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Abstract—A central question in derandomization is whether
randomized logspace (RL) equals deterministic logspace (L).
To show that RL = L, it suffices to construct explicit pseu-
dorandom generators (PRGs) that fool polynomial-size read-
once (oblivious) branching programs (roBPs). Starting with
the work of Nisan [Nis92], pseudorandom generators with seed-
length O(log2 n) were constructed (see also [INW94], [GR14]).
Unfortunately, improving on this seed-length in general has
proven challenging and seems to require new ideas.

A recent line of inquiry (e.g., [BV10], [GMR+12], [IMZ12],
[RSV13], [SVW14], [HLV17], [LV17], [CHRT17]) has suggested
focusing on a particular limitation of the existing PRGs
([Nis92], [INW94], [GR14]), which is that they only fool roBPs
when the variables are read in a particular known order,
such as x1 < · · · < xn. In comparison, existentially one can
obtain logarithmic seed-length for fooling the set of polynomial-
size roBPs that read the variables under any fixed unknown
permutation xπ(1) < · · · < xπ(n). While recent works have
established novel PRGs in this setting for subclasses of roBPs,

there were no known n
o(1) seed-length explicit PRGs for

general polynomial-size roBPs in this setting.
In this work, we follow the “bounded independence plus

noise” paradigm of Haramaty, Lee and Viola [HLV17], [LV17],
and give an improved analysis in the general roBP unknown-
order setting. With this analysis we obtain an explicit PRG
with seed-length O(log3 n) for polynomial-size roBPs read-
ing their bits in an unknown order. Plugging in a recent
Fourier tail bound of Chattopadhyay, Hatami, Reingold, and

Tal [CHRT17], we can obtain a Õ(log2 n) seed-length when
the roBP is of constant width.

Keywords-pseudorandom generators; read-once branching
programs; unknown order; Fourier analysis;

I. INTRODUCTION

A central goal in complexity theory is to understand the

power of randomness in computation, in particular the P

vs BPP problem. A particularly natural method of showing

P = BPP is to construct an explicit ε-error pseudorandom

generator (PRG) with sufficiently small seed-length ℓ, ideally

logarithmic. That is, a function G : {0, 1}ℓ → {0, 1}n such

that for any sufficiently efficiently computable f ,
∣∣∣∣ E
y∈{0,1}ℓ

f(G(y))− E
x∈{0,1}n

f(x)

∣∣∣∣ ≤ ε .

Given such a PRG, one can then replace the randomness of

a BPP algorithm with the pseudorandom output and then

This work was supported by NSF grant CCF-1755921.

enumerate over all such seeds to obtain a deterministic

algorithm by majority vote (if ε is a sufficiently small

constant). After decades of work, the hardness-vs-randomness

paradigm (see for example Vadhan [Vad12]) shows that the

construction of pseudorandom generators fooling general

polynomial-size circuits is intimately tied to the quest for

circuit lower bounds, which remain out of reach. As such,

a long line of work has sought to derandomize subclasses

of BPP. A particularly fruitful model to study has been

randomized logspace (RL), as not only do PRGs for RL have

natural applications, but they can also be unconditionally

constructed, for example as done in the seminal work of

Nisan [Nis92].

In particular, Nisan [Nis92] constructed a PRG fooling the

non-uniform version of RL, that is, the class of polynomial-

size read-once (oblivious) branching programs (roBPs). A

read-once branching program can be thought of as a finite

automaton that takes in binary input strings x of some fixed

size n. Additionally, the transition function of the automaton

is allowed to depend on the position i of each bit xi. We say

that the branching program has width w if the each layer of

time the finite automaton has w states. Visually, branching

programs can be represented as a layered acyclic digraph

with n+ 1 layers, each containing w nodes; the transition

function is then represented by assigning two outgoing edges

at each interior node into the next layer. The existence of

a logspace-computable PRG G : {0, 1}ℓ(n) → {0, 1}n for

branching programs of width w = nO(1) is sufficient to show

that BPL ⊆ DSPACE(ℓ(n)).
Nisan [Nis92] gave a construction of a PRG with seed-

length ℓ = O(log2 n) for polynomial-width roBPs. Since

then, there have been various constructions ([INW94],

[GR14]) recovering the same seed-length using different

techniques, but there has been little quantitative progress

towards the desired seed-length ℓ = O(log n).1 In fact,

it remains open even to achieve a seed-length of ℓ =
O(log2 n/ log logn), even for constant-width branching pro-

grams.

The constructions of Nisan and ([INW94], [GR14]) all

1By this we mean quantitative progress in the constant-error regime.
Recently in [BCG17], Braverman, Cohen, and Garg give a hitting set (a
“one-sided” PRG) with a better seed-length in the small-error regime than
Nisan’s generator.
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employ a common high-level approach which can be sum-

marized by the following “communication” argument. The

first half of a branching program can communicate with the

second half only via the state reached in the middle layer.

Since there are only w states in this layer, the second half

of the program should “learn” roughly only logw bits of

information about the input bits fed to the first half. Because

of this, it is safe to reuse all but roughly logw of the bits of

entropy invested to generate the first half of the input string

to generate the second half. This argument is then applied

recursively to the left and right subprograms.

