
+ V “’( : |y H) — dx dy
SNo T ||J||a (14)
s VER ( R O aRn ||) v dy
Kt rd ||J||8

+[ Vv 8R||J||—dxdy+/ Vga—wRHJHg%dxdy
sne T sng rtor

where for sake of simplicity we used z, = 0z/0x, and z, = 0z/0y. Swapping the order

of derivatives in 9%2/0x01 and 0%z/0ydT, integrating by parts the second and third line
of (14), then collecting all the terms in one integral, we obtain a very interesting result:

Oua(r) 1 Gw IR G ow or 4Gw
aT—E/‘ﬂr—M 5 RIS
d [Gu (Lol d Gw 8||JH 92
Rz [7“4 (R 0z ” | dy | R 0z, a HJ” 5, drdy  (15)
Gw 3 J 82 Tmaz Gw a J 82 Ymazx
VRM’—M VRW’_M |
0%y 02y orl, 9z, .

Third line in equation (15) is a complicated boundary term which should either vanish or
be carefully handled. Actually, a straightforward solution is to select a time windowing
function w that vanishes at the extrema of its interval of definition. Consequently, from
now on, we use a triangular windowing function. Inserting (15) in equation (12), we



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-102746.R2

Radar-Based Reconstruction Using Variational Methods 14

obtain

053 [ -t

min

Gw IR Gaw or 4Gw
/ XQV{ R+ G0 ) 2

d [Gu anJH (16)
dx [ (R 02,
d [Gw (3||J|| 0z
[ (R 92, 8 ||J|| 5 dxdy dt

/Az—dS

where we used the indicator function

xg(x)i{ 1 ifxeQ (a7

0  otherwise,

to rewrite the integral on SN Q as an integral over the whole surface S. We can recognise
that if we now swap the space and time integrals, equation (16) has the form (11), with
A

1 tme .
V.E = EZ/%W (ua(t) —ua(t))*
Gw OR G ow or 4Gw
G R+ S5 R 11 -
d [Gu (Lol d Gw a||J||
i |57 (RO )| - & | (R%+ o )| |
— a1z,

Equation (18) is the general form of the gradient, valid continuously at each point on
the surface, which we use to obtain the following continuous gradient descent PDE

0z
—V.E. 19
or (19)
Finally, this PDE may be discretised in the variable 7 to obtain the desired shape update
steps:
2 =27 —aV.E, (20)
2T =2 —a[(1 = Quee) Vo E + 0o VLET ] (21)

depending if the regular (20) or the accelerated gradient descent (21) is used. Constant «
in equations (20) and (21) being the step of the gradient descent, and .. the amount
of acceleration. It is worth of note that, the use of the accelerated gradient descent
reduced the computational times of about 90%, so that in practice, throughout this
paper we used only the accelerated descent.

Page 14 of 30
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Figure 3. Reference geometry for experiment 1 and 2. Dots represent 90 antenna
distributed on a semi-spherical surface with 20 Km radius (18 equispaced locations on
5 height levels). At each location a radar signal is emitted, and the corresponding echo
from the scene, centred on the axes origin, is recorded.

3. Results

In the following, we consider three different test inversions. In examples 1 and 2, we
consider a set of 90 antenna locations distributed at 5 height levels on a spherical surface
with radius 20 Km (Figure 3). The scene is a 1 Km by 1 Km hill possessing a Gaussian
profile and 100 meters high at its centre. The probing signal is assumed to be a LFM
chirp, frequency band 4-6 GHz and 5 us pulse duration.

