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Abstract— In this paper, detectability analysis is studied and 

extended to guide selection of measurements for the dynamic state 

estimation (DSE) of a synchronous machine.  To make sure that 

the DSE converges, past studies suggested that enough 

measurements must be available to make the system observable. 

In this paper, the convergence condition is relaxed via detectability 

analysis to reduce the number of required measurements. Because 

the objective of the DSE is to estimate the current states as time 

progresses, it is shown that a DSE observer can converge not only 

for an observable system but also for an unobservable system if 

the eigenvalues corresponding to the unobservable states are 

stable. Simulation results using the IEEE 10-machine, 39-bus 

system show that the unscented-Kalman-filter-based DSE can 

converge when measurements are chosen such that the 

unobservable states have stable eigenvalues. In comparison with 

observability analysis, the proposed application of detectability 

analysis can reduce the number of measurements required for the 

existence of a DSE observer. 

 
Index Terms—Detectability, dynamic state estimation, 

observability, power systems. 

I. INTRODUCTION 

ONVERGENCE and accuracy of the dynamic state 

estimation (DSE) in the modern power grid [1] [2] depend 

on the proper selection of measurements. To guide the 

measurement selection and placement for the DSE, 

observability analysis has been introduced to power systems [3] 

[4] [5]. In [5], both the Lie-derivative-based and the 

linearization-based methods are proposed to quantify system 

observability. In [3] [4], the smallest eigenvalue, condition 

number, and determinant of the observability Gramian matrix 

are used to quantify observability. These studies suggested that 

to ensure the convergence and accuracy of DSE, measurements 

should be selected to make the dynamic system observable. 

Following the guideline from the observability analysis, 

the authors carried out extensive case studies on the DSE in 

power systems. It was observed that when the selected 

measurements make the system observable, all the unscented 

Kalman filter (UKF) based observers converge. It was also 

found in several case studies that the UKF observers converge 

even when the system is not observable. The observations 
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suggested that the “observable” requirement from observability 

analysis is a sufficient condition for the existence of a 

converged observer, but not a necessary condition. The 

requirements of measurement selection from the observability 

analysis can be relaxed to reduce the number of required 

measurements. 

 To relax the requirement of measurement selection for the 

DSE in a power system, application of detectability analysis [6] 

is advocated. Unlike observability analysis, detectability 

analysis suggests that a DSE observer should exist not only for 

an observable system but also for an unobservable system, as 

long as the eigenvalues corresponding to the unobservable 

states are stable. This means that applying detectability analysis 

can reduce the number of measurements required for the 

existence of a DSE observer in comparison with those from 

observability analysis because almost all the subsystems in the 

power grid are designed to be stable.  

The rest of this paper is organized as follows. Section II 

introduces detectability analysis and its connection to 

observability analysis. Case studies are described in Section III. 

Finally, conclusions and future work are shown in Section IV.   

II. DETECTABILITY AND OBSERVABILITY ANALYSES 

The dynamic models of a synchronous machine and its 

associated controllers described in Appendix A of [7] are used 

in this paper for DSE. Due to space limitation, they are not 

shown in this paper. To derive an analytical relationship 

between observability and detectability as well as their 

connection to DSE, the synchronous machine model is 

linearized into (1). Here, 𝑥̅(𝑡) ∈ 𝑅𝑛 is the dynamic state vector 

at time t; 𝑢(𝑡) ∈ 𝑅𝑝  is the input vector; and 𝑦(𝑡) ∈ 𝑅𝑞  is the 

output vector. Also, 𝐴̅ ∈ 𝑅𝑛×𝑛, 𝐵̅ ∈ 𝑅𝑛×𝑝, 𝐶̅ ∈ 𝑅𝑞×𝑛, 𝑎𝑛𝑑 𝐷̅ ∈
𝑅𝑞×𝑝 are the Jacobian matrices.  

