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Abstract. Remote sensing radar techniques provide highly detailed imaging.

Nevertheless, radar images don’t offer directly retrievable representations of shape

within the scene. Therefore, shape reconstruction from radar typically relies on

applying post-processing computer vision techniques, originally designed for optical

images, to radar imaging products. Shape reconstruction directly from raw data

would be desirable in many applications, e.g. in computer vision and robotics. In

this perspective, inversion seems an attractive approach. Nevertheless, inversion has

seldom been attempted in the radar context, as high frequency signals lead to energy

functionals dominated by tightly packed narrow local minima. In this paper, we take

the first step in developing a framework in which radar signals and images can be

jointly used for shape reconstruction. In particular, we investigate the feasibility of

shape reconstruction by inversion of pulse-compressed radar signals alone, collected

at sparse locations. Motivated by geometric methods that have matured within the

fields of image processing and computer vision, we pose the problem in a variational

context obtaining a partial differential equation for the evolution of an initial shape

toward the shape-reflectivity combination that best reproduces the data. While doing

so, we highlight several non-obvious difficulties encountered and discuss how to surpass

them. We illustrate the potential of this approach through three simulated examples

and discuss several implementation choices, including boundary conditions, reflectivity

estimation, and radiative models. The success of our simulations shows that this

variational approach can naturally accommodate radar inversion and has the potential

for further expansion toward active surfaces and level set applications, where we believe

it will naturally complement current applications with optical images.

‡ The author to whom any correspondence should be addressed.
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1. Introduction

Inverse methods, where measured data are compared with simulated output from a

model to recover the optimal values of the parameter set controlling the response of such

model, have been widely applied in many disciplines (Groetsch 1984, Tarantola 2005).

For example, geophysics (Loke & Barker 1996, Herman 2001, Park et al. 1999, Louie

2001), engineering and non destructive testing (Sambuelli et al. 2011, Cosentino

et al. 2011), medicine (Hounsfield 1973, Bertero & Piana 2006, Comelli et al. 2020),

computer vision (Hailin et al. 2002, Yezzi & Soatto 2003), and remote sensing

(Deepak. 1977).

Inversion techniques have also been applied to tackle shape reconstruction. These

include the variational approaches (commonly encountered in computer vision) which

express the iterative optimisation in form of a partial differential equation (PDE);

Active Surfaces and Level Set Methods being among the most popular. In the context

of computer vision, active surfaces have been exploited both for the segmentation

of data volumes (Yezzi et al. 1997, Cheng et al. 2009, Haukas et al. 2013, Shafiq

et al. 2015, Comelli et al. 2020) and for the reconstruction of the three-dimensional

shape of an object of interest using images acquired from sparse cameras (Yezzi &

Soatto 2003, Hailin et al. 2002, Jin et al. 2003, Gallego et al. 2011). These methods

rely on partitioning the 3D space by means of a surface which is iteratively evolved

until it wraps around the object of interest. Typically, the task is posed as a classic

local optimisation scheme, where the geometric surface is evolved in order to minimise

an energy. While shape reconstruction from images finds several applications, e.g. in

robotics and computer vision, optical approaches have many limitations. The inclusion

of radar sensing within such inversion frameworks would be very desirable, as radar can

easily be employed at night time and can probe a scene even when weather conditions

would hinder optical alternatives. However, before visible/radar joint inversion can

be tackled, it is necessary to investigate the feasibility of handling radar data within

existing variational schemes. In particular, candidate adaptations of such inversion

schemes should be sufficiently stable to allow shape reconstruction from radar data alone.

We devise an inversion approach to simultaneously reconstruct shape and

reflectivity of a three-dimensional structure (scene) directly from measured

radar data (i.e. high frequency back scattered electromagnetic signals),

collected at sparse locations. Our approach to the problem will blend concepts from

different scientific domains. As such, before fully describing our contribution (section

1.3), we provide a brief introduction from the domains of radar remote sensing and

waveform inversion.
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1.1. Radar Remote Sensing

Established radar imaging techniques leverage recording the reflected echo signal, most

often a linear chirp signal (e.g figure 1a), back-scattered toward the emitting antenna.

Echoes recorded at multiple locations, either by antenna arrays or by moving antennas

are used to acquire multi-view information from which an image of the illuminated

scene is formed. Historically the development of this technology was application-

specific and implementation choices were dominated by hardware capabilities. A

wide variety of approaches to the image formation exist nowadays (Curlander &

McDonough 1991, Carrara et al. 1995, Soumekh 1999), and a thorough review is beyond

the scope of this paper.

The Synthetic Aperture Radar (SAR), in all its flavours, might be considered a

good example of this entire class of applications (Curlander & McDonough 1991, Carrara

et al. 1995, Soumekh 1999). SAR leverages a moving antenna, emitting pulses at regular

intervals to illuminate the scene from multiple viewpoints. Fundamental aspects of each

data acquisition are the choice of working parameters related to the emitted signal,

such as: frequency band, pulse duration; as well as geometric parameters, such as the

number and locations where the signal is emitted/collected and antenna orientation,

all of which rule the achievable resolution of the produced image. In Stripmap mode

SAR (Munson, Jr 1987) for example, the antenna moves along a straight line and has a

fixed orientation with respect to direction of the movement. In spotlight mode SAR, the

antenna is moved instead along a linear or circular trajectory while the beam is steered

to point the scene (Curlander & McDonough 1991, Carrara et al. 1995, Soumekh 1999).

Concerning data processing, if we focus on just one of these approaches, the “holographic

approach” (Farhat 1975), for example, we must emphasise that in order to translate the

data from the aperture-range domain (i.e the antenna locations - distance to the scene),

to the space-space domain (i.e. the image), signal processing techniques (typically, pulse

compression and Stolt formatting), although involved, are sufficient to achieve the final

result and no inversion is necessary. This consideration remains true for the most recent

Volumetric SAR (VOLSAR) which exploits the holographic approach to produce a three

dimensional reflectivity volume (Barnes & Prasad 2018). It is a common denominator of

all radar-based approaches to search for ever higher resolutions of the produced image.

Ultimately, the key aspect of SAR processing is that, in order to form such an

image and correctly achieve the maximum pixel-wise resolution, the information from

the echoes at different antennas must be coherently summed (i.e. phases must be

synchronised to the wavelength level). Such a careful handling of signal phases requires

extremely precise control of the antenna collocation, which becomes a limitation as the

frequency band of the emitted signal increases.

Shape reconstruction has been investigated in the radar imaging context as well.

For example, (Das & Boerner 1978) proposed an approach based on the Radon transform

showing that the challenge is equivalent to the problem of image reconstruction from

projections. In this early approach radar signals were Fourier transformed to the
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Radar-Based Reconstruction Using Variational Methods 4

frequency domain, and only a subset of frequencies were considered for the shape

reconstruction. Gonzalez-Valdes et al. (2013) used an iterative algorithm coupled with

a frequency hopping strategy to retrieve the shape of a two dimensional perfect electric

conductor body from data collected at several transmitting–receiving antennas placed

around it. Shape reconstruction finds application also for the determination of asteroids

shape from delay-Doppler radar images (Hudson 1993, Brozovic et al. 2009). These

methods are related to techniques in inverse SAR (Walker 1980). SAR interferometry

(ifSAR) (Bamler & Hartl 1998) is routinely used to obtain land digital elevation

models (DEM), or to monitor elevation changes over time from a reference DEM. This

approach leverages phase difference between pairs of SAR images obtained from data

collected either at slightly displaced trajectories or at different times. Three dimensional

reconstruction is also tackled combining SAR and polarimetry (Cloude 2010), as

polarization effects experienced by electromagnetic waves when reflected by the scene

carry a wealth of information about the 3D nature of the scene. With these approaches,

3D images (i.e. data volumes) can be successfully obtained (Hamasaki et al. 2005).

Additional methodologies attempt extracting complex geometric features adopting

stereo or stereogrammetry based strategies (Koyama et al. 2016, Bagheri et al. 2018).

