2018 IEEE 59th Annual Symposium on Foundations of Computer Science

Pseudorandom Generators for Read-Once Branching Programs, in any Order

Michael A. Forbes and Zander Kelley
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL, USA
{miforbes, awk2}@illinois.edu

Abstract—A central question in derandomization is whether
randomized logspace (RL) equals deterministic logspace (L).
To show that RL = L, it suffices to construct explicit pseu-
dorandom generators (PRGs) that fool polynomial-size read-
once (oblivious) branching programs (roBPs). Starting with
the work of Nisan [Nis92], pseudorandom generators with seed-
length O(log2 n) were constructed (see also [INW94], [GR14]).
Unfortunately, improving on this seed-length in general has
proven challenging and seems to require new ideas.

A recent line of inquiry (e.g., [BV10], [GMR12], [IMZ12],
[RSV13], [SVW14], [HLV17], [LV17], [CHRT17]) has suggested
focusing on a particular limitation of the existing PRGs
([Nis92], [INW94], [GR14]), which is that they only fool roBPs
when the variables are read in a particular known order,
such as z; < --- < z,. In comparison, existentially one can
obtain logarithmic seed-length for fooling the set of polynomial-
size roBPs that read the variables under any fixed unknown
permutation 2,1y < -+ < Zr(,). While recent works have
established novel PRGs in this setting for subclasses of roBPs,
there were no known n°() seed-length explicit PRGs for
general polynomial-size roBPs in this setting.

In this work, we follow the “bounded independence plus
noise”” paradigm of Haramaty, Lee and Viola [HLV17], [LV17],
and give an improved analysis in the general roBP unknown-
order setting. With this analysis we obtain an explicit PRG
with seed-length O(log®n) for polynomial-size roBPs read-
ing their bits in an unknown order. Plugging in a recent
Fourier tail bound of Chattopadhyay, Hatami, Reingold, and
Tal [CHRT17], we can obtain a O(log?n) seed-length when
the roBP is of constant width.

Keywords-pseudorandom generators; read-once branching
programs; unknown order; Fourier analysis;

I. INTRODUCTION

A central goal in complexity theory is to understand the
power of randomness in computation, in particular the P
vs BPP problem. A particularly natural method of showing
P = BPP is to construct an explicit e-error pseudorandom
generator (PRG) with sufficiently small seed-length ¢, ideally
logarithmic. That is, a function G : {0,1}* — {0,1}" such
that for any sufficiently efficiently computable f,

F(G(y)) -

()| <e.

E E f
ye{0,1}¢ ze{0,1}7

Given such a PRG, one can then replace the randomness of
a BPP algorithm with the pseudorandom output and then

This work was supported by NSF grant CCF-1755921.

enumerate over all such seeds to obtain a deterministic
algorithm by majority vote (if € is a sufficiently small
constant). After decades of work, the hardness-vs-randomness
paradigm (see for example Vadhan [Vad12]) shows that the
construction of pseudorandom generators fooling general
polynomial-size circuits is intimately tied to the quest for
circuit lower bounds, which remain out of reach. As such,
a long line of work has sought to derandomize subclasses
of BPP. A particularly fruitful model to study has been
randomized logspace (RL), as not only do PRGs for RL have
natural applications, but they can also be unconditionally
constructed, for example as done in the seminal work of
Nisan [Nis92].

In particular, Nisan [Nis92] constructed a PRG fooling the
non-uniform version of RL, that is, the class of polynomial-
size read-once (oblivious) branching programs (roBPs). A
read-once branching program can be thought of as a finite
automaton that takes in binary input strings = of some fixed
size n. Additionally, the transition function of the automaton
is allowed to depend on the position ¢ of each bit x;. We say
that the branching program has width w if the each layer of
time the finite automaton has w states. Visually, branching
programs can be represented as a layered acyclic digraph
with n + 1 layers, each containing w nodes; the transition
function is then represented by assigning two outgoing edges
at each interior node into the next layer. The existence of
a logspace-computable PRG G : {0,1}(™) — {0,1}" for
branching programs of width w = n©(1) is sufficient to show
that BPL C DSPACE(4(n)).

Nisan [Nis92] gave a construction of a PRG with seed-
length ¢ = O(log®n) for polynomial-width roBPs. Since
then, there have been various constructions ([INW94],
[GR14]) recovering the same seed-length using different
techniques, but there has been little quantitative progress
towards the desired seed-length ¢ = O(logn).! In fact,
it remains open even to achieve a seed-length of /¢
O(log® n/ loglogn), even for constant-width branching pro-
grams.

The constructions of Nisan and ([INW94], [GR14]) all

By this we mean quantitative progress in the constant-error regime.
Recently in [BCG17], Braverman, Cohen, and Garg give a hitting set (a
“one-sided” PRG) with a better seed-length in the small-error regime than
Nisan’s generator.

2575-8454/18/$31.00 ©2018 IEEE 946

IEEE
@ computer
DOI 10.1109/FOCS.2018.00093 ® I:)soaety

Authorized licensed use limited to: University of lllinois. Downloaded on February 14,2021 at 23:35:28 UTC from IEEE Xplore. Restrictions apply.

employ a common high-level approach which can be sum-
marized by the following “communication” argument. The
first half of a branching program can communicate with the
second half only via the state reached in the middle layer.
Since there are only w states in this layer, the second half
of the program should “learn” roughly only logw bits of
information about the input bits fed to the first half. Because
of this, it is safe to reuse all but roughly log w of the bits of
entropy invested to generate the first half of the input string
to generate the second half. This argument is then applied
recursively to the left and right subprograms.

