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Abstract— In this paper, detectability analysis is studied and
extended to guide selection of measurements for the dynamic state
estimation (DSE) of a synchronous machine. To make sure that
the DSE converges, past studies suggested that enough
measurements must be available to make the system observable.
In this paper, the convergence condition is relaxed via detectability
analysis to reduce the number of required measurements. Because
the objective of the DSE is to estimate the current states as time
progresses, it is shown that a DSE observer can converge not only
for an observable system but also for an unobservable system if
the eigenvalues corresponding to the unobservable states are
stable. Simulation results using the IEEE 10-machine, 39-bus
system show that the unscented-Kalman-filter-based DSE can
converge when measurements are chosen such that the
unobservable states have stable eigenvalues. In comparison with
observability analysis, the proposed application of detectability
analysis can reduce the number of measurements required for the
existence of a DSE observer.
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I.  INTRODUCTION

ONVERGENCE and accuracy of the dynamic state

estimation (DSE) in the modern power grid [1] [2] depend
on the proper selection of measurements. To guide the
measurement selection and placement for the DSE,
observability analysis has been introduced to power systems [3]
[4] [5]. In [5], both the Lie-derivative-based and the
linearization-based methods are proposed to quantify system
observability. In [3] [4], the smallest eigenvalue, condition
number, and determinant of the observability Gramian matrix
are used to quantify observability. These studies suggested that
to ensure the convergence and accuracy of DSE, measurements
should be selected to make the dynamic system observable.

Following the guideline from the observability analysis,
the authors carried out extensive case studies on the DSE in
power systems. It was observed that when the selected
measurements make the system observable, all the unscented
Kalman filter (UKF) based observers converge. It was also
found in several case studies that the UKF observers converge
even when the system is not observable. The observations

This paper is based on work sponsored by the U.S. Department of Energy
(DOE) through its Advanced Grid Modeling program and NSF through grant
no. #1845523. Pacific Northwest National Laboratory is operated by Battelle
for DOE under Contract DE-AC05-76RL01830.

N. Zhou is with Binghamton University, State University of New York,
Binghamton, NY, 13902, USA (email: ningzhou@binghamton.edu).

suggested that the “observable” requirement from observability
analysis is a sufficient condition for the existence of a
converged observer, but not a necessary condition. The
requirements of measurement selection from the observability
analysis can be relaxed to reduce the number of required
measurements.

To relax the requirement of measurement selection for the
DSE in a power system, application of detectability analysis [6]
is advocated. Unlike observability analysis, detectability
analysis suggests that a DSE observer should exist not only for
an observable system but also for an unobservable system, as
long as the eigenvalues corresponding to the unobservable
states are stable. This means that applying detectability analysis
can reduce the number of measurements required for the
existence of a DSE observer in comparison with those from
observability analysis because almost all the subsystems in the
power grid are designed to be stable.

The rest of this paper is organized as follows. Section II
introduces detectability analysis and its connection to
observability analysis. Case studies are described in Section III.
Finally, conclusions and future work are shown in Section I'V.

II. DETECTABILITY AND OBSERVABILITY ANALYSES

The dynamic models of a synchronous machine and its
associated controllers described in Appendix A of [7] are used
in this paper for DSE. Due to space limitation, they are not
shown in this paper. To derive an analytical relationship
between observability and detectability as well as their
connection to DSE, the synchronous machine model is
linearized into (1). Here, X(t) € R™ is the dynamic state vector
at time £; u(t) € RP is the input vector; and y(t) € R? is the
output vector. Also, A € R™" B € R™P,C € R”", and D €
R*P are the Jacobian matrices.

d’z(tt) = Ax(t) + Bu(®) (1.2)
y(t) = Cx(t) + Du(t) (1.b)

One major goal of DSE is to construct an observer to
estimate the dynamic states of power systems in real time. In
[6] [8], the concepts of observability and detectability were
used to describe whether an observer exists. When the system’s
initial states, i.e. x(0), can be uniquely determined from the
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system inputs and outputs, the system is considered to be
observable. In contrast, when its current states, i.e. x(z), can be
asymptotically estimated as time progresses, the system is
considered to be detectable. The connections between the two
concepts and DSE are discussed below.