Summarising, shape reconstruction in radar applications is mostly achieved starting

from images. Formation of such images requires careful processing and a regular

acquisition geometry of the synthetic aperture in order to achieve the necessary coherent

summing. Only after image formation is the shape reconstruction challenge finally cast

into an inversion framework. An interesting observation about shape reconstruction

from SAR images is brought by Thomas et al. (1989). They leveraged active surfaces for

reconstruction of land topography exploiting the difference in shading between multiple

SAR images and pointed out that the geometry can only be recovered with much lower

resolution when compared to the initial images. Indeed, SAR images typically possess

a detailed pixel-level granular structure (speckle), which requires strong regularisation

in order to make the energy functional sufficiently smooth for stereo reconstruction and

local minimisation techniques. The key lesson is that the level of detail needed to

make radar images most useful for human visual inspection is unnecessary to

reconstruct the general shape of a scene, and we could therefore conceptually

avoid coherent summation. In turn, this means we could build our shape

reconstruction on the inversion of individual echo signals, avoiding image

formation entirely.

1.2. Inversion of oscillating signals

Limited preliminary work (Bignardi et al. 2012, Cook et al. 2014, Yildirim & Yezzi 2018)

has demonstrated that shape reconstruction directly from remotely sensed oscillating

signals is feasible, provided that a proper energy functional is defined. To construct

a well behaved radar-based energy functional we must first deal with the oscillatory

nature of radar signals. In this sense, an interesting example is found in geophysics,
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Radar-Based Reconstruction Using Variational Methods 5

in the context of Full Waveform Inversion (FWI). In FWI, seismic signals collected

by an array of geophones are used in the framework of inversion to infer the P-waves

velocity distribution in the subsurface (Virieux & Operto 2009, Raknes & Arntsen 2014).

FWI tackles such a task by minimising the distance between measured and simulated

seismograms (either expressed in time or frequency domain), leveraging a residual error

function E posed in least squares form. Considering just one receiver:

E =
〈(
u− u0

)
,
(
u− u0

)〉
=

∫
(
u(s)− u0(s)

) (
u(s)− u0(s)

)∗
ds , (1)

where s is either time or frequency. To be successful, the local optimisation requires

a smooth energy functional and the initial model must be already in the basin of

attraction of the global minimum. Unfortunately, an energy defined as in equation (1),

based on the difference of oscillating signals possesses a large number of local minima.

A difficulty strictly related to this aspect is the commonly known “cycle skipping”,

effectively illustrated in figure 7 of Virieux & Operto (2009). This phenomenon is

easily understood considering the frequency domain. While cycle skipping typically

affects several frequencies simultaneously, let’s consider just one as example. When the

harmonic of the simulated signal nearly matches the corresponding harmonic in the

data, but shifted by an integer number of periods, the energy minimisation will push

the contribution of that frequency to the energy functional toward a local minimum

and therefore, to a incorrect model. It is important to note that cycle-skipping

affects both the time and frequency domain; and becomes increasingly severe

as frequency increases. In the frequency range typically investigated by FWI (i.e. <

100 Hz), the initial model already needs to be ”very good” (typically a smooth version

of the reality) for the inversion to succeed.

Since radar sensing leverages a much higher frequency range, managing

cycle skipping is crucial to the feasibility of our application. Therefore, in

the “Method” (section 2) we will illustrate such a phenomenon in the radar

inversion context (figure 1a,b), and propose a strategy to tackle this issue.

1.3. Motivation and contribution of the present work

Optical devices provide information on two lateral dimensions (i.e. the two dimensions

in an image). Radar conveys information on the range (i.e. depth), which is precisely

the dimension that is lost in optical imaging. Therefore, combining optical and radar

data would convey, in principle, complementary information that could be powerfully

exploited within the context of a unified inversion framework. In our view, active

surfaces and the level set method would provide the ideal environment, as they can

naturally handle topological changes of the geometric model (i.e. the shape) being

reconstructed. However, in order to explore the feasibility of using these mathematical

frameworks with radar data, we first investigate the simplified case in which the surface

of interest is parametrized in form of a graph of a function. While with this simplification

the surface is not technically an active surface anymore, its evolution still belong within
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Radar-Based Reconstruction Using Variational Methods 6

the general family of variational methods and more importantly, conclusions can be

easily generalised to Active Surfaces.

Developing a unified framework requires investigating the mathematical foundation

to include radar information in the variational approach, and this task represents a

stand-alone reconstruction problem.

In this paper, we leverage radar signals (i.e. high frequency back scattered

electromagnetic signals) emitted and received by a set of sparse antennas to reconstruct

shape and reflectivity of a three-dimensional structure. We develop a time domain

approach to the reconstruction problem by leveraging time-domain signals after pulse

compression. Methods motivated by a similar philosophy can also be formulated in

the frequency domain, and we indeed develop such a strategy by leveraging stretch

processing in a concurrent companion paper (Yildirim et al. 2020). This paper (and its

companion paper) take a first step towards establishing a framework in which optical

approaches and radar can naturally blend and where well established approaches from

computer vision can be fully exploited.

In what follows we describe a general approach for embedding high-frequency signals

in a local inversion mathematical framework. What we obtain, is a variational method

from which a partial differential equation for the evolution of an initial shape toward

the shape that best reproduces the radar data is obtained.

Therefore, differently from traditional radar approaches, which focus on image

formation first, and differently from the computer vision domain where PDE methods on

images are well established and do not pose any challenge, we tackle the reconstruction

problem directly by inverting the signals back-reflected from the scene. Even with the

graph surface simplification, we show that inclusion of such highly oscillating signals in

variational methods and PDE poses several nontrivial challenges that must be carefully

addressed before moving toward active surfaces, which will be a matter for future work.

In the following, we illustrate both challenges and solutions by means of three examples

possessing increasing level of sophistication. We emphasise that the graph surface is

used only for mathematical convenience and not to tackle radar applications for which

a well established approach already exists (e.g. land topography estimation). On the

contrary, our interest is in 3D shape reconstruction as it is often encountered in robotics

and computer vision applications. In examples 1 and 2, we use two different radiative

assumptions and show how a piece-wise constant reflectivity can be estimated. While

in these examples the shape to be reconstructed is relatively simple, in Example 3 we

show how both shape and reflectivity can be retrieved even for a shape model possessing

high curvature features and occluded visibility. In addition, example 3 will investigate

the case of noisy simulated data.

2. Method

We consider a scene/object probed by a set of A sparse radar antennas or alternatively,

by one antenna moving along an irregular trajectory and probing the object from A
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Radar-Based Reconstruction Using Variational Methods 7

locations. We assume that a linear frequency modulated (LFM) chirp pulse is emitted,

and the corresponding echo is recorded at same location xa, where index a identifies

a specific location. Recording locations, as well as the parameters characterising the

emitted signal are assumed known. With this premises, we assume our data to comprise

A time series, after pulse compression has been applied. In the following we will refer

to these quantities as “raw signals” or “raw data”. In our inversion scheme, we consider

a model in which the back scattering object can be represented by a smooth surface

S on which a smooth, complex reflectivity g (viz. a continuous distribution of point

scatterers), is defined. Such surface is iteratively evolved in order to minimise the

following general energy functional:

E
(
u(S, G), u0

)
= E

(
u(S, G), u0

)
+

α1

2
RS +

α2

2
RG , (2)

where u0 is an observable derived from the raw data and u(S, G) is the corresponding

simulated signal, which depends on the surface S and through the quantity G = gg∗,

on the reflectivity defined on it. From now on, we will refer to u0 as the “preprocessed”

signal (or data) and to G as the “reflectivity function”. E (u(S, G), u0) is the error

function (or misfit) between u(S, G) and u0, i.e. the distance in the data space, which

we will later cast in least squared form, while (S, G) corresponds to a point in the

the parameter space ( i.e. the space of all possible scene geometry and reflectivity

combinations). The RS , RG are regularisers to enforce smoothness on the shape and

reflectivity function while α1 and α2 are weighting constants.