There is some feeling that this particular recursive
paradigm will not yield generators with seed-lengths better
than O(log2 n) ((BV10], [RSV13], [SVW14]), and that new,
more flexible techniques are required to make progress. A
crucial feature of this paradigm is that the PRG knows the
order in which its pseudorandom output will be read. In
fact, it is known that Nisan’s generator fails to generate
pseudorandom strings that fool branching programs if they
read the bits of the string in a different order than anticipated
([Tzu09]). The search for a different paradigm motivates the
following challenge: construct a PRG that fools branching
programs which may read their input in any order. To
formalize this, we define the notion of an unknown-order
roBP: a function g : {0,1}" — {0,1} of the form
9(x) = f(Tr(1), Tr(2),- - - Tn(n))» Where 7 is a permutation
(independent of x) and f is a roBP.

Bogdanov, Papakonstantinou, and Wan [BPW11] con-
structed a PRG with seed-length (1 —€2(1)) - n for unknown-
order roBP of width w = n°(). Their primary motivation for
doing so was to derive the first generator with nontrivial seed-
length that fools read-once formulas. Read-once formulas can
be simulated by small-width read-once branching programs
for some order 7, and hence existing generators for known-
order roBPs ([Nis92], [INW94], [GR14]) would not suffice.
Impagliazzo, Meka, and Zuckerman [IMZ12] achieved a
generator with seed length ¢ = (nw)/2t°(1) for unknown-
order roBP of width w.?

II. OUR WORK

Here, we give the first PRG with poly-logarithmic seed-
length for poly(n)-width unknown-order roBPs.

Theorem IL.1. There exists an explicit 1/poly(n)-error pseu-
dorandom generator G : {0,1}000e* ") _5 {0 13" for the
class of functions computable by a poly(n)-width read-once
(oblivious) branching program in some variable order.

As a corollary, we also derive the first PRG with poly-
logarithmic seed length for read-once formulas (see [BPW11]
for the reduction).

2 In fact, their generator fools the more general model of branching
programs that may read the input bits any number of times and in any
adaptive order.

947

Corollary. Thefe exists an explicit pseudorandom generator
G : {0,1}000e"n) 5 10, 1}" for read-once formulas with
constant fan-in. O

A. Our Techniques

We now briefly describe our proof technique at a high-
level, with a more technical discussion given in Section V.
The main motivation comes from the “bounded independence
plus noise” paradigm introduced by Haramaty, Lee, and Viola
([HLV17], [LV17]). There, they study the addition (modulo 2)
of a low-wise independent distribution with a pseudorandom
noise distribution. The intuition is that to fool a function f,
it suffices to create a distribution to dampen all non-constant
Fourier coefficients. For low-degree Fourier coefficients, this
can be achieved by a low-wise independent distribution. In the
other extreme, high-degree Fourier coefficients are dampened
by coordinate-wise independent noise. The addition of these
two distributions can then inherit the best of both distributions
and fool the desired function f.

However, the above outline has two challenges. First, the
noise distribution (picking each coordinate independently
amongst {0, 1}) requires too large a seed-length. To address
this, the work of Haramaty, Lee, and Viola ((HLV17], [LV17])
proposed to use a pseudorandom noise distribution where a
pseudorandom set of coordinates are first chosen, and then
the elements within those coordinates are then substituted
with truly random values. While this proposal as stated still
requires a large seed-length, the key observation is that the
number of truly random bits has shrunk from n originally
to n/2 (for if you choose a (pseudorandom) subset of
{1,...,n} it has size ~ n/2). Thus, one can hope to then
recursively apply the construction in ~ logn rounds until no
random bits are further required.

The second, more serious, challenge is to show that a
single step of “bounded independence plus (pseudorandom)
noise” actually fools the target function f, and doing so is the
main contribution of this work (Lemma VI.3). The difficulty
in addressing this is that there are too many high-degree
Fourier coefficients, so that while each can be individually
fooled by the construction, we cannot apply a union bound
while maintaining a small seed-length. Indeed, nothing so
far in this discussion has used anything about the structure
of the function f, which clearly must be used to obtain a
small seed-length.

To meet this challenge, we avoid a naive union bound
by instead grouping high-degree Fourier coefficients into a
small number of groups, each of which can be dampened at
once. Specifically, we group high-degree Fourier coefficients
into n sets, where the i-th set contains those coefficients
that “become” high-degree upon reading the i-th variable
(Proposition VI.1).> On an intuitive level, one can then appeal

~
~

3Note that this grouping depends on the order of the variables. However,
this grouping only occurs in the analysis, and that the construction itself is
oblivious to the variable order.