A. Review on Observability Analysis

Following the linearization method in [5], the observability
matrix O can be constructed as (2). The following two metrics
can be used to quantify the observability of (1):

a) The rank of 0, i.e., 7 = rank(0, tolerance). If r=n, the
system is fully observable. If r<n, the system not observable.

b) The smallest singular value (SSV) of 0, i.e., =Sun
where § = svd(é) and S, , denotes the element at the n” row
and n” column of matrix S. The larger the g,,;,, the higher the
degree of system observability

|

Note that the two metrics are related to each other because
r < nif only if 6,,;,, < tolerance.

Omin

2

B. Observable and Unobservable States

When the system (1) is not observable (i.e., ¥ < n), one
may apply a transform T € R™™ to change the coordinates of
the states so that the observable and unobservable states can be

separated [6]. More specifically, assuming that Vr+1  *** Vp
are the basis of kernel(0) and Wi ** Wy are the
complementary basis, the transformation matrix 7 can be

constructed as T = [Vr41 ** Vn Wi wr]. Applying
%(t) = TTx(t), one can have the transformed system matrices
A=TATT,B=TB,C =CTT, and D = D. The transformed

system has a canonical observability form, a.k.a., staircase
form, as in (3).
doxno ()
A an(t) Bﬂ.ﬂ
dd wlle) 5o e
no t
y© =10 e8]+ P (3.b)

Here, x,(t) € R™ represents the observable states; and

Xno(t) € R™ T represents the unobservable states.

C. Detectability Analysis

The observable states in x, are also detectable because
X, (t) can be derived from x, (0) using (3.a). On the other hand,
the fact that the states in x,, are not observable does not
necessarily indicate that they are not detectable. The
detectability of x,, can be determined as follows.

For a system described by (3), an observer can be
constructed as in (4) [9]. Here K € R™*9 is a design parameter
that users can determine to make the estimated state X converge
to the true state x. For Kalman filter applications, K is selected
to make X the minimum-variance unbiased estimator of x.

O _ Jeo) + Bu®) @

+K{y(t) — Cx(t) — Du(t)}
To study the detectability of the states, denote Ax(t) =
X(t) — x(t). Equation (5) can be obtained by taking the
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difference between (3.a) and (4) then plugging in y(?) from
(3.b). Equation (5) suggests that if (A — KC) is stable (i.e., its
eigenvalues are all on the left side of the imaginary axis of the
s-plane), tlLrg Ax(t) =0, ie., tli_)rg[)?(t) —x(t)] =0, and the
system is detectable.
dAx(t)
dt

To study the implication of (5) to power system DSE,
remarks on some special cases are summarized as follows:

a) If all the eigenvalues of matrix A are stable, the system
will always be detectable no matter which outputs are available.
This conclusion can be easily verified by setting K=0 to make
A — KC = A. The above observation suggests that if terminal
voltage phasors are used as the input of a subsystem in the
power grid, a DSE observer will exist for the subsystem because
these subsystems are designed to be stable when they are
connected to an infinite bus. The infinite bus can be considered
a voltage-phasor input to the subsystem. As such, using
terminal voltage phasors as input can guarantee the stability of
all the states and in turn the detectability of the subsystem.

b) If the system is fully observable, i.e., r=n, K can be
selected to place the eigenvalues of (A — KC) at desired
locations [10] to make the system detectable. Thus, the
observability requirement proposed in [3] [5] for the DSE of a
power system is a sufficient condition for the existence of a
DSE observer.

c) The system is detectable if all the eigenvalues
corresponding to the unobservable states are stable. If the
system is not fully observable, (6) can be obtained by
substituting 4 and C of (3) into (5). In (6), the eigenvalues of
(A — KC) come from two matrices: (4, — K,C,) and A,,,. The
eigenvalues of (4, — K,C,) , which correspond to the
observable state x,(t), can be placed at a stable location by
choosing the right K,. By contrast, K cannot influence the
eigenvalues of A,,,. Thus, the convergence of the DSE depends
on the stability of the eigenvalues of A,,. If an eigenvalue is
not stable, the states in x,,,(t) are not detectable because the
corresponding estimation errors Ax,,, (t) will continue to grow.
If all the eigenvalues of A,,, are stable, the states in x,,,(t) are
detectable because the corresponding estimation errors Ax,,, (t)
will be damped out. On the s-plane, the rightmost eigenvalue
determines the lowest damping effect on the estimation errors.
Thus, less damping of the rightmost eigenvalue should indicate
lower convergence speed and larger estimation errors of the
participating states.

