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ABSTRACT Accurate forecasting of solar photovoltaic (PV) power for the next day plays an important
role in unit commitment, economic dispatch, and storage system management. However, forecasting solar
PV power in high temporal resolution such as five-minute resolution is challenging because most of PV
forecasting models can only achieve the same temporal resolution as their predictors(i.e., weather variables),
whose temporal resolution is usually low (i.e., hourly). To address this challenge, similarity-based forecasting
models (SBFMs) are advocated in this paper to forecast PV power in high temporal resolution using low
temporal resolution weather variables. To effectively generalize the model for different scenarios of available
weather data, three forecasting models (i.e., basic SBFM, categorical SBFM, and hierarchical SBFM) are
proposed. As a case study, the PV power generated by the solar panels on the rooftop of a commercial
building is forecasted for the next day with a five-minute resolution under three different scenarios of
available weather data. The leave-one-out cross-validation analysis reveals that using only two or three
weather variables, the proposed SBFMs can achieve higher forecasting accuracy than several benchmark
models.

INDEX TERMS Solar PV forecasting, similarity analysis, hierarchical similarity, high temporal resolution
solar forecasting, day-ahead forecasting.

I. INTRODUCTION
Variability and uncertainty of unprecedentedly growing solar
photovoltaic (PV) generation have incurred serious stability,
reliability, and integration costs in power system operation,
planning, and market [1]–[4]. The accelerating penetration of
solar PV generation in the power grid calls for accurate solar
PV power forecasting, which provides authorities an under-
standing of generation at different forecast horizons. Based
on forecast horizons, the PV power forecasting methods can
be classified into three categories: short-term, medium-term,
and long-term forecasting [5], [6]. The medium-term and
long-term forecasting methods have forecast horizons of one
week to several years and are mainly applied for scheduling
and planning [7]. On the other hand, short-term forecasting
methods cover forecast horizons of few seconds to seven
days and are mainly applied in real-time operations, such as
economic dispatching, optimal reserves, automatic genera-
tion control, unit commitment, scheduling, and spot markets.
Among the applications of short-term PV power forecasting,
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the day-ahead PV power forecasting is of great importance in
unit commitment, storage system management, transmission
scheduling, and day-ahead markets [8], [9]. For these appli-
cations, high temporal resolution and accurate solar genera-
tion forecasting is desirable but challenging. To address this
challenge, similarity-based forecasting models (SBFMs) are
advocated in this paper to forecast solar PV generation for the
next day with high temporal resolution using low temporal
resolution weather data.

A. RELATED WORKS
Forecasting models of PV power can be divided into three
main categories: PV performance models, statistical models,
and hybrid models [10]. In PV performance models, the irra-
diance is forecasted, first. Then, the forecasted irradiance is
applied to the PV system model to estimate the generated
power [11]. For the review on PV performance models, read-
ers are referred to [12]–[14]. Although the main advantage
of a PV performance model is its independence from his-
torical data, the forecasting resolution of PV performance
models depends on the resolution of a numerical weather
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prediction (NWP), mainly irradiance, which is usually low
(i.e., hourly) [13], [15]. On the other hand, in statistical
models, the PV power generation is directly forecasted using
historical PV generation data through statistical and machine
learning methods [16]. Inherently, the statistical models rely
on large historical data sets from observed PV power gener-
ation and weather data to train and validate the forecasting
models. Some studies indicate that the statistical models can
achieve higher forecasting accuracy than the PV performance
models [17]. In the hybrid models, the statistical models
and/or PV performance models are combined to improve
forecasting accuracy [18].

