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Abstract1

To maximize their fitness, cells must be able to respond effectively to stresses. This2

demands making tradeoffs between processes that conserve resources to promote3

survival, and processes that use resources to promote growth and division. Under-4

standing the nature of these tradeoffs and the physics underlying them remains an5

outstanding challenge. Here we combine single-cell experiments and theoretical mod-6

elling to propose a mechanism for antibiotic adaptation through mechanical feedback7

between cell growth and morphology. Under long-term exposure to sub-lethal doses8

of ribosome-targeting antibiotics, we find that Caulobacter crescentus cells can re-9

cover their pre-stimulus growth rates and undergo dramatic cell shape changes. Upon10

antibiotic removal, cells recover their original forms over multiple generations. These11

phenomena are explained by a physical theory of bacterial growth, which demon-12

strates that an increase in cell width and curvature promotes faster growth under13

protein synthesis inhibition. Shape changes thus make bacteria more adaptive to14

surviving antibiotics.15

16

How bacteria adapt their growth and biochemical resources to proliferate in a wide variety of envi-17

ronmental conditions is a fundamental question of long standing interest, and of great consequence18

to human health. Robust bacterial growth implies cellular control mechanisms that couple gene19

expression with growth rate [1] and cell shape with division control [2]. Maintenance of cell shape20

and size [3] facilitates adaptation to the local environment [4, 5], which is critical for optimal21
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growth [6]. Understanding cellular control mechanisms for antibiotic adaptation is of particular22

interest due to the growing threat of antibiotic resistance. Recent studies have shown that cell pop-23

ulations that lack a robust mechanism for cell size and division control have heightened antibiotic24

susceptibility [7], suggesting that cell shape and division are possible therapeutic targets [8].25

While previous studies have largely focused on the effect of antibiotics on bacterial gene expres-26

sion, mutation, and the fraction of surviving cells [1, 9–14], how individual bacterial cells adapt27

their growth and division dynamics to antibiotic stresses is not well understood. Recent studies28

have shown that bacterial cell size and shapes are dramatically altered under antibiotic induced29

perturbations to DNA [15], cell-wall [15, 16] and ribosome biosynthesis [17, 18]. In particular, it has30

been shown that Escherichia coli and Caulobacter crescentus cells reduce their surface-to-volume31

ratios to become spherical with increasing concentration of Chloramphenicol (ribosome-targeting32

antibiotic) and Fosfomycin (peptidoglycan synthesis inhibitor) [18], indicating a strong coupling33

between cellular growth rate and surface-to-volume ratio [19]. We have previously found that in the34

case of Caulobacter crecentus, cell shape is a strong predictor of growth and division control [20, 21].35

These findings then raise the question of how the feedback between cell shape and growth could36

facilitate bacterial adaptation to antibiotics.37

The results of the present study leads us to propose that a mechanical feedback between cell38

growth and shape promotes bacterial adaptation to antibiotics. We find that single Caulobacter39

crescentus cells exhibit dramatic shape and size changes over multiple generations in response to40

the application and removal of antibiotic stresses that inhibit protein translation. To explain this41

adaptive response, we develop a model for bacterial growth in which a competition between the42

growth of cell surface area and mechanical stresses determines the rate of cell elongation. The43

model predicts that under the inhibition of surface area growth, cells undergo an immediate reduc-44

tion in growth rates. Over longer time scales (∼10 generations) during stressed conditions, cells45

are able to recover their pre-stimulus growth rates through increases in cell volume and curvature.46

We confirm these predictions using our statistically large dataset for cell shape and growth rate47

under time-varying antibiotic perturbations, and show that cell shape changes are reversible upon48

antibiotic removal. Taken together, our study demonstrates that physical features of cells can49

provide feedback control for adaptation to growth perturbations.50

51

Antibiotic adaptation occurs via cell shape changes52

To investigate cellular response to antibiotic stress, we examined the growth and shape dynamics of53

single Caulobacter crescentus cells in the presence of chloramphenicol using a high-throughput plat-54
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form that integrates microfluidics, phase-contrast microscopy, and image analysis [20–23] (Fig. 1a).55

The bacterium C. crescentus is an asymmetrically developing organism, whose cell division results56

in a replication-competent adherent stalk cell, and a motile swarmer cell. We used a genetically57

modified strain of C. crescentus that enables us to control whether cells stick to surfaces. After58

establishing the initial population of stalked cells, we prevent subsequent generations from stick-59

ing so that we can image growth and division under constant conditions without crowding [23].60

Chloramphenicol (CHL) is a broad-spectrum antibiotic that targets ribosomes and inhibits protein61

translation, leading to a monotonic reduction in cell growth rate with increasing drug concentra-62

tion [1]. The minimum inhibitory concentration (MIC) of CHL is estimated to be 0.7 µg/ml for63

C. crescentus in PYE (Fig. 3e). Upon application of a step stimulus to a low dose of CHL (0.1 µg64

ml−1), C. crescentus stalked cells underwent an immediate reduction in growth rate, κ (Fig. 1c-d).65

Here, growth rate κ is defined for each individual growth generation as L(t) = L(0)eκt, where L(t)66

is the cell midline length at time t (Fig. 1b). Growth rate κ for each cell recovered to close to67

its pre-stimulus value, over longer times (∼10 generations) in the presence of 0.1 µg ml−1 CHL68