Authorized licensed use limited to: University of lllinois. Downloaded on February 14,2021 at 23:35:28 UTC from IEEE Xplore. Restrictions apply.

to the “bounded communication” aspect of a roBP to argue
that in the i-th grouping those variables read after the ¢-th
variable can be essentially ignored. We are then left with
Fourier coefficients that are of medium degree (for if they
were very-high degree they would have been put in the j-th
group for some j < 7). The number of such medium-degree
Fourier coefficients is not too large (because the degree is
not too large), and yet each such coefficient is dampened by
the noise distribution (because the degree is not too small).
This then allows us to apply a union bound to obtain that
we have dampened all the Fourier coefficients in the ¢-th
grouping, and by applying this for all 7 we obtain the result.

B. The Constant-Width Case

Although we give the first PRG with poly-logarithmic
seed-length for the general case of poly-width unknown-order
roBPs, such a seed-length has been qualitatively achieved
in the constant-width case as a result of a recent line of
work. Reingold, Steinke, and Vadhan [RSV13] gave a PRG
with seed-length O(log® n) for unknown-order permutation
branching programs of constant width. Steinke, Vadhan, and
Wan [SVW14] gave a PRG with seed-length O(log® n) for
unknown-order width-3 branching programs. Chattopadhyay,
Hatami, Reingold, and Tal [CHRT17] gave a PRG with seed-
length O(log” ™! n) for unknown-order branching programs
of constant-width w. Central to each of these results is a
bound on a certain key quantity: the level-k Fourier mass of
a branching program (see Section III). In each work, a bound
on this quantity is established for the class of branching
programs under consideration, and then this bound is used
to deduce the result.

Although we also employ a Fourier analytic approach, a
major contrast between our techniques and this line of work
is that in general we have no need of any nontrivial bound on
the Fourier mass of branching programs. However, we can
still make use of one to replace otherwise naive bounds on
Fourier mass in our argument. By incorporating the level-k
Fourier mass bound for constant-width branching programs
derived in [CHRT17] into our approach, we get the following
improvement on Theorem II.1 in the constant-width case.

Theorem IL2. There exists an explicit 1/poly(n)-error pseu-
dorandom generator G : {0,1}°0°¢° ") _5 {0 1}" for the
class of functions computable by a O(1)-width read-once
(oblivious) branching program in some variable order.

Thus in the constant-width case, we nearly recover the
O(log2 n) seed-length of Nisan’s generator for the more
challenging model of unknown-order branching programs.

III. PRELIMINARIES

Here we describe a convenient algebraic encoding of a
branching program as a product of one-bit matrix-valued
functions. Recall that a branching program of width w is a
w-state finite automaton where the transition map is allowed

to depend on the number of bits read so far. Let us encode the
w states as the set of standard basis vectors in R”. Then, the
transition map corresponding to the i-th input bit z; can be
encoded by a pair of transition matrices A; o, 4;1 € R**",
defined so that A; , applied to the current state produces the
appropriate successor state. Define the one-bit matrix-valued
functions F;(z;) = A; . With this notation in place, the
value of a branching program f on an input z € {0,1}" is
given by the (1, 1) entry of the product

F(z) := Fy(z1)Fy(z2) - - - Fru(zy) -

This entry indicates whether the string x defines a path
through the program that takes the start state to the accepting
state.

Let U denote the uniform distribution over {0,1}" and let
X be an arbitrary distribution over {0,1}". To show that a
branching program f is e-fooled by X, it suffices to bound the
error [Ex f(X) —Eu f(U)] = [ExF(X)11 — EvF(U)11]
by e. However, it will be more convenient to simply bound
the Frobenius norm of the entire error matrix

ExF(X) -EyFU) ,

by ¢. Recall that the Frobenius norm of a matrix is defined

by
M| o= yJtr (MTM) = > M
@]

so clearly such a bound is also sufficient. In this paper,
will always denote the Frobenius norm.

A. Fourier Analysis
For every vector o € Fy, define the associated Fourier
character x, : F3 — R via

Xa(@) = (=1){*7).

We say that x,, is a degree-k Fourier coefficient if |«| = k,
where |« denotes the hamming weight of a. Any function
F : Fy — R"*" can be expanded in the basis of Fourier
characters, with coefficients from the ring R***. The Fourier
expansion of F is

F(I) = Z F\aXa(x)y
a€clFy
where the Fourier coefficients ﬁa are given by

F,:= E F(2)xa().

reFy
This identity can easily be checked with the aid of a few
useful properties of Fourier characters; namely
Xa(a:)Xﬁ(x) = on+5($)

and
ifa=0
otherwise.

Authorized licensed use limited to: University of lllinois. Downloaded on February 14,2021 at 23:35:28 UTC from IEEE Xplore. Restrictions apply.

Aside from this, we will only need a few simple facts
about Fourier analysis. Firstly, we note that the expectation
of a function F' under the uniform distribution is conveniently
encoded by its 0-th degree Fourier coefficient:

EyF(U) = Z FoEuxa(U) = Fp.

aclky

Next, we will need Parseval’s identity to get a bound on the
sum of squares of Fourier coefficients.

Proposition ITI.1 (Parseval for matrix-valued functions).