There is some feeling that this particular recursive

paradigm will not yield generators with seed-lengths better

than O(log2 n) ([BV10], [RSV13], [SVW14]), and that new,

more flexible techniques are required to make progress. A

crucial feature of this paradigm is that the PRG knows the

order in which its pseudorandom output will be read. In

fact, it is known that Nisan’s generator fails to generate

pseudorandom strings that fool branching programs if they

read the bits of the string in a different order than anticipated

([Tzu09]). The search for a different paradigm motivates the

following challenge: construct a PRG that fools branching

programs which may read their input in any order. To

formalize this, we define the notion of an unknown-order

roBP: a function g : {0, 1}n → {0, 1} of the form

g(x) = f(xπ(1), xπ(2), . . . , xπ(n)), where π is a permutation

(independent of x) and f is a roBP.

Bogdanov, Papakonstantinou, and Wan [BPW11] con-

structed a PRG with seed-length (1−Ω(1)) ·n for unknown-

order roBP of width w = nO(1). Their primary motivation for

doing so was to derive the first generator with nontrivial seed-

length that fools read-once formulas. Read-once formulas can

be simulated by small-width read-once branching programs

for some order π, and hence existing generators for known-

order roBPs ([Nis92], [INW94], [GR14]) would not suffice.

Impagliazzo, Meka, and Zuckerman [IMZ12] achieved a

generator with seed length ℓ = (nw)1/2+o(1) for unknown-

order roBP of width w.2

II. OUR WORK

Here, we give the first PRG with poly-logarithmic seed-

length for poly(n)-width unknown-order roBPs.

Theorem II.1. There exists an explicit 1/poly(n)-error pseu-

dorandom generator G : {0, 1}O(log3 n) → {0, 1}n for the

class of functions computable by a poly(n)-width read-once

(oblivious) branching program in some variable order.

As a corollary, we also derive the first PRG with poly-

logarithmic seed length for read-once formulas (see [BPW11]

for the reduction).

2 In fact, their generator fools the more general model of branching
programs that may read the input bits any number of times and in any
adaptive order.

Corollary. There exists an explicit pseudorandom generator

G : {0, 1}O(log3 n) → {0, 1}n for read-once formulas with

constant fan-in.

A. Our Techniques

We now briefly describe our proof technique at a high-

level, with a more technical discussion given in Section V.

The main motivation comes from the “bounded independence

plus noise” paradigm introduced by Haramaty, Lee, and Viola

([HLV17], [LV17]). There, they study the addition (modulo 2)

of a low-wise independent distribution with a pseudorandom

noise distribution. The intuition is that to fool a function f ,

it suffices to create a distribution to dampen all non-constant

Fourier coefficients. For low-degree Fourier coefficients, this

can be achieved by a low-wise independent distribution. In the

other extreme, high-degree Fourier coefficients are dampened

by coordinate-wise independent noise. The addition of these

two distributions can then inherit the best of both distributions

and fool the desired function f .

However, the above outline has two challenges. First, the

noise distribution (picking each coordinate independently

amongst {0, 1}) requires too large a seed-length. To address

this, the work of Haramaty, Lee, and Viola ([HLV17], [LV17])

proposed to use a pseudorandom noise distribution where a

pseudorandom set of coordinates are first chosen, and then

the elements within those coordinates are then substituted

with truly random values. While this proposal as stated still

requires a large seed-length, the key observation is that the

number of truly random bits has shrunk from n originally

to ≈ n/2 (for if you choose a (pseudorandom) subset of

{1, . . . , n} it has size ≈ n/2). Thus, one can hope to then

recursively apply the construction in ≈ log n rounds until no

random bits are further required.

The second, more serious, challenge is to show that a

single step of “bounded independence plus (pseudorandom)

noise” actually fools the target function f , and doing so is the

main contribution of this work (Lemma VI.3). The difficulty

in addressing this is that there are too many high-degree

Fourier coefficients, so that while each can be individually

fooled by the construction, we cannot apply a union bound

while maintaining a small seed-length. Indeed, nothing so

far in this discussion has used anything about the structure

of the function f , which clearly must be used to obtain a

small seed-length.

To meet this challenge, we avoid a naive union bound

by instead grouping high-degree Fourier coefficients into a

small number of groups, each of which can be dampened at

once. Specifically, we group high-degree Fourier coefficients

into n sets, where the i-th set contains those coefficients

that “become” high-degree upon reading the i-th variable

(Proposition VI.1).3 On an intuitive level, one can then appeal

3Note that this grouping depends on the order of the variables. However,
this grouping only occurs in the analysis, and that the construction itself is
oblivious to the variable order.
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to the “bounded communication” aspect of a roBP to argue

that in the i-th grouping those variables read after the i-th
variable can be essentially ignored. We are then left with

Fourier coefficients that are of medium degree (for if they

were very-high degree they would have been put in the j-th

group for some j < i). The number of such medium-degree

Fourier coefficients is not too large (because the degree is

not too large), and yet each such coefficient is dampened by

the noise distribution (because the degree is not too small).

This then allows us to apply a union bound to obtain that

we have dampened all the Fourier coefficients in the i-th
grouping, and by applying this for all i we obtain the result.