To build a successful inversion we must define a proper energy functional as smooth

and convex as possible. Following Oliver (1989), there is direct connection between the

time signature from a point scatterer and its location in space. Besides terms affecting

amplitude, the echo of a LFM chirp produced by a single point scatterer (figure 1a),

after conversion to baseband and pulse compression (figure 1b), corresponds to

φ̂ (t′, τd) = sinc [βT (t′ − τd)] exp (−iωcτd) , (3)

where t′ is time, τd is the round-trip delay-time, ωc is the carrier frequency, and β is

the chirp rate. τd may be related to the distance r = ‖x− xa‖ between the locations

of the point scatterer x and the antenna by τd = 2r/C (with C denoting the speed

of light). This allows us to switch between time and range. In the following, we

will often use range to label the figures’ horizontal axis, as its interpretation is more

intuitive with respect delay time. We can expect the echo from the entire object to

be well modelled as a superposition of terms like (3). When we introduced the cycle

skip phenomenon, we highlighted that a least squared minimisation built on differences

between oscillating functions leads to an energy possessing numerous local minima,

and that this problem worsens as the frequency increases. Therefore, we can easily

anticipate that the corresponding energy functional would present an intractable number

of local minima if raw data were considered as they are. Intuitively, to be in the basin

of attraction of the global minimum would require providing an initial shape within

a few wavelengths (λ) of distance from the true model. In other words, we would

Page 7 of 30 AUTHOR SUBMITTED MANUSCRIPT - IP-102746.R2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Radar-Based Reconstruction Using Variational Methods 8

Figure 1. (a) Example of Linear Frequency Modulated signal in the C band (LFM

up-chirp). Frequency increases from fmin = 4GHz to fmax = 6GHz (wavelength

λ ∈ [5, 7.5] cm), over a 50µs active time (first 1.5µs are shown). (b) Signature of a

point scatterer. The result after pulse-compression on the LFM signal shown in (a),

corresponding to equation (3) computed at τd = 0, is shown in black. The same pulse,

delayed by 4.5 periods (τd = 4.5/fmin), i.e. about 22.5 cm apart, is shown in red. (c)

Example of energy function (equation 1) for the simple case of a lone point scatterer

scene, as a function of the distance between the true location of the scatterer and

the initial input provided to a hypothetical inversion. The red dot shows the energy

location corresponding to signals in figure (b), where u and u0 are associated to the

red and black line, respectively. Despite the small delay, configuration in (b) is already

in the basin of attraction of a local minimum. Notably, energy is dramatically non-

convex and the multiple narrow local minima are the practical manifestation of cycle

skipping at such high frequencies. Under these conditions, inversion would remain

trapped around the initial model and fail.

already know the shape. For example, let’s consider a scene consisting of just one point

scatterer probed using the C-band LFM chirp of figure 1 (frequency band 4-6 GHz

and pulse duration 50 µs). The antenna is considered to be at a distance of 20 Km.

Figure 1c shows the energy functional (equation 1), as a function of the distance of a

hypothetical initial guess from the true location. Notably, not only does the function

present numerous close local minima, but it is also not convex. In this simple example,

the inversion would lead to the correct solution only if the initial model (i.e. the scatterer

location) was chosen within four wavelengths (ca. 20 cm) from the true position. The

red dot highlights the energy value computed using the black and red pulses of figure 1b

as true and simulated signals, respectively. The initial guess is only 22.5 cm (4.5λ) from

the true location, yet the inversion is already destined to an unwanted local minimum.

Even worse, since minima are narrow and tightly packed, an inversion would barely

move from the provided initial guess.

A consideration to make is that historically, radar imaging focused on achieving

the maximum pixel-wise resolution, for which the coherent sum of signals like

equation (3) is a fundamental element. The price is that at a very small scale,

the constructive/destructive interaction of point spread functions from different point

scatterers is responsible for the speckle formation. In contrast, such a level of resolution

is not actually necessary for shape reconstruction. In fact, amending for the presence of

speckle is the main reason why the Shape from Shadows approach (Thomas et al. 1989)
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Radar-Based Reconstruction Using Variational Methods 9

requires strong regularisation, eventually resulting in lower resolution. Following this

consideration, note that if we consider the squared form of equation (3) the term

oscillating with ωc cancels and we are left with

P(t′ − τd) = φ̂ φ̂∗ = sinc2 [βT (t′ − τd)] . (4)

Nevertheless, equation (4) still retains an oscillating behaviour that must be properly

addressed. When the echo from the entire surface is considered, we can lessen the

oscillations introduced by terms such as (4) by smoothing the signals with a moving

averaging window. Therefore the back-scattered, pulse compressed echoes φa (τ)

recorded on the interval [tmin, tmax] by antenna a will be preprocessed according to

u0
a (t) =

1

∆T

∫ t+∆T/2

t−∆T/2

φa (t
′)φ∗

a (t
′)w(t′)dt′ , (5)

while the response of our model (i.e. the forward model) can be computed according to

ua (t) =
1

∆T

∫ t+∆T/2

t−∆T/2

[∫

S

V
GRw(t− τd(r))

r4
P(t′ − τd)dS

]

dt′ , (6)

where ∆T is the window’s width, V is a binary visibility indicator function along

the surface, R is a radiative function which accounts for how the energy is

absorbed/irradiated by the surface and w is a temporal averaging window.

Since the evolution of a general three-dimensional surface is particularly involved

(the subject of a future paper in which Level Set Methods will be exploited for more

general surface modelling flexibility), for the purposes of the present investigation we

consider a simplified approach in which the surface is modelled as the graph of a function

z(x, y), i.e. S(x, y) = (x, y, z(x, y)), representing heights over a fixed 2D spatial domain

Ω ⊂ ℜ2. In turn this allows us to similarly parameterise the various functions defined

on the surface S as follows:

z : Ω → R = z (x, y) ,

S : Ω → R
3 = S(x, y) = (x, y, z(x, y))

N : Ω → R
3 = N(x, y) =

(
∂z

∂x
,
∂z

∂y
, 1

)

/

∥
∥
∥
∥

(
∂z

∂x
,
∂z

∂y
, 1

)∥
∥
∥
∥
,

r : Ω → R = r (x, y) =
√

(x− xa)2 + (y − ya)2 + (z(x, y)− za)2 ,

G : Ω → R = G (x, y) ,

R : Ω → R = R (x, y) . . . may depend on both S(x, y) and N(x, y) ,

τd : Ω → R = τd(x, y) =
2 r(x, y)

C
,

(7)

where N is the unit outward normal, and the integral of any generic function f on the

evolving domain S (or on a portion of the same), can be rewritten as:
∫

S

f dS =

∫

Ω

f ‖J‖ dx , (8)
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Radar-Based Reconstruction Using Variational Methods 10

where ‖J‖ =
√

1 + (∂z/∂x)2 + (∂z/∂y)2 is the Jacobian of the change from the

surface area dS to the 2D spatial measure dx. Finally, we are ready to introduce the

explicit form of our energy functional as:

E =
A∑

a

∥
∥ua − u0

a

∥
∥
2
+

α1

2

∫

S

‖∇z‖2 dS +
α2

2

∫

S

‖∇G‖2 dS , (9)

where the functional norm ‖ · ‖ is built from its related inner product < ·, · > as follows

〈f1, f2〉 =

∫ tmax

tmin

f1(t)f
∗
2 (t)dt, ‖f‖2 =

∫ tmax

tmin

f(t)f ∗(t)dt . (10)

Equations (5)-(10) define our inversion framework. It is particularly worth noting

that in this form, the shape reconstruction problem is formulated in terms of signal

amplitudes, while the “phase curtain” (Barnes 2015), classically leveraged by SAR

imaging is actually not used. While this aspect may seem strange to a SAR expert, we

must emphasise that by posing the problem in the inversion framework and providing

an initial explicit shape to be optimised, we leverage information that is not available in

traditional approaches. On the one hand, dropping the coherent summation forces us to

perform the reconstruction to a lower resolution with compared to traditional SAR. On

the other hand, we gain the capability of using sparse antennas and avoid limitations

at very high frequencies.

