
Towards Blackbox Identity Testing of Log-Variate

Circuits

Michael A. Forbes

University of Illinois at Urbana-Champaign, USA

miforbes@illinois.edu

Sumanta Ghosh

Department of Computer Science, IIT Kanpur, India

sumghosh@cse.iitk.ac.in

Nitin Saxena

Department of Computer Science, IIT Kanpur, India

nitin@cse.iitk.ac.in

Abstract

Derandomization of blackbox identity testing reduces to extremely special circuit models. After

a line of work, it is known that focusing on circuits with constant-depth and constantly many

variables is enough (Agrawal,Ghosh,Saxena, STOC’18) to get to general hitting-sets and circuit

lower bounds. This inspires us to study circuits with few variables, eg. logarithmic in the size s.

We give the first poly(s)-time blackbox identity test for n = O(log s) variate size-s circuits

that have poly(s)-dimensional partial derivative space; eg. depth-3 diagonal circuits (or Σ∧Σn).

The former model is well-studied (Nisan,Wigderson, FOCS’95) but no poly(s2n)-time identity

test was known before us. We introduce the concept of cone-closed basis isolation and prove its

usefulness in studying log-variate circuits. It subsumes the previous notions of rank-concentration

studied extensively in the context of ROABP models.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory, The-

ory of computation → Fixed parameter tractability, Theory of computation → Pseudorandom-

ness and derandomization, Computing methodologies → Algebraic algorithms, Mathematics of

computing → Combinatoric problems

Keywords and phrases hitting-set, depth-3, diagonal, derandomization, polynomial identity test-

ing, log-variate, concentration, cone closed, basis isolation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.54

Related Version A full version of the paper is available at https://www.cse.iitk.ac.in/

users/nitin/papers/log-var-hsg.pdf.

Acknowledgements M.F. & N.S. are grateful to the organizers of algebraic complexity workshops

in 2014 (MPI Saarbrücken & TIFR Mumbai) that initiated the early discussions.

N.S. thanks Manindra Agrawal for useful discussions. N.S. thanks the funding support from

DST (DST/SJF/MSA-01/2013-14).

1 Introduction

Polynomial Identity Testing (PIT) problem is to decide whether a multivariate polynomial is

zero, where the input polynomial is given as an algebraic circuit. Algebraic circuits are the

algebraic analog of boolean circuits that use ring operations {+,×} and computes polynomials

(say) over a field. Since a polynomial computed by a circuit can have exponentially many

E
A
T
C
S

© Michael A. Forbes, Sumanta Ghosh, and Nitin Saxena;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 54; pp. 54:1–54:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

54:2 Towards Blackbox Identity Testing of Log-Variate Circuits

monomials wrt the circuit size, one cannot solve PIT in polynomial time by explicitly

expanding the polynomial. On the other hand, using circuits we can efficiently evaluate

polynomials at any point. This helps us to get a polynomial time randomized algorithm for

PIT by evaluating the circuit at a random point, since any non-zero polynomial evaluated

at a random point outputs a non-zero value with high probability [10, 58, 54]. However,

finding a deterministic polynomial time algorithm for PIT is a longstanding open question in

algebraic complexity theory. The PIT problem has been studied in two different paradigms:

1) whitebox – allowed to see the internal structure of the circuit, and 2) blackbox – can

only use the circuit as an oracle to evaluate at points (from a small field extension). It has

deep connections with both circuit lower bounds [29, 31, 1, 2] and many other algorithmic

problems [41, 4, 35, 11, 13]. For more details on PIT, see the surveys [51, 52, 55] or review

articles [56, 42].

Despite a lot of effort, little progress has been made on the PIT problem in general.

However, efficient (deterministic poly-time) PIT algorithms are known for many special

circuit models. For example, blackbox PIT for depth-2 circuits (or sparse polynomials)

[8, 34, 39], PIT algorithms for subclasses of depth-3 circuits [33, 50, 53], subclasses of depth-4

circuits [5, 7, 46, 15, 36, 37, 45], read-once algebraic branching programs (ROABP) and

related models [19, 6, 18, 3, 26, 25], certain types of symbolic determinants [12, 27], as well

as non-commutative models [38, 22].

1.1 Our results

In the first result, we give a polynomial time blackbox PIT algorithm of log-variate depth-3

diagonal circuits Σ ∧ Σ (i.e. number of variables is logarithmic wrt circuit size). Depth-3

diagonal circuits compute a sum of power of linear polynomials. This model was first

introduced by [51] and has since drawn significant attention of PIT research community.

Saxena [51] first gave a polynomial time whitebox algorithm and exponential lower bound

for this model, by introducing a duality trick. In a subsequent work Kayal [32] gave an

alternate polynomial time whitebox algorithm for depth-3 diagonal circuits based on the

partial derivative method, which was first introduced by [44] to prove circuit lower bounds; as,

Σ∧Σ circuits have a low-dimension partial derivative space. However, one limitation of these

approaches was that they depend on the characteristic of the underlying field. Later, [16]

gave an alternative proof of duality trick which depends only on the field size (as mentioned

in [24, Lem.4.7]) and Saptharishi [48, Chap.3] extended Kayal’s idea for large enough field.

Although this model is very weak (it cannot even compute x1 · · ·xn efficiently), studying

this model has proved quite fruitful. Duality trick was crucially used in the work by [23],

where they showed that depth-3 circuits, in some sense, capture the complexity of general

arithmetic circuits.

Like whitebox PIT, a series of work has been done on blackbox PIT for depth-3 diagonal

circuits. Both [6] and [19] gave two independent and different quasi-polynomial time blackbox

PIT algorithms for this model. Later, [18] gave an sO(log log s)-time (s is the circuit size)

blackbox PIT algorithm for this model. Mulmuley [43, 40] related depth-3 diagonal blackbox

PIT to construction of normalization maps for the invariants of the group SLm for constant

m. We can not give the detailed notation here and would like to refer to [40, Sec.9.3]. Despite

a lot of effort, no polynomial time blackbox PIT for this model is known. After depth-2

circuits (or sparse polynomials), this can be thought of as the simplest model for which no

polynomial time blackbox PIT is known. Because of its simplicity, this model is a good test

case for generating new ideas for the PIT problem.