(Fig. 1c). This long-term adaptive response of cell growth to antibiotic stimulus is clearly evident69

in the ensemble-averaged dynamics of κ, and the interdivision times, τ , as functions of individ-70

ual cell generations (Fig. 1d-e). The interdivision times increased proportionally with κ−1 before71

recovering to their pre-stimulus values (Fig. 1e). As a result, κτ remained invariant throughout72

the course of the experiment (Fig. 1f). At a higher antibiotic concentration (0.5 µg ml−1), κτ73

remained constant within the error bars, while κ and τ did not recover to their pre-stimulus values74

(Fig. 1d-e, Extended Data Fig 1).75

To further quantify cellular-scale response to antibiotic stimulus, we measured the dynam-76

ics of bacterial cell shape, quantified by its midline length, L, radius of curvature, R, and the77

cross-sectional width, w (Fig. 1b) [20]. Cell length at birth, L(0), showed negligible change upon78

antibiotic application (Fig. 1g, Extended Data Fig 1c), with 8 ± 4% change at 0.1 µg/ml and79

7.1± 6.9% change at 0.5 µg/ml CHL. The correlation between cell length at birth and at division,80

L(τ), was well described by the relation [21]: L(τ) = 1.1L(0) + 1.75 µm (Extended Data Fig. 1d).81

The correlation between L(τ) and L(0) did not change with CHL concentration, and remained82

invariant before and after the application of CHL, indicative of an invariant homeostatic value for83

L(0). However, unlike cell length, cell curvature underwent large irreversible changes (Fig. 1a,i),84

with 34 ± 6% change at 0.1 µg/ml and 110 ± 7% change at 0.5 µg/ml. Cell width changed by85

2 ± 0.5% at 0.1 µg/ml, and by 29 ± 3% at 0.5 µg/ml of CHL (Fig. 1h). These data indicate a86

feedback between cell shape and growth rate, such that post-stimulus recovery of κ is accompanied87
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by a concomitant increase in cell curvature and cross-sectional diameter.88

While previous studies have provided evidence for the dependence of bacterial cell shape on89

growth rate [18, 24–28], the present results provide the first quantitative evidence for the corre-90

lation between cell shape and antibiotic adaptation. In the context of our study, we interpret91

adaptation as the tendency for cells to maintain their activity growth rate in response to step92

changes in external stimulus (antibiotic concentration) [29]. To explain how the combination of93

cell growth, division, and morphology promotes adaptive stress response, we developed a physical94

model, where a competition between mechanical energy for cell shape maintenance and chemical95

energy for cell wall assembly determines the driving forces for cell growth and shape dynamics.96

97

Mechanical feedback promotes adaptive growth98

Our model for a growing bacterial cell is based on a Lagrangian formulation of bacterial shape99

dynamics [20, 30, 31], specified by N shape parameters qi (i = 1...N), and the velocities dqi/dt.100

During cell cycle progression, each shape parameter qi evolves according to the equation of motion101

(Supplementary Note 1):102

ηi
1

qi

dqi
dt

= −
(

1

hA

)
qi
∂E

∂qi
, (1)103

where q ≡ {L,R,w}, E({qi}) is the free energy of the cell envelope, ηi is an effective viscosity104

parameter, A is the cell surface area, and h is the thickness of the cell envelope. As shown in105

Fig. 1b, the geometry of Caulobacter crescentus is described by the length of the midline axis, L,106

the radius of curvature, R, and the radius of cross-section r = w/2. The energy function is then107

given by (Supplementary Note 1),108

E = −εA− PV +
kL
2

∫ L

0
dL

(
1

R− r
− 1

R0

)2

+
kc
2

∫
dA

(
1

r
− 1

r0

)2

, (2)109

where ε is the effective chemical potential for cell surface growth, P is the turgor pressure, and110

V is the cell volume. During steady-state growth, C. crescentus cells elongate in length, while111

maintaining a constant curvature and width [20]. To constrain cell shape, we include longitudinal112

and circumferential bending energies in the energy function, with kL and kc defining the longitudinal113

and circumferential bending stiffnesses of the cell envelope. R0 is the preferred radius of curvature114

of the cell midline axis and r0 is the preferred radius of cross-section. Since CHL inhibits translation115

by inactivating ribosomes, it inhibits the synthesis of all proteins including those making new cell116

wall materials. It has been previously reported that CHL non-linearly reduces cell growth rate [14].117

We modelled this effect using the following form for the chemical potential: ε = ε0/(1+ϕΘ(t− ta))118
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(Fig. 2a), where ta is the time of antibiotic application, ϕ is a monotonically increasing function119

of antibiotic concentration (Fig. 3e-inset), and Θ is a Heaviside function. This functional form for120

ε quantitatively captures the dependence of growth rate on CHL concentration (Fig. 3e), with a121

half-inhibitory concentration IC50 = 0.42 µg/ml.122

To demonstrate the mechanics of adaptive growth via cell shape changes, we first consider123

the simplified limit when the radius of the cell cross-section is constant (r = r0). In this limit,124

exponential elongation of cell length is given by125

dL(t)

dt
= κ(R, t)L(t) , (3)126

where κ = −L(∂E/∂L)/2ηLπrh, the longitudinal growth rate, is a function of cell shape (see127