EJ2= E ||[F2)|?.
> IE xngll (@)l

a€clFy

Proof: Let (-,-) denote the Frobenius matrix inner
product, which is defined by

(M,N)=tr(MTN) = ZMMNM.
4,7

First note that

1P (@)|* = (F(x), F(2))

<Z Faxa(@), Y Faxs(@)

acFy BEFy

> > (PPl xarola) -

a€clFy BeFy

;

Thus

Eqery || F ()]

Z Z <ﬁa>ﬁﬁ> mg@xaw(@

a€Fy BeFD

> (5.7

acky

> IF)7

a€clFy

I

We remark that if F' is a branching program, then upon
any input x, F'(x) is equal to some transition matrix that has
exactly w entries of value 1 and its remaining entries are all
zeros. Thus for branching programs we have ||F(z)[]* = w

for any z, and the above identity gives >, cpp | Fol* = w.

Finally, we define L (F'), the level-k Fourier mass of a
function, as in [RSV13]:

L(F) = Y |IFull-

aclFy
|a|=k

Recalling that HﬁaH = |E.F(2)Xa(z)|| < E ||F(z)]| =
w/2, note that we have the trivial bound

et < (7)u2,

949

for branching programs.*

Chattopadhyay, Hatami, Reingold, and Tal [CHRT17]
derive the following bound on the level-k Fourier mass of
a branching program which significantly improves upon the
trivial bound in the case of small w.

Theorem IIL.2 (Chattopadhyay, Hatami, Reingold, and
Tal [CHRTI17]). Suppose F : IF% — R¥X¥ encodes a
branching program of width w. Then

Ly(F) < O(logn)™k . O

We also define the level-k Fourier complexity of width-w
branching programs,

k
L k) = ;
(n, w; k) mngﬁz(F) ,
i=1
where the maximum is taken over all functions F': F§ —
R*>*® that encode a branching program.

B. Pseudorandom Primitives

In this section, we collect some basic pseudorandom
distributions over I3 that will serve as building blocks for our
generator. It is important that the defining property of each
of these distributions remains unaffected by a re-ordering
of bit positions. The fact that we build our generator out of
permutation-invariant components is what allows it to fool
branching programs that read their input in any order.

First we introduce J-biased distributions, which fool linear
functions over Iy, i.e. Fourier characters.

Definition IIL3. Let D be a distribution over Fy. We say
D is §-biased if, for every nonzero o € N, we have

[Epxa(D)] <6 O

It is possible to sample from a J-biased distribution using
O(logn + log 1/s) random bits ((NN93], [AGHP92]).

Next we have k-wise independent and y-almost k-wise
independent distributions, which look locally uniform and
thus fool functions that only depend on a few bits.
Definition IIL.4. Let D be a distribution over Fy. We say
D is k-wise independent if, for every f : Fy — [—1,1] that
depends on at most k bits, we have

Ep f(D) =Eu f(U).
If D merely satisfies
[Epf(D) —Eu f(U)| <~

for every such f, we say that D is ~-almost k-wise
independent. O

It is possible to sample from a k-wise independent
distribution using O(k - logn) random bits ([Vad12]) and

4Actually, one can easily derive the slightly better bound L (F) <

(Z)l/ 2wl/2 by first applying Cauchy-Schwarz followed by Parseval’s
identity.

Authorized licensed use limited to: University of lllinois. Downloaded on February 14,2021 at 23:35:28 UTC from IEEE Xplore. Restrictions apply.

from a ~-almost k-wise independent distribution using
O(k+loglogn+log1/~) random bits ((NN93], [AGHP92]).
We remark that Fourier characters x, () only depend on |«|
bits of z, so these distributions also fool low-degree Fourier
characters.

IV. THE GENERATOR

We adopt our construction from the “bounded indepen-
dence plus noise” framework developed by Haramaty, Lee,
and Viola in [HLV17], [LV17]. In fact this framework is
essentially equivalent to the “mild pseudorandom restriction”
framework developed by Gopalan, Meka, Reingold, Trevisan
and Vadhan [GMRT'12] and subsequently employed by
various authors (e.g., [RSV13], [SVW14], [CHRT17]), but
we find the bounded independence plus noise perspective
more convenient to work with.

We actually give two slightly different constructions. The
first construction only uses k-wise independence as a core
pseudorandom primitive (along with appropriate recursion),
and suffices for proving Theorem II.1. The second construc-
tion replaces the use of exact k-wise independence with the
use small-bias spaces and almost k-wise independence. This
allows the error analysis to be more general (but also slightly
more involved due to additional parameters). In particular,
this second construction also suffices for handing general
roBPs (Theorem II.1), but now the added generality can
be tuned to achieve a better seed-length for constant-width
roBPS, as required to prove Theorem II.2.

We proceed to give the first construction.

Let Dy, Do, ..., D, denote r independent copies of a 2k-
wise independent distribution and let 14,75, ...,T, denote
r independent copies of a k-wise independent distribution
over 5. We then define the distribution G, recursively as
follows. Let G be equal to the all-ones string in %, and
set

Giy1:=D;+T; NG,

where A denotes bitwise AND and + denotes addition over
FZ (i.e. bitwise XOR).

Lemma IV.1. Suppose F : Fy — RY*™ encodes a branch-
ing program. Then G.., with parameters k = [51gn+21gw]
and r = [2lgn + %lg w], fools F with error

e=|Eq F(G,) —EgFU)| <0 (1).

This proves Theorem II.1, since in the case of width
w = n°W the price of sampling such a distribution is
O(r - k - logn) = O(log® n) random bits.