M. A. Forbes, S. Ghosh, and N. Saxena 54:3

Log-variate models: Now we discuss why studying PIT for log-variate models is so im-

portant. The PIT algorithms in current literature always try to achieve a sub-exponential

dependence on n, the number of variables. In a recent development, [2] showed that for some

constant c a poly(s)-time blackbox PIT for size-s degree-s and log◦c s-variate1 circuits is

sufficient to completely solve PIT. Most surprisingly, they also showed that a poly(s)-time

blackbox PIT for size-s and log⋆ s-variate2 Σ ∧ ΣΠ circuits will ‘partially’ solve PIT (in

quasi-polynomial time) and prove that “either E6⊆#P/poly or VP6=VNP” (a weaker version of

[2, Thm.21]). For example, even a poly(s)-time blackbox PIT for size-s and (log log s)-variate

depth-4 circuits would be tremendous progress. A similar result also holds for Σ ∧a ΣΠ(n)

circuits, where both a and n are ‘arbitrarily small’ unbounded functions (i.e. time-complexity

may be arbitrary in terms of both a and n), see [2, Thm.21].

The above discussion motivates us to discover techniques and measures that are specialized

to this low-variate regime. Many previous works are based on ‘support size of a monomial’

as a measure for rank-concentration [6, 18, 26]. For a monomial m, its support is the set of

variables whose exponents are positive. We investigate a ‘larger’ measure: cone-size (see

Definition 3) which is the number of monomials that divide m (also see [14]). Using cone-size

as a measure for rank-concentration, we give a blackbox PIT algorithm for circuit models

with ‘low’ dimensional partial derivative space.

◮ Theorem 1. Let F be a field of characteristic 0 or greater than d. Let P be a set of

n-variate d-degree polynomials, over F, computed by circuits of bitsize s such that: ∀P ∈ P,

the dimension of the partial derivative space of P is at most k. Then, blackbox PIT for P

can be solved in (sdk)O(1) · (3n/ log k)O(log k) time.

Note that for n = O(log k) = O(log sd), the above bound is poly-time and we get a

polynomial time blackbox PIT algorithm for log-variate circuits (i.e. number of variables

is logarithmic wrt circuit size) with low-dimensional partial derivative space. This was not

known before our work. Prior to our work, [18] gave a (sdk)O(log log sdk)-time algorithm for

P, using support size as the measure in the proof. Unlike our algorithm, in the log-variate

case their algorithm remains super-polynomial time.

In particular, diagonal depth-3 circuit is a prominent model with low partial derivative

space. So, our method gives a polynomial time PIT algorithm for log-variate depth-3

diagonal circuits. No poly-time blackbox PIT for this model was known before our work;

again, sO(log log s) was the prior best [18].

Structure of log-variate polynomials? In the second result, we investigate a structural

property of polynomials over vector spaces. For a polynomial f(x) with coefficients over F
k,

let sp(f) be the subspace spanned by its coefficients. Informally, in rank concentration we try

to concentrate the rank of sp(f) to the coefficients of “few” monomials. It was first introduced

by [6]. Many works in PIT achieve rank concentration on low-support monomials, mainly, in

the ROABP model [6, 18, 26, 25]. One way of strengthening low-support concentration is

through low-cone concentration, where rank is concentrated in the low cone-size monomials.

This concept was not used before in designing PIT algorithms. Our first result (Theorem 1)

can be seen from this point of view. There, we developed a method to get polynomial time

blackbox PIT for log-variate models which satisfy ‘low-cone concentration property’.

1 The function log◦c denotes c times composition of the log function. For e.g. log◦2
s = log log s.

2 For any positive integer s, log⋆
s = min{i | log◦i

s ≤ 1}.

ICALP 2018

54:4 Towards Blackbox Identity Testing of Log-Variate Circuits

We introduce the concept of cone-closed basis, a much stronger notion of concentration

than the previous ones. We say f has a cone-closed basis, if there is a set of monomials B

whose coefficients form a basis of sp(f) and B is closed under sub-monomials. This definition

is motivated by a special depth-3 diagonal model, which have this property naturally (see

Lemma 18). We prove that this notion is a strengthening of both low-support and low-cone

concentration ideas (see Lemma 11). Recently, and independently, this notion of closure has

also appeared as an ‘abstract simplicial complex’ in [21].

In the following result, we relate cone-closed basis with ‘basis isolating weight assignment’

(Defn.12)– another well studied concept in PIT. It was first introduced by [3] and also used

in many other subsequent works [26, 12, 28]. Here, we show that a general polynomial

f over F
k, when shifted by a basis isolating weight assignment [3], becomes cone-closed.

It strengthens some previously proven properties; eg., a polynomial over F
k when shifted

‘randomly’ becomes low-support concentrated [17, Cor.3.22] (extended version of [18]) or,

when shifted by a basis isolating weight assignment becomes low-support concentrated [26,

Lem.5.2].

Notations. For any n ∈ N, [n] denotes the set of first n positive integers. By x, we denote

(x1, . . . , xn), a tuple of n-variables. For any e = (e1, . . . , en) ∈ N
n, xe denotes the monomial

∏n

i=1 xei

i . For a polynomial f and a monomial m, coefm(f) denotes the coefficient of the

monomial m in f . An weight assignment w on the variables x is an n-tuple (w1, . . . , wn) ∈ N
n,

where wi is the weight assigned to the variable xi.

◮ Theorem 2. Let f(x) ∈ F[x]k be an n-variate d-degree polynomial over F
k and char F = 0

or > d. Let w = (w1, . . . , wn) ∈ N
n be a basis isolating weight assignment of f(x). Then,

f(x + tw) := f(x1 + tw1 , . . . , xn + twn) has a cone-closed basis over F(t).

1.2 Proof ideas

Proof idea of Theorem 1: The proof of Theorem 1 has two steps. In the first step, we

show that with respect to any monomial ordering (say lexicographic monomial ordering), the

dimension k of the partial derivative space of a polynomial is lower bounded by the cone-size

of its leading monomial. For a polynomial f ∈ F[x], the leading monomial, wrt a monomial

ordering, is the largest monomial in the set {xe | coefxe(f) 6= 0}. So, for every nonzero P ∈ P

there is a monomial with nonzero coefficient and cone-size ≤ k. The second step is to check

whether the coefficients of all the monomials in P , with cone-size ≤ k, are zero. We show

that the number of such monomials is small (Lemma 5); the number is quasi-polynomial

in general, but, merely polynomial in the log-variate case. Next, we give a new method

to efficiently extract a monomial of cone-size≤ k, out of a potentially exponential space of

monomials (Lemma 4). These facts, combined with the estimates stated in Theorem 1, prove

Corollary 6; which gives a polynomial time blackbox PIT algorithm for log-variate circuits

with low dimensional partial derivative space.