Many studies have been conducted to forecast PV power
generation in the next day using the three aforementioned
models. In [19], an online forecasting model is proposed
based on a radial basis function network (RBFN) and clas-
sification using self-organized map (SOM) to forecast hourly
solar power. Similarly, in [20], the RBFNmethod is applied in
hourly solar PV generation forecast of the next day while the
support vector machine (SVM) is implemented for the clas-
sification. A hybrid model of statistical models is proposed
in [21], in which a combination of an artificial neural network
(ANN) based method and an autoregressive integrated mov-
ing average (ARIMA) method are applied in the day-ahead
solar energy forecasting. In [22], a hybrid model, with a com-
bination of the statistical model and a PV performancemodel,
is proposed to forecast a day-ahead solar PV generation with
hourly resolution. In [22], the ANN method is applied with
hourly historical data of irradiance, power generation, and
NWP to forecast hourly PV power generation of the next
24 hours. In [23], a forecasting model is proposed based
on an extreme learning machine for day-ahead PV power
forecasting with hourly resolution. An ensemble method is
proposed in [24] for hourly day-ahead solar PV generation
forecasting using several meteorological and astronomical
data. The performances of four state-of-the-art forecasting
methods (i.e., k-nearest neighbors (KNN), ANN, SVR, and
quantile random forecast methods) to forecast solar PV power
in the next 24 hours are compared in [25]. However, in these
studies, the temporal resolutions of the input variables and
consequent output data are one hour. One of the studies that
focused on solar PV power forecasting with high temporal
resolution for the next day is [26], which proposed a combina-
tion of a PV performance model and an ANN-based method
for day-ahead solar PV power forecasting with one-minute
resolution. However, the proposed forecasting model in [26]
requires a large meteorological data set with one-minute res-
olution, which is often not available in high accuracy.

Accordingly, although previous studies have proposed
valuable forecasting models for day-ahead solar PV gener-
ation or irradiance forecasting, they require high temporal
and spatial resolutions of input data to yield high temporal
resolution forecasts. Yet, both the availability and the accu-
racy of high temporal resolution of weather variables for the
next day are the major barriers of applying these forecasting
models. In this study, several SBFMs are proposed to address

the challenge of forecasting high temporal resolution solar
PV power while only low temporal resolution of weather data
is available. we proposed forecasting models which extract
indexes of days in historical data which have similar patterns
to the next day forecasted weather. By extracting indexes of
similar days to the next day in terms of weather variables,
the forecasted solar PV power is the weighted averaged of
power on similar days. The proposed SBFMs are adapted
for three application scenarios that have different available
weather variables.

B. CONTRIBUTIONS
The purpose of this study is to accurately forecast solar PV
power with a five-minute resolution for the next day when
forecasted weather data are available hourly. To fulfill this
purpose, SBFMs are applied on historical power data with
a five-minute resolution and weather data with a 60-minute
resolution. In addition, the availability of different weather
data provided by local and national weather stations is con-
sidered in the SBFM models. Three forecasting models are
proposed for three scenarios of different available weather
data. Finally, to quantify the forecasting accuracy, the leave-
one-out cross-validation method is applied to derive forecast
error metrics and to compare the proposed methods with
several benchmark models.The contributions of this study are
summarized as follows:

1) A basic SBFM (bSBFM) is proposed to increase
the accuracy in forecasting the day-ahead PV power
with high temporal resolution. This forecasting model
proved to be efficient and simple for the cases where
only one or some of the commonly available weather
variables (i.e., temperature, humidity, dew point, air
pressure, wind speed, and precipitation rate) are
available.

2) Among the commonly available weather variables,
temperature and humidity are identified as the ‘‘best’’
weather variables for the bSBFM to forecast solar PV
power.

3) When the forecast of sky cover is available, a categor-
ical SBFM (cSBFM) is proposed as an upgrade to the
bSBFM to classify the historical data according to the
sky cover, which improves the forecasting accuracy.

4) When the forecast of irradiance is available in addition
to the commonly available weather variables, a hier-
archical SBFM (hSBFM) is proposed to apply the
similarity analysis method in multiple steps, which
significantly improves the forecasting accuracy.

The rest of the paper is organized as follows. The SBFMs
are proposed in Section II. Benchmark models and evaluation
methods are described in Sections III. Section IV presents the
case study results. The conclusion is drawn in Section V.

II. FORECASTING METHODOLOGIES
As mentioned in the previous section, to accurately forecast
PV generation for the next day with 5-minute resolution,
most PV forecasting models require that forecasted weather
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variables also have 5-minute temporal resolution. However,
the forecasted weather variables are normally available with
60-minute temporal resolution. To overcome this limitation,
forecasting models based on similarity analysis are proposed
in the following subsections.

To apply the similarity analysis method in forecasting
models, the KNN method was chosen among other classifi-
cation methods because the KNN method is simple and does
not require the tuning of many parameters to yield optimal
results. Thus, from this point forward, the similarity method
refers to the KNN method, while similarity analysis refers to
the process of applying the similarity method in the forecast
models. The KNNmethod is chosen as the similarity analysis
method. The number of neighbors (i.e., k) of theKNN is tuned
in the training process. Because k is the only hyper-parameter
in this study, the grid search method is applied in the training
process to yield the optimal number of k neighbors.