We now define the second construction, G. This time, let
Dy, D,, ..., D, denote r independent d-biased distributions,
and let T1,T5, ..., T, denote r independent ~y-almost k-wise
independent distributions. We set G equal to a 320k-wise
independent distribution, and again we define

G:—&-l :D,—i-jjz/\cgzk

Lemma IV.2. Suppose F : Fy — RY*Y encodes a
branching program. Then G, with depth r = [lgn], fools
F with error

e = [Ee: F(G}) ~ By F(U))
<0 <(\[§L’(n,w; k) + (%)k/Q +V7+ 74’“) . nwr) .
Since G can be sampled at the cost of
O((logn+log 1/6+k+1logl/y) -r+k- logn)

random bits, it suffices to set

o 7 =[lgn]
o k=[31g(nw/e)]
« 7= (nw/e)™?

o 0= (nwL(n,w;k)/e)™3
to get a generator with seed length

¢ = O((log(nw/e) + L(n,w;k)) - logn)

that O(e)-fools branching programs F' of width w. From this
we derive the following two corollaries by invoking either
the trivial bound or the bound from [CHRT17] on the level-k
Fourier mass of width-w branching programs. The second
of these corollaries proves Theorem II.2.

Corollary IV.3. There exists an explicit PRG with seed
length
¢ = O(log(nw/e) - log? n)

that e-fools unknown-order branching programs of width w.

Corollary IV4. There exists an explicit PRG with seed
length

¢ = O(w - log(nw/e) - logn - loglog n)
that e-fools unknown-order branching programs of width w.

V. PROOF STRATEGY

We show that GG, successfully fools branching programs
with the following inductive analysis. By adding and sub-
tracting the term F(D; + T; A U), we have

|Eg, F(G:) — Ev F(U)|
= HEDI'ETZ»EGi,lF(Di +T; A Gifl) — EUF(U)”
< |Ep,Er,EvF(D; + T; AU) — Eg F(U)]|
+Ep,Er,|Bq, F(Di +T; AGi—1)
—EyF(D; + T, AU .

Since, for any fixed vectors d,t € FZ, the function
F'(x) := F(d+tAx) is again some branching program, we
argue that F” is fooled inductively. The bulk of our proof is
then spent arguing that Ep p v F'(D +T AU) = Ey F(U).

The starting point of this argument is the observation that
the “noise-like” distribution 7' A U successfully fools any
function that is divisible by a high-degree Fourier character.

Authorized licensed use limited to: University of lllinois. Downloaded on February 14,2021 at 23:35:28 UTC from IEEE Xplore. Restrictions apply.

Specifically, suppose that 7" is k-wise independent and that
a € F§ has hamming weight |a| > k. Let g : F§ — [—1,1]
be an arbitrary function such that g and x, depend on disjoint
sets of input bits. Then 7' A U fools the function f := x, - g
with error € = 1/2*:

Eyf(U) = (Euxa(U)) (Evg(U)) =0,

and

Er,uf(T AU)| = [Er(Euxa(T AU)) (Evg(U))]

< Er[Euxa(T AU)|[Evg(U)]

< IET|EUX04(T A U)l

= ET]].(Oé ANT = 0)

1
< oF
Overall, we wish to enact the following plan. If /' encodes
our branching program, we wish to use Fourier analysis to
rewrite F' as a sum of simpler terms, and then use linearity of
expectation together with a triangle inequality to argue that
D + T AU fools each term separately.’ Recall the product
structure of F,
F(z) = Fi(21)Fy(x2) - - Fa(an),

where F;(z;) = A, ;,. We can imagine taking the Fourier
expansions of these one-bit factors:

Fi(zi) = 3(Aio+ A1) + (Ao — A,
=:B; o+ B;1(—1)"",

BICE

so that F' has the form

ﬁ O+le)l)

i=1

If we expand this product completely, we recover the Fourier
expansion of F'. Certainly the terms in this sum are simple
enough, but the problem is that there are too many of them;
we cannot afford a 2"-fold triangle inequality. Instead, we
expand this product more “slowly”: only until we see that
some term has collected a degree-k Fourier character as
a factor. By the above observation, this term can be killed
immediately, and we go on expanding the remaining terms. At
the end, we are left with only low-degree Fourier coefficients,
which can all be fooled by the distribution D. By doing this
carefully, we get by with only n applications of the triangle
inequality.

3 This approach is inspired by the similar arguments of Haramaty, Lee,
and Viola employed in [HLV17]. However, the generators they produce
with this idea have seed length > nl/2 while we achieve generators with
poly-logarithmic seed-length.

V1. PROOF OF LEMMA IV.1

Suppose
F(z) = Fi(z1)Fa(x2) - -

encodes a branching program. We define the subprograms
of F,

ng(.ﬁl, . ,.%'i) = Fl(xl)Fg(.’BQ) . Fz(.’I)l)

and

F2 U @iy @) = Fip(Tig1) Fipo(Tiga) - Folzn) |

so that F' = F<'. > for any i (we define F>" as the empty
product, so that it is an identity matrix I). With this notation
in place, we can re-express [’ in the following convenient
form.

Proposition VI.1. Suppose F : F — RY*" encodes a

branching program. Then for any k > 1, F' can be written
as

F=Fy+L+Y H; F,

i=1

> FaXa

a€cFy
0<|al<k

— § i
- Fa Xa-
ae]Fg
|| =k
a;=1

where

and

Proof: We verify that the expression has the same Fourier
expansion as F'.