In equation 6, the integral over a time window centred at t, translates to a sample

of the simulated preprocessed signal. Geometrically, such a time window identifies two

spherical shells of radius C
2
(t −∆T/2) and C

2
(t +∆/2), and the echo from the portion

of surface included within these shells provides the most significant contribution to the

simulated sample. Nevertheless, the support of P is in general wider than any practical

choice of averaging window and the tails of this function, leaking outside the present

window span, are captured within neighbouring time windows and in turn, contribute

to neighbouring samples of the preprocessed signal. Conversely, part of the energy from

neighbouring windows may leak into the present one. Recalling that we assumed the

surface to be a continuous distribution of point scatterers, and recalling that the main

lobe of the sinc function (equation 3) associated to each scatterer approximately spans

half a wave length around its location, if the width of the averaging window is chosen

large enough, the sinc2 term (i.e. P) may be substituted with the Dirac delta function

and speckle does not need to be modelled.

Considering a realistic scene, this simplification implies that for a given finite

portion of surface included in the above mentioned shells the cumulative effect of the

sinc2 tails leaking outside of the surface’s borders (in terms of delay-time or range),

should be negligible. Figure 2 summarises the result of a set of experiments performed

to prove that this simplification is indeed acceptable. We considered a squared patch

of 1 m2 containing a sufficiently high number of randomly placed point scatterers (104

in the shown example), so to simulate a dense, yet realistic, distribution. Antenna is

assumed 20 Km far from the patch centre. Figure 2a shows an example from the 104

configurations generated by randomly placing 104 point scatterers. Subsequently, we
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Figure 2. Experiment confirming that the term P in equation (6) can be substituted

with a Dirac delta. a) Example of 104 randomly generated scatterers. b) Comparison

of functions φφ∗ (i.e. the quantity being integrated in equation 5) computed from

individual signals φ backscattered by the 104 scatterer configurations like the one

shown in (a), which highlights the change of regime at the distribution boundary. In

all figures within this group delay times were converted to range as well as multiples

of the wave length. Radar parameters are the same as figure 1. The solid black line

and the dashed red lines represent average and standard deviation, respectively. c)

Detail of figure (b). Showing that beyond the patch boundary tails of the signal fall

under 2% of the maximum amplitude within 2-3λ distance (few cm) and therefore are

of negligible concern to our approach. d) Integral values of signals. Histogram shows

the distribution of values around the average. Discrepancy is lower than 0.003%,

demonstrating that the time-windowing strategy is robust to short-scale features

(speckle).

computed the echo φ from all the different patches as a superposition of terms like

equation (3), (same simulation parameters as in figure 1). Figure 2b shows (in grey

and normalised) the function φφ∗ computed for all the 104 scatterer configurations (i.e.

the quantity being integrated in equation 5). The mean and the standard deviation

are drawn in black and red, respectively. Ranges corresponding to the patch edges are

highlighted and the average amplitude within this interval (A0) is used as normalisation

constant. Notably, even though these functions are quite chaotic at the small scale, two

different regimes can clearly be observed. In particular, the amplitude suddenly drops
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Radar-Based Reconstruction Using Variational Methods 12

at the patch’s edge. Figure 2c shows a magnification of the small squared portion at

the bottom left of figure 2b and shows that after just one wavelength (c.a. 5 cm) the

amplitude is reduced to 5% of A0, confirming that sinc2 tails are indeed negligible and

the use of the Dirac delta in place of P is justified. Additionally, these functions show

almost identical integral values (computed according to equation 5), with difference

smaller than 0.003% (figure 2d), confirming that the small-scale details of the scatterers

distribution has negligible effect on the preprocessed signals. It is worth mentioning

that in order to approximate a continuous distribution we repeated this experiment

with increasingly larger numbers of point scatterers: 104, 105, 106, and 107; obtaining

consistent results.

Moving forward, equation (9) represents the most general form of this optimisation

problem, where both z and G are evolved from an initial guess. Nevertheless, as we will

show later, given a reference shape the optimal G can actually be directly estimated.

Therefore, in the following we will drop the optimisation of G and the corresponding

regularising term.

Implementation of such an inversion approach requires to perform several design

choices: 1) since the scene is a graph of a function, we must adopt a suitable boundary

condition at the surface edges. 2) decide which kind of averaging window is acceptable

and 3) establish the correct radiative model. In the following we will discuss these

aspects. Finally, due to the difficulty of obtaining a real-world dataset suitable for such

a unconventional radar data inversion, we illustrate the capabilities of our approach

through numerical simulations.

2.1. PDE-based variational approach

To obtain the evolution in the form of a continuous gradient descent PDE, we consider

the unknown function z to lie along a continuously deforming family of functions

z(x, y, τ) where the additional variable τ parameterises the family. As such, the energy

functional evaluated along this evolving family of functions now becomes a simple

scalar function of τ , whose derivative may be expressed in the following integral form

(following the same mathematical development taken, for example, in Kichenassamy

et al. 1995, Yezzi et al. 1997),

∂E

∂τ
=

∫

Ω

(· · ·)
︸︷︷︸

∇zE

∂z

∂τ
dx , (11)

where all partial derivatives with respect to τ inside the integral are isolated via

combinations of the chain rule and integration by parts into the single term ∂z
∂τ

shown

above. The remainder of the integrand, which we denote by ∇zE represents the

functional derivative of E (which, when set to zero, yields the classical Euler-Lagrange

equation from the Calculus of Variations) also known as the first variation. It can

be interpreted as an infinite dimensional gradient of E over the space of all possible

functions z (not to be confused with the two-dimensional spatial gradient of the function
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Radar-Based Reconstruction Using Variational Methods 13

z itself) with respect to the standard functional L2 inner product and/or norm. As such,

we need to develop and manipulate

∂E

∂τ
=

A∑

a=1

∫ tmax

tmin

(
ua(t)− u0

a(t)
) ∂ua(t)

∂τ
dt+

α1

2

∂

∂τ

∫

S

‖∇z‖2 dS. (12)

For simplicity, let’s first consider the derivative ∂ua(t) /∂τ . Let’s define

Q
.
= {x | (C/2) (t−∆T/2) ≤ r ≤ (C/2) (t+∆T/2)}, the portion of 3D space

corresponding to delay times τd ∈ [t−∆T/2, t+∆T/2]. It can be demonstrated that,

using a delta function in place of P , for a specific instant t, integral (6) can be rewritten

as the integral on the portion of surface S ∩ Q.

ua(r) =
1

∆T

∫

S∩Q

V
GwR

r4
‖J‖ dx dy, (13)

Considering dependencies in equations (7), we obtain:

∂ua(r)

∂τ
=

1

∆T

[∫

S∩Q

−4V
Gw

r5
R‖J‖

∂r

∂z

∂z

∂τ
dx dy

+

∫

S∩Q

V
Gw

r4

(
R

‖J‖

∂z

∂x
+

∂R

∂zx
‖J‖

)
∂2z

∂x∂τ
dx dy

+

∫

S∩Q

V
Gw

r4

(
R

‖J‖

∂z

∂y
+

∂R

∂zy
‖J‖

)
∂2z

∂y∂τ
dx dy

+

∫

S∩Q

V
Gw

r4
∂R

∂z
‖J‖

∂z

∂τ
dx dy +

∫

S∩Q

V
G

r4
∂w

∂r
R‖J‖

∂r

∂z

∂z

∂τ
dx dy

]

,

(14)

where for sake of simplicity we used zx = ∂z/∂x, and zy = ∂z/∂y. Swapping the order

of derivatives in ∂2z/∂x∂τ and ∂2z/∂y∂τ , integrating by parts the second and third line

of (14), then collecting all the terms in one integral, we obtain a very interesting result:

∂ua(r)

∂τ
=

1

∆T

∫

S∩Q

V

{
Gw

r4
∂R

∂z
‖J‖+

G

r4
∂w

∂r
R‖J‖

∂r

∂z
−

4Gw

r5
R‖J‖

∂r

∂z

−
d

dx

[
Gw

r4

(

R
∂ ‖J‖

∂zx
+

∂R

∂zx
‖J‖

)]