FIGURE 1. Structure of the bSBFM.

A. BASIC SBFM (bSBFM)
In bSBFM, the most commonly available weather variables
including temperature, humidity, dew point, and wind speed
are applied as predictors to forecast PV power. The bSBFM is
illustrated in Fig. 1, in which blue boxes are for the forecasted
weather and power data while the red boxes and green boxes
represent historical weather and power data, respectively.
As shown in Fig. 1, the bSBFM consists of two steps. In the
first step, the similarity analysis is performed to identify the
indexes of k days in the historical data (with hourly reso-
lution) whose weather patterns are similar to the forecasted
weather pattern on day D+1. More specifically, first, vectors
Wi = [Vi,1, Vi,2, . . . , Vi,H ]T and Pi = [pi,1, pi,2, . . . , pi,M ]T

are constructed for day i where Vi,h is the recorded weather
variables (such as temperature, humidity, dew point, andwind
speed) at hour h on day i and pi,m is the recorded PV gener-
ation at minute m on day i. Then, the distance between day i
and day D+1 (i.e., disi) is calculated using (1).{

dis2i = (Wi −WD+1)T × (Wi −WD+1)
i ∈ J1,DK

(1)

The disi are sorted in ascending order and the first k days
whose distances are the shortest ones are selected as the
similar days to day D+1. In Fig. 1, the indexes of the similar
days are denoted as S1, S2, . . . , Sk .

In the second step, the power on the target day is forecasted
by the weighted average of the solar PV generation during
the identified k similar days. More specifically, the weights
are calculated as the inverse of the distances as in (2). The
forecasted PV power generation on day D + 1 (denoted by
P̂D+1) is calculated using (3), where Psj represents the PV
power generation on day Sj.

wsi =
1

dissi
(2)

P̂D+1 =

∑k
j=1 Psj × wsj∑k

j=1 wsj
(3)

Note that forecasting the power on the target day (i.e. PD+1)
using (3) requires knowing the indexes of k similar days,
the assigned weight of each similar day (i.e. wsi ), and histor-
ical power generation on the similar days (Psi ). Accordingly,
in this forecasting model, the temporal resolution of fore-
casted PV power is independent of the temporal resolution of
the weather variables. In other words, although the weather
data in (1) have hourly resolution, they are only required to
derive the distance between the target day and the similar
days. Thus, as illustrated in (3), once the k similar days are
identified, the power on the target day (i.e. PD+1) can be
forecasted in five-minute resolution using the five-minute
resolution historical PV power data (i.e. Psj ) and the constant
values of wsj .
Note that averaging generations of similar days can smooth

out the variability caused by noise and improve the overall
forecasting accuracy.

The bSBFM is proposed for the commonly avail-
able weather variables provided by most weather stations
(i.e., numerical weather variables of temperature, dew point,
humidity, wind direction/speed, air pressure, and precipita-
tion); however, some weather stations may provide sky cover
and irradiance data. Thus, two additional upgrades on the
bSBFM are introduced in the following subsections. Note
that to achieve higher forecasting accuracy, it is important to
select the relevant weather variables that can better identify
the solar PV generation patterns based on similarity analysis
and exclude irrelevant or redundant variables. In this paper,
the exhaustive searchmethodwas used to identify the relevant
weather variables because the number of features is limited.
Also, note that on the training process, different types of
weather variables should be optimally scaled to yield the
smallest forecasting errors.

B. CATEGORICAL SBFM (cSBFM)
When the weather variables are categorical or when weather
classification on a numerical weather variable is likely to
yield higher forecasting accuracy, the classification can be
applied to group weather and the corresponding power gen-
eration data sets before applying the similarity method. The
procedure of the proposed cSBFM is illustrated in Fig. 2 in
which blue boxes are for both forecasted weather and power
data while red boxes and green boxes represent historical
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FIGURE 2. Structure of the proposed cSBFM.