Methods). The dynamics of R are described by128

dR(t)

dt
=

R(t)

hηR
[ε(t)− g(R, t)] , (4)129

where, g = −(∂E/∂R+ ε)/Lr. As a consequence of Eqs. (6) and (8), R evolves to reach a steady-130

state value determined by the minimum of the energy E (Fig. 2b, grey curve), which depends on131

the chemical potential ε. Therefore, reducing ε via antibiotics shifts the energy minimum to a132

new steady-state with increased curvature (Fig. 2b, blue curve). This mechanochemical coupling133

underlies a built-in adaptive response of the cell. Reducing ε to a value ε/(1 + ϕ) results in an134

initial sharp drop in κ (Fig. 2c-d). Reduction in ε increases R−1 to a new steady-state given by135

the minimum of the shifted energy E−ϕε/(1+ϕ). As a result, κ recovers close to its pre-stimulus136

value and the cell resumes fast growth (Fig. 2c-d).137

In our model, the feedback between growth rate and curvature can be intuitively understood138

from the following mechanical argument (Fig. 2d). A reduction in chemical potential reduces the139

rate of addition of new cell surface material, leading to an initial fast drop in growth rate. The140

reduced rate of surface area addition also reduces the effective growth pressure working against141

the compressive bending forces acting on the cell surface (Eq. (2)). As a result, reduced chemical142

potential leads to further cell wall bending, until a new mechanical equilibrium is reached with143

lower tension and a higher curvature. This restores the growth rate to its pre-stimulus value144

(Fig. 2d). The growth-curvature feedback is supported by data showing that the intergenerational145

change in growth rate is positively correlated with curvature (Fig. 2e). When the feedback loop146

between growth rate and curvature (Fig. 2d, right) is broken in the model, growth rate does not147

show any recovery after CHL application (Fig. 2f, dashed line). This feedback can be further tested148

in experiments by studying the CHL-induced growth response of rod-shaped crescentin mutants.149
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By simulating the full dynamic model with variable cell cross-section and curvature, we are150

able to capture the experimental observations, including the adaptive dynamics of κ (Fig. 2f), and151

the increase in cell curvature (Fig. 2g), and cell width (Fig. 2h) in response to a step decrease in152

chemical potential. Achieving the observed increase in cell width necessitates softening the cell153

bending stiffness in response to CHL, i.e., kc → kc/(1+ϕ) (Extended Data Fig. 2). This softening154

can arise from global inhibition of translation affecting the synthesis of MreB, the Rod system,155

and penicillin-binding proteins that control cell width [32, 33]. CHL could also modulate turgor156

pressure via a regulatory response [34, 35]. Our modeling suggests that the experimental data are157

consistent with a moderate increase in turgor pressure that would increase internal stress and cell158

width (Extended Data Fig. 3). It is important to note that cell width modulation alone cannot159

achieve growth rate adaptation under stress (Extended Data Fig. 4).160

While mechanical feedback is sufficient to promote growth rate recovery and cell shape changes161

under antibiotic stress, it does not capture the trend that cell curvature and width undergo a162

transient increase immediately after drug treatment, followed by a relaxation phase (Fig. 1h-i).163

This behavior may be a consequence of active feedback mechanisms (e.g., ribosome synthesis,164

efflux pumps) that act to increase cell growth rate under stress. We therefore consider a model165

where ε recovers to a value αε0 + (1 − α)ε1, where ε0 is the pre-stimulus chemical potential and166

ε1 = ε0/(1 + ϕ) (Fig. 2i). For α = 0, there is no active feedback, whereas for α = 1, ε fully167

recovers to its initial value (Fig. 2j-k). The latter results in complete recovery in cell shape and168

growth rate, irrespective of the amplitude of applied stress. However, smaller non-zero values of169

the active feedback parameter α results in partial recovery in cell shape and growth rate, with non-170

monotonic changes in cell curvature and width, as observed experimentally. Thus, active feedback171

mechanisms likely contribute to the adaptive growth response, consistent with the predictions of172

our biochemical model combining drug transport and binding with cell shape and translational173

feedback (Supplementary Note 2, Extended Data Fig. 5).174

175

Comparing single-cell simulations to experimental data176

While our theory can account for the mechanics of growth homeostasis and cell shape, it does not177

treat cell division and size control. To compare our model quantitatively with experimental data,178

we turn to single-cell simulations that allow us to extend the mechanical model to count a division179

event when cells grow to a size L(τ) = aL(0) + δ, with a = 1.1 and δ = 1.75 [21]. In this model180

(see Methods for details), the ith cell shape parameter in generation j, qij , evolves according to the181
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equation of motion182

ηi
1

qij

dqij
dt

= −
(

qij
hAj

)
∂E

∂qij
, (5)183

for a step stimulus in chemical potential, ε → ε/(1 + ϕ), applied at t = ta. We introduce a184

phenomenological model for the control of division times. Namely, we note that experimentally185

the relation between cell length at birth, Lj(0), and cell length at division, Lj(τj), is invariant186

to CHL application (Extended Data Fig. 1d). As a result, we take the interdivision times to be187