In example 1, figures 4 and 5, the radiative function assumed on the surface
is the exploding reflector R = 1 and G is known. Rather, example 2, figures 6-8,
features the Lambertian radiative function R = (e, - N)?, with e, = r/||r||. As such
both the incident and the re-irradiated signals have an amplitude proportional to the
cosine between the ray from the antenna to the surface and the normal vector to the
surface. Finally, example 3 (figures 9-13) leverage R = (e, - N). In addition, in this
last experiment the effect of noise contaminating the data is considered. The practical
implementation requires to substitute the various radiative assumptions R into (18) and
explicitly compute the corresponding final forms. Explicit derivations of V,E according
to different radiative assumptions is somewhat lengthy but conceptually simple. As
such, we summarise the final formulas in Appendix A. Further, for computational
purposes, we need now to discretise equation (18). To do so, the surface is densely
sampled over a regular grid, in such a way that we can assume each surface sample
to be well approximated by a scatterer of area dA. Therefore, the first advantage of
using the PDE approach is that, by considering the surface as a dense collection of
discrete scatterers of very small area (compared to the size of the averaging triangular
window), we avoid the numerical issue of quadrature integration along individual finite
elements.  Returning to the examples, figure 4 shows few snapshots of the obtained
surface evolution. As it can be observed, results are extremely good. In fact, the error
in evaluating z is lower than 2%. Further, the only intervention we performed was
lowering the weight for the regulariser a;, once. The values of the parameters used for
the minimisation in this and following examples are summarised in table 1. Figure 5a
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0
y(m) 250

(b) Iteration 1000

Figure 4. Result in the space of models.

(C) Iteration 80000

(d) Converged surface
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True and evolving surfaces are shown
as frame and coloured, respectively. Reflectivity is constant (¢ = 0.71) and known
a-priori. Colours indicate the distance (in m) from the true shape.

(a) ] antenna 1 antenna 73 (b)1
':50.8 0.8¢ E
s 06 0.6t :
© 04 0.4f :
© i
= {
=02 0.2f
S
< 0 \ 0 == ol
195 20 205 195 20 205 110 102 108 10* 10°
Range (Km) Iteration
—e—Initial model - - - -misfit

—e—True echo (Tp)

—e—converged model

—e— energy

- - - -regularizer on z

Figure 5. a) Result in the space of data concerning selected antennas in figure 3). b)
Minimization of the energy functional.

Table 1. Summary of the parameters values used in the provided examples and their

changes with iterations.

iteration « Qg Qace
Example 1 1 1x10% 0.1 0.9

8x 10  1x10% 0.0125
Example 2 all 1x10%2 0.1 0.9
Example 3 all 100 1x107° 0.9

shows the averaged, normalised windowed echoes at antenna locations 1 and 73. We

selected these two specific locations because they represent the extreme cases in terms

of elevation, while other location on the same levels are almost cylindrically symmetric.

Finally, figure 5b shows the corresponding energy minimisation. In example 2, (figure

6) shape reconstruction is performed based on a Lambertian radiative assumption

and an unknown, potentially variable across the surface, reflectivity. As previously

mentioned, given a scene geometry it is simple to devise a strategy to estimate G. In
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(a) (b) Iteration 1000 (C) Iteration 20000 (d) Converged surface

y (m)

Figure 6. Result in the space of models. True and evolving surfaces are shown as
frame and coloured, respectively. Colours indicate the distance (in m) from the true
shape.

(a)Initial estlmate (b) Iteratlon 1000 (c)lteratlon 20000 (d)Final estimate  (¢)
G:90.45 - 91.35 - 5 - 0.51 G:0.495 - 0.503 06 Erroron G

0.4
0.2
0
0.5-05 0 0.5-05 0 05 10° 10 10°
x (Km) lteration

Figure 7. Result in the space of models. True reflectivity is constant (G = gg* = 0.5),
while the value across to the evolving surface is estimated using the algorithm in
Appendix B.1. a) to d): Estimated G. e) Error with respect the true G.