B. The Constant-Width Case

Although we give the first PRG with poly-logarithmic

seed-length for the general case of poly-width unknown-order

roBPs, such a seed-length has been qualitatively achieved

in the constant-width case as a result of a recent line of

work. Reingold, Steinke, and Vadhan [RSV13] gave a PRG

with seed-length O(log2 n) for unknown-order permutation

branching programs of constant width. Steinke, Vadhan, and

Wan [SVW14] gave a PRG with seed-length Õ(log3 n) for

unknown-order width-3 branching programs. Chattopadhyay,

Hatami, Reingold, and Tal [CHRT17] gave a PRG with seed-

length Õ(logw+1 n) for unknown-order branching programs

of constant-width w. Central to each of these results is a

bound on a certain key quantity: the level-k Fourier mass of

a branching program (see Section III). In each work, a bound

on this quantity is established for the class of branching

programs under consideration, and then this bound is used

to deduce the result.

Although we also employ a Fourier analytic approach, a

major contrast between our techniques and this line of work

is that in general we have no need of any nontrivial bound on

the Fourier mass of branching programs. However, we can

still make use of one to replace otherwise naive bounds on

Fourier mass in our argument. By incorporating the level-k
Fourier mass bound for constant-width branching programs

derived in [CHRT17] into our approach, we get the following

improvement on Theorem II.1 in the constant-width case.

Theorem II.2. There exists an explicit 1/poly(n)-error pseu-

dorandom generator G : {0, 1}Õ(log2 n) → {0, 1}n for the

class of functions computable by a O(1)-width read-once

(oblivious) branching program in some variable order.

Thus in the constant-width case, we nearly recover the

O(log2 n) seed-length of Nisan’s generator for the more

challenging model of unknown-order branching programs.

III. PRELIMINARIES

Here we describe a convenient algebraic encoding of a

branching program as a product of one-bit matrix-valued

functions. Recall that a branching program of width w is a

w-state finite automaton where the transition map is allowed

to depend on the number of bits read so far. Let us encode the

w states as the set of standard basis vectors in R
w. Then, the

transition map corresponding to the i-th input bit xi can be

encoded by a pair of transition matrices Ai,0, Ai,1 ∈ R
w×w,

defined so that Ai,xi
applied to the current state produces the

appropriate successor state. Define the one-bit matrix-valued

functions Fi(xi) = Ai,xi
. With this notation in place, the

value of a branching program f on an input x ∈ {0, 1}n is

given by the (1, 1) entry of the product

F (x) := F1(x1)F2(x2) · · ·Fn(xn) .

This entry indicates whether the string x defines a path

through the program that takes the start state to the accepting

state.

Let U denote the uniform distribution over {0, 1}n and let

X be an arbitrary distribution over {0, 1}n. To show that a

branching program f is ε-fooled by X , it suffices to bound the

error |EXf(X)− EUf(U)| = |EXF (X)1,1 − EUF (U)1,1|
by ε. However, it will be more convenient to simply bound

the Frobenius norm of the entire error matrix

EXF (X)− EUF (U) ,

by ε. Recall that the Frobenius norm of a matrix is defined

by

‖M‖ :=
√

tr (M⊤M) =

√∑

i,j

M2
i,j ,

so clearly such a bound is also sufficient. In this paper, ‖ · ‖
will always denote the Frobenius norm.

A. Fourier Analysis

For every vector α ∈ F
n
2 , define the associated Fourier

character χα : Fn
2 → R via

χα(x) = (−1)〈α,x〉.

We say that χα is a degree-k Fourier coefficient if |α| = k,

where |α| denotes the hamming weight of α. Any function

F : Fn
2 → R

w×w can be expanded in the basis of Fourier

characters, with coefficients from the ring R
w×w. The Fourier

expansion of F is

F (x) =
∑

α∈F
n

2

F̂αχα(x),

where the Fourier coefficients F̂α are given by

F̂α := E
x∈F

n

2

F (x)χα(x).

This identity can easily be checked with the aid of a few

useful properties of Fourier characters; namely

χα(x)χβ(x) = χα+β(x)

and

E
x∈F

n

2

χα(x) =

{
1 if α = 0

0 otherwise.
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Aside from this, we will only need a few simple facts

about Fourier analysis. Firstly, we note that the expectation

of a function F under the uniform distribution is conveniently

encoded by its 0-th degree Fourier coefficient:

EUF (U) =
∑

α∈F
n

2

F̂αEUχα(U) = F̂0.

Next, we will need Parseval’s identity to get a bound on the

sum of squares of Fourier coefficients.

Proposition III.1 (Parseval for matrix-valued functions).
∑

α∈F
n

2

‖F̂α‖2 = E
x∈F

n

2

‖F (x)‖2 .

Proof: Let 〈·, ·〉 denote the Frobenius matrix inner

product, which is defined by

〈M,N〉 = tr
(
M⊤N

)
=
∑

i,j

Mi,jNi,j .

First note that

‖F (x)‖2 = 〈F (x), F (x)〉

=

〈
∑

α∈F
n

2

F̂αχα(x),
∑

β∈F
n

2

F̂βχβ(x)

〉

=
∑

α∈F
n

2

∑

β∈F
n

2

〈
F̂α, F̂β

〉
χα+β(x) .