= (A —KC) Ax(t) (5)

A—KC = Ano AlZ _ [Kno] [0 Co]
0 4, K, ©)
— Ano A12 - Kno Co

0 A,-K,C,

For power system DSE applications, detectability can be
more relevant than observability because DSE aims to estimate
the current states based on historical evolution.



III. CASE STUDIES

In this section, the observability and detectability analyses
are carried out on synchronous machine number 5 in the IEEE
10-machine 39-bus system, of which the description can be
found in [11]. The model and simulation setups are the same as
those used in [12]. The differential equations for modeling the
synchronous machine are described in Appendix A of [7].

To isolate machine number five from the rest of the system
for DSE, it is assumed that a phasor measurement unit is placed
at the generator bus to measure the voltage phasors (V) and
current phasor (/). The real power (P.) and reactive power (Q.)
are derived from current and voltage phasors. To implement the
proposed method, the Jacobian matrices in (1) are derived using
the perturbation method. MATLAB® function obsvf.m is used
to transform the model into the canonical observability form in
(3). The UKF is implemented to estimate the nine dynamic
states of the synchronous machine, which consist of four states
for its generator (6, w,, Eg, Eq), three states for its exciter

(Efq, Ve, Vg), and two states for its turbine-governor model
(T, Psy).-
A. DSE with Different Measurement Configurations

The dynamic states are estimated using the UKF through
the following four combinations of inputs and outputs: (a) V as
inputs, P. and Q. as outputs; (b) V as inputs, / is not available
due to measurement loss (i.e., no output and C=0); (c¢) [ as
inputs, P and Q as outputs; (d) / as inputs, V' is not available due
to measurement loss (i.e., no output and C=0). The DSE results
are summarized in Fig. 1. Because space is limited, only the
results of relative rotor angle §5_4, rotor speed w,5, exciter
field voltage Efqs, and governor mechanical power Tys are
shown. It is observed that the UKF can estimate the states
reasonably well for cases (a), (b), and (c), whereas it diverges
for case (d).

DSE using the UKF with different selections of inputs and outputs

True Value
= = =(a) UKF: Input V, Ouput P&Q
seeeeeeees (b) UKF: Input V, Output None
(¢) UKF: Input I, Output P&Q
(d) UKF: Input 1, Output None

dg 4 in degree

0 10 20 30 40 50 50 70 80
Time (s)

Fig. 1. DSE results from different selections of inputs and outputs.

B. Observability Analysis

To assess the observability, the system is linearized around
each operational point. The median and median absolute
deviation (MAD) of the SSVs of the observability matrices are
summarized in Table I for different input/output selections.
Table I shows that when both P and Q are used as the outputs
for cases (a) and (c), the SSVs are significant and therefore the
system is considered observable (i.e., all the states are
observable). By contrast, when there is no output, such as cases

(b) and (d), the observability matrices and all their singular
values are zero. As such, the system is not observable (i.e., all
the states are unobservable). Similar observability behaviors are
observed using Lie’s method [5] and the unobservability index
method [4] for observability analysis. In addition, case studies
are carried out using P. and Q. individually as the output, and
observability analysis results are similar to cases (a) and (c).
Details are not included to stay concise. Note that even though
the system is not observable for (b), its states can still be
estimated reasonably well, as shown in Fig. 1.