this example we used an algorithm that considers G as piecewise constant (details in
Appendix B.1). Figure 7a-d show the estimates of G across the surface corresponding
to images 6a-d. Elevation z is reconstructed with an error lower than 3%. Further,
the algorithm reproduced the true, constant G = 0.5 within 1% discrepancy. Figure 7e
shows the maximum difference in terms of G between the true and the reconstructed
model.  Figures 8a shows the result in terms of data matching for the two selected
antenna locations. Of course, such signals are different from the previous example, as
they are based on a different radiative model. The Lambertian introduces a stronger
constraint on the shape than the exploding reflector model. As such it is of no surprise
that the energy minimisation (figure 8b) looks smoother. Indeed, no intervention was
required to achieve the latter result. The slightly lower performance in retrieving z is
motivated by the fact that a piecewise reflectivity violates the requirement of a smooth
G and introduces, to some degree, instability of the gradient descent flow. In this
particular example however, such instability was compensated by the good illumination
provided by the high number of antenna locations. In our last experiment, inspired
to a hypothetical acquisition performed by a unmanned aerial vehicle (e.g. a remotely
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Figure 8. a) Result in the space of data concerning selected antennas in figure 3). b)
Minimisation of the energy functional.
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Figure 9. Experiment 4. a) True scene. b) Antenna locations. c¢) and d): number of
time windows and antennas sensing different parts of the scene.

controlled quadcopter), hovering on the scene, we consider the geometry of figure 9a.
The scene, in this case, is a small 10 m by 10 m patch, and features three spikes
of variable heights (2, 5 and 7 meters), purposely designed to generate a challenging
to reconstruct scenario and where the scene visibility is partially occluded to some
antennas. The reflectivity of the true scene is constant (G = 0.5). Antenna locations
are, on average 50 meters above the scene (figure 9b). Figures 9¢ and 9d show a top
view of the surface, where the colour code represents the total number of time-windows
and antennas sensing different portions of the surface. In other words, they represent
the “sensitivity” of data to the scene geometry. In this case the radiative model is
R = (e, - N). Beside greatly simplifying the expression of the gradient flow, this model
is in our perspective the most physically sound for the inversion of radar backscattered
electric field. The interested reader may refer to Yildirim (2019) for rigorous proof. In
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this inversion the reflectivity is unknown initially. We dynamically estimate the best
value of a constant reflectivity while optimising the shape. This approach guarantees a
sufficiently good estimation of the reflectivity while preserving the smooth reflectivity
constrain. The analytical solution for the calculus of G is provided in equation (B.13).
An additional motivation behind this assumption is that for full 3D active surfaces using
level set methods applications (for which this study is preparatory), where changes of
topology are naturally handled and the surface may split into different disjoint shapes,
it is simple to manage scenes composed of multiple constant-reflectivity objects. These
aspects however represent future work and will not be discussed here. In contrast with
the previous examples, this experiment addresses the role of noise affecting the data and
its impact on the shape reconstruction. It is worthy of note that since the noise is of a
stochastic nature, we expect it will be greatly attenuated by the time averaging used in
equation (5). To quantify this effect, we performed a small experiment. The surface in
figure 9a. is defined on a 0.2 by 0.2 meter grid, while the width of the triangular time
window used to compute (5) is 0.5 meters. As such, similar to the example in figure
(2), we considered a random distribution of point scatterers with a density of 25 x 10°
points/m? along a hypothetical surface patch of size 0.2 x 1.5 meters. We computed
the echo generated by this distribution of scatterers (via superposition of terms as in
equation 3), assuming the antenna to be located 50 meters away from its centre, in a
direction aligned with the longitudinal axis of the patch. The LFM chirp emitted by
the antenna is chosen with frequency band 4-6 GHz and pulse duration 0.1 ps. With
this computed echo as a reference, we used randomly generated, zero-mean Gaussian
noise to create 50000 instances of noisy data, each with signal to noise ratio (SNR) of
about 20 dB. Such noise was designed to corrupt both amplitude and phase randomly.
Figure 10a shows the ratio between the width of the triangular window and the grid
spacing of the surface, as well as how the sinc (in black) and sinc® (in red) functions
(equation 4), for one scatterer, fit within this range span. For each simulated noisy
signal we computed the corresponding processed signal (5, the quantity we invert for)
and the signal to noise ratios before and after processing. Figure 10b compares the
distribution of these SNR. The vertical axis, denoted “probabilit” represents the height
of the histogram bars divided by the total population (i.e. 50000). After processing, the
initial SNR (20 dB) greatly improves. However, to further emphasize the robustness
of our approach to noise, in this example we will assume that noise with 20 dB SNR
has not been mitigated by the time windowing. Figure 11 shows the evolution flow
starting from an initial parabolic shape. In this experiment we imposed Dirichlet (i.e.
2=0) boundary conditions. The correct shape is recovered almost perfectly, except few
sparse locations which present a maximum error of 2%. We easily discriminated the
three spikes in the scene and despite the visibility occlusions, correctly reconstructed
their different heights and curvy tips. Figure 12 shows the evolution of the estimated
reflectivity of the scene. The first estimate, even if the starting shape was completely
different, was only 4% off. Subsequently, it evolved concurrently with the shape and
finally reached a value 0.3% off with respect to the true value. Finally, figures 13a
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Figure 10. Investigating the effect of noise under the modelling conditions of example
3 (figure 9). The echo from a portion of surface containing a random distribution of
point scatterers is used to compute a reference echo, which in turn is used to generate
50000 instances of noisy data. Subsequently, the observable function (equation 5) and
SNR before and after processing are computed. a) shows the ratio between the grid
spacing of model 9a, width of the triangular window, and the sinc (black) and sinc?
(red) functions associated to one point scatterer (all expressed in terms of range). b)
comparison of SNR before (raw data) and after processing showing how the noise is
greatly attenuated.