τj = κ−1
j ln (a+ δ/Lj(0)), where κj = L−1

j dLj/dt.188

So defined, our single-cell model quantitatively captures the experimental data for antibiotic189

dose of 0.1 µg/ml (ϕ = 0.8; Fig. 3a), 0.2 µg/ml (ϕ = 1.8), and 0.5 µg/ml (ϕ = 3.0). The simulated190

cell growth rate drops sharply at t = ta, followed by slow recovery for t > ta (Fig. 3a). As ϕ191

increases, the accuracy of adaptation decreases monotonically (Fig. 3a, Extended Data Fig. 6).192

Consistent with experimental data, the interdivision time, τ , increases upon application of the193

growth inhibitory stress, but recovers over tens of generations. However, the adaptation is not194

perfect. Rather, the percentage change in τ or κ, defined as the percent difference between the195

post-stimulus and pre-stimulus steady state values, increases with ϕ (Fig. 3a-b, Extended Data Fig.196

6a-b). In contrast to τ and κ, cell length recovers (Extended Data Fig. 6a-b) due to the invariance197

of the parameters of the size control model (Extended Data Fig. 1d). Growth rate adaptation198

is much weaker in the model with constant curvature, since there is no feedback between cell199

elongation rate and curvature (Extended Data Fig. 4).200

As in the experimental data, average cell curvature does not return to its prestimulus value for201

all values of ϕ (Fig. 3c). Both cell curvature (Fig. 3c), and cell width (Fig. 3d) increases upon202

antibiotic stress, with their steady-state values increasing monotonically with ϕ. By calibrating our203

model parameters with experimental data for cell growth and shape for three different antibiotic204

concentrations, we determined the dependence of ϕ on CHL concentration (Fig. 3e-inset). This205

allowed us to compute the bacterial growth inhibition curve by varying ϕ (Fig. 3e), showing the206

predicted dependence of final growth rate, κ∞, on CHL concentration. From the growth inhibition207

curve, we predict that the MIC of CHL acting on C. crescentus cells growing in PYE is 0.7 µg/ml.208

With no additional parameter adjustments, our model quantitatively captures the experimentally209

reported trend [18] for the percentage change in C. crescentus cell curvature and width, at differ-210

ent CHL concentrations (Fig. 3f). Put together, these results indicate that changes in cell shape211

coordinate the adaptive dynamics of cell growth rate under antibiotic induced stress.212

213



8

Adaptation to time-varying antibiotic stresses214

We also considered responses to finite-duration pulses of antibiotic, to examine if the shape changes215

were reversible as would be predicted by a model of mechanical feedback. We subjected C. cres-216

centus cells growing in PYE medium to three consecutive pulses of chloramphenicol (0.1 and 0.5217

µg ml−1 concentrations) (Fig. 4a). In response to pulsatory antibiotic stress, both the growth218

rates (Fig. 4a) and the interdivision times (Fig. 4b) underwent pulsatory changes, fully recovering219

to their pre-stimulus values when the antibiotic was removed for both concentrations studied.220

Concomitantly with the changes in growth rates and interdivision times, the cells underwent pul-221

satory shape changes (Fig. 4c). Our simulations quantitatively capture these behaviors (Fig. 4d-f,222

Extended Data Fig. 7). Interestingly, both simulated and experimental data show a memory223

effect (Fig 4a,d), such that κ decreases progressively less during each successive antibiotic pulse.224

This is accompanied by a decrease in peak cell curvature and width (Fig 4c,f), indicating the225

coupling between antibiotic tolerance and cell shape. The memory effect arises in the model due226

to disparate timescales for recovery in chemical potential and relaxation of cell shape parameters227

upon antibiotic stress release.228

229

Discussion230

Cells harness feedback control to survive and thrive in varying environments [36]. Biochemical231

networks have been shown to provide this feedback and thus enable adaptation to perturbations [29,232

37, 38]. The present work demonstrates that physical features of cells can also provide feedback233

control. In particular, we propose that a competition between the mechanical energy associated234

with cell shape and the chemical energy associated with addition of cell surface material enables235

adaptation of growth rate and interdivision time of bacterial cells (Fig. 2). The ability of cells236

to maintain a homeostatic growth rate under perturbations arises in our model from a negative237

feedback between cell growth rate and mechanical stress at the cell surface (Supplementary Fig. 1),238

consistent with recent phenomenological models of feedback between outer membrane tension and239

cell elongation rate [39]. By comparing our theoretical predictions against single-cell experiments240

on C. crescentus under long-term exposure to ribosome-targeting antibiotics, we establish that241

bacteria can recover their pre-stimulus growth rates by increasing their cell curvatures and widths242

(Fig. 3). Furthermore, the cells anticipate successive antibiotic pulses (Fig. 4) and retain memory243

of growth inhibition.244

Our theory for cell growth and shape control has broad applicability beyond predicting cellular245

response to chloramphenicol. To demonstrate this, we used our model to predict the dynamics246
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of cell growth and morphology under translation inhibition (Extended Data Fig. 5), osmotic247

shocks (Supplementary Fig. 1), nutrient shifts (Supplementary Fig. 2), inhibition of peptidoglycan248

synthesis (Supplementary Fig. 3). Under nutrient shifts we find that cell volume increases and249

surface-to-volume ratio decreases with increasing nutrient-specific growth rate of the medium [18,250

40–42] (Supplementary Fig. 2). These data are in agreement with the phenomenological nutrient251

growth law [43] that cell volume increases with nutrient-specific growth rate (Supplementary Fig.252