Next, we discuss the idea to get a polynomial time blackbox PIT algorithm for depth-3

diagonal circuits where rank of the linear polynomials is logarithmic wrt the circuit size (see

Definition 7 & Theorem 9). Here, the proof has two steps. First, in Lemma 8, we show how

to efficiently reduce a low-rank depth-3 diagonal circuit to a low-variate depth-3 diagonal

circuit while preserving nonzeroness. This we do by a Vandermonde based linear map on

the variables. Since a depth-3 diagonal circuit has low-dimensional partial derivative space

(i.e. polynomial wrt circuit size), we apply Corollary 6 on the low-variate depth-3 diagonal

circuits and get Theorem 9.

M. A. Forbes, S. Ghosh, and N. Saxena 54:5

Proof idea of Theorem 2: First, wrt the weight assignment w, we define an ordering

among the set of bases (see Section 3). Then, we show that wrt the basis isolating weight

assignment w, there exists a unique minimum basis and its weight is strictly less than the

weight of every other basis (Lemma 13). Let B be the set of monomials whose coefficients

form the least basis, wrt w, of f .

Now, we consider the set of all sub-monomials of those in B and identify a subset A that

is cone-closed. We define A in an algorithmic way (see Algorithm 1). Besides the cone-closed

property, A also satisfies an algebraic property (Lemma 17)— In the transfer matrix T , that

captures the variable-shift transformation (Equation 3), the sub-matrix TA,B is full rank.

We prove that A is exactly a basis of the shifted f by studying the action of the shift on the

coefficient vectors. The properties proved above and Cauchy-Binet Formula [57] are crucially

used in the study of the coefficient vectors after the variable-shift.

Theorem 2 has an immediate consequence that any polynomial f over F
k, when shifted

by formal (or random) variables, becomes cone-closed; since the weight induced by the

formal variables on the monomials is a basis isolating weight assignment. This seems quite a

nontrivial and an interesting property of general polynomials (over vector spaces).

2 Low-cone concentration and hitting-sets– Proof of Theorem 1

In this section we initiate a study of properties that are relevant for low-variate circuits (or

the log-variate regime).

Notations. For a circuit C, |C| denotes the size of C. For a monomial m, by coefm(C), we

denote the coefficient of monomial m in the polynomial computed by C. For a circuit C, we

also use C to denote the polynomial computed by C.

◮ Definition 3 (Cone of a monomial). A monomial xe is called a sub-monomial of xf , if

e ≤ f (i.e. coordinate-wise). We say that xe is a proper sub-monomial of xf , if e ≤ f and

e 6= f .

For a monomial xe, the cone of xe is the set of all sub-monomials of xe. The cardinality of

this set is called cone-size of xe. It equals
∏

(e + 1) :=
∏

i∈[n](ei +1), where e = (e1, . . . , en).

A set S of monomials is called cone-closed if for every monomial in S all its sub-monomials

are also in S.

◮ Lemma 4 (Coef. extraction). Let C be a blackbox circuit which computes an n-variate and

degree-d polynomial over a field of size greater than d. Then for any monomial m =
∏

i∈[n] xei

i ,

we have a poly(|C|d, cs(m))-time algorithm to compute the coefficient of m in C, where cs(m)

denotes the cone-size of m.

Proof. Our proof is in two steps. First, we inductively build a circuit computing a polynomial

which has two parts; one is coefm(C) ·m and the other one is a “junk” polynomial where

every monomial is a proper super-monomial of m. Second, we construct a circuit which

extracts the coefficient of m. In both these steps the key is a classic interpolation trick.

We induct on the variables. For each i ∈ [n], let m[i] denote
∏

j∈[i] x
ej

j . We will construct

a circuit C(i) which computes a polynomial of the form,

C(i)(x) = coefm[i]
(C) ·m[i] + C

(i)
junk (1)

where, for every monomial m′ in the support of C
(i)
junk, m[i] is a proper submonomial of m′

[i].

ICALP 2018

54:6 Towards Blackbox Identity Testing of Log-Variate Circuits

Base case: Since C =: C(0) computes an n-variate degree-d polynomial, C(x) can be

written as C(x) =
∑d

j=0 cjxj
1 where, cj ∈ F[x2, . . . , xn]. Let α0, . . . , αe1

be some e1 + 1

distinct elements in F. For every αj , let Cαjx1
denote the circuit C(αjx1, x2, . . . , xn) which

computes c0 + c1αjx1 + . . . + ce1αe1
j xe1

1 + · · ·+ cdαd
j xd

1 . Since

M =







1 α0 . . . αe1
0

...
...

...
...

1 αe1
. . . αe1

e1







is an invertible Vandermonde matrix, one can find an a = [a0, . . . , ae1
] ∈ F

e1+1, a ·M =

[0, 0, . . . , 1] . Using this a, we get the circuit C(1) :=
∑e1

j=0 ajC
(0)
αjx1 . Its least monomial

wrt x1 has degx1
≥ e1, which is the property that we wanted.

Induction step (i→ i + 1): From induction hypothesis, we have the circuit C(i) with the

properties mentioned in Eqn.1. The polynomial can also be written as b0 + b1xi+1 + . . . +

bei+1
x

ei+1

i+1 + . . . bdxd
i+1 , where every bj is in F[x1, . . . , xi, xi+2, . . . , xn]. Like the proof of the

base case, for ei+1 + 1 distinct elements α0, . . . , αei+1
∈ F, we get C(i+1) =

∑ei+1

j=0 ajC
(i)
αjxi+1 ,

for some a = [a0, . . . , aei+1
] ∈ F

ei+1+1 and the structural constraint of C(i+1) is easy to verify,

completing the induction.

Now we describe the second step of the proof. After first step, we get

C(n)(x) = coefm(C) ·m + C
(n)
junk ,

where for every monomial m′ in the support of C
(n)
junk , m is a proper submonomial of m′.

Consider the polynomial C(n)(x1t, . . . , xnt) for a fresh variable t. Then, using interpolation

wrt t we can construct a O(|C(n)| ·d)-size circuit for coefm(C) ·m, by extracting the coefficient

of tdeg(m), since the degree of every monomial appearing in C
(n)
junk is > deg(m). Now evaluating

at 1, we get coefm(C). The size, or time, constraint of the final circuit clearly depends

polynomially on |C|, d and cs(m). ◭

But, how many low-cone monomials can there be? Fortunately, in the log-variate regime

they are not too many [47]. Though, in general, they are quasi-polynomially many.