(b) Iteration 500 (c) Iteration 5000 (d) Iteration 19000
Converged
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Figure 11. Result in the space of models. True and evolving surfaces are shown as
frame and coloured, respectively. Colours indicate the distance (in m) from the true
shape.
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Figure 12. Result in the space of models. Percent difference between successive
estimates of G using the analytical formula (B.13) and the true value Gy = 0.5.
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Figure 13. a) Result in the space of data concerning selected antennas in figure 9b.
b) Minimisation of the energy functional.

shows the result, in the data domain. Despite the noise, we obtained an excellent fit.
Energy, figure 13b, is nicely minimised without the need of any intervention on the
inversion parameters. The high values of the regulariser in mid iterations (green dashed
curve) show that the surface at intermediate iterations was highly irregular with complex
visibility occlusions. Nevertheless, since totally occluded regions are still evolved by the
regulariser, the inversion process is capable of recovering and if necessary, bring back
to the correct visible location, those portions of the surface that could not evolve any
more and would otherwise generate false positives. Small discontinuities in the energy,
as highlighted by the a and b labels in figure 13b plot are due to adjustments in the
estimated reflectivity. The effect of noise on the energy minimisation can be observed in
figure 13b by comparing the energy minimisation associated with noisy data (blue line)
to the noise free minimisation (black line). To highlight this difference, in this plot we
used a logaritmic vertical scale, while difference in the reconstructed shape were almost
undetectable.

4. Discussion

In section 3 we showed how to perform shape reconstruction by inverting time-domain
radar echoes acquired at sparse locations. We achieved this by formulating the problem
within a similar variational framework used for multiview stereo reconstruction, well
established in computer vision to tackle shape inversion from image data acquired by
sparse cameras. To do so, we built a least squared optimisation in which the mismatch
is computed with respect an observable quantity (equation 5) derived from radar data.
Since radar signals are oscillatory in nature, two key aspects of this equation are that it
considers the power of the signal and it leverages a time averaging window. These two
features together help suppress most of the oscillating terms, leading to a sufficiently well
behaved energy. The advantage of the variational formalism is that the energy gradient
is computed analytically, keeping the representation of the surface continuous, with
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discretisation introduced only at the very last stage for the sake of practical computation.

It is worth mentioning that in our earliest attempts to tackle this problem, we used
a finite element approach in which the surface was discretised using triangular elements
and each integration operation over it (e.g. equation 6) was performed numerically
on each element. In addition we considered squared and Gaussian windows as time
averaging strategy. Finally, reflectivity was known. This early approach was not
successful when implemented using squared windows while it worked using Gaussian
windows. Even when successful, the converged surface still presented errors in z up to
10%. In addition, to be practical the finite element approach required surface re-meshing
and consequently, re-processing of raw data with different time window lengths. In other
words, inversion required several manual interventions and involved parameter tuning.
The PDE-based evolution provided striking improvement. Not only the necessity for
remeshing was completely removed, but errors in z are lower than 3%, even when
reflectivity is unknown. We also demonstrated that reflectivity can be estimated with
errors lower than 0.5%. Notably, the result is achieved with little or no user intervention.
In addition, the explicit presence of boundary terms in equation (15) highlighted by
the variational analysis elegantly explains why the use of a square windows failed and
why the result obtained with the Gaussian window, despite being reasonable, was only
partially successful.