−
d

dy

[
Gw

r4

(

R
∂ ‖J‖

∂zy
+

∂R

∂zy
‖J‖

)]}
∂z

∂τ
dx dy

+

[
Gw

r4
V

(

R
∂ ‖J‖

∂zx
+

∂R

∂zx
‖J‖

)
∂z

∂τ

]xmax

xmin

+

[
Gw

r4
V

(

R
∂ ‖J‖

∂zy
+

∂R

∂zy
‖J‖

)
∂z

∂τ

]ymax

ymin

,

(15)

Third line in equation (15) is a complicated boundary term which should either vanish or

be carefully handled. Actually, a straightforward solution is to select a time windowing

function w that vanishes at the extrema of its interval of definition. Consequently, from

now on, we use a triangular windowing function. Inserting (15) in equation (12), we
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Radar-Based Reconstruction Using Variational Methods 14

obtain

∂E

∂τ
=

1

∆T

A∑

a=1

∫ tmax

tmin

(
ua(t)− u0

a(t)
)
∗

∫

S

χ
Q
V

{
Gw

r4
∂R

∂z
‖J‖+

G

r4
∂w

∂r
R‖J‖

∂r

∂z
−

4Gw

r5
R‖J‖

∂r

∂z

−
d

dx

[
Gw

r4

(

R
∂ ‖J‖

∂zx
+

∂R

∂zx
‖J‖

)]

−
d

dy

[
Gw

r4

(

R
∂ ‖J‖

∂zy
+

∂R

∂zy
‖J‖

)]}
∂z

∂τ
dx dy dt

− α1

∫

S

△z
∂z

∂τ
dS,

(16)

where we used the indicator function

χ
Q
(x)

.
=

{

1 if x ∈ Q,

0 otherwise,
(17)

to rewrite the integral on S∩Q as an integral over the whole surface S. We can recognise

that if we now swap the space and time integrals, equation (16) has the form (11), with

∇zE =
1

∆T

A∑

a=1

∫ tmax

tmin

(
ua(t)− u0

a(t)
)
∗

χ
Q
V

{
Gw

r4
∂R

∂z
‖J‖+

G

r4
∂w

∂r
R‖J‖

∂r

∂z
−

4Gw

r5
R‖J‖

∂r

∂z

−
d

dx

[
Gw

r4

(

R
∂ ‖J‖

∂zx
+

∂R

∂zx
‖J‖

)]

−
d

dy

[
Gw

r4

(

R
∂ ‖J‖

∂zy
+

∂R

∂zy
‖J‖

)]}

dt

∣
∣
∣
∣
x

− α1△z,

(18)

Equation (18) is the general form of the gradient, valid continuously at each point on

the surface, which we use to obtain the following continuous gradient descent PDE

∂z

∂τ
= −∇zE. (19)

Finally, this PDE may be discretised in the variable τ to obtain the desired shape update

steps:

zτ+1 = zτ − α∇zE, (20)

zτ+1 = zτ − α
[
(1− αacc)∇zE + αacc∇zE

τ−1
]
, (21)

depending if the regular (20) or the accelerated gradient descent (21) is used. Constant α

in equations (20) and (21) being the step of the gradient descent, and αacc the amount

of acceleration. It is worth of note that, the use of the accelerated gradient descent

reduced the computational times of about 90%, so that in practice, throughout this

paper we used only the accelerated descent.
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Radar-Based Reconstruction Using Variational Methods 15

Figure 3. Reference geometry for experiment 1 and 2. Dots represent 90 antenna

distributed on a semi-spherical surface with 20 Km radius (18 equispaced locations on

5 height levels). At each location a radar signal is emitted, and the corresponding echo

from the scene, centred on the axes origin, is recorded.

3. Results

In the following, we consider three different test inversions. In examples 1 and 2, we

consider a set of 90 antenna locations distributed at 5 height levels on a spherical surface

with radius 20 Km (Figure 3). The scene is a 1 Km by 1 Km hill possessing a Gaussian

profile and 100 meters high at its centre. The probing signal is assumed to be a LFM

chirp, frequency band 4-6 GHz and 5 µs pulse duration.

In example 1, figures 4 and 5, the radiative function assumed on the surface

is the exploding reflector R = 1 and G is known. Rather, example 2, figures 6-8,

features the Lambertian radiative function R = (er ·N)2, with er = r/‖r‖. As such

both the incident and the re-irradiated signals have an amplitude proportional to the

cosine between the ray from the antenna to the surface and the normal vector to the

surface. Finally, example 3 (figures 9-13) leverage R = (er ·N). In addition, in this

last experiment the effect of noise contaminating the data is considered. The practical

implementation requires to substitute the various radiative assumptions R into (18) and

explicitly compute the corresponding final forms. Explicit derivations of ∇zE according

to different radiative assumptions is somewhat lengthy but conceptually simple. As

such, we summarise the final formulas in Appendix A. Further, for computational

purposes, we need now to discretise equation (18). To do so, the surface is densely

sampled over a regular grid, in such a way that we can assume each surface sample

to be well approximated by a scatterer of area dA. Therefore, the first advantage of

using the PDE approach is that, by considering the surface as a dense collection of

discrete scatterers of very small area (compared to the size of the averaging triangular

window), we avoid the numerical issue of quadrature integration along individual finite

elements. Returning to the examples, figure 4 shows few snapshots of the obtained

surface evolution. As it can be observed, results are extremely good. In fact, the error

in evaluating z is lower than 2%. Further, the only intervention we performed was

lowering the weight for the regulariser α1, once. The values of the parameters used for

the minimisation in this and following examples are summarised in table 1. Figure 5a
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Radar-Based Reconstruction Using Variational Methods 16

Figure 4. Result in the space of models. True and evolving surfaces are shown

as frame and coloured, respectively. Reflectivity is constant (g = 0.71) and known

a-priori. Colours indicate the distance (in m) from the true shape.

Figure 5. a) Result in the space of data concerning selected antennas in figure 3). b)

Minimization of the energy functional.

Table 1. Summary of the parameters values used in the provided examples and their

changes with iterations.

iteration α α1 αacc

Example 1 1 1× 1023 0.1 0.9

8× 104 1× 1023 0.0125

Example 2 all 1× 1022 0.1 0.9

Example 3 all 100 1× 10−5 0.9

shows the averaged, normalised windowed echoes at antenna locations 1 and 73. We

selected these two specific locations because they represent the extreme cases in terms

of elevation, while other location on the same levels are almost cylindrically symmetric.

Finally, figure 5b shows the corresponding energy minimisation. In example 2, (figure

6) shape reconstruction is performed based on a Lambertian radiative assumption

and an unknown, potentially variable across the surface, reflectivity. As previously

mentioned, given a scene geometry it is simple to devise a strategy to estimate G. In
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Radar-Based Reconstruction Using Variational Methods 17

Figure 6. Result in the space of models. True and evolving surfaces are shown as

frame and coloured, respectively. Colours indicate the distance (in m) from the true

shape.

Figure 7. Result in the space of models. True reflectivity is constant (G = gg∗ = 0.5),

while the value across to the evolving surface is estimated using the algorithm in

Appendix B.1. a) to d): Estimated G. e) Error with respect the true G.

this example we used an algorithm that considers G as piecewise constant (details in

Appendix B.1). Figure 7a-d show the estimates of G across the surface corresponding

to images 6a-d. Elevation z is reconstructed with an error lower than 3%. Further,

the algorithm reproduced the true, constant G = 0.5 within 1% discrepancy. Figure 7e

shows the maximum difference in terms of G between the true and the reconstructed

model. Figures 8a shows the result in terms of data matching for the two selected

antenna locations. Of course, such signals are different from the previous example, as

they are based on a different radiative model. The Lambertian introduces a stronger

constraint on the shape than the exploding reflector model. As such it is of no surprise

that the energy minimisation (figure 8b) looks smoother. Indeed, no intervention was

required to achieve the latter result. The slightly lower performance in retrieving z is

motivated by the fact that a piecewise reflectivity violates the requirement of a smooth

G and introduces, to some degree, instability of the gradient descent flow. In this

particular example however, such instability was compensated by the good illumination

provided by the high number of antenna locations. In our last experiment, inspired

to a hypothetical acquisition performed by a unmanned aerial vehicle (e.g. a remotely
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Radar-Based Reconstruction Using Variational Methods 18

Figure 8. a) Result in the space of data concerning selected antennas in figure 3). b)

Minimisation of the energy functional.