◮ Lemma 5 (Counting low-cones). The number of n-variate monomials with cone-size at

most k is O(rk2), where r := (3n/ log k)
log k

.

Proof. First, we prove that for any fixed support set, the number of cone-size ≤ k monomials

is less than k2. Next, we multiply by the number of possible support sets to get the estimate.

Let T (k, ℓ) denote the number of cone-size≤ k monomials m with support set, say, exactly

{x1, . . . , xℓ}. Since the exponent of xℓ in such an m is at least 1 and at most k − 1, we have

the following by the disjoint-sum rule: T (k, ℓ) ≤
∑k

i=2 T (k/i, ℓ− 1). This recurrence affords

an easy inductive proof as, T (k, ℓ) <
∑k

i=2(k/i)2 < k2 ·
∑k

i=2

(

1
i−1 −

1
i

)

< k2.

From the definition of cone, a cone-size ≤ k monomial can have support size at most

ℓ := ⌊log k⌋. The number of possible support sets, thus, is
∑ℓ

i=0

(

n
i

)

. Using the binomial

estimates [30, Chapter 1], we get
∑ℓ

i=0

(

n
i

)

≤ (3n/ℓ)
ℓ
. ◭

The partial derivative space of polynomials was first used by Nisan and Wigderson [44]

to prove circuit lower bounds. Later, it was used in many other works. For more details see

the following surveys [9, 49]. Here, using cone-size as a measure, we describe a blackbox PIT

algorithm for circuits models with low dimensional partial derivative space. This algorithm

runs in polynomial time when we are in log-variate regime. For a polynomial f(x) ∈ F[x], by

∂x<∞(f) we denote the space generated all partial derivatives of f .

M. A. Forbes, S. Ghosh, and N. Saxena 54:7

Proof of Theorem 1. The proof has two steps. First, we show that with respect to any

monomial ordering ≺ (say lexicographic monomial ordering), for all nonzero P ∈ P, the

dimension of the partial derivative space of P is lower bounded by the cone-size of the

leading monomial in P . Using this, we can get a blackbox PIT algorithm for P by testing

the coefficients of all the monomials of P of cone-size ≤ k for zeroness. Next, we analyze the

time complexity to do this.

The first part is the same as the proof of [14, Corollary 4.14] (with origins in [20]). Here,

we give a brief outline. Let LM(·) be the leading monomial operator wrt the monomial

ordering ≺. It can be shown that for any polynomial f(x), the dimension of its partial

derivative space ∂x<∞(f) is the same as D := # {LM(g) | g ∈ ∂x<∞(f)} (see [14, Lemma

8.4.12]). This means that dim ∂x<∞(f) is lower-bounded by the cone-size of LM(f) [14,

Corollary 8.4.13], which completes the proof of our first part.

Next, we apply Lemma 4, on the circuit of P and a monomial m of cone-size ≤ k, to get

the coefficient of m in C in poly(sdk)-time. Finally, Lemma 5 tells that we have to access at

most k2 · (3n/ log k)
log k

many monomials m. Multiplying these two expressions gives us the

time bound. ◭

This gives us immediately,

◮ Corollary 6. Let F be a field of characteristic 0 or > d. Let P be a set of n-variate d-degree

polynomials, over F, computable by circuits of bitsize s; with n = O(log sd). Suppose that,

for all P ∈ P, the dimension of the partial derivative space of P is poly(sd). Then, blackbox

PIT for P can be solved in poly(sd)-time.

Now we discuss our result regarding depth-3 diagonal circuits Σ ∧ Σ.

◮ Definition 7 (Depth-3 diagonal circuit and its rank). A depth-3 diagonal circuit is of the

form Σ ∧ Σ (sum-power-sum). It computes a polynomial presented as C(x) =
∑

i∈[k] ciℓ
di

i ,

where ℓi’s are linear polynomials over F and ci’s in F.

By rk(C) we denote the linear rank of the polynomials {ℓi}i∈[k].

The next lemma introduces an efficient nonzeroness preserving variable reduction map

(n 7→ rk(C)) for depth-3 diagonal circuits. For a set of n-variate circuits C over F, a polynomial

map Ψ : Fm → F
n is called nonzeroness preserving variable reduction map for C, if m < n

and for all C ∈ C, C 6= 0 if and only if Ψ(C) 6= 0.

◮ Lemma 8 (Variable reduction). Let P (x) be an n-variate d-degree polynomial computed

by a size-s depth-3 diagonal circuit over some sufficiently large field F. Then, there exists a

poly(nds)-time computable nonzeroness preserving variable reduction map which converts

P to another rk(P)-variate degree-d polynomial computed by poly(s)-size depth-3 diagonal

circuit.

For proof, see the full version linked on the first page.

◮ Theorem 9 (Log-rank Σ ∧ Σ). Let F be a field of characteristic 0 or > d. Let P be the

set of n-variate d-degree polynomials P , computable by depth-3 diagonal circuits of bitsize s,

with rk(P) = O(log sd). Then, blackbox PIT for P can be solved in poly(sd)-time.

Proof. The above description gives us a non-zeroness preserving variable reduction (n 7→

rk(P)) method that reduces P to an O(log(sd))-variate and degree-d polynomial P ′ computed

by poly(s)-size depth-3 diagonal circuit.

Since the dimension of the partial derivative space of P ′ is poly(sd) [14, Lem.8.4.8],

Corollary 6 gives us a poly(sd)-time hitting-set for P ′. ◭

ICALP 2018

54:8 Towards Blackbox Identity Testing of Log-Variate Circuits

3 Cone-closed basis after shifting– Proof of Theorem 2

In this section we will consider polynomials over a vector space, say F
k. This viewpoint

has been useful in studying algebraic branching programs (ABP), eg. [6, 18, 3, 26]. Let

D ∈ F
k[x] and let sp(D) be the vector space spanned by its coefficients. Now, we formally

define various kinds of rank concentrations of D.

◮ Definition 10 (Rank Concentration). We say that D has a

1. cone-closed basis if there is a cone-closed set of monomials B (see Definition 3) whose

coefficients in D form a basis of sp(D).

2. ℓ-support concentration, if there is a set of monomials B with support size less than ℓ

whose coefficients form a basis of sp(D).

3. ℓ-cone concentration, if there is a set of monomials B with cone size less than ℓ (see

Definition 3) whose coefficients form a basis of sp(D).

In the next lemma, we show that cone-closed basis notion subsumes the other two notions.

◮ Lemma 11. Let D(x) be a polynomial in F
k[x]. Suppose that D(x) has a cone-closed

basis. Then, D(x) has (k + 1)-cone concentration and (lg 2k)-support concentration.