Thus

Ex∈F
n

2
‖F (x)‖2 =

∑

α∈F
n

2

∑

β∈F
n

2

〈
F̂α, F̂β

〉
E

x∈F
n

2

χα+β(x)

=
∑

α∈F
n

2

〈
F̂α, F̂α

〉

=
∑

α∈F
n

2

‖F̂α‖2 .

We remark that if F is a branching program, then upon

any input x, F (x) is equal to some transition matrix that has

exactly w entries of value 1 and its remaining entries are all

zeros. Thus for branching programs we have ‖F (x)‖2 = w
for any x, and the above identity gives

∑
α∈F

n

2

‖F̂α‖2 = w.

Finally, we define Lk(F ), the level-k Fourier mass of a

function, as in [RSV13]:

Lk(F ) :=
∑

α∈F
n

2

|α|=k

‖F̂α‖ .

Recalling that ‖F̂α‖ = ‖ExF (x)χα(x)‖ ≤ Ex‖F (x)‖ =
w1/2, note that we have the trivial bound

Lk(F ) ≤
(
n

k

)
w1/2 ,

for branching programs.4

Chattopadhyay, Hatami, Reingold, and Tal [CHRT17]

derive the following bound on the level-k Fourier mass of

a branching program which significantly improves upon the

trivial bound in the case of small w.

Theorem III.2 (Chattopadhyay, Hatami, Reingold, and

Tal [CHRT17]). Suppose F : F
2
n → R

w×w encodes a

branching program of width w. Then

Lk(F ) ≤ O(log n)wk .

We also define the level-k Fourier complexity of width-w
branching programs,

L(n,w; k) := max
F

k∑

i=1

Li(F ) ,

where the maximum is taken over all functions F : Fn
2 →

R
w×w that encode a branching program.

B. Pseudorandom Primitives

In this section, we collect some basic pseudorandom

distributions over Fn
2 that will serve as building blocks for our

generator. It is important that the defining property of each

of these distributions remains unaffected by a re-ordering

of bit positions. The fact that we build our generator out of

permutation-invariant components is what allows it to fool

branching programs that read their input in any order.

First we introduce δ-biased distributions, which fool linear

functions over Fn
2 , i.e. Fourier characters.

Definition III.3. Let D be a distribution over F
n
2 . We say

D is δ-biased if, for every nonzero α ∈ N
n
2 , we have

|EDχα(D)| ≤ δ . ♦

It is possible to sample from a δ-biased distribution using

O(log n+ log 1/δ) random bits ([NN93], [AGHP92]).

Next we have k-wise independent and γ-almost k-wise

independent distributions, which look locally uniform and

thus fool functions that only depend on a few bits.

Definition III.4. Let D be a distribution over F
n
2 . We say

D is k-wise independent if, for every f : F2 → [−1, 1] that

depends on at most k bits, we have

EDf(D) = EUf(U).

If D merely satisfies

|EDf(D)− EUf(U)| ≤ γ

for every such f , we say that D is γ-almost k-wise

independent. ♦

It is possible to sample from a k-wise independent

distribution using O(k · log n) random bits ([Vad12]) and

4Actually, one can easily derive the slightly better bound Lk(F ) ≤
(n
k

)1/2
w

1/2 by first applying Cauchy-Schwarz followed by Parseval’s
identity.
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from a γ-almost k-wise independent distribution using

O(k+log logn+log 1/γ) random bits ([NN93], [AGHP92]).

We remark that Fourier characters χα(x) only depend on |α|
bits of x, so these distributions also fool low-degree Fourier

characters.

IV. THE GENERATOR

We adopt our construction from the “bounded indepen-

dence plus noise” framework developed by Haramaty, Lee,

and Viola in [HLV17], [LV17]. In fact this framework is

essentially equivalent to the “mild pseudorandom restriction”

framework developed by Gopalan, Meka, Reingold, Trevisan

and Vadhan [GMR+12] and subsequently employed by

various authors (e.g., [RSV13], [SVW14], [CHRT17]), but

we find the bounded independence plus noise perspective

more convenient to work with.

We actually give two slightly different constructions. The

first construction only uses k-wise independence as a core

pseudorandom primitive (along with appropriate recursion),

and suffices for proving Theorem II.1. The second construc-

tion replaces the use of exact k-wise independence with the

use small-bias spaces and almost k-wise independence. This

allows the error analysis to be more general (but also slightly

more involved due to additional parameters). In particular,

this second construction also suffices for handing general

roBPs (Theorem II.1), but now the added generality can

be tuned to achieve a better seed-length for constant-width

roBPS, as required to prove Theorem II.2.

We proceed to give the first construction.

Let D1, D2, . . . , Dr denote r independent copies of a 2k-

wise independent distribution and let T1, T2, . . . , Tr denote

r independent copies of a k-wise independent distribution

over F
n
2 . We then define the distribution Gr recursively as

follows. Let G0 be equal to the all-ones string in F
n
2 , and

set

Gi+1 := Di + Ti ∧Gi,

where ∧ denotes bitwise AND and + denotes addition over

F
n
2 (i.e. bitwise XOR).

Lemma IV.1. Suppose F : Fn
2 → R

w×w encodes a branch-

ing program. Then Gr, with parameters k = ⌈5 lg n+2 lgw⌉
and r = ⌈2 lg n+ 1

2 lgw⌉, fools F with error

ε = ‖EGr
F (Gr)− EUF (U)‖ ≤ O

(
1
n

)
.