=1 \ qclF} Bery~*
|a|=k
a;=1
= E E § ()LﬁX(l/ﬁ
i=1 oclF} BEFy ™ i
|o¢\:k
a;=1
= E § Faon(x)
a€cFy

Ot1+042+ +Ot1—k

Otlf

= ZFaXa-

acFy
la|>k
|
Now we derive a useful expectation bound for functions
whose Fourier expansions are only supported at degree k.

Authorized licensed use limited to: University of lllinois. Downloaded on February 14,2021 at 23:35:28 UTC from IEEE Xplore. Restrictions apply.

Lemma VI.2. Let

H(z) = Z ﬁaxoc(x)
a€eFy
|a|=k

be some function whose Fourier expansion is supported
only at degree k. Let D, T, and U denote respectively a
2k-wise independent, a k-wise independent, and a uniform
distribution over 3. Then we have

1 ~
2 2
Epr|EvH(D +T AU)| §2k|§_kHa|| .

Proof: Firstly, note that

EvH(D+TAU)=Ey Y Hoxa(D+TAU)
|| =k
|a|=Ek
= Z H, 'Xa(D) 'EUXa(T/\U)
|a|=Fk

= Hy xa(D) Aa AT =0) .
|al=k

Letting (-,-) denote the Frobenius matrix inner product,
we have

|EvH(D +T AU)|?
= (EyH(D+TAU),EyH(D +T AU))

= < Z ﬁaX(x(D)]]'(a/\T: O)a

|a|=Ek

> Hoxp(D)UBAT = o>>

|Bl=Fk

= 5" ST (Ha, Hs) - xars(D) - U(aV B) AT = 0)

lal=k |B|=k

and

Ep|EgH(D +T AU)|?

=Ep > Y (Ha Hp)Xa+s(D)U(aVB) AT =0)
|a|=k |B|=k

= 3 3 (Ha, H5) (EpXass(D) U (aV H) AT = 0)
o=k |Bl=k

= > (Ha, H)Wa AT =0)
|al=k

= > |HaPUa AT =0) .
|a|=k

Finally,

Eprl|[EvH(D +T AU)|?
= ErEp|ByH(D+T AU)|?
=Er Y ||Ho|PUa AT =0)
la|=Fk
= > |Ha|? Erla AT =0)
|or|=k
= > I (3)"

loe|=k

|

We now have the tools in place to prove our main technical
lemma.

Lemma VL3. Suppose F : Fj — RY*" encodes a
branching program. Let D, T, and U denote respectively a
2k-wise independent, a k-wise independent, and a uniform
distribution over 3. Then D +T N U fools F' with error

w

e =|[EpruF(D+TAU)—EyF(U)| < %

Proof: To analyze |Ep v F(D+TAU)—-EyFU)|,
we use the preceding expansion of F' together with linearity
of expectation and the triangle inequality. Recalling that
EyF(U) = Fy, this gives

||ED7T’UF(D +T A U) —]EUF(U)H
<|EpruvL(D+T AU

n

+Y |EprvH(D+TAU)FZ(D+T AU .

i=1

The low-degree term is dealt with easily by D:

ED,T,UL(D +T A U)

=EpErEy Y Faxa(D+TAU)
acFy
0<|a|<k
=EpErEy Z F\ozXot(D)Xa(T AU)
a€Fy
0<|a|<k
:ETEU Z F\a . (EDXa(D)) 'Xa(T/\U)

a€cFy
0<|al<k

=0.

Authorized licensed use limited to: University of lllinois. Downloaded on February 14,2021 at 23:35:28 UTC from IEEE Xplore. Restrictions apply.

Now for each ¢ we have
|EpruH(D+TAU)E>(D+TAU)|
= ||Ep,r(EvH;(D+ T AU))(EgF~ (D + T AU))||
<Epr|EBuHi(D+TAU)||EgE> (D +T AU)|
<Epr|EvHi(D+ T AU)|w'/?

1/2
< (Ep2EuHi(D+ T AD)?) w2

<Y (X IEER)

acly
k/2
= ()"
where we get the final equality by applying the Parseval
identity to F'<%, |

A. Proof of Lemma 1V.1

Proof: Recall the induction framework outlined in
Section V:

[Ec, F(Gi) — Ey F(U)||
= |Ep,Er,Eq,_, F(Di + T; AGi—1) —Eu F(U)||
<|Ep,Er,EyF(D; + T; NU) — Ey F(U)]|
+Ep,Eg, “Egi_lF(Di + T A Gi—l)
— EUF(Di +T; A U)H
We have seen how to carry out the inductive step; it remains
to establish the base case. To do this, we wish to think of
F(G,) as a function of G only, with Dy, Ds,..., D, and
Tl,Tg, . ,TT fixed.
Specifically, we do the following. Define the strings gg :=
x and g; :== D; +T; A g;—1, and define the function f(x) :=
F(g,). Note that with this setup we have F(G,) = f(Go),
and so

|Ec, F(Gr) = Eu F(U)|
= |Ep,Er,Eq, , F(Dy + T, A Gr1) — Eg F(U) ||

< Y L Ep Er |[Ee, F(Dy + T AGy_y)

2k/2
—EyF (D, + T, ANU)|

< nw nw nw
Sgntant T an
+ . oE p IBG, f(Go) ~EufO)]]
T, Ts,...., T

Now we must show that the function f is fooled by Gg
for most values of D; and T;. Luckily, for r large enough,
f is often a constant function and therefore fooled by any
distribution.