2e). Further experiments manipulating cellular mechanics are needed to test theoretical predictions253

about the role of cell mechanical properties in growth rate adaptation.254

Our physical model naturally leads to the phenomenological surface/volume model proposed255

recently by Harris and Theriot [18]. We derive that cell surface area is produced at a rate pro-256

portional to cell volume (Supplementary Note 1), where the volume-specific surface synthesis rate257

depends on cell shape, surface mechanical stress, growth rate, as well as the chemical potential for258

area synthesis. When peptidoglycan synthesis is inhibited (e.g., by Fosfomycin) we expect a re-259

duction in both chemical potential and surface stress, leading to the maintenance of a homeostatic260

growth rate (Supplementary Fig. 3). In addition, a softer cell wall promotes a larger area synthesis261

rate, leading to an increase in cell diameter.262

Increases in average cell diameter and cell length in response to CHL have been reported in263

C. crescentus [18] and E. coli [17, 18]. Other studies have reported invariance of average cell264

volume [44] and aspect ratio [28] with increasing CHL concentration. Here, we report increases265

in cell diameter and curvature in the presence of CHL, associated with long-term changes in cell266

growth rate and their ability to adapt. This raises the question of why specific shape changes may267

be beneficial for antibiotic tolerance. First, an increase in cell volume via changes in cell width268

should lead to dilution of intracellular antibiotic molecules at a rate proportional to the cell growth269

rate. Second, lowering surface-to-volume ratio should reduce antibiotic influx through the cell270

surface leading to a further dilution of intracellular antibiotic concentration, for a given cell size.271

This hypothesis is consistent with predictions of our biochemical model that combines drug trans-272

port and binding with cell shape and ribosome regulation (Supplementary Note 2). This model273

predicts that at sub-MIC concentrations of CHL, reduction in cell surface-to-volume ratio could274

lead to a significant dilution of intracellular CHL concentration (Extended Data Fig. 5). This275

result suggests a new mechanistic mode of adaptation that bacteria may harness to counter an-276

tibiotics, opening doors to future molecular studies into the role of cell shape on antibiotic response.277

278
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Figure Legends

FIG. 1. Adaptive growth of C. crescentus under antibiotic stress. (a) Left: A representative phase

contrast image of one field of view of C. crescentus cells. Right: Magnified images of the yellow highlighted

cell, showing a single generation of growth in rich medium (PYE; peptone-yeast extract) and later in the

presence of chloramphenicol (CHL). Scale bar represents 1 µm. Time is indicated in hours:minutes since

the start of the experiment. (b) Definition of cell shape parameters. (c) Cell length as a function of time

for many generations of a single cell (points). A step dose of 0.1 µg ml−1 CHL is applied at t = 450 min.

(d) Recovery curve of cell growth rate, κ, as a function of generations for CHL concentrations: 0.1 µg ml−1

(blue, Number of cells n = 40, Total number of generations g = 941), 0.2 µg ml−1 (green, Number of cells

n = 20, Total number of generations g = 280, and 0.5 µg ml−1 (red, n = 135, g = 986). 0.2 µg/ml data

is taken from Ref [18]. Generation ‘0’ denotes the first generation after CHL application. (e) Interdivision

time, τ , as a function of generation, showing concomitant increase in response to antibiotic, followed by slow

recovery. (f) κτ remains constant irrespective of CHL concentration. (g) Cell length at birth (L(0)) (h)

spatially averaged and cell cycle averaged cell width (w), and (i) cell-cycle averaged cell curvature (⟨R−1⟩)

as a function of generation. Error bars indicate ±1 standard deviation in cell-to-cell variations.

FIG. 2. Mechanics of antibiotic adaptation. (a) Top: A step perturbation to the chemical potential,

ε. Bottom: Step increase in ϕ, showing the protocol for antibiotic application. (b) Cell surface energy

density, U = E/θ, as a function of the midline curvature, R−1, for ϕ = 0 and ϕ = 0.42 with w fixed. (c)

Longitudinal growth rate, κ, as a function of R−1. The dashed arrows indicate the pathway to adaptation

by relaxation of cell shape to a new energy minimum after antibiotic stimulus. (d) Schematic illustrating

the mechanics of antibiotic adaptation by growth-curvature feedback. Arrow thicknesses scale with growth

rate. (e) Correlation between change in growth rate, ∆κ (between successive generations), and curvature.

(f) Adaptive dynamics of the longitudinal growth rate, κ, for two non-zero values of ϕ, according to Eq.

(3). Dashed line indicates growth rate dynamics when the growth-curvature feedback loop is disabled in

the model. (g) Dynamics of curvature, R(t)−1, relaxing to a higher value post-stimulus, as determined by

Eq. (8). (h) Dynamics of the cell width, w(t) = 2r(t), increasing to larger values post-stimulus. (i) Model for

active feedback in chemical potential, restoring its post-stimulus value to αε0 + (1−α)ε1, where 0 ≤ α ≤ 1.

(j-k) Adaptive dynamics of growth rate, cell curvature and width for different values of the active feedback

parameter α, and for ϕ = 1.0. Other parameter values are the same as (a-h). See Supplementary Table 1

for a list of model parameters.
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FIG. 3. Single-cell simulations reproduce experimentally measured growth and cell shape dy-

namics in response to antibiotic application. (a) Population-averaged cell growth rate κ vs. generation

in single-cell simulations for: ϕ = 0.8 (blue, dashed), ϕ = 1.8 (green, dashed), and ϕ = 3.0 (red, dashed).