This proves Theorem II.1, since in the case of width

w = nO(1) the price of sampling such a distribution is

O(r · k · log n) = O(log3 n) random bits.

We now define the second construction, G∗
r . This time, let

D1, D2, . . . , Dr denote r independent δ-biased distributions,

and let T1, T2, . . . , Tr denote r independent γ-almost k-wise

independent distributions. We set G∗
0 equal to a 320k-wise

independent distribution, and again we define

G∗
i+1 := Di + Ti ∧G∗

i .

Lemma IV.2. Suppose F : F
n
2 → R

w×w encodes a

branching program. Then G∗
r , with depth r = ⌈lg n⌉, fools

F with error

ε = ‖EG∗

r
F (G∗

r)− EUF (U)‖
≤ O

((√
δL(n,w; k) +

(
1
2

)k/2
+

√
γ + γ4k

)
· nwr

)
.

Since G∗
r can be sampled at the cost of

O
(
(log n+ log 1/δ + k + log 1/γ) · r + k · log n

)

random bits, it suffices to set

• r = ⌈lg n⌉
• k = ⌈3 lg(nw/ε)⌉
• γ = (nw/ε)−9

• δ = (nwL(n,w; k)/ε)−3

to get a generator with seed length

ℓ = O
(
(log(nw/ǫ) + L(n,w; k)) · log n

)

that O(ε)-fools branching programs F of width w. From this

we derive the following two corollaries by invoking either

the trivial bound or the bound from [CHRT17] on the level-k
Fourier mass of width-w branching programs. The second

of these corollaries proves Theorem II.2.

Corollary IV.3. There exists an explicit PRG with seed

length

ℓ = O
(
log(nw/ε) · log2 n

)

that ε-fools unknown-order branching programs of width w.

Corollary IV.4. There exists an explicit PRG with seed

length

ℓ = O
(
w · log(nw/ε) · log n · log logn

)

that ε-fools unknown-order branching programs of width w.

V. PROOF STRATEGY

We show that Gr successfully fools branching programs

with the following inductive analysis. By adding and sub-

tracting the term F (Di + Ti ∧ U), we have

‖EGi
F (Gi)− EUF (U)‖
= ‖EDi

ETi
EGi−1

F (Di + Ti ∧Gi−1)− EUF (U)‖
≤ ‖EDi

ETi
EUF (Di + Ti ∧ U)− EUF (U)‖

+ EDi
ETi

‖EGi−1
F (Di + Ti ∧Gi−1)

− EUF (Di + Ti ∧ U)‖ .

Since, for any fixed vectors d, t ∈ F
n
2 , the function

F ′(x) := F (d+ t∧x) is again some branching program, we

argue that F ′ is fooled inductively. The bulk of our proof is

then spent arguing that ED,T,UF (D + T ∧ U) ≈ EUF (U).
The starting point of this argument is the observation that

the “noise-like” distribution T ∧ U successfully fools any

function that is divisible by a high-degree Fourier character.
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Specifically, suppose that T is k-wise independent and that

α ∈ F
n
2 has hamming weight |α| ≥ k. Let g : Fn

2 → [−1, 1]
be an arbitrary function such that g and χα depend on disjoint

sets of input bits. Then T ∧U fools the function f := χα · g
with error ε = 1/2k:

EUf(U) = (EUχα(U)) (EUg(U)) = 0 ,

and

|ET,Uf(T ∧ U)| =
∣∣ET

(
EUχα(T ∧ U)

)(
EUg(U)

)∣∣
≤ ET |EUχα(T ∧ U)||EUg(U)|
≤ ET |EUχα(T ∧ U)|
= ET1(α ∧ T = 0)

≤ 1

2k
.

Overall, we wish to enact the following plan. If F encodes

our branching program, we wish to use Fourier analysis to

rewrite F as a sum of simpler terms, and then use linearity of

expectation together with a triangle inequality to argue that

D + T ∧ U fools each term separately.5 Recall the product

structure of F ,

F (x) = F1(x1)F2(x2) · · ·Fn(xn),

where Fi(xi) = Ai,xi
. We can imagine taking the Fourier

expansions of these one-bit factors:

Fi(xi) =
1
2 (Ai,0 +Ai,1) +

1
2 (Ai,0 −Ai,1)(−1)xi

=: Bi,0 +Bi,1(−1)xi ,

so that F has the form

F (x) =

n∏

i=1

(
Bi,0 +Bi,1(−1)xi

)
.

If we expand this product completely, we recover the Fourier

expansion of F . Certainly the terms in this sum are simple

enough, but the problem is that there are too many of them;

we cannot afford a 2n-fold triangle inequality. Instead, we

expand this product more “slowly”: only until we see that

some term has collected a degree-k Fourier character as

a factor. By the above observation, this term can be killed

immediately, and we go on expanding the remaining terms. At

the end, we are left with only low-degree Fourier coefficients,

which can all be fooled by the distribution D. By doing this

carefully, we get by with only n applications of the triangle

inequality.

5 This approach is inspired by the similar arguments of Haramaty, Lee,
and Viola employed in [HLV17]. However, the generators they produce
with this idea have seed length ≥ n

1/2, while we achieve generators with
poly-logarithmic seed-length.