In particular, let T;[j] denote the j-th bit of T; and define
the indicator random variables

Y; = ATl

Note that f(x) depends on the j-th bit of x only if ¥; =1,
and so f(z) is constant if Z?Zl Y; = 0. Also note that
Pr(Y; =1) = 27". By applying a Markov inequality, we
have

Ep,,ps,...D.|Ec f(Go) — Ev f(U)||
T1,T2,..., Ty
< Pr Y, >1 max IEg, f(Go) — Eu f(U)]]
=1 T,

2naw/?
p— 27,

If weset k>5lgn+2lgw and r > 21gn + %lgw, G,
fools F' with error
nw 2nw'/? 3
e =|Eqg, F(G,) —EyFU)| <r- BYE) + o < I

|

VII. PROOF OF LEMMA IV.2

The proof of Lemma IV.2 follows the same story as the
previous section with details differing in two places. First, we
derive an analogue of Lemma V1.2 which is slightly messier
due to our now weaker pseudorandom primitives. Secondly,
in order to get the best possible seed-length in the small error
regime, this time we analyze the base case with a bit more
care. In particular, we upgrade the Markov argument to a
Chernoff bound for «y-almost k-wise independent variables.

Lemma VIL.1. Let

H(z) = > Hoxa(x)
a€cFy
lal=k
be some function whose Fourier expansion is supported only
at degree k. Let D, T, and U denote respectively a §-biased,
a y-almost k-wise independent, and a uniform distribution
over Fy. Then we have

Epr|EvH(D +T AU)|?
< (2 4a) (o0 (1) + X 1A
|| =k || =k

Proof: As before, we have
|EgH(D +T AU)|?
= 3 3 (Ha s) Xarp(D)il(a v H) AT =0) .

loel=Fk |B]=k

Authorized licensed use limited to: University of lllinois. Downloaded on February 14,2021 at 23:35:28 UTC from IEEE Xplore. Restrictions apply.

We analyze the terms with a = 5 and « # 3 separately. For
the cross terms we have

EpEr Y > (He, Hg)Xass(D)L(a V B) AT =0)

la|=k B#a
= 3 e 15) (Epxass(D))
|a|=k B#a

: (ETﬂ((avﬁ) AT = 0))

< > S I -6 (275 +7)

|a|=k B#a

<5 (2749) (X ||1§ra||)2 .

la|=Fk

For the like terms we have

ErEp Y (Haw Ho) Xo(D)UT Ao =0)
lal=k

= 3 Hal? - Ex AT Ao =0)
la|=k

< > P (275 +7)

la|=k

O

We now derive the following analogue of Lemma VI.3.

Lemma VIL.2. Suppose F : Fy — R“*" encodes a
branching program. Let D, T, and U denote respectively
a d-biased, a v-almost k-wise independent, and a uniform
distribution over Iy, and let Then D 4T AU fools F' with
error

€ :iHE[LTJ]PX1)4*11A17)AﬂEUfKLOH
< (\/Sﬁ(n,w;k) + (%)k/2 + ﬁ) “nw .

Proof: Again we use Proposition VI.1 to split F' into
high and low degree components:

HE[LTJJPK1)4*71A17)AWEUfra])H
<|EpruL(D+T AU

+Y | EprvHi(D+TAU)FZ(D+T AU)|.

i=1

For the low-degree component we have

|Ep,ruF(D+TAU)
::|“E[ﬂETJEU z{: jixXa(l)'+'ij Uj”

acFy
0<|a|<k
= BBy > Fa(Epxa(D))xa(T AD)|
a€clFy
0<|a|<k
k—1
< ji: [Fall-0= 525:‘%(FU
aEl? i=1

0<|a|<k

Now we proceed as before.

IEprvF(D+TAU)—EuFU)|

k-1
<4 Z Li(F)
i—1

+Y |EprvH(D+TAU)FZ(D+TAU)|

i=1

n 1/2
+>" (EpalEcH(D+TAD)P) w2

=1

k—1 n
< 5Z‘Ci(F) + Z (5£k(F§i)2 n (%)k +7) 1/2w
i=1 i=1

k/2

< (\/gﬁ(n,w;k) + ()7 + ﬁ) Snw .

A. Proof of Lemma 1V.2

Proof: We proceed as in the proof of Lemma IV.1,
except this time we derive a sharper bound on the quantity

oo pE 1B F(G5) —Eu fU)I-
T1,Tz,...., T

Again, define the random variable
Y=T1"ANToN---NT,.

Recall that G is a 320k-wise independent distribution, so
if |Y| < 320k then

|Eg: f(Gy) —Eu f(U)]| = 0.

Therefore

Dy,Ds,...,

< Pr(|Y] > 320k) - 2w'/?.

Authorized licensed use limited to: University of lllinois. Downloaded on February 14,2021 at 23:35:28 UTC from IEEE Xplore. Restrictions apply.

We appeal to the following extension of the Chernoff
bound for k-wise independent variables.