Corresponding experimental data are shown in solid circles, with [CHL]=0.1 µg/ml (blue), [CHL]=0.2 µg/ml

(green) [18] and [CHL]=0.5 µg/ml (red). Error bars are Standard Error of Mean (SEM). (b-d) Intergen-

erational dynamics of population-averaged interdivision time τ (b), mean cell curvature (c), and mean cell

width (d). Population-averaged model data for different values of ϕ are shown by dashed lines, whereas

the experimental data are shown by solid circles. Error bars are SEM. (e) Population-averaged cell growth

rate (after long-term antibiotic exposure) vs CHL concentration. Open circle: model data, Solid circles:

experimental data. Error bars, SEM. Inset: Dependence of ϕ of CHL concentration after calibrating model

to experimental data. Predicted MIC of CHL is ≈ 0.7 µg/ml. (f) Percentage change in cell shape parameters

R−1 (red) and w (green), as a function of antibiotic concentration post long-term exposure. Experimental

data (solid circles) are compiled from our experiments and those by Harris and Theriot [18]. Model data

(open circles) are obtained by varying ϕ. Number of cells simulated = 40. See Supplementary Table 2 for a

list of simulation parameters.

FIG. 4. Adaptation to pulsatory antibiotic stress. (a-b) Experimental data for cell growth rate

(a) and interdvision times (b), vs generation number under exposure to three discrete pulses of 0.1 and

0.5 µg ml−1 concentrations of chloramphenicol. For 0.1 µg ml−1 of CHL, n=22 and ng = 1085. For

0.5 µg ml−1 of CHL, n=19 and ng = 532. Error bars indicate ±1 standard deviation in cell to cell

variations. (c) Intergenerational dynamics of mean cell curvature for chloramphenicol concentration 0.1 µg

ml−1. Experimental data: blue solid circles, model prediction: orange. (d-e) Simulated data for longitudinal

growth rate κ (d), and interdivision time (e) vs generations in growth simulations for different values of ϕ

(fractional reduction in chemical potential): ϕ = 0.8 (blue) and ϕ = 3.0 (red). See Methods for the

determination of model parameters. Model simulations predict full recovery in growth rate after release of

antibiotic stress. (f) Cell width vs. generations. Experimental data: blue solid circles, model prediction:

orange. Panels (c) and (c) show reversible shape changes upon application and removal of antibiotic stress.

Number of cells simulated = 40. See Supplementary Table 2 for a list of model parameters.

Extended Data Figure 1. Cell shape, size control and growth dynamics during antibiotic

adaptation, shown in real time. (a) Cell elongation rate, κ, as a function of absolute time for CHL

concentrations: 0.1 µg ml−1 (blue, Number of cells n=40, Total number of generations g = 941) and 0.5 µg

ml−1 (red, n = 135, g = 986). Error bars indicate ±1 standard error of mean. (b) Interdivision time, τ , as

a function of absolute time. (c) Cell length at birth, L(0), as a function of absolute time. (d) Correlation

between cell length at division, L(τ), and cell length at birth, L(0), is best described by a mixer model:

L(τ) = 1.1L(0)+0.75 µm. (e) Spatiotemporally averaged cell diameter (width), w, as a function of absolute

time. (f) Cell-cycle averaged cell curvature, R−1, as a function of absolute time.
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Extended Data Figure 2. Dynamics of cell shape and growth rate in response to mechano-

chemical perturbations. Model predictions for the response of (a) growth rate κ, (b) curvature R−1, and

(c) width w, to perturbations in parameters: {ε, kc} (blue), {ε} (green), {ε, kL} (purple), {ε, kc, kL} (red),

and {ε, kc, P} (black). Perturbation to a particular parameter µ is of the form µ → µ/(1 + ϕ) for t > ta,

where µ ∈ {ε, kc, kL, P}. Comparing to experimental results (Figure 1), translation inhibitory antibiotics

likely affect parameters ε and kc. Perturbation to turgor pressure P is qualitatively similar to perturbing ε.

Extended Data Figure 3. Effect of turgor pressure on cellular response to chloramphenicol.

Intergenerational dynamics of (a) growth rate κ, (b) average cell width w, (c) average curvature R−1 and (d)

length at birth L(0) in response to a step pulse of 0.1 µg/ml CHL applied at t = 450 min for three different

cases – turgor pressure remains unchanged (blue solid circles), turgor pressure is reduced by 25% by CHL

(red solid circles), and turgor pressure is increased by 25% by CHL (green data points). Turgor pressure

reduction leads to a decrease in cell diameter, inconsistent with experimental data. Moderate increase in

turgor pressure is consistent with experimental data.

Extended Data Figure 4. Cell width modulation alone is not sufficient to achieve growth rate

adaptation. Intergenerational dynamics of (a) growth rate κ, (b) average cell width w, and (c) average

curvature R−1 in response to a step pulse of 0.1 µg/ml CHL applied at t = 450 min for two different cases

– Cell curvature is variable and adapts to CHL-induced growth inhibition (blue data points), and curvature

is constant and not affected by CHL (red data points). In the absence of curvature modulation, adaptive

response is much weaker.