Proof. Let B be a cone-closed set of monomials forming the basis of sp(D). Clearly, |B| ≤ k.

Thus, each m ∈ B has cone-size ≤ k. In other words, D is (k + 1)-cone concentrated.

Moreover, each m ∈ B has support-size ≤ lg k. In other words, D is (lg 2k)-support

concentrated. ◭

Next, we define the notions which will be used in the proof of Theorem 2.

Basis & weights. Consider a weight assignment w = (w1, . . . , wn) ∈ N
n on the variables

x = (x1, . . . , xn). It extends to monomials m = xe as w(m) := 〈e, w〉 =
∑n

i=1 eiwi.

Sometimes, we also use w(e) to denote w(m). Similarly, for a set of monomials B, the weight

of B is w(B) :=
∑

m∈B w(m).

Let B = {m1, . . . , mℓ} resp. B′ = {m′
1, . . . , m′

ℓ} be an ordered set of monomials (non-

decreasing wrt w) that forms a basis of the span of coefficients of f ∈ F
k[x]. Let w be a

weight assignment on the variables. We say that B < B′ wrt w, if there exists i ∈ [ℓ] such

that ∀j < i, w(mj) = w(m′
j) but w(mi) < w(m′

i).

We say that B ≤ B′ if either B < B′ or if ∀i ∈ [ℓ], w(mi) ≤ w(m′
i). A basis B is called

a least basis, if for any other basis B′, B ≤ B′. Next, we describe a condition on w such that

least basis will be unique.

◮ Definition 12. (Basis Isolating Weight Assignment [3, Defn.5]). A weight assignment w

is called a basis isolating weight assignment for a polynomial f(x) ∈ F
k[x] if there exists a

set of monomials B such that:

1. the coefficients of the monomials in B form a basis for sp(f),

2. weights of all monomials in B are distinct, and

3. the coefficient of every m ∈ supp(f) \ B is in the linear span of {coefm′(f) | m′ ∈ B,

w(m′) < w(m)}.

◮ Lemma 13. If w is a basis isolating weight assignment for f ∈ F
k[x], then f has a unique

least basis B wrt w. In particular, for any other basis B′ of f , we have w(B) < w(B′).

M. A. Forbes, S. Ghosh, and N. Saxena 54:9

Algorithm 1 Finding cone-closed set.

Input: A subset B of the n-tuples M .

Output: A cone-closed A ⊆M with full rank TA,B .

function Find-Cone-closed(B, n)

if n = 1 then

s← |B|;

return {0. . . . , s− 1};

else

Let πn be the map which projects the set of monomials B on the first n−1 variables;

Let ℓ be the maximum number of preimages under πn;

∀i ∈ [ℓ], Fi collects those elements in Img(πn) whose preimage size≥ i;

A0 ← ∅;

for i← 1 to ℓ do

Si ← Find-Cone-closed(Fi, n− 1);

Ai ← Ai−1

⋃
(

Si × {i− 1}
)

;

end for

return A;

end if

end function

For proof, see the full version linked on the first page. Next, we want to study the effect of

shifting f by a basis isolating weight assignment. To do that we require an elaborate notation.

As before f(x) is a n-variate and degree-d polynomial over F
k. For a weight assignment

w, by f(x + tw) we denote the polynomial f(x1 + tw1 , . . . , xn + twn). For a = (a1, . . . , an)

and b = (b1, . . . , bn) in N
n,

(

a

b

)

denotes
∏n

i=1

(

ai

bi

)

, where
(

ai

bi

)

= 1 for bi = 0 and
(

ai

bi

)

= 0

for ai < bi. Let Mn,d = {a ∈ N
n : |a|1 ≤ d} corresponds to the set of all n-variate d-degree

monomials. For every a ∈ Mn,d, coefxa(f(x + tw)) can be expanded using the binomial

expansion, and we get:

∑

b∈Mn,d

(

b

a

)

· tw(b)−w(a) · coefxb(f(x)) . (2)

We express this data in matrix form as

F ′ = D−1TD · F, (3)

where the matrices involved are,

1. F and F ′: rows are indexed by the elements of Mn,d and columns are indexed by [k]. In

F resp. F ′ the a-th row is coefxa(f(x)) resp. coefxa(f(x + tw)).

2. D: is a diagonal matrix with both the rows and columns indexed by Mn,d. For a ∈Mn,d,

Da,a := tw(x
a) .

3. T : both the rows and columns are indexed by Mn,d. For a, b ∈Mn,d, Ta,b :=
(

b

a

)

. It is

known as transfer matrix.

We will prove the following combinatorial property of T : For any B ⊆Mn,d, there is a

cone-closed A ⊆Mn,d such that the submatrix TA,B has full rank. Our proof is an involved

double-induction, so we describe the construction of A as Algorithm 1.

◮ Lemma 14 (Comparison). Let B and B′ be two nonempty subsets of M such that B ⊆ B′.

Let A = Find-Cone-closed(B, n) and A′ = Find-Cone-closed(B′, n) in Algorithm 1.

Then A ⊆ A′.

ICALP 2018

54:10 Towards Blackbox Identity Testing of Log-Variate Circuits

◮ Lemma 15 (Closure). Let B be a nonempty subset of M . If A = Find-Cone-closed(B, n)

in Algorithm 1, then A is cone-closed. Moreover, |A| = |B|.

For proofs of the above two lemmas, see the full version linked on the first page. Next,

we recall a fact that has been used for ROABP PIT.

◮ Lemma 16. [25, Claim 3.3] Let a1, . . . , an be distinct non-negative integers and char F = 0

or greater than the maximum of all ais. Let A be an n×n matrix with, i, j ∈ [n], Ai,j :=
(

aj

i−1

)

.

Then, A is full rank.

In the following lemma, we prove that the sub-matrix TA,B has full rank, where B ⊆Mn,d

and A is the output of Algorithm 1 on input A. It requires char F = 0 or greater than d.

◮ Lemma 17 (Full rank). If A = Find-Cone-Closed(B, n), then TA,B has full rank.

Proof. The proof will be by double-induction– outer induction on n and an inner induction

on iteration i of the ‘for’ loop (Algorithm 1).

Base case: For n = 1, the claim is true due to Lemma 16.

Induction step (n−1→ n): To show TA,B full rank, we prove that for any vector b ∈ F
|B|:

if TA,B · b = 0 then b = 0. For this we show that the following invariant holds at the end of

each iteration i of the ‘for’ loop (Algorithm 1). Here, we assume the coordinates of b are

indexed by the elements of B and for all f ∈ B, bf denotes the value of b at coordinate f .