weather and power data, respectively. Pink boxes in the back-
ground are for days in Class n. As illustrated in Fig. 2, the
proposed cSBFM consists of the following three steps. In the
first step, the class of forecasted weather data (i.e., WD+1)
is determined using a classification or clustering method.
In Fig. 2, it is assumed that there are N classes and the class
of the forecasted weather data is Class n. In the second step,
the similarity analysis is performed only on the historical data
at the same class as day D + 1 (i.e., Class n) to identify the
indexes of k similar days that are the nearest to the forecasted
weather variables on day D + 1. More specifically, the dis-
tances (i.e., disi) of all the days that have the same class as the
target day (for this case i.e. Class n) are calculated using (4).
Then, disi are sorted in ascending order. Next, the indexes of
the first k days that have the shortest distance are identified
as the similar days.{
dis2i = (Wi −WD+1)T × (Wi −WD+1)
i ∈ {x : class(Wx) = class(WD+1) = Class n; 1 ≤ x ≤ D}

(4)

In the third step, using (3), the forecasted PV power on
day D + 1 (i.e., PD+1) is estimated by averaging the power
generation corresponding to the identified similar days in the
historical data.

C. HIERARCHICAL SBFM (hSBFM)
Some weather service providers may supply irradiance data
in addition to the commonly available weather variables
(i.e., temperature, humidity, dew point, and wind speed).
Under this scenario, a hierarchical forecasting model is pro-
posed based on a step-by-step similarity analysis which effec-
tively distinguishes similarity patterns in power generation
and extracts the days similar to the target day. As illustrated
in Fig. 3, in this forecasting model, the similarity analy-
sis is conducted hierarchically through the following three
steps. In the first step, similarity analysis is performed using
weather variable set #1 to identify k1 candidate days. More
specifically, first, the distance of all days in the historical data
to the target day is calculated in terms of weather variable

FIGURE 3. Structure of the proposed hSBFM.

set #1, as displayed in (5).{
(dis[V1]i )2 = (W [V1]

i −W [V1]
D+1 )

T
×(W [V1]

i −W [V1]
D+1 )

T

i ∈ J1,DK
(5)

where W [V1]
i is a vector constructed using weather vari-

able set #1 on day i and W [V1]
D+1 represents weather variable

set #1 on target day (i.e., dayD+1). Following the procedure
described in subsection II.A, k1 days similar to the target
day in terms of weather variable set #1 are selected from
the historical weather data. As illustrated in Fig. 3, these k1
selected from all weather data set (i.e.,Weather data set 1) are
Weather data set 2. The k1 similar days, whose indexes are
denoted as S[V1]1 , S[V1]2 , . . . , S[V1]k1

, are used as the candidates
in the next step.

In the second step, k2 similar days are selected from the k1
candidate days by conducting the similarity analysis in terms
of weather variable #2 (i.e.,W(D+1) Var .2), as described in (6).{
(dis[V2]i )2 = (W [V2]

i −W [V2]
D+1 )

T
× (W [V2]

i −W [V2]
D+1 )

i ∈ {S[V1]1 , S[V1]2 , . . . , S[V1]k1
}

(6)

The results of the second step separate the indexes of the
k2 similar days that have the closest weather patterns (and
PV power generation) to the target day (i.e., day D + 1)
in terms of the weather variable variable #2. The indexes
are denoted as S[V2]1 , S[V2]2 , . . . , S[V2]k2

. In the third step, the
average of PV power generation from the k2 identified days
(illustrated in Fig. 3 as green-blue color boxes in Power data)
are used to forecast PV power generation on day D+ 1 (i.e.,
PD+1) using (7). Note that, wsi in (7) refers to the inverse
of the distance between the target and its corresponding
neighbor(S[V2]i ) in the final step of hSBFM (i.e. (8)).

P̂D+1 =

∑k2
j=1 Psj × wsj∑k2

j=1 wsj
(7)

wsi =
1

dis[V2]i

(8)
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Also, note that as it is shown in the numerical results,
a forecaster should consider the best weather variable at
each step of hierarchical similarity, which reflects weather
conditions, seasonality, and geographical locations leading to
most similar patterns in historical and target solar PV power
generation. In addition, the number of steps and the number of
neighbor days to the target day should be optimally selected
to improve forecasting accuracy.