VI. PROOF OF LEMMA IV.1

Suppose

F (x) = F1(x1)F2(x2) · · ·Fn(xn)

encodes a branching program. We define the subprograms

of F ,

F≤i(x1, . . . , xi) := F1(x1)F2(x2) · · ·Fi(xi)

and

F>i(xi+1, . . . , xn) := Fi+1(xi+1)Fi+2(xi+2) · · ·Fn(xn) ,

so that F = F≤i ·F>i for any i (we define F>n as the empty

product, so that it is an identity matrix I). With this notation

in place, we can re-express F in the following convenient

form.

Proposition VI.1. Suppose F : F
n
2 → R

w×w encodes a

branching program. Then for any k ≥ 1, F can be written

as

F = F̂0 + L+

n∑

i=1

Hi · F>i,

where

L =
∑

α∈F
n

2

0<|α|<k

F̂αχα,

and

Hi =
∑

α∈F
i

2

|α|=k
αi=1

F̂≤i
α χα.

Proof: We verify that the expression has the same Fourier

expansion as F .

n∑

i=1

Hi · F>i =

n∑

i=1

(
∑

α∈F
i

2

|α|=k
αi=1

F̂≤i
α χα

)(
∑

β∈F
n−i

2

F̂>i
β χβ

)

=
n∑

i=1

∑

α∈F
i

2

|α|=k
αi=1

∑

β∈F
n−i

2

F̂αβχαβ

=
n∑

i=1

∑

α∈F
n

2

α1+α2+···+αi=k
αi=1

F̂αχα(x)

=
∑

α∈F
n

2

|α|≥k

F̂αχα .

Now we derive a useful expectation bound for functions

whose Fourier expansions are only supported at degree k.
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Lemma VI.2. Let

H(x) =
∑

α∈F
n

2

|α|=k

Ĥαχα(x)

be some function whose Fourier expansion is supported

only at degree k. Let D, T , and U denote respectively a

2k-wise independent, a k-wise independent, and a uniform

distribution over F
n
2 . Then we have

ED,T ‖EUH(D + T ∧ U)‖2 ≤ 1

2k

∑

|α|=k

‖Ĥα‖2 .

Proof: Firstly, note that

EUH(D + T ∧ U) = EU

∑

|α|=k

Ĥα · χα(D + T ∧ U)

= EU

∑

|α|=k

Ĥα · χα(D) · χα(T ∧ U)

=
∑

|α|=k

Ĥα · χα(D) · EUχα(T ∧ U)

=
∑

|α|=k

Ĥα · χα(D) · 1(α ∧ T = 0) .

Letting 〈·, ·〉 denote the Frobenius matrix inner product,

we have

‖EUH(D + T ∧ U)‖2

= 〈EUH(D + T ∧ U),EUH(D + T ∧ U)〉

=

〈
∑

|α|=k

Ĥαχα(D)1(α ∧ T = 0) ,

∑

|β|=k

Ĥβχβ(D)1(β ∧ T = 0)

〉

=
∑

|α|=k

∑

|β|=k

〈Ĥα, Ĥβ〉 · χα+β(D) · 1((α ∨ β) ∧ T = 0)

and

ED‖EUH(D + T ∧ U)‖2

= ED

∑

|α|=k

∑

|β|=k

〈Ĥα, Ĥβ〉χα+β(D)1((α ∨ β) ∧ T = 0)

=
∑

|α|=k

∑

|β|=k

〈Ĥα, Ĥβ〉
(
EDχα+β(D)

)
1((α ∨ β) ∧ T = 0)

=
∑

|α|=k

〈Ĥα, Ĥα〉1(α ∧ T = 0)

=
∑

|α|=k

‖Ĥα‖21(α ∧ T = 0) .

Finally,

ED,T ‖EUH(D + T ∧ U)‖2

= ETED‖EUH(D + T ∧ U)‖2

= ET

∑

|α|=k

‖Ĥα‖21(α ∧ T = 0)

=
∑

|α|=k

‖Ĥα‖2 · ET1(α ∧ T = 0)

=
∑

|α|=k

‖Ĥα‖2 ·
(
1
2

)k
.

We now have the tools in place to prove our main technical

lemma.

Lemma VI.3. Suppose F : F
n
2 → R

w×w encodes a

branching program. Let D, T , and U denote respectively a

2k-wise independent, a k-wise independent, and a uniform

distribution over F
n
2 . Then D + T ∧ U fools F with error

ε = ‖ED,T,UF (D + T ∧ U)− EUF (U)‖ ≤ nw

2k/2
.

Proof: To analyze ‖ED,T,UF (D+T ∧U)−EUF (U)‖,

we use the preceding expansion of F together with linearity

of expectation and the triangle inequality. Recalling that

EUF (U) = F̂0, this gives

‖ED,T,UF (D + T ∧ U)− EUF (U)‖
≤ ‖ED,T,UL(D + T ∧ U)‖

+
n∑

i=1

‖ED,T,UHi(D + T ∧ U)F>i(D + T ∧ U)‖ .