Invariant (n-variate & i-th iteration): For each f ∈ B such that the preimage size of

πn(f) is at most i, the product TAi,B · b = 0 implies that bf = 0. Here,

At the end of iteration i = 1, we have the vector TA1,B · b. Recall that A1 = S1 × {0}

and F1 = πn(B). So TA1,B · b = TS1,F1
· c, where c ∈ F

|F1| and for e ∈ F1, ce :=
∑

(e,k) ∈ π
−1
n (e)

(

k
0

)

b(e,k). Thus, TA1,B · b = 0 implies TS1,F1 · c = 0. Since S1 = Find-Cone-

closed(F1, n− 1), using induction hypothesis, we get that c = 0. This means that for e ∈ B

such that the preimage size of πn(e) is at most 1, we have ce = 0. This proves our invariant

at the end of the iteration i = 1.

(i − 1 → i): Suppose that at the end of (i − 1)-th iteration, the invariant holds. We

show that it also holds at the end of the i-th iteration. For each j ∈ [i], let vj denote the

projection of TAi,B ·b on the coordinates indexed by Sj ×{j−1}. By focusing on the rows of

TAj ,B , we can see that vj = TSj ,F1
· cj where the vector cj ∈ F

|F1| is defined as, for e ∈ F1,

cje
:=

∑

(e,k) ∈ π
−1
n (e)

(

k

j − 1

)

· b(e,k) . (4)

Suppose that TAi,B · b = 0. Because of the invariant at i − 1th round, for all f ∈ B with

preimage size of πn(f) is less than i, bf = 0. So all we have to argue is that for every f ∈ B

such that the preimage size of e := πn(f) is i, the coordinate bf = 0.

To prove our goal, first we show that each cj is a zero vector. Since TAi,B · b = 0, its

projection vj = TSj ,F1 · cj is zero too. By induction hypothesis (on i− 1), for each e ∈ F1

with preimage size < i, the coordinate cje = 0. Thus, the vector TSj ,F1
· cj = TSj ,Fj

· c′
j

where the vector c′
j ∈ F

|Fj | is defined as, for e ∈ Fj , c′
je

:= cje. Consequently, TSj ,Fj
· c′

j = 0,

for j ∈ [i]. By induction hypothesis (on n− 1), we know that TSj ,Fj
is full rank. So c′

j = 0,

which tells us that cj = 0, for j ∈ [i].

Fix an e ∈ F1, with preimage size = i, and let the preimages be {(e, k1), . . . , (e, ki)}

M. A. Forbes, S. Ghosh, and N. Saxena 54:11

where kj ’s are distinct nonnegative integers. From Equation 4, we can write











c1e

c2e

...

cie











=











(

k1

0

) (

k2

0

)

. . .
(

ki

0

)

(

k1

1

) (

k2

1

)

. . .
(

ki

1

)

...
... . . .

...
(

k1

i−1

) (

k2

i−1

)

. . .
(

ki

i−1

)











·











b(e,k1)

b(e,k2)

...

b(e,ki)











.

Since for each j ∈ [i], cj is a zero vector, from the above equation we get











0

0
...

0











=











(

k1

0

) (

k2

0

)

. . .
(

ki

0

)

(

k1

1

) (

k2

1

)

. . .
(

ki

1

)

...
... . . .

...
(

k1

i−1

) (

k2

i−1

)

. . .
(

ki

i−1

)











·











b(e,k1)

b(e,k2)

...

b(e,ki)











.

Now invoking Lemma 16, we get b(e,kj) = 0 for all j ∈ [i]. In other words, for any f ∈ B

such that the preimage size of πn(f) is i, the coordinate bf = 0.

(i = ℓ): Since A = Aℓ, the output of Find-Cone-closed(B, n), using our invariant at

the end of ℓ-th iteration we deduce that TA,B · b = 0 implies b = 0. Thus, TA,B has full

rank. ◭

Now we are ready to prove our main theorem using the transfer matrix equation.

Proof of Theorem 2. As we mentioned in Equation 2, the shifted polynomial f(x + tw)

yields a matrix equation F ′ = D−1TD ·F . Let k′ be the rank of F . We consider the following

two cases.

Case 1 (k′ < k): We reduce this case to the other one where k′ = k. Let S be a

subset of k′ columns such that FM,S has rank k′. The matrix FM,S denotes the polynomial

fS(x) ∈ F[x]k
′

, where fS(x) is the projection of the ‘vector’ f(x) on the coordinates indexed

by S. So, any linear dependence relation among the coefficients of f(x) is also valid for fS(x).

So w is also a basis isolating weight assignment for fS(x). Now from our Case 2, we can claim

that fS(x + tw) has a cone-closed basis A. Thus, coefficients of the monomials, corresponding

to A, in f(x) form a basis of sp(f). This implies that f(x + tw) has a cone-closed basis A.

Case 2 (k′ = k): Let B be the least basis of f(x) wrt w and A = Find-Cone-

closed(B, n). We prove that the coefficients of monomials in A form a basis of the coefficient

space of f(x + tw). To prove this, we show that det(F ′
A,[k]) 6= 0. Define T ′ := TDF so that

F ′ = D−1T ′. Using Cauchy-Binet formula [57], we get that

det(F ′
A,[k]) =

∑

C∈(M

k)

det(D−1
A,C) · det(T ′

C,[k]) .

Since for all C ∈
(

M
k

)

\ {A}, the matrix D−1
A,C is singular, we have det(F ′

A,[k]) = det(D−1
A,A) ·

det(T ′
A,[k]). Again applying Cauchy-Binet formula for det(T ′

A,[k]), we get

det(F ′
A,[k]) = det(D−1

A,A) ·
∑

C∈(M

k)

tw(C) det(TA,C) · det(FC,[k]) .

From Lemma 13, we have that for all basis C ∈
(

M
k

)

\ {B}, w(C) > w(B). The matrix

TA,B is nonsingular by Lemma 17, and the other one FB,[k] is nonsingular since B is a basis.

Hence, the sum is a nonzero polynomial in t. In particular, det(F ′
A,[k]) 6= 0, which ensures

that the coefficients of the monomials corresponding to A form a basis of sp
F(t)(f(x + tw)).

Since Lemma 15 says that A is also cone-closed, we get that f(x + tw) has a cone-closed

basis. ◭

ICALP 2018

54:12 Towards Blackbox Identity Testing of Log-Variate Circuits

3.1 Models with a cone-closed basis

We give a simple proof showing that a typical diagonal depth-3 circuit is already cone-closed.