III. EVALUATION OF FORECASTING MODELS
A. BENCHMARK FORECASTING MODELS
As one of benchmark models, the SBFM proposed by [27],
which was used to forecast solar radiation, is applied to
forecast solar PV power. In this SBFM, only historical data of
solar PV power is required to forecast the future generation.
In this model, at first, the similarity analysis is conducted
to identify k days (i.e., day S1, S2, . . . , Sk ) in the historical
data, whose generation patterns are similar to the current
day (denoted as day D) and the k days whose distances
are the shortest ones are selected as the similar days to
day D. {

dis2i = (Pi − PD)T × (Pi − PD)
i ∈ J1,D− 1K

(9)

Then, the solar PV powers that are generated one day after
the identified k similar days (i.e., day S1 + 1, S2 + 1, . . . ,
Sk+1) are weighted and averaged to forecast the PV power on
target day. The forecasted PV power generation on day D+1
(i.e., PD+1) is calculated using (2) and (10), where Psj+1
represents the PV power generation on day Sj + 1.

P̂D+1 =

∑k
j=1 Psj+1 × wsj∑k

j=1 wsj
(10)

In addition, two other forecasting models (i.e., ANN mod-
els and persistence models) are used as the benchmarks to
evaluate the forecasting accuracy and computation complex-
ity of the proposed forecasting models. In a recent review
paper on solar power forecasting, the ANN models are iden-
tified as the most commonly used forecasting model in fore-
casting solar PV power [10]. Simplicity in applying an ANN
model as a black-box forecasting model and its efficiency in
modeling the complex nonlinear relationship between target
variables and predictors are themajor reasons for its pervasive
applications [28], [29]. Using an ANN model, the solar PV
power is forecasted hourly using hourly forecasted weather
data. However, to facilitate the comparison of the ANNmodel
with the proposed models in this study, the hourly weather
data is interpolated to increase its temporal resolution to five
minutes. More specifically, linear interpolation is used to add
11 new estimates between two points of hourly weather data
before applying in the training and testing processes of the
ANN model. The results of forecasting by the ANN model
using interpolated test data are compared with actual solar
generation data to yield forecasting metrics.

The other benchmark forecasting model is the persistence
model which uses the recent past values of a target variable to
forecast its future values. Specifically, for the proposed day-
ahead PV power forecasting, the persistence model forecasts
the PV power of the forthcoming day (i.e., dayD+1) to be the
same as the PV power during the same time of the previous
day (i.e., day D).

B. CROSS-VALIDATION OF FORECASTING MODELS
In this study, the metrics used to quantify forecast error for
the day-ahead forecast include mean absolute error (MAE),
mean relative error (MRE), and normalized root mean square
error (nRMSE), which are defined as follows [30]–[32].

MAE =
1
N

N∑
i=1

|p̂i − pi| (11)

MRE =
1
N

∑N
i=1 |p̂i − pi|

po
× 100% (12)

nRMSE =

√
1
N

∑N
i=1(p̂i − pi)2

po
× 100% (13)

Here, symbols p̂i and pi are the forecasted and measured
solar PV power respectively at observation i and N is the
number of observations. Symbol po is the installation capacity
of solar PV generation. Since the performance of a forecast-
ing model is assessed by applying it on the test data set, it is
a matter of importance how test data set is selected. There
are three main cross-validation methods: holdout, k-fold, and
leave-one-out, which adopt different ways of dividing the
available data into the training data set and the validation data
set [33]. The leave-one-out method is a special case of the
k-fold method with k set to be the total number of observa-
tions. In the leave-one-out method, each day is considered
as a test data set once to evaluate the forecasting accuracy.
Accordingly, the forecast metrics are calculated for each day,
and the final forecast error metrics are the average of the
forecast error metrics for all the days. Note that the leave-
one-out method is computationally more expensive and has
higher variance than the other two cross-validation meth-
ods. However, it is less bias in estimating forecasting error.
Because this study is focused on forecasting day-ahead solar
generation, the training process time is not a major constraint.
In this regard, the leave-one-out method is chosen which is
statistically more efficient than the other two methods.

IV. NUMERICAL RESULTS
As a case study, the solar PV panels installed on the rooftop of
the Engineering and Science building at the State University
of New York-Binghamton University (at latitude and longi-
tude of 42.094 and -75.958, respectively) are considered. The
power generations with temporal resolution of five minutes
were collected for more than two years, from September
2016 to November 2018.