𝑑𝑥̅(𝑡)

𝑑𝑡
= 𝐴̅𝑥̅(𝑡) + 𝐵̅𝑢(𝑡) (1.a) 

𝑦(𝑡) = 𝐶̅𝑥̅(𝑡) + 𝐷̅𝑢(𝑡) (1.b) 

One major goal of DSE is to construct an observer to 

estimate the dynamic states of power systems in real time. In 

[6] [8], the concepts of observability and detectability were 

used to describe whether an observer exists. When the system’s 

initial states, i.e. x(0), can be uniquely determined from the 
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system inputs and outputs, the system is considered to be 

observable. In contrast, when its current states, i.e. x(t), can be 

asymptotically estimated as time progresses, the system is 

considered to be detectable. The connections between the two 

concepts and DSE are discussed below. 

A. Review on Observability Analysis 

Following the linearization method in [5], the observability 

matrix 𝑂̃ can be constructed as (2). The following two metrics 

can be used to quantify the observability of (1):  

a) The rank of 𝑂̃, i.e., 𝑟 = 𝑟𝑎𝑛𝑘(𝑂̃, 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒). If r=n, the 

system is fully observable. If r<n, the system not observable.  

b) The smallest singular value (SSV) of  𝑂̃, i.e.,  𝜎𝑚𝑖𝑛 = 𝑆𝑛,𝑛 

where 𝑆 = 𝑠𝑣𝑑(𝑂̃) and 𝑆𝑛,𝑛 denotes the element at the nth row 

and nth column of matrix S. The larger the 𝜎𝑚𝑖𝑛, the higher the 

degree of system observability. 

𝑂̃ = [

𝐶̅

𝐶̅𝐴̅
⋮

𝐶̅𝐴̅𝑛−1

] (2) 

Note that the two metrics are related to each other because  

𝑟 < 𝑛 if only if 𝜎𝑚𝑖𝑛 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒. 

B. Observable and Unobservable States  

When the system (1) is not observable (i.e., 𝑟 < 𝑛), one 

may apply a transform 𝑇 ∈ 𝑅𝑛×𝑛  to change the coordinates of 

the states so that the observable and unobservable states can be 

separated [6].  More specifically, assuming that 𝑣𝑟+1 ⋯ 𝑣𝑛 

are the basis of kernel(𝑂̃)  and 𝑤1 ⋯ 𝑤𝑟  are the 

complementary basis, the transformation matrix T can be 

constructed as 𝑇 = [𝑣𝑟+1 ⋯ 𝑣𝑛 𝑤1 ⋯ 𝑤𝑟]. Applying 

𝑥̅(𝑡) = 𝑇𝑇𝑥(𝑡), one can have the transformed system matrices 

𝐴 = 𝑇𝐴̅𝑇𝑇 , 𝐵 = 𝑇𝐵̅ , 𝐶 = 𝐶̅𝑇𝑇 , and 𝐷 = 𝐷̅ . The transformed 

system has a canonical observability form, a.k.a., staircase 

form, as in (3). 

[

𝑑𝑥𝑛𝑜(𝑡)

𝑑𝑡
𝑑𝑥𝑜(𝑡)

𝑑𝑡

] = [
𝐴𝑛𝑜 𝐴12

0 𝐴𝑜
] [

𝑥𝑛𝑜(𝑡)

𝑥𝑜(𝑡)
] + [

𝐵𝑛𝑜

𝐵𝑜
] 𝑢(𝑡) (3.a) 

𝑦(𝑡) = [0 𝐶𝑜] [
𝑥𝑛𝑜(𝑡)

𝑥𝑜(𝑡)
] + [𝐷]𝑢(𝑡) (3.b) 

Here, 𝑥𝑜(𝑡) ∈ 𝑅𝑟  represents the observable states; and 

𝑥𝑛𝑜(𝑡) ∈ 𝑅𝑛−𝑟 represents the unobservable states.  

C. Detectability Analysis 

The observable states in 𝑥𝑜  are also detectable because 

𝑥𝑜(𝑡) can be derived from 𝑥𝑜(0) using (3.a). On the other hand, 

the fact that the states in 𝑥𝑛𝑜  are not observable does not 

necessarily indicate that they are not detectable. The 

detectability of 𝑥𝑛𝑜  can be determined as follows.  