Figure 9. Experiment 4. a) True scene. b) Antenna locations. c) and d): number of

time windows and antennas sensing different parts of the scene.

controlled quadcopter), hovering on the scene, we consider the geometry of figure 9a.

The scene, in this case, is a small 10 m by 10 m patch, and features three spikes

of variable heights (2, 5 and 7 meters), purposely designed to generate a challenging

to reconstruct scenario and where the scene visibility is partially occluded to some

antennas. The reflectivity of the true scene is constant (G = 0.5). Antenna locations

are, on average 50 meters above the scene (figure 9b). Figures 9c and 9d show a top

view of the surface, where the colour code represents the total number of time-windows

and antennas sensing different portions of the surface. In other words, they represent

the “sensitivity” of data to the scene geometry. In this case the radiative model is

R = (er ·N). Beside greatly simplifying the expression of the gradient flow, this model

is in our perspective the most physically sound for the inversion of radar backscattered

electric field. The interested reader may refer to Yildirim (2019) for rigorous proof. In
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Radar-Based Reconstruction Using Variational Methods 19

this inversion the reflectivity is unknown initially. We dynamically estimate the best

value of a constant reflectivity while optimising the shape. This approach guarantees a

sufficiently good estimation of the reflectivity while preserving the smooth reflectivity

constrain. The analytical solution for the calculus of G is provided in equation (B.13).

An additional motivation behind this assumption is that for full 3D active surfaces using

level set methods applications (for which this study is preparatory), where changes of

topology are naturally handled and the surface may split into different disjoint shapes,

it is simple to manage scenes composed of multiple constant-reflectivity objects. These

aspects however represent future work and will not be discussed here. In contrast with

the previous examples, this experiment addresses the role of noise affecting the data and

its impact on the shape reconstruction. It is worthy of note that since the noise is of a

stochastic nature, we expect it will be greatly attenuated by the time averaging used in

equation (5). To quantify this effect, we performed a small experiment. The surface in

figure 9a. is defined on a 0.2 by 0.2 meter grid, while the width of the triangular time

window used to compute (5) is 0.5 meters. As such, similar to the example in figure

(2), we considered a random distribution of point scatterers with a density of 25× 106

points/m2 along a hypothetical surface patch of size 0.2 × 1.5 meters. We computed

the echo generated by this distribution of scatterers (via superposition of terms as in

equation 3), assuming the antenna to be located 50 meters away from its centre, in a

direction aligned with the longitudinal axis of the patch. The LFM chirp emitted by

the antenna is chosen with frequency band 4-6 GHz and pulse duration 0.1 µs. With

this computed echo as a reference, we used randomly generated, zero-mean Gaussian

noise to create 50000 instances of noisy data, each with signal to noise ratio (SNR) of

about 20 dB. Such noise was designed to corrupt both amplitude and phase randomly.

Figure 10a shows the ratio between the width of the triangular window and the grid

spacing of the surface, as well as how the sinc (in black) and sinc2 (in red) functions

(equation 4), for one scatterer, fit within this range span. For each simulated noisy

signal we computed the corresponding processed signal (5, the quantity we invert for)

and the signal to noise ratios before and after processing. Figure 10b compares the

distribution of these SNR. The vertical axis, denoted “probabilit” represents the height

of the histogram bars divided by the total population (i.e. 50000). After processing, the

initial SNR (20 dB) greatly improves. However, to further emphasize the robustness

of our approach to noise, in this example we will assume that noise with 20 dB SNR

has not been mitigated by the time windowing. Figure 11 shows the evolution flow

starting from an initial parabolic shape. In this experiment we imposed Dirichlet (i.e.

z=0) boundary conditions. The correct shape is recovered almost perfectly, except few

sparse locations which present a maximum error of 2%. We easily discriminated the

three spikes in the scene and despite the visibility occlusions, correctly reconstructed

their different heights and curvy tips. Figure 12 shows the evolution of the estimated

reflectivity of the scene. The first estimate, even if the starting shape was completely

different, was only 4% off. Subsequently, it evolved concurrently with the shape and

finally reached a value 0.3% off with respect to the true value. Finally, figures 13a
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Radar-Based Reconstruction Using Variational Methods 20

Figure 10. Investigating the effect of noise under the modelling conditions of example

3 (figure 9). The echo from a portion of surface containing a random distribution of

point scatterers is used to compute a reference echo, which in turn is used to generate

50000 instances of noisy data. Subsequently, the observable function (equation 5) and

SNR before and after processing are computed. a) shows the ratio between the grid

spacing of model 9a, width of the triangular window, and the sinc (black) and sinc2

(red) functions associated to one point scatterer (all expressed in terms of range). b)

comparison of SNR before (raw data) and after processing showing how the noise is

greatly attenuated.

Figure 11. Result in the space of models. True and evolving surfaces are shown as

frame and coloured, respectively. Colours indicate the distance (in m) from the true

shape.

0 12 20
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Iteration
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164 8
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-G
 )
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Figure 12. Result in the space of models. Percent difference between successive

estimates of G using the analytical formula (B.13) and the true value G0 = 0.5.
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Radar-Based Reconstruction Using Variational Methods 21

Figure 13. a) Result in the space of data concerning selected antennas in figure 9b.

b) Minimisation of the energy functional.

shows the result, in the data domain. Despite the noise, we obtained an excellent fit.

Energy, figure 13b, is nicely minimised without the need of any intervention on the

inversion parameters. The high values of the regulariser in mid iterations (green dashed

curve) show that the surface at intermediate iterations was highly irregular with complex

visibility occlusions. Nevertheless, since totally occluded regions are still evolved by the

regulariser, the inversion process is capable of recovering and if necessary, bring back

to the correct visible location, those portions of the surface that could not evolve any

more and would otherwise generate false positives. Small discontinuities in the energy,

as highlighted by the a and b labels in figure 13b plot are due to adjustments in the

estimated reflectivity. The effect of noise on the energy minimisation can be observed in

figure 13b by comparing the energy minimisation associated with noisy data (blue line)

to the noise free minimisation (black line). To highlight this difference, in this plot we

used a logaritmic vertical scale, while difference in the reconstructed shape were almost

undetectable.

4. Discussion

In section 3 we showed how to perform shape reconstruction by inverting time-domain

radar echoes acquired at sparse locations. We achieved this by formulating the problem

within a similar variational framework used for multiview stereo reconstruction, well

established in computer vision to tackle shape inversion from image data acquired by

sparse cameras. To do so, we built a least squared optimisation in which the mismatch

is computed with respect an observable quantity (equation 5) derived from radar data.

Since radar signals are oscillatory in nature, two key aspects of this equation are that it

considers the power of the signal and it leverages a time averaging window. These two

features together help suppress most of the oscillating terms, leading to a sufficiently well

behaved energy. The advantage of the variational formalism is that the energy gradient

is computed analytically, keeping the representation of the surface continuous, with
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Radar-Based Reconstruction Using Variational Methods 22

discretisation introduced only at the very last stage for the sake of practical computation.

It is worth mentioning that in our earliest attempts to tackle this problem, we used

a finite element approach in which the surface was discretised using triangular elements

and each integration operation over it (e.g. equation 6) was performed numerically

on each element. In addition we considered squared and Gaussian windows as time

averaging strategy. Finally, reflectivity was known. This early approach was not

successful when implemented using squared windows while it worked using Gaussian

windows. Even when successful, the converged surface still presented errors in z up to

10%. In addition, to be practical the finite element approach required surface re-meshing

and consequently, re-processing of raw data with different time window lengths. In other

words, inversion required several manual interventions and involved parameter tuning.