While the PV power data are recorded with five-minute
temporal resolution, weather forecasting data are usually
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FIGURE 4. Locations of the weather stations and solar PV panels.

available with one-hour resolution. To evaluate the forecast-
ing models in different scenarios, weather data corresponding
to the historical PV power data were collected from three
different weather stations, which provide different types of
weather variables. As illustrated in Fig. 4, the weather stations
include two local weather stations (i.e., Weather stations
no. 1 and no. 3 ) and the National Weather Service at Bing-
hamton Regional Airport (i.e., Weather station no. 2). While
all three weather stations provide hourly weather variables
of temperature, dew point, humidity, wind direction/speed,
air pressure, and precipitation, Weather stations no. 2 and
no. 3 also have hourly sky cover and solar irradiance,
respectively.

In the training and evaluation of the forecasting models,
nighttime data are excluded. In addition, the length of daytime
in a target day may not be the same as other days in the
historical data set. Accordingly, to ensure that the weather
variables during the daytime in a target day are properly
compared with the weather variables during daytime of the
days in the historical data, only weather data confined to the
shortest range of daytime during the entire studying term are
applied in similarity analysis. For this case study, there are
630 days from September 2016 to November 2018 (123 days
out of 753 days are excluded due to missing data) and there is
daylight from 7:32 AM to 4:31 PM for all the days. However,
because the temporal resolution of the weather data is hourly,
the weather data from 8:00 AM to 4:00 PM are consid-
ered in all the forecasting models. In addition, as mentioned
previously, to apply weather data variables in the SBFMs,
the weather variables should be normalized. In this study,

each weather variable is normalized to the Max-Min Feature
scaling procedure using (14)

Wn =
Wi −Wmin

Wmax −Wmin
(14)

where Wn represents normalized weather variable for Wi.

TABLE 1. Day-ahead forecast of solar PV power generation using weather
data from Weather station no. 1.

Among the weather variables provided by Weather station
no. 1, temperature, dew point, humidity, and wind speed are
relevant for solar energy forecasting [34]. Using the weather
data at station no. 1, the forecasting results of the day-ahead
solar PV power generation with the five-minute resolution is
summarized in Table 1. As is evident in Table 1, the SBFM
proposed by [27] (i.e., SBFM [27]) has higher forecasting
accuracy than the other two benchmark models; thus, this
model is more efficient at forecasting solar PV generation in
high temporal resolution when the related forecasted weather
data with high temporal resolution are unavailable. Further-
more, note that the proposed bSBFM has improved the fore-
casting accuracy, significantly. Also, note that in the bSBFM,
any influential weather variables of temperature, dew point,
humidity, and wind speed, or the combination of them, can
be a candidate predictor set for the model. In other words,
the four weather variables of temperature, dew point, humid-
ity, and wind speed give 15 (i.e., 24 − 1) combinations of the
weather variables as the predictors of the bSBFM. Since
the number of choices is small, all 15 choices were tested in
the model and their forecast errors were compared. Accord-
ingly, among 15 possible combinations of these predictors,
predictor set of [temperature , humidity] is the ‘‘best’’ set
in terms of the smallest forecast errors. In addition, because
multiple weather variable types are applied in similarity anal-
ysis, they are scaled in the training process to avoid bias of
a variable over others. In this study, the exhaustive search
reveals that the optimal weights of 1 and 0.375 yield the
smallest forecasting errors with the predictor set of [temper-
ature , humidity], respectively.

Weather station no. 2 provides sky cover data in addition
to the same weather variables provided by Weather station
no. 1. In this case, all weather variables are a numerical value
except the sky cover data in Weather station no. 2, which
takes categorical values of vertical visibility (VV), overcast
(OVC), broken (BKN), scattered (SCT), few (FEW), and
clear (CLR or SKC). In Table 2, the range of okta (i.e., cloud
cover amount) for each skycover category is summarized.
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TABLE 2. Numerical values of categorical sky cover.

In this situation, the cSBFM is applied to the data provided
by this weather station along with clustering on sky cover.
In the cSBFM, for a target day with a defined sky cover,

similarity analysis is applied only to the historical weather
data that have the same sky cover class. Therefore, hourly
categorical sky cover is quantified into numerical values as
displayed in Table 2, and the average sky cover on each day
results in the corresponding sky cover class for that day. Note
that because the range of VV and OVC are the same in terms
of cloud coverage rate, they are considered in the same class
(Class 5). Accordingly, each day in training and test data sets
is assigned to one of the five classes described in Table 2 and
the forecasting model is trained and validated only on the one
corresponding target day’s class.