Consider the polynomial D(x) = (1 + a1x1 + . . . + anxn)d in F
k[x], where F

k is seen as an

F-algebra with coordinate-wise multiplication.

◮ Lemma 18. D(x) has a cone-closed basis.

Proof. Consider the n-tuple L := (a1, . . . , an). Then for every monomial xe, the coefficient

of xe in D is Le :=
∏n

i=1 aei

i , with some nonzero scalar factor (note: here we seem to

need char(F) zero or large). We ignore this constant factor, since it does not affect linear

dependence relations. Consider deg-lex monomial ordering, i.e. first order the monomials by

lower to higher total degree, then within each degree arrange them according to a lexicographic

order. Now we prove that the ‘least basis’ of D(x) with respect to this monomial ordering is

cone-closed.

We incrementally devise a monomial set B as follows: Arrange all the monomials in

ascending order. Starting from least monomial, put a monomial in B if its coefficient

cannot be written as a linear combination of its previous (thus, smaller) monomials. From

construction, the coefficients of monomials in B form the least basis for the coefficient space

of D(x). Now we show that B is cone-closed. We prove it by contradiction.

Let xf ∈ B and let xe be its submonomial that is not in B. Then we can write

Le =
∑

xb≺xe

cbLb with cb’s in F .

Multiplying by Lf−e on both sides, we get

Lf =
∑

xb≺xe

cbLb+f−e =
∑

xb′ ≺xf

c′
b′Lb

′

.

Note that xb
′

≺ xf holds true by the way a monomial ordering is defined. This equation

contradicts the fact that xf ∈ B, and completes the proof. ◭

4 Conclusion

Since it is known that one could focus solely on the PIT of VP circuits that depend only on

the first o(log s) variables, we initiate a study of properties that are useful in that regime.

These properties are– low-cone concentration and cone-closed basis. Their usefulness is

proved in our monomial counting and coefficient extraction results. Using these concepts we

solve an interesting special case of diagonal depth-3 circuits.

An open question is to make our approach work for field characteristic smaller than the

degree. Another interesting problem is to employ the cone-closed basis properties of the

Σ ∧ Σn model to devise a poly-time blackbox PIT for general n.

In our second result, we proved that after shifting the variables by a basis isolating

weight assignment, a polynomial has a cone-closed basis. Basis isolating weight assignment

is much weaker than the one induced by lexicographic monomial ordering (or the Kronecker

map). An interesting open question is to efficiently design a weight assignment (or, in

general, polynomial map) that ensures a cone closed basis. Till now, no known blackbox PIT

algorithm for ROABPs gives a polynomial time blackbox PIT algorithm for log (or sub-log)

variate ROABPs. So, achieving cone-closed basis or low-cone concentration property (in

polynomial time) for log (or sub-log) variate ROABPs is also interesting; then, the counting

& extraction techniques developed in our first result will give a polynomial time blackbox

PIT. This will solve some open problems posed in [2, Sec.6].

M. A. Forbes, S. Ghosh, and N. Saxena 54:13

References

1 Manindra Agrawal. Proving lower bounds via pseudo-random generators. In FSTTCS 2005:

Foundations of Software Technology and Theoretical Computer Science, 25th International

Conference, Hyderabad, India, December 15-18, 2005, Proceedings, pages 92–105, 2005.

2 Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. Bootstrapping variables in algebraic

circuits. Technical report, https://www.cse.iitk.ac.in/users/nitin/research.html, 2017. (To

appear in 50th ACM Symposium on Theory of Computing (STOC), 2018).

3 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for RO-

ABP and sum of set-multilinear circuits. SIAM Journal on Computing, 44(3):669–697,

2015.

4 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of mathem-

atics, pages 781–793, 2004.

5 Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jacobian

hits circuits: hitting-sets, lower bounds for depth-d occur-k formulas & depth-3 transcend-

ence degree-k circuits. In STOC, pages 599–614, 2012.

6 Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-set for

set-depth-∆ formulas. In Symposium on Theory of Computing Conference, STOC’13, Palo

Alto, CA, USA, June 1-4, 2013, pages 321–330, 2013.

7 M. Beecken, J. Mittmann, and N. Saxena. Algebraic Independence and Blackbox Identity

Testing. Inf. Comput., 222:2–19, 2013. (Conference version in ICALP 2011).

8 Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate

polynomial interpolation. In Proceedings of the Twentieth Annual ACM Symposium on

Theory of Computing, STOC ’88, pages 301–309, 1988.

9 Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial derivatives in arithmetic complexity

and beyond. Foundations and Trends in Theoretical Computer Science, 6(1-2):1–138, 2011.

10 Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program

testing. Information Processing Letters, 7(4):193–195, 1978.

11 Zeev Dvir, Rafael Mendes de Oliveira, and Amir Shpilka. Testing Equivalence of Polyno-

mials under Shifts. In Proceedings of the 41st International Colloquium on Automata, Lan-

guages, and Programming, Part I, volume 8572 of Lecture Notes in Computer Science, pages

417–428. Springer International Publishing, 2014. doi:10.1007/978-3-662-43948-7_35.

12 Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is

in quasi-NC. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of

Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 754–763, 2016.

13 Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Guest column: Parallel algorithms

for perfect matching. SIGACT News, 48(1):102–109, 2017.

14 Michael A. Forbes. Polynomial Identity Testing of Read-Once Oblivious Algebraic Branch-

ing Programs. PhD thesis, Massachusetts Institute of Technology, 2014.

15 Michael A Forbes. Deterministic divisibility testing via shifted partial derivatives. In

Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages

451–465. IEEE, 2015.

16 Michael A. Forbes, Ankit Gupta, and Amir Shpilka. private communication, 2013.

17 Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Pseudorandomness for

multilinear read-once algebraic branching programs, in any order. Electronic Colloquium

on Computational Complexity (ECCC), 20:132, 2013.

18 Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilin-

ear read-once algebraic branching programs, in any order. In Symposium on Theory of

Computing (STOC), New York, NY, USA, May 31 - June 03, 2014, pages 867–875, 2014.

19 Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank recovery and

compressed sensing. In STOC, pages 163–172, 2012.

ICALP 2018

54:14 Towards Blackbox Identity Testing of Log-Variate Circuits

20 Michael A Forbes and Amir Shpilka. Explicit noether normalization for simultaneous

conjugation via polynomial identity testing. In Approximation, Randomization, and Com-

binatorial Optimization. Algorithms and Techniques, pages 527–542. Springer, 2013.