For a system described by (3), an observer can be 

constructed as in (4) [9]. Here 𝐾 ∈ 𝑅𝑛×𝑞 is a design parameter 

that users can determine to make the estimated state 𝑥̂ converge 

to the true state 𝑥. For Kalman filter applications, K is selected 

to make 𝑥̂ the minimum-variance unbiased estimator of x. 
𝑑𝑥̂(𝑡)

𝑑𝑡
= 𝐴𝑥̂(𝑡) + 𝐵𝑢(𝑡) 

                       +𝐾{𝑦(𝑡) − 𝐶𝑥̂(𝑡) − 𝐷𝑢(𝑡)} 
(4) 

To study the detectability of the states, denote Δ𝑥(𝑡) =
𝑥̂(𝑡) − 𝑥(𝑡) .  Equation (5) can be obtained by taking the 

difference between (3.a) and (4) then plugging in y(t) from 

(3.b). Equation (5) suggests that if (𝐴 − 𝐾𝐶) is stable (i.e., its 

eigenvalues are all on the left side of the imaginary axis of the 

s-plane), lim
𝑡→∞

Δ𝑥(𝑡) = 0 , i.e., lim
𝑡→∞

[𝑥̂(𝑡) − 𝑥(𝑡)] = 0, and the 

system is detectable. 

𝑑Δ𝑥(𝑡)

𝑑𝑡
= (𝐴 − 𝐾𝐶) Δ𝑥(𝑡) (5) 

To study the implication of (5) to power system DSE, 

remarks on some special cases are summarized as follows: 

a) If all the eigenvalues of matrix A are stable, the system 

will always be detectable no matter which outputs are available. 

This conclusion can be easily verified by setting K=0 to make 

𝐴 − 𝐾𝐶 = 𝐴. The above observation suggests that if terminal 

voltage phasors are used as the input of a subsystem in the 

power grid, a DSE observer will exist for the subsystem because 

these subsystems are designed to be stable when they are 

connected to an infinite bus. The infinite bus can be considered 

a voltage-phasor input to the subsystem. As such, using 

terminal voltage phasors as input can guarantee the stability of 

all the states and in turn the detectability of the subsystem.  

b) If the system is fully observable, i.e., r=n, K can be 

selected to place the eigenvalues of (𝐴 − 𝐾𝐶)  at desired 

locations [10] to make the system detectable. Thus, the 

observability requirement proposed in [3] [5] for the DSE of a 

power system is a sufficient condition for the existence of a 

DSE observer.  

c) The system is detectable if all the eigenvalues 

corresponding to the unobservable states are stable. If the 

system is not fully observable, (6) can be obtained by 

substituting A and C of (3) into (5). In (6), the eigenvalues of 

(𝐴 − 𝐾𝐶) come from two matrices: (𝐴𝑜 − 𝐾𝑜𝐶𝑜) and 𝐴𝑛𝑜. The 

eigenvalues of (𝐴𝑜 − 𝐾𝑜𝐶𝑜) , which correspond to the 

observable state 𝑥𝑜(𝑡),  can be placed at a stable location by 

choosing the right 𝐾𝑜 . By contrast, K cannot influence the 

eigenvalues of 𝐴𝑛𝑜. Thus, the convergence of the DSE depends 

on the stability of the eigenvalues of 𝐴𝑛𝑜. If an eigenvalue is 

not stable, the states in 𝑥𝑛𝑜(𝑡) are not detectable because the 

corresponding estimation errors Δ𝑥𝑛𝑜(𝑡) will continue to grow. 

If all the eigenvalues of 𝐴𝑛𝑜 are stable, the states in 𝑥𝑛𝑜(𝑡) are 

detectable because the corresponding estimation errors Δ𝑥𝑛𝑜(𝑡) 

will be damped out. On the s-plane, the rightmost eigenvalue 

determines the lowest damping effect on the estimation errors. 

Thus, less damping of the rightmost eigenvalue should indicate 

lower convergence speed and larger estimation errors of the 

participating states.  