As highlighted in section (2) averaging the data with a moving time-window has
several direct consequences. First, we do not exploit the phase curtain but we rather
leverage the amplitude information, in terms of energy density located at specific ranges.
We note, in some sense, that the information lost by disregarding the phase curtain is
actually re-introduced in the inversion machinery by the fact that we are performing a
local optimisation with respect to an explicitly modelled surface. In turn, this surface
determines how the back reflected energy distributes over different ranges and it is then
observed by the antennas, making the coherent summation unnecessary. Second, while
the location of every portion of surface (and therefore the general shape), is mostly ruled
by the presence of back-reflected energy at a specific delay time, the actual amount of
such energy is ruled by the reflectivity and the radiative behaviour. In other words, we
can still reconstruct the shape fairly well, even with a poor estimation of the reflectivity.

The price of using a sparse configuration of antennas (and abandoning phase
summation) seems to be a loss of resolution, to some extent. However, such a loss
is only an apparent issue. For example, Thomas et al. (1989) achieved topography
reconstruction leveraging stereo reconstruction technique on SAR images using a
“smoothness” regulariser to cope with speckle. They observed that strong regularisation
was necessary for the reconstruction to succeed. In turn, the regularisation resulted
in lower resolution. Their findings with stereo image reconstruction is by all means
equivalent with what we observed dealing with independent echo signals and using an
averaging window. The consideration to make is that to determine the shape of an
object of interest, the high resolution provided by SAR images is actually unnecessary
as objects are typically of a larger scale compared to images pixels.
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In the present context, the resolution to which the scene geometry is reconstructed
depends on the spacing of the computational grid and on the width and overlap (in
terms of range) of the triangular windows used. Since we are dealing with a least-
squared nonlinear optimisation, it is very difficult to quantify the resolution analytically.
Nevertheless, if we consider a small patch of surface surrounding a point of the discretised
surface (z,y,2(x,y)), the grid spacing should be chosen large enough to consider its
collective contribution, as opposed to modelling all of the scatterers distributed on it.
In figure (2) we demonstrated that the cumulative signal from an almost continuous
distribution of scatterers on a patch is well behaved and the tails leaking outside the
patch (in terms of range) are negligible after 2-3 wavelengths distance. In addition,
considering a hypothetical point scatterer on this patch, the time window used to
average the raw data should be chosen large enough to include the main lobe and
few of the secondary lobes of the associated sinc? function (i.e. most of the energy
re-irradiated by the scatterer). Ideally, this is achieved choosing a time-window as large
as the grid spacing augmented by 4-6 wavelengths (to include oscillating tails). After
these considerations, not accounting for squinted view angles from the antennas with
respect to the orientation of the computational grid and disregarding the fact that each
time window should cover a “sufficiently wide stripe of surface”, it can be expected
that achievable resolution may be as low as 10 wavelengths. Nevertheless, the loss in
resolution introduced by the time averaging window can be partially recovered using
partially overlapping windows. In fact, there is no limitation on the amount of such
overlap. In example 3 for example, we considered a grid spacing and a window width
equivalent to 4 and 20 wavelengths, respectively. Windows’ overlap of 90% ensured
that information within consecutive time-windows differed only by the contribution of
a surface band 2 wavelengths wide (c.a. 10 ¢m). With the presence of a reference
evolving surface our approach fully accounts for visibility, although we did not account
for multiple scattering.