21 Ignacio García-Marco, Pascal Koiran, Timothée Pecatte, and Stéphan Thomassé. On the

complexity of partial derivatives. In 34th Symposium on Theoretical Aspects of Computer

Science, STACS 2017, March 8-11, 2017, Hannover, Germany, pages 37:1–37:13, 2017.

22 Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. A deterministic polyno-

mial time algorithm for non-commutative rational identity testing. In IEEE 57th Annual

Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, pages

109–117, 2016.

23 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic

circuits: A chasm at depth three. In 54th Annual IEEE Symposium on Foundations of

Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 578–587,

2013.

24 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic

circuits: A chasm at depth 3. SIAM Journal on Computing, 45(3):1064–1079, 2016.

25 Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-width,

and any-order, read-once oblivious arithmetic branching programs. Theory of Computing,

13(2):1–21, 2017. (Preliminary version in CCC’16).

26 Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic iden-

tity testing for sum of read-once oblivious arithmetic branching programs. Computational

Complexity, pages 1–46, 2016. (Conference version in CCC 2015).

27 Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-nc. In Proceed-

ings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,

Montreal, QC, Canada, June 19-23, 2017, pages 821–830, 2017.

28 Rohit Gurjar, Thomas Thierauf, and Nisheeth K. Vishnoi. Isolating a vertex via lattices:

Polytopes with totally unimodular faces. CoRR, abs/1708.02222, 2017.

29 Joos Heintz and Claus-Peter Schnorr. Testing polynomials which are easy to compute

(extended abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of

Computing, April 28-30, 1980, Los Angeles, California, USA, pages 262–272, 1980.

30 Stasys Jukna. Extremal Combinatorics: With Applications in Computer Science. Springer

Publishing Company, Incorporated, 1st edition, 2010.

31 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests

means proving circuit lower bounds. In Proceedings of the Thirty-fifth Annual ACM Sym-

posium on Theory of Computing, STOC ’03, pages 355–364, 2003.

32 Neeraj Kayal. Algorithms for arithmetic circuits. Electronic Colloquium on Computational

Complexity (ECCC), 17:73, 2010.

33 Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits. Compu-

tational Complexity, 16(2):115–138, 2007.

34 Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing of mul-

tivariate polynomials. In Proceedings on 33rd Annual ACM Symposium on Theory of

Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 216–223, 2001.

35 Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity

testing and deterministic multivariate polynomial factorization. In IEEE 29th Conference

on Computational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014,

pages 169–180, 2014.

36 Mrinal Kumar and Shubhangi Saraf. Arithmetic circuits with locally low algebraic rank.

In 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016,

Tokyo, Japan, pages 34:1–34:27, 2016.

M. A. Forbes, S. Ghosh, and N. Saxena 54:15

37 Mrinal Kumar and Shubhangi Saraf. Sums of products of polynomials in few variables:

Lower bounds and polynomial identity testing. In 31st Conference on Computational Com-

plexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 35:1–35:29, 2016.

38 Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative computa-

tions: lower bounds and polynomial identity testing. Electronic Colloquium on Computa-

tional Complexity (ECCC), 23:94, 2016.

39 Richard J. Lipton and Nisheeth K. Vishnoi. Deterministic identity testing for multivariate

polynomials. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, January 12-14, 2003, Baltimore, Maryland, USA., pages 756–760, 2003.

40 Ketan Mulmuley. Geometric complexity theory V: Efficient algorithms for Noether normal-

ization. Journal of the American Mathematical Society, 30(1):225–309, 2017.

41 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as

matrix inversion. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of

Computing, STOC ’87, pages 345–354, 1987.

42 Ketan D Mulmuley. The GCT program toward the P vs. NP problem. Communications

of the ACM, 55(6):98–107, 2012.

43 Ketan D. Mulmuley. Geometric complexity theory V: Equivalence between blackbox deran-

domization of polynomial identity testing and derandomization of Noether’s normalization

lemma. In FOCS, pages 629–638, 2012.

44 Noam Nisan and Avi Wigderson. Lower bounds for arithmetic circuits via partial derivatives

(preliminary version). In 36th Annual Symposium on Foundations of Computer Science,

Milwaukee, Wisconsin, 23-25 October 1995, pages 16–25, 1995.

45 Anurag Pandey, Nitin Saxena, and Amit Sinhababu. Algebraic independence over positive

characteristic: New criterion and applications to locally low algebraic rank circuits. In 41st

International Symposium on Mathematical Foundations of Computer Science, MFCS 2016,

August 22-26, 2016 - Kraków, Poland, pages 74:1–74:15, 2016. (In print, Computational

Complexity, 2018).

46 Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. A case of depth-3 identity

testing, sparse factorization and duality. Computational Complexity, 22(1):39–69, 2013.

47 Ramprasad Saptharishi. personal communication, 2013.

48 Ramprasad Saptharishi. Unified Approaches to Polynomial Identity Testing and Lower

Bounds. PhD thesis, Chennai Mathematical Institute, 2013.

49 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Tech-

nical report, https://github.com/dasarpmar/lowerbounds-survey/, 2016.

50 Nitin Saxena. Diagonal circuit identity testing and lower bounds. In ICALP, volume 5125

of Lecture Notes in Computer Science, pages 60–71. Springer, 2008.

51 Nitin Saxena. Progress on polynomial identity testing. Bulletin of the EATCS, 99:49–79,

2009.

52 Nitin Saxena. Progress on polynomial identity testing- II. In Perspectives in Computational

Complexity, volume 26 of Progress in Computer Science and Applied Logic, pages 131–146.

Springer International Publishing, 2014.

53 Nitin Saxena and C. Seshadhri. Blackbox identity testing for bounded top-fanin depth-3

circuits: The field doesn’t matter. SIAM Journal on Computing, 41(5):1285–1298, 2012.

54 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.

ACM, 27(4):701–717, 1980.

55 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and

open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388,

2010.

56 Avi Wigderson. Low-depth arithmetic circuits: technical perspective. Communications of

the ACM, 60(6):91–92, 2017.

ICALP 2018

54:16 Towards Blackbox Identity Testing of Log-Variate Circuits

57 Jiang Zeng. A bijective proof of Muir’s identity and the Cauchy-Binet formula. Linear

Algebra and its Applications, 184:79–82, 1993.

58 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the

International Symposium on Symbolic and Algebraic Computation, EUROSAM ’79, pages

216–226, 1979.