𝐴 − 𝐾𝐶 = [
𝐴𝑛𝑜 𝐴12

0 𝐴𝑜
] − [

𝐾𝑛𝑜

𝐾𝑜
] [0 𝐶𝑜] 

  = [
𝐴𝑛𝑜 𝐴12 − 𝐾𝑛𝑜𝐶𝑜

0 𝐴𝑜 − 𝐾𝑜𝐶𝑜
] 

(6) 

For power system DSE applications, detectability can be 

more relevant than observability because DSE aims to estimate 

the current states based on historical evolution.  
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III. CASE STUDIES 

In this section, the observability and detectability analyses 

are carried out on synchronous machine number 5 in the IEEE 

10-machine 39-bus system, of which the description can be 

found in [11]. The model and simulation setups are the same as 

those used in [12]. The differential equations for modeling the 

synchronous machine are described in Appendix A of [7].  

To isolate machine number five from the rest of the system 

for DSE, it is assumed that a phasor measurement unit is placed 

at the generator bus to measure the voltage phasors (V) and 

current phasor (I). The real power (Pe) and reactive power (Qe) 

are derived from current and voltage phasors. To implement the 

proposed method, the Jacobian matrices in (1) are derived using 

the perturbation method. MATLAB® function obsvf.m is used 

to transform the model into the canonical observability form in 

(3). The UKF is implemented to estimate the nine dynamic 

states of the synchronous machine, which consist of four states 

for its generator ( 𝛿, 𝜔𝑟 , 𝐸𝑑
′ , 𝐸𝑞

′ ), three states for its exciter 

(𝐸𝑓𝑑 , 𝑉𝐹 , 𝑉𝑅 ), and two states for its turbine-governor model 

(𝑇𝑀 , 𝑃𝑆𝑉).  

A. DSE with Different Measurement Configurations 

The dynamic states are estimated using the UKF through 

the following four combinations of inputs and outputs: (a) V as 

inputs, Pe and Qe as outputs; (b) V as inputs, I is not available 

due to measurement loss (i.e., no output and C=0); (c) I as 

inputs, P and Q as outputs; (d) I as inputs, V is not available due 

to measurement loss (i.e., no output and C=0). The DSE results 

are summarized in Fig. 1. Because space is limited, only the 

results of relative rotor angle 𝛿5−1 , rotor speed 𝜔𝑟5 , exciter 

field voltage 𝐸𝑓𝑑5 ,  and governor mechanical power 𝑇𝑀5  are 

shown. It is observed that the UKF can estimate the states 

reasonably well for cases (a), (b), and (c), whereas it diverges 

for case (d).  

 
Fig.  1. DSE results from different selections of inputs and outputs.       

B. Observability Analysis 

To assess the observability, the system is linearized around 

each operational point. The median and median absolute 

deviation (MAD) of the SSVs of the observability matrices are 

summarized in Table I for different input/output selections. 

Table I shows that when both P and Q are used as the outputs 

for cases (a) and (c), the SSVs are significant and therefore the 

system is considered observable (i.e., all the states are 

observable). By contrast, when there is no output, such as cases 

(b) and (d), the observability matrices and all their singular 

values are zero. As such, the system is not observable (i.e., all 

the states are unobservable). Similar observability behaviors are 

observed using Lie’s method [5] and the unobservability index 

method [4] for observability analysis. In addition, case studies 

are carried out using Pe and Qe individually as the output, and 

observability analysis results are similar to cases (a) and (c). 

Details are not included to stay concise. Note that even though 

the system is not observable for (b), its states can still be 

estimated reasonably well, as shown in Fig. 1.  
 

TABLE I. SSVS FOR DIFFERENT MEASUREMENT SELECTIONS  

Inputs  Outputs 
SSV 

(𝑴𝒆𝒅𝒊𝒂𝒏) ± (𝑴𝑨𝑫) 
Convergence 

of the UKF 

(a) V Pe & Qe (0.0942) ± (0.0006) Yes 

(b) V None 0 ± 0 Yes 

(c) I Pe & Qe (0.0357) ± (0.0002) Yes 

(d) I None 0 ± 0 No 

C. Detectability Analysis 

To explain why the dynamic states can still be estimated 

when all the states of the synchronous machine are 

unobservable in case (b), the detectability analysis is carried 

out. Following the method described in subsection II.C, the 

rightmost eigenvalues of Ano are estimated for case (b) and their 

real parts are in the range of −0.0605 ± 0.0002 . In other 

words, the unobservable states have stable eigenvalues and the 

system is detectable. Even though the system is not observable 

and its initial states cannot be uniquely determined, the current 

states will converge to their true states as time progresses. 