Within raw radar signals, the effect of multiple scattering is the presence of
back scattered energy at later delay times. As far as the inversion approach is
concerned, the use of several overlapping windows allows discriminating such energy
from direct backscattering. Therefore, the only limitation in this sense, comes from the
modelling routine underlying the inversion, which was not designed to account for this
phenomenon. While the main motivation for this choice was to lower the computational
cost, this choice was also motivated by the fact that smooth surfaces (such as those
dealt here) are less prone to generate multiple reflections and when these occur, they
are expected to be strongly attenuated. Summarising, accounting for multiple reflections
would only require the use of a more involved forward model.

Finally, real world radar echoes contain usually some level of noise, which is typically
a stochastic, zero mean phenomenon. Such noise affects the samples of the complex
raw data, both in terms of amplitude and phase. Since traditional radar processing
leverages phase summation, great effort is placed to achieve the best signal to noise
ratio (SNR). In contrast, we leverage the backscattered energy density distribution as
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function of time/range. Noise may affect the amount of energy at a specific range
but not its collocation in terms of range, which as we have shown rules our shape
evolution. Additionally, we demonstrated that the noise in the raw data is strongly
attenuated once the observables to be inverted are computed (equation 5). Given a
fixed range, the surviving noise will manifest itself in a slight amplitude perturbation,
and as explained before, in our approach this kind of perturbations don’t impact the
shape but rather affects the reflectivity. On the other hand, we have shown that we can
estimate reflectivity on the fly and achieve the correct reconstruction even when such
estimate is poor. Most importantly, we must emphasise that this inversion can tolerate
uncertainties on reflectivity far greater than any noise related disturbance.

5. Conclusion

In this paper we tackled the problem of shape and reflectivity reconstruction from
remotely sensed radar signals. In contrast with classic approaches, where the shape is
retrieved using well established computer vision tools on images formed by traditional
radar imaging, we formulated the problem as an iterative local inversion of the time-
domain radar back-scattered signals. Key considerations concerning our approach
and implementation aspects have been illustrated by means of three examples, with
increasing complexity. Such implementation aspects include: 1) the strategy adopted in
order to form a well-behaved energy functional from such high frequency signals in order
to avoid the cycle-skipping phenomenon. We solved this difficulty by means of a moving
averaging window, and we motivated why such windows must be of finite length and
fade to zero at their end points. 2) we investigated three different radiative models of the
surface, 3) we illustrated strategies to directly evaluate the reflectivity of the surface.
4) since for simplicity we limited our investigation to surfaces defined as a graph of
a function, we used two different boundary conditions. 5) Finally, we discussed the
mechanisms ruling the model evolution, the achievable resolution and robustness with
respect to noise. The result of this investigation is therefore that in order to build a well
behaved energy functional an averaging strategy of the raw signals should be adopted.
This choice has several direct consequences. First, we do not exploit the phase curtain
but we rather leverage the amplitude information, in terms of energy density located
at specific ranges. We note, in some sense, that the information lost by disregarding
the phase curtain is actually re-introduced in the inversion machinery by the fact that
we are performing a local optimisation with respect to an explicitly modelled surface.
In turn, this surface determines how the back reflected energy distributes over different
ranges and how it is observed by different antennas, making the coherent summation
unnecessary. As such, this can be considered a noncoherent approach.

This approach extends the useful processing range for data collected by sparse
antennas and high frequencies. We showed that shape can be accurately reconstructed
even with a poor estimation of the reflectivity and that reflectivity can be accurately
evaluated knowing the shape. The problem is particularly simple if a constant reflectivity
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: is assumed. Therefore, despite the restriction in this study to surfaces parametrized as
6 a graph, we demonstrated that variational approaches leading to PDE driven shape
; evolution represent a natural and elegant framework to reconstruct scene geometry.
9 Given these results, extending the present mathematical framework to more general 3D
10 active surfaces and expressing the surface in more flexible implicit form using level set
:; methods would be the most promising and natural next step to advance this variational
13 framework. Level set methods will naturally handle changes of surface topology and will
14 allow for the presence of different constant-reflectivity objects coexisting in the same
12 scene even if their number is a-priori unknown. This will indeed be a key focus of our
17 upcoming future work.
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22 Appendix A. Explicit forms of the gradient flow

