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Abstract—When a cyberattack occurs, tracking the attack 
back to an actual individual person can be problematic.  Even 
identifying the workstation or device that it originated from does 
not necessarily identify the attacker, as the attacking device could, 
itself, be compromised.  A system to determine whether activities 
that occur are from the same user or not facilitates forensic 
analysis as well as the detection of concurrent attacks from 
different devices by the same user.   This paper proposes a system 
for identifying attackers based on behaviors expressed via their 
use of the Bash command line interface, the most common shell on 
Linux distributions. Prior systems were limited by issues such as 
requiring labeled user data which is difficult to acquire or not 
being specific enough to monitor individual persons. The approach 
proposed herein does not require labeled data and is specific 
enough to target individual users.  The proposed system analyzes 
the level of variance between commands used and calculates an 
anomaly score for each given command.  It uses these anomaly 
scores to compare Bash history sets together to identify if they 
were created by the same user.  

Keywords—anomaly detection, computer forensics, Bash 
history, cybersecurity 

I. INTRODUCTION

Humanity has entered an information age where the systems 
used on a daily basis are becoming more vulnerable than ever. A 
2018 study, conducted by the Center for Strategic and 
International Studies and McAfee [1], estimated the cost of 
cybercrime, on a global basis, at $445 billion to $608 billion.  

The identification of an attacker, during and after a 
cyberattack, is a critical component of responding to and 
preventing future cybercrime and cyberterrorism, as well as 
properly attributing actions to state actors.  Attacker 
identification, during an attack, can assist in defensive (and 
possibly retaliatory, for some entity types) action decision-
making  After a cyberattack has occurred, it is important to 
identify and possibly apprehend the culprit as soon as possible, 
so that stolen assets and exfiltrated information can possibly be 
recovered and the extent of the damage can be projected.  

Problematically, even identifying the workstation or device 
that it originated from does not necessarily identify the attacker, 
as the attacking device could, itself, be compromised.  This 
paper proposes a system that can recognize a user's Bash history 
via generating a classification score that allows the use patterns 

of multiple users to be compared. This allows multiple Bash 
histories to be compared to tell if they have been created by the 
same user. This is done by parsing the Bash history into a 
workable form, and then feeding it to a model that generates an 
anomaly score for the data. This score is generated for multiple 
data sets that can then be compared.  

The proposed work facilitates the development of systems 
that are suitable for numerous applications and which focus on 
the identification of users across multiple devices.  Prior work 
used supervised methods which required labeled datasets.  Prior 
systems also focused on the identification of malicious activities 
instead of focusing, like the current system does, on the 
identification of multiple command histories being from the 
same user. 

Prior approaches, which focused on malicious activity 
detection, required significant manual involvement as an expert 
was required to manually label the existing dataset to notate 
whether individual entries are malicious or not. These 
supervised approaches were also not adaptive, as threats that did 
not exist in the premade comparison set are not able to be 
identified in presented data.  Even discounting these limitations, 
the systems were designed for network monitoring as opposed 
to finding or identifying a single individual person who is 
responsible for a given nefarious activity. 

This work is based on the thesis that users tend to fall into a 
consistent pattern of switching between less common and more 
common commands at a relatively constant rate. This rate of 
switching between less common and more common commands 
can be expressed in the form of the number of commands that 
are considered anomalous in the entire data set. Since this 
number would be relatively constant between data sets if they 
were only considered in their own right, different Bash history 
sets are compared by training a model on an initial set, and then 
evaluating new sets by using the original model. Sets that have 
a similar level of anomalies to the original will have a similar 
amount of disparity in data when compared to the original. Data 
sets that do not have a similar number of anomalies, or do not 
match many patterns of the original data set, will show a very 
different level of disparity.  The similarity to known patterns can 
be used as a virtual ‘fingerprint’ of an attacker. 



II. RELATED WORK 
This section presents prior work in several areas that the 

current work builds upon.  First, work on anomaly detection is 
reviewed.  Next, prior work on computer forensics is discussed. 

A. System Based Anomaly Detection 
Anomaly detection on systems and system logs has been 

demonstrated in many different forms and for numerous 
applications. Bash history is a form of a system log making these 
techniques relevant to this work. 