Because measured voltage phasors are used as the model inputs 

in case (b), the stability of the synchronous machine model is 

expected because it is designed to be stable when connected to 

an infinite bus. By contrast, for case (d), the rightmost 

eigenvalues of Ano are in the range of 0.772 ± 0.003, which is 

unstable. Thus, the system is neither observable nor detectable. 

As a result, the UKF diverges in case (d). 

D. Effects of the Eigenvalues of Unobservable States  

To study the effects of the eigenvalues of the unobservable 

states on the DSE, the damping of the rightmost eigenvalue in 

case (c) is modified and its effect on DSE is examined. To 

identify the most sensitive parameters that can change the 

rightmost eigenvalue, the states are sorted according to the 

magnitudes of their participation factors (PFs) [13]. The 

dominant PFs of (0.9102) ± (0.0003) and (0.07584) ±
(0.0003)  are associated with 𝐸𝑞

′  and 𝐸𝑑
′  respectively, which 

indicate that states 𝐸𝑞
′  and 𝐸𝑑

′  actively interact with the 

eigenvalue. Other states have fairly small PFs and therefore do 

not noticeably participate the oscillation of the eigenvalue. 

Because the PF is equal to the sensitivity index of the 

eigenvalue with respect to the diagonal element of the 

differential equation [13], the sensitivity of eigenvalue damping 

with respect to the open-circuit time constant 𝑇𝑑0
′  is positive. 

Note that according to differential equation (28) in [7], the 

diagonal element of  𝐸𝑞
′  is determined by −

1

𝑇𝑑0
′ .  

Setting 𝑇𝑑0
′ = 3.3, 33, 𝑎𝑛𝑑 330 𝑠, the corresponding 

positions of the rightmost eigenvalues are 𝜆3.3 = −0.213,
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𝜆33 = −0.061, 𝑎𝑛𝑑 𝜆333 = −0.007. In other words, increasing 

the open circuit time constant 𝑇𝑑0
′   can move the eigenvalue to 

the right, thus decreasing the damping of the eigenvalue. This 

observation is consistent with results from the above sensitivity 

analysis of the eigenvalue. The state estimation errors of 𝐸𝑞
′  and 

𝐸𝑑
′  are plotted as time series in Fig. 2 for different values of time 

constant 𝑇𝑑0
′  . Fig. 2 shows that, at the very beginning, 

estimation errors are similar. Also, the estimation errors 

decrease faster for smaller 𝑇𝑑0
′  (i.e., better damping of the 

eigenvalue) and the mean squared errors (MSE) are smaller for 

smaller 𝑇𝑑0
′ . The other states do not noticeably participate the 

oscillation of the eigenvalue and the effects of the eigenvalue 

damping on the estimation errors of other states are not 

noticeable. These observations suggest that the increasing 

damping of the rightmost eigenvalue of the unobservable states 

can speed up the convergence of DSE, and that the effects are 

determined by the participating states.  

 
Fig.  2. Estimation errors of the DSE from different 𝑇𝑑0

′  values.  

IV. CONCLUSIONS 

In this paper, detectability analysis is applied to guide 

selection of measurements for the DSE of a synchronous 

machine. To ensure the existence of a DSE observer, early 

studies adopted observability analysis, which suggests that 

measurements must be selected to make all the states 

observable. This paper shows that the requirement of 

observability is a sufficient condition and can be relaxed by 

applying detectability analysis, which suggests that DSE can 

converge not only for an observable system but also for an 

unobservable system if the eigenvalues corresponding to the 

unobservable states are stable.  The simulation results show that 

better-damped eigenvalues of the unobservable states will result 

in faster convergence of the DSE. In addition, it is suggested 

that the terminal voltage phasor is a good candidate for the input 

of a subsystem in the power grid because that selection can 

guarantee the stability of the subsystem, and in turn its 

detectability and the convergence of a DSE observer. Relaxing 

the requirement via detectability analysis can reduce the 

number of required measurements relative to those from 

observability analysis. Future work will be to extend the 

detectability concept to deal with a strongly nonlinear system. 
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