The low-degree term is dealt with easily by D:

ED,T,UL(D + T ∧ U)

= EDETEU

∑

α∈F
n

2

0<|α|<k

F̂αχα(D + T ∧ U)

= EDETEU

∑

α∈F
n

2

0<|α|<k

F̂αχα(D)χα(T ∧ U)

= ETEU

∑

α∈F
n

2

0<|α|<k

F̂α ·
(
EDχα(D)

)
· χα(T ∧ U)

= 0 .
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Now for each i we have

‖ED,T,UHi(D + T ∧ U)F>i(D + T ∧ U)‖
=
∥∥ED,T

(
EUHi(D + T ∧ U)

)(
EUF

>i(D + T ∧ U)
)∥∥

≤ ED,T ‖EUHi(D + T ∧ U)‖‖EUF
>i(D + T ∧ U)‖

≤ ED,T ‖EUHi(D + T ∧ U)‖w1/2

≤
(
ED,T ‖EUHi(D + T ∧ U)‖2

)1/2
w1/2

≤
(
1
2

)k/2 ( ∑

α∈F
n

2

‖F̂≤i
α ‖2

)1/2
w1/2

=
(
1
2

)k/2
w,

where we get the final equality by applying the Parseval

identity to F≤i.

A. Proof of Lemma IV.1

Proof: Recall the induction framework outlined in

Section V:

‖EGi
F (Gi)− EUF (U)‖

= ‖EDi
ETi

EGi−1
F (Di + Ti ∧Gi−1)− EUF (U)‖

≤ ‖EDi
ETi

EUF (Di + Ti ∧ U)− EUF (U)‖
+ EDi

ETi
‖EGi−1

F (Di + Ti ∧Gi−1)

− EUF (Di + Ti ∧ U)‖.
We have seen how to carry out the inductive step; it remains

to establish the base case. To do this, we wish to think of

F (Gr) as a function of G0 only, with D1, D2, . . . , Dr and

T1, T2, . . . , Tr fixed.

Specifically, we do the following. Define the strings g0 :=
x and gi := Di+Ti ∧ gi−1, and define the function f(x) :=
F (gr). Note that with this setup we have F (Gr) = f(G0),
and so

‖EGr
F (Gr)− EUF (U)‖

= ‖EDr
ETr

EGr−1
F (Dr + Tr ∧Gr−1)− EUF (U)‖

≤ nw

2k/2
+ EDr

ETr
‖EGr−1

F (Dr + Tr ∧Gr−1)

− EUF (Dr + Tr ∧ U)‖
≤ nw

2k/2
+

nw

2k/2
+ · · ·+ nw

2k/2

+ E
D1,D2,...,Dr

T1,T2,...,Tr

‖EG0
f(G0)− EUf(U)‖.

Now we must show that the function f is fooled by G0

for most values of Di and Ti. Luckily, for r large enough,

f is often a constant function and therefore fooled by any

distribution.

In particular, let Ti[j] denote the j-th bit of Ti and define

the indicator random variables

Yj =
r∧

i=1

Ti[j].

Note that f(x) depends on the j-th bit of x only if Yj = 1,

and so f(x) is constant if
∑n

j=1 Yj = 0. Also note that

Pr(Yj = 1) = 2−r. By applying a Markov inequality, we

have

ED1,D2,...,Dr

T1,T2,...,Tr

‖EG0
f(G0)− EUf(U)‖

≤ Pr

⎛
⎝

n∑

j=1

Yj ≥ 1

⎞
⎠ max

D1,D2,...,Dr

T1,T2,...,Tr

‖EG0
f(G0)− EUf(U)‖

≤ E

⎡
⎣

n∑

j=1

Yj

⎤
⎦ · 2w1/2

=
2nw1/2

2r
.

If we set k ≥ 5 lg n+ 2 lgw and r ≥ 2 lg n+ 1
2 lgw, Gr

fools F with error

ε = ‖EGr
F (Gr)− EUF (U)‖ ≤ r · nw

2k/2
+

2nw1/2

2r
≤ 3

n
.

VII. PROOF OF LEMMA IV.2

The proof of Lemma IV.2 follows the same story as the

previous section with details differing in two places. First, we

derive an analogue of Lemma VI.2 which is slightly messier

due to our now weaker pseudorandom primitives. Secondly,

in order to get the best possible seed-length in the small error

regime, this time we analyze the base case with a bit more

care. In particular, we upgrade the Markov argument to a

Chernoff bound for γ-almost k-wise independent variables.

Lemma VII.1. Let

H(x) =
∑

α∈F
n

2

|α|=k

Ĥαχα(x)

be some function whose Fourier expansion is supported only

at degree k. Let D, T , and U denote respectively a δ-biased,

a γ-almost k-wise independent, and a uniform distribution

over F
n
2 . Then we have

ED,T ‖EUH(D + T ∧ U)‖2

≤
(
2−k + γ

)
⎛
⎝δ ·

( ∑

|α|=k

‖Ĥα‖
)2

+
∑

|α|=k

‖Ĥα‖2
⎞
⎠ .

Proof: As before, we have

‖EUH(D + T ∧ U)‖2

=
∑

|α|=k

∑

|β|=k

〈
Ĥα, Ĥβ

〉
χα+β(D)1((α ∨ β) ∧ T = 0) .
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We analyze the terms with α = β and α �= β separately. For

the cross terms we have

EDET

∑

|α|=k

∑

β 
=α

〈Ĥα, Ĥβ〉χα+β(D)1((α ∨ β) ∧ T = 0)

=
∑

|α|=k

∑

β 
=α

〈Ĥα, Ĥβ〉
(
EDχα+β(D)

)

·
(
ET1((α ∨ β) ∧ T = 0)

)

≤
∑

|α|=k

∑

β 
=α

‖Ĥα‖‖Ĥβ‖ · δ ·
(
2−k + γ

)

≤ δ ·
(
2−k + γ

)( ∑

|α|=k

‖Ĥα‖
)2

.