TABLE 3. Day-ahead forecast of solar PV power generation using weather
data from Weather station no. 2.

The forecasting results using the data fromWeather station
no. 2 are summarized in Table 3. Consistent with the fore-
casting results using the data from weather station no.1, the
[temperature, humidity] predictor set is the ‘‘best’’ predictors
among all the most common weather variables (i.e., tempera-
ture, dew point, humidity, wind speed) and their combination
sets. In addition, the forecasting accuracy is improved by
including sky cover. As displayed in Table 3, the cSBFM
which applies the classification based on sky cover, and uses
predictors of [temperature, humidity], results in a lower fore-
cast errors than all the other models.

Unlike Weather station no. 2, Weather station no. 3 pro-
vides hourly irradiance data instead of sky cover data. Upon
this condition, weather station no. 3 supplies hourly irradi-
ance data in addition to the commonly available weather vari-
ables of temperature, dew point, humidity, and wind speed.

TABLE 4. Day-ahead forecast of solar PV power generation using weather
data from Weather station no. 3.

Table 4 shows the day-ahead forecast of the solar PV power
generation in five-minute resolution using the benchmark
forecasting models (i.e. Persistent, ANN, and SBFM [27]),
bSBFM, and hSBFM. Note that in Table 4, for the bSBFM
using the data from Weather station no. 3, the predictors of
[temperature, humidity, irradiance] are the ‘‘best’’ predictors,
which suggests that the irradiance is beneficial to the fore-
casting accuracy. Also note that, in the hSBFM, the [temper-
ature , humidity] as the first variable set, then irradiance as
the second variable set are applied, which results in signifi-
cant improvement in the forecasting accuracy. In other words,
the best forecasting results with the data of Weather station
no. 3 are achieved using the hSBFM which first applies the
similarity analysis to extract the indexes of some candidate
days using [temperature , humidity], and then applies the final
similarity analysis using irradiance. Note that other possible
combinations of predictors in all the SBFMs, including hier-
archical and non-hierarchical models, were assessed, which
yielded larger forecast errors. In addition, in the hSBFM,
more than two-steps models were also considered, but these
have not yielded better forecasting results than the hSBFM
with the two steps of [temperature, humidity], and then
irradiance.
As mentioned, the input weather data of the bSBFM

in Table 4 is the predictor set of [temperature, humidity,
irradiance]; however, the simulation shows that the bSBFM
using predictors of [temperature, humidity] results in MAE,
nRMSE, and MRE equal to 810.6, 14.6, and 10.2, respec-
tively. These forecasting error metrics are still smaller than
the forecasting error metrics of the bSBFMs using data from
Weather station no. 2 (shown in Table 3) and Weather station
no. 1 (shown in Table 1). The reason for the forecasting
results improvement, with the same forecasting model and
input variables, is referred to the improvement in the accuracy
of weather data as the Weather station no. 3 is the closest
weather station to the solar panels.

Fig. 5 illustrates the performance of the proposed hSBFM
in three different weather patterns of sunny, partially_cloudy,
and cloudy days. In Fig. 5a, which represents power gen-
eration on a sunny day, the solar power output is relatively
consistent, with no abrupt change, and the hSBFMmodel can
accurately forecast the PV generation with MAE, nRMSE,
and MRE of 159.91 W, 2.89%, and 2.25%, respectively.
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FIGURE 5. Forecasted PV power using the hSBFM for different weather patterns.

Fig. 5b illustrates the forecasted PV power on a partially
cloudy day. As illustrated, the solar power generation ramps
smoothly in the morning and becomes bumpy during the
afternoon when the weather pattern dramatically changes.
Despite these abrupt changes in the middle of the day, the
forecasting model can satisfactorily forecast actual power
generation with MAE, nRMSE, and MRE of 578.95 W,
10.81%, and 8.29%, respectively. Fig. 5c illustrates the per-
formance of the proposed hSBFM on a cloudy day, dur-
ing which PV power is low along with dramatic variability.
However, it is apparent that the hSBFM can predict the
actual solar power generation relatively well with the MAE,
nRMSE, and MRE of 739.27 W, 14.16%, and 12.46%,
respectively.

TABLE 5. Comparison of different SBFMs in terms of required inputs,
computation time, and forecast errors.