The PDE-based evolution provided striking improvement. Not only the necessity for

remeshing was completely removed, but errors in z are lower than 3%, even when

reflectivity is unknown. We also demonstrated that reflectivity can be estimated with

errors lower than 0.5%. Notably, the result is achieved with little or no user intervention.

In addition, the explicit presence of boundary terms in equation (15) highlighted by

the variational analysis elegantly explains why the use of a square windows failed and

why the result obtained with the Gaussian window, despite being reasonable, was only

partially successful.

As highlighted in section (2) averaging the data with a moving time-window has

several direct consequences. First, we do not exploit the phase curtain but we rather

leverage the amplitude information, in terms of energy density located at specific ranges.

We note, in some sense, that the information lost by disregarding the phase curtain is

actually re-introduced in the inversion machinery by the fact that we are performing a

local optimisation with respect to an explicitly modelled surface. In turn, this surface

determines how the back reflected energy distributes over different ranges and it is then

observed by the antennas, making the coherent summation unnecessary. Second, while

the location of every portion of surface (and therefore the general shape), is mostly ruled

by the presence of back-reflected energy at a specific delay time, the actual amount of

such energy is ruled by the reflectivity and the radiative behaviour. In other words, we

can still reconstruct the shape fairly well, even with a poor estimation of the reflectivity.

The price of using a sparse configuration of antennas (and abandoning phase

summation) seems to be a loss of resolution, to some extent. However, such a loss

is only an apparent issue. For example, Thomas et al. (1989) achieved topography

reconstruction leveraging stereo reconstruction technique on SAR images using a

“smoothness” regulariser to cope with speckle. They observed that strong regularisation

was necessary for the reconstruction to succeed. In turn, the regularisation resulted

in lower resolution. Their findings with stereo image reconstruction is by all means

equivalent with what we observed dealing with independent echo signals and using an

averaging window. The consideration to make is that to determine the shape of an

object of interest, the high resolution provided by SAR images is actually unnecessary

as objects are typically of a larger scale compared to images pixels.
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In the present context, the resolution to which the scene geometry is reconstructed

depends on the spacing of the computational grid and on the width and overlap (in

terms of range) of the triangular windows used. Since we are dealing with a least-

squared nonlinear optimisation, it is very difficult to quantify the resolution analytically.

Nevertheless, if we consider a small patch of surface surrounding a point of the discretised

surface (x, y, z(x, y)), the grid spacing should be chosen large enough to consider its

collective contribution, as opposed to modelling all of the scatterers distributed on it.

In figure (2) we demonstrated that the cumulative signal from an almost continuous

distribution of scatterers on a patch is well behaved and the tails leaking outside the

patch (in terms of range) are negligible after 2-3 wavelengths distance. In addition,

considering a hypothetical point scatterer on this patch, the time window used to

average the raw data should be chosen large enough to include the main lobe and

few of the secondary lobes of the associated sinc2 function (i.e. most of the energy

re-irradiated by the scatterer). Ideally, this is achieved choosing a time-window as large

as the grid spacing augmented by 4-6 wavelengths (to include oscillating tails). After

these considerations, not accounting for squinted view angles from the antennas with

respect to the orientation of the computational grid and disregarding the fact that each

time window should cover a “sufficiently wide stripe of surface”, it can be expected

that achievable resolution may be as low as 10 wavelengths. Nevertheless, the loss in

resolution introduced by the time averaging window can be partially recovered using

partially overlapping windows. In fact, there is no limitation on the amount of such

overlap. In example 3 for example, we considered a grid spacing and a window width

equivalent to 4 and 20 wavelengths, respectively. Windows’ overlap of 90% ensured

that information within consecutive time-windows differed only by the contribution of

a surface band 2 wavelengths wide (c.a. 10 cm). With the presence of a reference

evolving surface our approach fully accounts for visibility, although we did not account

for multiple scattering.

Within raw radar signals, the effect of multiple scattering is the presence of

back scattered energy at later delay times. As far as the inversion approach is

concerned, the use of several overlapping windows allows discriminating such energy

from direct backscattering. Therefore, the only limitation in this sense, comes from the

modelling routine underlying the inversion, which was not designed to account for this

phenomenon. While the main motivation for this choice was to lower the computational

cost, this choice was also motivated by the fact that smooth surfaces (such as those

dealt here) are less prone to generate multiple reflections and when these occur, they

are expected to be strongly attenuated. Summarising, accounting for multiple reflections

would only require the use of a more involved forward model.

Finally, real world radar echoes contain usually some level of noise, which is typically

a stochastic, zero mean phenomenon. Such noise affects the samples of the complex

raw data, both in terms of amplitude and phase. Since traditional radar processing

leverages phase summation, great effort is placed to achieve the best signal to noise

ratio (SNR). In contrast, we leverage the backscattered energy density distribution as
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function of time/range. Noise may affect the amount of energy at a specific range

but not its collocation in terms of range, which as we have shown rules our shape

evolution. Additionally, we demonstrated that the noise in the raw data is strongly

attenuated once the observables to be inverted are computed (equation 5). Given a

fixed range, the surviving noise will manifest itself in a slight amplitude perturbation,

and as explained before, in our approach this kind of perturbations don’t impact the

shape but rather affects the reflectivity. On the other hand, we have shown that we can

estimate reflectivity on the fly and achieve the correct reconstruction even when such

estimate is poor. Most importantly, we must emphasise that this inversion can tolerate

uncertainties on reflectivity far greater than any noise related disturbance.

5. Conclusion

In this paper we tackled the problem of shape and reflectivity reconstruction from

remotely sensed radar signals. In contrast with classic approaches, where the shape is

retrieved using well established computer vision tools on images formed by traditional

radar imaging, we formulated the problem as an iterative local inversion of the time-

domain radar back-scattered signals. Key considerations concerning our approach

and implementation aspects have been illustrated by means of three examples, with

increasing complexity. Such implementation aspects include: 1) the strategy adopted in

order to form a well-behaved energy functional from such high frequency signals in order

to avoid the cycle-skipping phenomenon. We solved this difficulty by means of a moving

averaging window, and we motivated why such windows must be of finite length and

fade to zero at their end points. 2) we investigated three different radiative models of the

surface, 3) we illustrated strategies to directly evaluate the reflectivity of the surface.

4) since for simplicity we limited our investigation to surfaces defined as a graph of

a function, we used two different boundary conditions. 5) Finally, we discussed the

mechanisms ruling the model evolution, the achievable resolution and robustness with

respect to noise. The result of this investigation is therefore that in order to build a well

behaved energy functional an averaging strategy of the raw signals should be adopted.

This choice has several direct consequences. First, we do not exploit the phase curtain

but we rather leverage the amplitude information, in terms of energy density located

at specific ranges. We note, in some sense, that the information lost by disregarding

the phase curtain is actually re-introduced in the inversion machinery by the fact that

we are performing a local optimisation with respect to an explicitly modelled surface.

In turn, this surface determines how the back reflected energy distributes over different

ranges and how it is observed by different antennas, making the coherent summation

unnecessary. As such, this can be considered a noncoherent approach.

This approach extends the useful processing range for data collected by sparse

antennas and high frequencies. We showed that shape can be accurately reconstructed

even with a poor estimation of the reflectivity and that reflectivity can be accurately

evaluated knowing the shape. The problem is particularly simple if a constant reflectivity
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is assumed. Therefore, despite the restriction in this study to surfaces parametrized as

a graph, we demonstrated that variational approaches leading to PDE driven shape

evolution represent a natural and elegant framework to reconstruct scene geometry.