Extended Data Figure 5. Coupling the physical model for bacterial growth with a biochem-

ical model for chloramphenicol-ribosome interactions. (a) Schematic of the biochemical pathway

of ribosome-CHL interaction. CHL with extracellular concentration aex enters the cell with net flux pro-

portional to (Pinaex − Poutain)A/V where Pin and Pout are the inward and outward permeabilities of the

cell envelope. CHL binds to ribosomes at a rate kon and unbinds with a rate koff. Growth rate is linearly

proportional to the fraction of unbound ribosomes. Ribosomes upregulate their synthesis when a fraction of

them are bound to CHL. Model A: No mechanical feedback between cell shape and growth rate. Model B:

Cell elongation promotes an increase in surface stress σ which in turn inhibits growth rate. (b-f) Intergen-

erational dynamics of (b) growth rate κ, (c) intracellular CHL concentration ain, (d) concentration of active

ribosomes, (e) average cell width w, and (f) average curvature R−1 in response to a step pulse of 0.1 µg/ml

CHL applied at t = 450 min for Model A (blue) and Model B (red). (g) Cell shape evolution simulated

using Model B (time progression: left-to-right and top-to-bottom), shows antibiotic dilution. Color coding

indicates the intracellular concentration of CHL.

Extended Data Figure 6. Speed-accuracy tradeoff in antibiotic adaptation. (a) Adaptation error

(post-stimulus recovery error %) for κ, R, w and L as a function of antibiotic stress, ϕ. (b) Rate of adaptation

(in units of generation−1) as a function of ϕ. (c) Trade-off between adaptation speed (defined as the rate of

recovery) and adaptation accuracy (defined as 100-Error%).
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Extended Data Figure 7. Quantitative comparisons between single-cell simulations and exper-

imental data for pulsatory chloramphenicol dose. (a-b) Cell growth rate κ (a) and interdivision time

τ (b) upon application of a step dose of 0.1 µg ml−1 chloramphenicol. Blue: experimental data, Orange:

Simulation data with ϕ = 0.8. (c-d) Cell growth rate (c) and interdivision time (d) for a pulsatile antibiotic

dose of 0.5 µg ml−1. Blue: experimental data, Orange: Simulation data with ϕ = 3.0. Error bars indicate

±1 standard deviation.

Methods

Acquisition of Experimental Data. As described in [20, 23], the inducibly-sticky Caulobacter

crescentus strain FC1428 was introduced into a microfluidic device and cells were incubated in the

presence of the vanillate inducer for one hour. The microfluidic device was placed inside a home-

made acrylic microscope enclosure (39′′ × 28′′ × 27′′) equilibrated to 31◦C (temperature controller:

CSC32J, Omega and heater fan: HGL419, Omega). At the start of the experiment, complex

medium (peptone-yeast extract; PYE) was flowed through the channel at a constant rate of 7

µL/min using a synringe pump (PHD2000, Harvard Apparatus), which flushed out non-adherent

cells. We initially imaged cells in medium without chloramphenicol to measure the drug-free

growth rate and cell shape. We then switched to medium with chloramphenicol (concentration

in the range 0.1-0.5 µg/ml) at 450 min. Phase-contrast images were acquired using a microscope

(Nikon Ti Eclipse with perfect focus system) and robotic XY stage (Prior Scientific ProScan III)

under computerized control (LabView 8.6, National Instrument). Images were acquired at a mag-

nification of 250X (EMCCD, Andor iXon+ DU888 1k × 1k pixels; objective, Nikon Plan Fluor

100X oil objective plus 2.5X expander; lamp, Nikon C-HFGI) and a frame rate of 1 frame/min.

Cell Shape Analysis. Phase contrast images of single C. crescentus cells were processed with a

pixel-based edge detection algorithm that applied a local smoothing filter, followed by a bottom-hat

operation [20]. We identified the boundary of each cell by thresholding the filtered image. Indi-

vidual cell contours were constructed by interpolating a smoothing B-spline through the boundary

pixels. Each identified cell was then tracked over time to construct the full time trajectory for its

growth and division cycle over consecutive generations. We applied a minimal amount of filtering

for each growth curve to remove spurious points, such as those arising from cells touching or

twisting out-of-plane. We manually checked the timing of each cell division to ensure that the

precision in determining the inter-division times results from the frame rate and not limitations of

the automated image analysis. For the phase contrast images of C. crescentus cells obtained from

Harris and Theriot [18], we also used the Fiji plug-in MicrobeJ [45] to extract the cell midline
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lengths at birth and division, cell width profile and the midline curvatures at the mid focal plane.

Data were aligned in time based on the time point when chloramphenicol was added, and mean ±

SD (or SEM) were calculated for different cells (Fig. 1).