Table 5 compares different SBFMs in terms of required
predictors, processing time, and resulted forecast error met-
rics in MAE. In this table, the results for the SBFM [27]
and bSBFM come from the forecasting studies using the data
from Weather station no. 1 while the results for the cSBFM
and hSBFM come from the forecasting studies using the
weather data from Weather stations no. 2 and no. 3, respec-
tively. The study was conducted on a personal computer (PC)
with Intel R© CoreTMi7-CPU @3.5 GHz and 16 GB of RAM.
In this table, the time refers to the computation time used
for forecasting PV generation just for a sample day. It is

evident that the SBFM [27] uses the shortest computation
time of 1.6 ms while the hSBFM, which includes two steps
of similarity analysis, uses the longest computation time
of 4.2 ms. Considering the forecast horizon is the next day,
the computation time of all the models is short enough to
achieve real-time forecasting. In addition, among these mod-
els, the SBFM [27] is the only model which does not require
weather data. However, this is also the model with the lowest
forecasting accuracy. Moreover, this study reveals that two to
three weather variables are sufficient to improve forecasting
accuracy.

FIGURE 6. Forecasting results of the three SBFMs on a random day.

In Fig. 6, a random day (i.e., a sunny day on June 11,
2017) is selected to illustrate the performance of the bSBFM,
cSBFM, and hSBFM. Observe that the hSBFM can fore-
cast the solar PV power generation in a higher accuracy
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TABLE 6. Forecast error metrics of the three SBFMs on a random sunny
day.

than the other models. On this sample day, the forecast
error metrics for the hSBFM are 71.9 W, 1.43%, and 1.02%
for MAE, nRMSE, and MRE, respectively. A comparison
of the three models is shown in Table 6. As shown in
this table, the bSBFM, which refers to the bSBFM using
[temperature, humidity], has the largest forecast error. While
the cESBFM has slightly smaller forecast errors than the
bSBFM, the hSBFM has significantly improved the forecast-
ing accuracy.

Note that all the methodologies and forecasting models
elaborated in this study can also be applied when the temporal
resolution of PV power generation is as low as the temporal
resolution of weather data in an hourly resolution. Inherently,
with the same forecasting model, the results of the solar PV
generation forecasting in hourly resolution are more accurate
than forecasting in minute(s) resolution. The reason is sought
in the pattern of solar generation in hourly resolution which is
more smooth than the pattern of solar generation in 5-minute
resolution. As an example, by applying the hSBFM to fore-
cast the hourly PV generation using the previous data sets,
the MAE, nRMSE, and MRE of the forecasting results are
451.5, 7.8%, and 5.7%, respectively while theMAE, nRMSE,
and MRE for the forecasting with five-minute temporal res-
olution are 618.3, 10.6%, and 7.6%, respectively.

V. CONCLUSIONS
Accurate forecasting of solar PV generation for the next day
in the temporal resolution ofminutes is challenging to achieve
accurate forecasting results with most forecasting models
because normally, the correlation of PV power is not station-
ary over the next day horizon and the temporal resolution
of weather forecasting is low. To overcome this challenge,
several SBFMs were proposed in this paper to increase fore-
casting accuracy. First, the bSBFM was proposed to forecast
solar PV power generation during the next day with the
temporal resolution of 5 minutes when only one or some of
the commonly available weather variables (i.e., temperature,
humidity, dew point, andwind speed) are available. The study
results based on a small-scale solar PV system reveal that the
proposed bSBFM is efficient, simple, and more accurate than
the benchmark models. In addition, the study results indicate
that from the available weather variables, the weather variable
data sets of temperature and humidity yield the most accu-
rate forecasting results using the bSBFM. Then, the study
was extended for two other cases, in which one weather

station provided categorical values of sky cover data and
another weather station provided numerical values of irra-
diance data in addition to the commonly available weather
data. Leveraging these data, two upgraded forecastingmodels
(i.e., the cSBFM and hSBFM) were proposed. The study
results show that the forecasting accuracy of the cSBFM is
slightly better than the bSBFM using the sky cover data.
However, the forecasting accuracy of the hSBFM is signif-
icantly better than the bSBFM and cSBFM where tempera-
ture, humidity, and irradiance are applied hierarchically in
the similarity analysis. In other words, the PV power gener-
ation forecasting for the next day with five-minute tempo-
ral resolution can yield significantly accurate results if the
weather variables of temperature and humidity are applied at
the first level of the proposed hSBFM and irradiance data are
applied at the second level.
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