2373 In section 2.1 we provided the most general form of Ju(r) /Ot equation (15), and we
39 introduced it into the energy derivative (12). Subsequently, we defined the indicator
40 function y (17) to swap the time and surface integrals, and rewrite the equation in form
2; (11) in which we recognized the gradient sought V,FE (18). In the following we provide
43 the explicit forms of du(r) /0T and V,FE for different choices of the radiative function.
44 To obtain specific formulas we substitute R = 1, R = (e, - N), or R = (e, - N)* in
22 equation (15) and we leverage the following mathematical relations:

47 or _ 0z0r _ 0z0r

48 (e, N)=(Vr -N)=2 0200 00y (A1)
49 171

50 2 2 2 2 2

g (H(g—;))g_y;_z%g_;;z—;ﬁ(u(g—;))g?;

53 2H = ||J||5 , (A.2)
54

55 9G 0z 4 9G 9z

56 VG -N = _M7 (A3)
57 171l

28 oG or  0G or

59 VG -Vr=——+ (A.4)

60 Ox dx ~ dy Oy’
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some of which are specific to our choice of describing the surface as a graph of a function,
with normal vector oriented upward. We recall that boundary terms in (15) will vanish
by selecting an averaging window w fading to zero at its edges. Finally, in order to
simplify the notation, let’s consider just one antenna and drop index a.

Appendiz A.1. Exploding reflector R = 1

ou(r) 1 w Gow 4Gw Gw 0z
= — -N —— — -N) — —2H | — dxdy (A.
or AT /SQQV [7“4 (VG-N)+ (r4 or rd ) (Vr-N) r4 ar y(A5)

min
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T
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X

Appendiz A.2. Cosine R = (e, - N)
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Appendiz A.3. Lambertian, R = (e, - N)*, % = (e, - N)
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Appendix B. Algorithms for the direct computation of Reflectivity

Appendiz B.1. Piecewise reflectivity

Assuming we are considering finite time intervals t,, = ,,;, + m At. For each antenna -
time window pair (a,t,,) we demand (u, (t,,) — u? (¢,,)) = 0. Assuming that it exist a
constant value of G, on the portion of surface individuated by the (a, t,,) combination,

we rewrite the latter equatlon using (13)

Uq( m am At (/ V H || T y) am V¥V am ( )
we obtair

G = =21 (B.2)

am
therefore a value of “apparent” G is obtained. Considering now a point p on the surface,
located at position x with an associated infinitesimal area da (that in the practical
computation it will be associated to a node of the computational grid), we know from
the forward model equations that the point contributes to a specific (a,t,,) pair, in
which it is included, as

wR
Cam =G (X) VFd(Z
=G (x) H,

Actually, point p will most probably contribute to several time windows for the same

(B.3)

antenna a, and to several antennas. As such, we expect that it will contribute in the
computation of several u,(t,) and in turn, to several G,,. Therefore, in order to
estimate G (x) from this set of apparent values we use a weighted average.

_ 2 Yo GamHam
G (x) = ST (B.4)
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Appendiz B.2. Constant reflectivity

Starting from equation (9), we consider the partial derivative of the energy with respect

to G:

OF & /fw 0,y OUg()
— = Ua(t) — uy(t dt B.5
oG =2 ), () =l g (B.5)
imposing this equation to be zero,
t"““” Ouy(t)
— 0 @ —
Z /t (ua(t) — ud(t)) o =0 (B.6)
fmaa 8ua(t) bmaz 8ua( )
Z/t e /t ud( TR (B.7)

min min

then computing du,(t)/0G, and assuming G is constant across the surface

wR .
wl) =G ([ VA1) dnay) = Gt (B3
Qug(t) 1 wR o
i = 5 (L Ve deay) = v (B
note that W,(t) is independent of G, therefore
At t
2t " oy 2t
dt B.1
DY RCE /m e ®10)
A tmﬂn’lf ~ tmaz
N AR ACYAT / Wa(t) dt (B.11)
a=1 tmin tmin
(B.12)
finally
A tmax 0 T
_ W0 (4) W(t) dt
o - Sl () s,
Za:1 ftmm WaQ(t) dt
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