Given these results, extending the present mathematical framework to more general 3D

active surfaces and expressing the surface in more flexible implicit form using level set

methods would be the most promising and natural next step to advance this variational

framework. Level set methods will naturally handle changes of surface topology and will

allow for the presence of different constant-reflectivity objects coexisting in the same

scene even if their number is a-priori unknown. This will indeed be a key focus of our

upcoming future work.
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Appendix A. Explicit forms of the gradient flow

In section 2.1 we provided the most general form of ∂u(r) /∂τ equation (15), and we

introduced it into the energy derivative (12). Subsequently, we defined the indicator

function χ (17) to swap the time and surface integrals, and rewrite the equation in form

(11) in which we recognized the gradient sought ∇zE (18). In the following we provide

the explicit forms of ∂u(r) /∂τ and ∇zE for different choices of the radiative function.

To obtain specific formulas we substitute R = 1, R = (er ·N), or R = (er ·N)2 in

equation (15) and we leverage the following mathematical relations:

(er ·N) = (∇r ·N) =

∂r
∂z

− ∂z
∂x

∂r
∂x

− ∂z
∂y

∂r
∂y

‖J‖
, (A.1)

2H =

(

1 +
(
∂z
∂x

)2
)

∂2z
∂y2

− 2 ∂z
∂x

∂z
∂y

∂2z
∂x∂y

+

(

1 +
(

∂z
∂y

)2
)

∂2z
∂x2

‖J‖3
, (A.2)

∇G ·N = −

∂G
∂x

∂z
∂x

+ ∂G
∂y

∂z
∂y

‖J‖
, (A.3)

∇G · ∇r =
∂G

∂x

∂r

∂x
+

∂G

∂y

∂r

∂y
, (A.4)
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some of which are specific to our choice of describing the surface as a graph of a function,

with normal vector oriented upward. We recall that boundary terms in (15) will vanish

by selecting an averaging window w fading to zero at its edges. Finally, in order to

simplify the notation, let’s consider just one antenna and drop index a.

Appendix A.1. Exploding reflector R = 1

∂u(r)

∂τ
=

1

∆T

∫

S∩Q

V

[
w

r4
(∇G ·N) +

(
G

r4
∂w

∂r
−

4Gw

r5

)

(∇r ·N)−
Gw

r4
2H

]
∂z

∂τ
dx dy (A.5)

∇zE =
1

∆T

A∑

a=1

∫ tmax

tmin

χ
Q
V
(
ua(t)− u0

a(t)
) [w

r4
(∇G ·N)

+

(
G

r4
∂w

∂r
−

4Gw

r5

)

(∇r ·N)−
Gw

r4
2H

]

dt

∣
∣
∣
∣
x

− α1△z

(A.6)

Appendix A.2. Cosine R = (er ·N)

∂u(r)

∂τ
=

1

∆T

∫

S∩Q

V

[
G

r4
∂w

∂r
+

Gw

r4
(∇G · ∇r)− 2

Gw

r5

]
∂z

∂τ
dx dy (A.7)

∇zE =
1

∆T

A∑

a=1

∫ tmax

tmin

χ
Q
V
(
ua(t)− u0

a(t)
)
[
G

r4
∂w

∂r
+

Gw

r4
(∇G · ∇r)− 2

Gw

r5

]

dt

∣
∣
∣
∣
x

− α1△z

(A.8)

Appendix A.3. Lambertian, R = (er ·N)2 ,H = (er ·N)

∂u(r)

∂τ
=

1

∆T

∫

S∩Q

V
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−6
Gw

r5
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∂z
∂x

∂2z
∂x2 +

∂z
∂y

∂2z
∂y∂x

)

+ ∂r
∂y

(
∂z
∂x

∂2z
∂x∂y

+ ∂z
∂y

∂2z
∂y2

)

‖J‖2





−2
Gw

r4






∂2z
∂x2

(
∂r
∂x

)2
+ 2 ∂2z

∂y∂x
∂r
∂x

∂r
∂y

+ ∂2z
∂y2

(
∂r
∂y

)2

‖J‖










∂z

∂τ
dx dy

(A.9)
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∇zE =
1

∆T

A∑

a=1

∫ tmax

tmin

χ
Q
V
(
ua(t)− u0

a(t)
)
[

−6
Gw

r5
H + 2

G

r4
∂w

∂r
H

+ 2
Gw

r5
‖J‖R −

w

r4
R (∇G ·N)−

G

r4
∂w

∂r
R (∇r ·N)

+
4Gw

r5
R (∇r ·N) +

Gw

r4
R (2H) + 2H

w

r4
(∇G · ∇r)

− 2
Gw

r4
H





∂r
∂x

(
∂z
∂x

∂2z
∂x2 +

∂z
∂y

∂2z
∂y∂x

)

+ ∂r
∂y

(
∂z
∂x

∂2z
∂x∂y

+ ∂z
∂y

∂2z
∂y2

)

‖J‖2





−2
Gw

r4






∂2z
∂x2

(
∂r
∂x

)2
+ 2 ∂2z

∂y∂x
∂r
∂x

∂r
∂y

+ ∂2z
∂y2

(
∂r
∂y

)2

‖J‖









 dt

∣
∣
∣
∣
∣
∣
∣
x

− α1△z

(A.10)

Appendix B. Algorithms for the direct computation of Reflectivity

Appendix B.1. Piecewise reflectivity

Assuming we are considering finite time intervals tm = tmin +m∆t. For each antenna -

time window pair (a, tm) we demand (ua (tm)− u0
a (tm)) = 0. Assuming that it exist a

constant value of Gam on the portion of surface individuated by the (a, tm) combination,

we rewrite the latter equation using (13)

ua(tm) = Gam
1

∆t

(∫

S∩Q

V
wR

r4
‖J‖ dx dy

)

= GamŴam (B.1)

we obtain

Gam =
u0
am

Ŵam

(B.2)

therefore a value of “apparent” G is obtained. Considering now a point p on the surface,

located at position x with an associated infinitesimal area da (that in the practical

computation it will be associated to a node of the computational grid), we know from

the forward model equations that the point contributes to a specific (a, tm) pair, in

which it is included, as

Cam = G (x)V
wR

r4
da

= G (x)Ham .
(B.3)

Actually, point p will most probably contribute to several time windows for the same

antenna a, and to several antennas. As such, we expect that it will contribute in the

computation of several ua(tm) and in turn, to several Gam. Therefore, in order to

estimate G (x) from this set of apparent values we use a weighted average.

G (x) =

∑A
a

∑M
m GamHam

∑A
a

∑M
m Ham

(B.4)
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Appendix B.2. Constant reflectivity

Starting from equation (9), we consider the partial derivative of the energy with respect

to G:

∂E

∂G
=

na∑

a=1

∫ tmax

tmin

(
ua(t)− u0

a(t)
) ∂ua(t)

∂G
dt (B.5)

imposing this equation to be zero,

A∑

a=1

∫ tmax

tmin

(
ua(t)− u0

a(t)
) ∂ua(t)

∂G
dt = 0 (B.6)

A∑

a=1

∫ tmax

tmin

ua(t)
∂ua(t)

∂G
dt =

A∑

a=1

∫ tmax

tmin

u0
a(t)

∂ua(t)

∂G
dt (B.7)

then computing ∂ua(t)/∂G, and assuming G is constant across the surface

ua(t) = G
1

∆t

(∫

S∩Q

V
wR

r4
‖J‖ dx dy

)

= GŴa(t) (B.8)

∂ua(t)

∂G
=

1

∆t

(∫

S∩Q

V
wR

r4
‖J‖ dx dy

)

= Ŵa(t) (B.9)

note that Ŵa(t) is independent of G, therefore

A∑

a=1

∫ tmax

tmin

ua(t)
∂ua(t)

∂G
dt =

A∑

a=1

∫ tmax

tmin

u0
a(t)

∂ua(t)

∂G
dt (B.10)

G

A∑

a=1

∫ tmax

tmin

Ŵa(t) Ŵa(t) dt =
A∑

a=1

∫ tmax

tmin

u0
a(t) Ŵa(t) dt (B.11)

(B.12)

finally

G =

∑A
a=1

∫ tmax

tmin

u0
a(t) Ŵa(t) dt

∑A
a=1

∫ tmax

tmin

Ŵ 2
a (t) dt

(B.13)
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