TABLE I. SSVS FOR DIFFERENT MEASUREMENT SELECTIONS

SsV Convergence

Inputs | Outputs | (Median) + (MAD) of the UKF
@V | P.& Q. (0.0942) + (0.0006) Yes
b))V None 0+0 Yes
©lI P.& Q. (0.0357) + (0.0002) Yes
1 None 0+0 No

C. Detectability Analysis

To explain why the dynamic states can still be estimated
when all the states of the synchronous machine are
unobservable in case (b), the detectability analysis is carried
out. Following the method described in subsection II.C, the
rightmost eigenvalues of 4n, are estimated for case (b) and their
real parts are in the range of —0.0605 + 0.0002. In other
words, the unobservable states have stable eigenvalues and the
system is detectable. Even though the system is not observable
and its initial states cannot be uniquely determined, the current
states will converge to their true states as time progresses.
Because measured voltage phasors are used as the model inputs
in case (b), the stability of the synchronous machine model is
expected because it is designed to be stable when connected to
an infinite bus. By contrast, for case (d), the rightmost
eigenvalues of 4y, are in the range of 0.772 + 0.003, which is
unstable. Thus, the system is neither observable nor detectable.
As a result, the UKF diverges in case (d).

D. Effects of the Eigenvalues of Unobservable States

To study the effects of the eigenvalues of the unobservable
states on the DSE, the damping of the rightmost eigenvalue in
case (c) is modified and its effect on DSE is examined. To
identify the most sensitive parameters that can change the
rightmost eigenvalue, the states are sorted according to the
magnitudes of their participation factors (PFs) [13]. The
dominant PFs of (0.9102) £ (0.0003) and (0.07584) +
(0.0003) are associated with E; and Ej; respectively, which
indicate that states E; and Ej actively interact with the
eigenvalue. Other states have fairly small PFs and therefore do
not noticeably participate the oscillation of the eigenvalue.
Because the PF is equal to the sensitivity index of the
eigenvalue with respect to the diagonal element of the
differential equation [13], the sensitivity of eigenvalue damping
with respect to the open-circuit time constant Ty, is positive.
Note that according to differential equation (28) in [7], the

diagonal element of Ej is determined by — TL,

do
Setting Tjo = 3.3,33,and 330s, the corresponding

positions of the rightmost eigenvalues are A;3; = —0.213,



Az3 = —0.061, and A333 = —0.007. In other words, increasing
the open circuit time constant T,j, can move the eigenvalue to
the right, thus decreasing the damping of the eigenvalue. This
observation is consistent with results from the above sensitivity
analysis of the eigenvalue. The state estimation errors of E, and
E}; are plotted as time series in Fig. 2 for different values of time
constant Tj, . Fig. 2 shows that, at the very beginning,
estimation errors are similar. Also, the estimation errors
decrease faster for smaller Ty, (i.e., better damping of the
eigenvalue) and the mean squared errors (MSE) are smaller for
smaller Tj,. The other states do not noticeably participate the
oscillation of the eigenvalue and the effects of the eigenvalue
damping on the estimation errors of other states are not
noticeable. These observations suggest that the increasing
damping of the rightmost eigenvalue of the unobservable states
can speed up the convergence of DSE, and that the effects are

determined by the participating states.
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Fig. 2. Estimation errors of the DSE from different T, values.

IV. CONCLUSIONS

In this paper, detectability analysis is applied to guide
selection of measurements for the DSE of a synchronous
machine. To ensure the existence of a DSE observer, early
studies adopted observability analysis, which suggests that
measurements must be selected to make all the states
observable. This paper shows that the requirement of
observability is a sufficient condition and can be relaxed by
applying detectability analysis, which suggests that DSE can
converge not only for an observable system but also for an
unobservable system if the eigenvalues corresponding to the
unobservable states are stable. The simulation results show that
better-damped eigenvalues of the unobservable states will result
in faster convergence of the DSE. In addition, it is suggested
that the terminal voltage phasor is a good candidate for the input
of a subsystem in the power grid because that selection can
guarantee the stability of the subsystem, and in turn its
detectability and the convergence of a DSE observer. Relaxing
the requirement via detectability analysis can reduce the
number of required measurements relative to those from
observability analysis. Future work will be to extend the
detectability concept to deal with a strongly nonlinear system.
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