Mathematical model for cell growth and shape dynamics. As described in the main text,

the geometry of a growing C. crescentus cell is parameterized by the length of the cell’s midline axis

L, radius of curvature R, and radius of cross-section r. During each growth cycle, the dynamics of

length L is given by

dL

dt
= κ(R, r)L , (6)

where the longitudinal growth rate κ is given by
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Radius of curvature evolves in time as,
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=
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Dynamics of the cell’s radius of cross-section is given by,
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Model parameters. For the simulations shown in Fig. 2, we assume that the simulated cell

is in a steady-state exponential growth phase before the antibiotic stress is applied at t = ta. The

initial conditions are ε(t < ta) = ε0, κ(t < ta) = κ0, r(t < ta) = ri, R(t < ta) = Ri, where we

take κ0 = 0.01 min−1, Ri = 5 µm, and ri = 0.36 µm, calibrated from the average growth rate and

shape parameters for C. crescentus growing in PYE at 31◦C. Therefore, for t < ta, the bacterium

is subjected to the following constraints:

κ(ri, Ri) = κ0 , (10)

∂E/∂r|r=ri,R=Ri = 0 , (11)

∂E/∂R|r=ri,R=Ri = 0 . (12)
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For t ≥ ta we solve Eqs. (8)-(9) subject to the above initial conditions and ε(t ≥ ta) = ε0/(1 + ϕ).

For simplicity, we assume ηR = ηr = η, P = 0.3 MPa [46], and set kL = 1. With time expressed

in min, and length in µm, Force is expressed in units of kc, such that [Force]=[kL]/µm
2, where

square brackets represent the dimensions. The undetermined parameters {kc/kL, ε0/kL, hηl/kL}

are obtained by solving Eq. (10)-(12) at t = ta. The remaining parameters ϕ, R0, and r0 are

obtained by multi-parameter fitting of the solutions to equations (6)-(9), to the ensemble averaged

time course data for κ, r and R in experiments with CHL concentration 0.1 µg/ml. The resultant

set of parameters are listed in Supplementary Table 1.

Single-cell simulations. In Figures 3 and 4, we simulate the stochastic growth and shape dy-

namics of a total of n = 40 cells, for g = 100 generations each. We initialize the shape of cell j

(1 ≤ j ≤ n) by prescribing its length, Lj , radius of curvature Rj and radius of cross-section rj ,

at the start of the first generation (t = 0). We draw Lj(t = 0), Rj(t = 0) and rj(t = 0) from a

Gaussian distribution with mean values 2.6 µm, 3.9 µm and 0.365 µm, respectively. The standard

deviations of the distributions, σl, σR and σr, are determined from our experimental data for cell

shape distribution prior to antibiotic application. These values also set the noise amplitude in the

shape equations (Supplementary Note 1). We set the longitudinal growth rate in the first gener-

ation equal to mean growth rate: κ0 = 0.01 min−1. By simultaneously solving the equations (for

t < ta) κj = κ0 (Eq. (7)), ∂E/∂R = 0, and ∂E/∂r = 0 we fix the model parameters, ε/kL, kc/kL

and kL/hηl. The undetermined parameters, c0 (spontaneous curvature), (hηR)
−1 (rate of curvature

relaxation), and (hηr)
−1 (rate of width relaxation) are obtained by fitting the model predictions

for shape dynamics to the experimental data for step stimulus of 0.1 µg ml−1 of chloramphenicol

(see Extended Data Fig. 7). The parameters are listed in Supplementary Table 2.

In generation k, cell length, Ljk, radius of curvature Rjk, and radius of cross-section rjk evolve

according to Eqs. (6), (8), and (9), respectively. We solve Eqs. (6), (8) and (9) for t ≤ τjk, where

τjk is the division time in the kth generation for the jth cell. Division time in the kth generation is

given by,

τjk = κ−1
jk

(
a+

δ

Ljk(0)

)
, (13)

such that Ljk(τjk) = aLjk(0)+δ, assuming a mixer model [21], where parameters a and δ are deter-

mined from experimental data (Extended Data Fig. 1d). Cell j divides at a ratio Djk in generation

k. Therefore, Lj(k+1)(t = 0) = DjkLjk(t = τjk). We draw Djk from a normal distribution with

mean and standard deviation given by, ⟨Djk⟩ = 0.54 and
√
⟨(Djk)2⟩ = 0.04 [20]. Furthermore,
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cell shape parameters in consecutive generations are related as Rj(k+1)(t = 0) = Rjk(t = τjk), and

rj(k+1)(t = 0) = rjk(t = τjk).

We subject the cells to antibiotic stress for t ≥ ta. We assume that under antibiotic treatment

the chemical potential for growth, ε, reduces in proportion to the concentration of the antibiotic. As

a result, the cell responds initially by reducing its growth rate, κ, which is proportional to ε. There-

fore, ε(t) = ε0/ [1 + Θ(t− ta)ϕ], where 0 ≤ ϕ ≤ 1. We also assume, kc(t) = kc(0)/ [1 + Θ(t− ta)ϕ],

to capture the effect of increasing width. Under the pulsatile stress protocol, we subject the cells

to antibiotic stress for time periods satisfying the condition ta + (2x− 2)td ≤ t ≤ ta + (2x− 1)td,

where ta is the application time of the first pulse, td is the pulse duration and x is the pulse

number (starting at x = 1 for the first pulse). Chemical potential ε is fractionally reduced by ϕ

as in the step pulse model. Upon release of an antibiotic pulse, the chemical potential increases

to its original value ε0 at a rate equal to the cell growth rate κ: ε(t) = ε2 + (ε0 − ε2)(1 − e−κt),

where ε2 is the chemical potential at the time of antibiotic removal. This models the reversibility

of chloramphenicol induced effect upon stress removal.
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