Lemma VIL3. (see [SVWI14], Lemma A.1) Suppose
X1, Xa,... Xy are v-almost k-wise independent variables
with X; € {0,1}. Then

t Lk/2] k
1 1 a 40k 2
- >4 - | < = Z) .

As a result, if T is a ~y-almost k-wise independent
distribution and « is any fixed bitmask with hamming weight
|| > 320k, we have

Pr(laAT| > 3la]) < (2)% 424 4.

Noting that (%)r n < 1, a simple union bound argument
shows that

Pr(|Ty ATy A+~ AT,| > 320k) < r((3)™% +

2y - 4%).
To conclude, we have
[Eq; F(Gr) — Eg F(U)|
<r- (VoLm,wik)+ (3)"* + 7) - nw

tr- ((%)W2J +2y- 4’€> 2w/
<0 (VoL wik)+ (3)"* + 7 +74) - nur) .
|

REFERENCES

[AGHP92] N. Alon, O. Goldreich, J. Hastad, and R. Peralta,
“Simple constructions of almost k-wise independent
random variables,” Random Structures & Algorithms,
vol. 3, no. 3, pp. 289-304, 1992.

[BCG17] M. Braverman, G. Cohen, and S. Garg, “Hitting

sets with near-optimal error for read-once branching

programs,” 2017.

[BPWI11] A. Bogdanov, P. A. Papakonstaninou, and A. Wan,

“Pseudorandomness for read-once formulas,” in Foun-

dations of Computer Science (FOCS), 2011 IEEE 52nd

Annual Symposium on. 1EEE, 2011, pp. 240-246.

[BV10] J. Brody and E. Verbin, “The coin problem and pseudo-

randomness for branching programs,” in Foundations

of Computer Science (FOCS), 2010 51st Annual IEEE

Symposium on. 1EEE, 2010, pp. 30-39.

[CHRT17] E. Chattopadhyay, P. Hatami, O. Reingold, and A. Tal,

“Improved pseudorandomness for unordered branching

programs through local monotonicity,” in Electronic

Colloquium on Computational Complexity (ECCC),

pages TR17-171, 2017.

[GMRT12] P. Gopalan, R. Meka, O. Reingold, L. Trevisan, and

S. Vadhan, “Better pseudorandom generators from

milder pseudorandom restrictions,” in Foundations of

Computer Science (FOCS), 2012 IEEE 53rd Annual

Symposium on. 1EEE, 2012, pp. 120-129.

955

[GR14]

[HLV17]

[IMZ12]

[INW94]

[LV17]

[Nis92]

[NN93]

[RSV13]

[SVW14]

[Tzu09]

[Vad12]

A. Ganor and R. Raz, “Space Pseudorandom
Generators by Communication Complexity Lower
Bounds,” in Approximation, Randomization, and
Combinatorial ~ Optimization. — Algorithms and
Techniques (APPROX/RANDOM 2014), ser. Leibniz
International Proceedings in Informatics (LIPIcs),
K. Jansen, J. D. P. Rolim, N. R. Devanur,
and C. Moore, Eds.,, vol. 28. Dagstuhl,
Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2014, pp. 692-703. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2014/4732

E. Haramaty, C. H. Lee, and E. Viola, “Bounded inde-
pendence plus noise fools products,” in LIPIcs-Leibniz
International Proceedings in Informatics, vol. 79.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

R. Impagliazzo, R. Meka, and D. Zuckerman, “Pseu-
dorandomness from shrinkage,” in Foundations of
Computer Science (FOCS), 2012 IEEE 53rd Annual
Symposium on. 1EEE, 2012, pp. 111-119.

R. Impagliazzo, N. Nisan, and A. Wigderson, “Pseudo-
randomness for network algorithms,” in Proceedings
of the twenty-sixth annual ACM symposium on Theory
of computing. ACM, 1994, pp. 356-364.

C. H. Lee and E. Viola, “More on bounded indepen-
dence plus noise: Pseudorandom generators for read-
once polynomials,” 2017.

N. Nisan, “Pseudorandom generators for space-
bounded computation,” Combinatorica, vol. 12, no. 4,
pp. 449-461, 1992.

J. Naor and M. Naor, “Small-bias probability spaces:
Efficient constructions and applications,” SIAM journal
on computing, vol. 22, no. 4, pp. 838-856, 1993.

0. Reingold, T. Steinke, and S. Vadhan, “Pseudoran-
domness for regular branching programs via fourier
analysis,” in Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques.
Springer, 2013, pp. 655-670.

T. Steinke, S. Vadhan, and A. Wan, “Pseudorandomness
and fourier growth bounds for width 3 branching
programs,” arXiv preprint arXiv:1405.7028, 2014.

Y. Tzur, “Notions of weak pseudorandomness and
2f(2™)-polynomials,” Ph.D. dissertation, Master’s the-
sis, Weizmann Institute of Science, Rehovot, Israel,
2009.

S. P. Vadhan, “Pseudorandomness,” Foundations and
Trends in Theoretical Computer Science, vol. 7, no.
1-3, pp. 1-336, 2012.

Authorized licensed use limited to: University of lllinois. Downloaded on February 14,2021 at 23:35:28 UTC from IEEE Xplore. Restrictions apply.