For the like terms we have

ETED

∑

|α|=k

〈
Ĥα, Ĥα

〉
χ0(D)1(T ∧ α = 0)

=
∑

|α|=k

‖Ĥα‖2 · ET1(T ∧ α = 0)

≤
∑

|α|=k

‖Ĥα‖2 ·
(
2−k + γ

)
.

We now derive the following analogue of Lemma VI.3.

Lemma VII.2. Suppose F : F
n
2 → R

w×w encodes a

branching program. Let D, T , and U denote respectively

a δ-biased, a γ-almost k-wise independent, and a uniform

distribution over F
n
2 , and let Then D + T ∧ U fools F with

error

ε = ‖ED,T,UF (D + T ∧ U)− EUF (U)‖
≤
(√

δL(n,w; k) +
(
1
2

)k/2
+
√
γ
)
· nw .

Proof: Again we use Proposition VI.1 to split F into

high and low degree components:

‖ED,T,UF (D + T ∧ U)− EUF (U)‖
≤ ‖ED,T,UL(D + T ∧ U)‖

+
n∑

i=1

‖ED,T,UHi(D + T ∧ U)F>i(D + T ∧ U)‖.

For the low-degree component we have

‖ED,T,UF (D + T ∧ U)‖
= ‖EDETEU

∑

α∈F
n

2

0<|α|<k

F̂αχα(D + T ∧ U)‖

= ‖ETEU

∑

α∈F
n

2

0<|α|<k

F̂α

(
EDχα(D)

)
χα(T ∧ U)‖

≤
∑

α∈F
n

2

0<|α|<k

‖F̂α‖ · δ = δ
k−1∑

i=1

Li(F ).

Now we proceed as before.

‖ED,T,UF (D + T ∧ U)− EUF (U)‖

≤ δ
k−1∑

i=1

Li(F )

+
n∑

i=1

‖ED,T,UHi(D + T ∧ U)F>i(D + T ∧ U)‖

≤ δ

k−1∑

i=1

Li(F )

+
n∑

i=1

(
ED,T ‖EUHi(D + T ∧ U)‖2

)1/2
w1/2

≤ δ
k−1∑

i=1

Li(F ) +
n∑

i=1

(
δLk(F

≤i)2 +
(
1
2

)k
+ γ

)1/2
w

≤
(√

δL(n,w; k) +
(
1
2

)k/2
+

√
γ
)
· nw .

A. Proof of Lemma IV.2

Proof: We proceed as in the proof of Lemma IV.1,

except this time we derive a sharper bound on the quantity

E
D1,D2,...,Dr

T1,T2,...,Tr

‖EG∗

0
f(G∗

0)− EUf(U)‖.

Again, define the random variable

Y = T1 ∧ T2 ∧ · · · ∧ Tr.

Recall that G∗
0 is a 320k-wise independent distribution, so

if |Y | ≤ 320k then

‖EG∗

0
f(G∗

0)− EUf(U)‖ = 0.

Therefore

E
D1,D2,...,Dr

T1,T2,...,Tr

‖EG∗

0
f(G∗

0)− EUf(U)‖

≤ Pr(|Y | ≥ 320k) max
D1,D2,...,Dr

T1,T2,...,Tr

‖EG∗

0
f(G∗

0)− EUf(U)‖

≤ Pr(|Y | ≥ 320k) · 2w1/2.
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We appeal to the following extension of the Chernoff

bound for k-wise independent variables.

Lemma VII.3. (see [SVW14], Lemma A.1) Suppose

X1, X2, . . . Xt are γ-almost k-wise independent variables

with Xi ∈ {0, 1}. Then

Pr

(
1

t

t∑

i=1

Xi ≥
1

2
+

a

2

)
≤
(
40k

a2t

)⌊k/2⌋

+ 2γ

(
2

a

)k

.

As a result, if T is a γ-almost k-wise independent

distribution and α is any fixed bitmask with hamming weight

|α| ≥ 320k, we have

Pr
(
|α ∧ T | ≥ 3

4 |α|
)
≤
(
1
2

)⌊k/2⌋
+ 2γ · 4k.

Noting that
(
3
4

)r
n ≤ 1, a simple union bound argument

shows that

Pr(|T1 ∧ T2 ∧ · · · ∧ Tr| ≥ 320k) ≤ r
( (

1
2

)⌊k/2⌋
+ 2γ · 4k

)
.

To conclude, we have

‖EG∗

r
F (G∗

r)− EUF (U)‖
≤ r ·

(√
δL(n,w; k) +

(
1
2

)k/2
+

√
γ
)
· nw

+ r ·
((

1
2

)⌊k/2⌋
+ 2γ · 4k

)
· 2w1/2

≤ O
((√

δL(n,w; k) +
(
1
2

)k/2
+

√
γ + γ4k

)
· nwr

)
.
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