Supervised machine learning has been previously 
demonstrated for extracting anomaly information from Bash 
history [2]. It requires that a set of similar data is available and 
the requires an expert to manually label the data. This severely 
limits the utility of the approach, as data needs to have been 
previously collected and labeled.  This approach benefits from 
being informed from the start as to what is and is not an anomaly, 
thus a self-training phase is not required. However, this approach 
is unable to detect new anomalies without human intervention 
and new training.  

An alternate form of anomaly detection that has been used 
for network security is using system administrator defined 
anomalies and a system that detects them. One example is SAQL 
[3].  With SAQL, system events are converted into a stream of 
data which is then analyzed using predefined-by-administrator 
queries (written in the SAQL language). This approach is not 
able to detect new anomalies and it would not work for this 
application since it does not define anomalous events abstractly 
enough to create profiles for individual users.  

The Bash history is a log of user commands, so log analysis 
techniques are also informative. Anomaly detection has been 
used with system logs previously, for example, to detect issues 
and security breaches [4].  

DeepLog [5] is an example of unsupervised training for log 
analysis.  It parses system logs and feeds them into a 
continuously training unsupervised model.  Both the metadata 
from the logs and the content of the logs are analyzed and used 
to train a model that then looks for anomalous entries.  

An event based system was implemented for the Android 
operating system [6]. The principal difference between event 
based and log based anomaly detection is that event based 
systems analyze system events in real time, rather than 
retrospectively (as with log analysis).  

Natural language processing has been used, along with other 
data mining techniques, for log analysis in the past [7]. These 
techniques were shown to have significant promise with the 
predictive accuracy, in the use case described in the study, being 
about 90%. The analysis of logs using neural networks for 
anomaly detection was also demonstrated in [8].  In this study, a 
generalized approach to detection of anomalies in systems logs 
using state machines and system events was proposed. 

Another approach, collective anomaly detection, considers 
multiple data sets concurrently and searches for anomalies 
across them. In [9], a multi-task Gaussian graphical model is 
used for this. It uses the concept of nodes being dependent on 
other nodes to extracting anomaly information from the data. 

This approach is used heavily in the collective anomaly 
detection field, due to showing promising results. Yet another 
method of collective anomaly detection is demonstrated in [10].  
This study proposes a new framework for the purpose of 
detecting anomalies over several streams of data at once. 

B. Forensics 
Whether conducted in near-real time or after the fact, the 

technique proposed herein is a form of forensics and is closely 
related to prior work in behavior analysis.  Behavior evidence 
analysis is a technique normally used in physical crimes, taking 
advantage of physical evidence, crime-scene characteristics, and 
anything else left or surrounding a crime scene.  It also has found 
applications in cyber based cases. It has been used in 
cyberstalking cases [11], and could be used similarly in 
cyberattack investigations. 

This is similar to prior use of neural networks and deep 
learning to detect code similarity, both in source code [12], and 
in binaries [13]. The use with source code, in particular, is quite 
similar to command log files.  

While not as closely related, sentiment similarity detection 
in natural language processing [14] is also relevant.  These 
techniques assess the similarity of sentences based on evidence 
of human sentence sentiment. Bash history does not hold the 
same amount of sentiment as natural language, but it does have 
similar structures such as the proximality of related words.  

III. OVERVIEW OF KEY CONCEPTS 
This work requires knowledge of key characteristics of Bash 

and anomaly detection.  This section provides a review of these 
concepts and other terminology used throughout this document. 

A. Bash Overview 
Command: Command refers to any text input given to a 

command line interface for interpretation. Shell style commands 
consists of a first word that is the name or reference to the binary 
to be executed.  Subsequent words are delimited by spaces and 
are arguments for the command. Some systems, such as Bash, 
allow several commands to be concatenated on a single line. 

Command Line History: A log of commands issued by a 
user via a command line interface. This can include information 
such as timestamps, but (as with Bash) it can also just include 
the commands themselves (including applicable arguments).  

Bash History: Bash history is the command line history 
generated by the Bash command line shell. This format includes 
only the commands themselves, in an unaltered form. It lacks 
timestamps and any indication as to whether a command was 
successful or valid.  An example of this format is shown in 
Listing 1. 

Listing 1. Example of Bash history 
cd ~ 

ls 

cd Documents 

ls 

cat example.txt 

vim example.txt 

exit 



B. Anomalies Overview 
Broadly, an anomaly can be defined as anything that deviates 

from a data set at a high enough degree that it is can be 
considered to be out of place. There are several specific types of 
anomalies that are relevant to this work that are now discussed.  

Point anomalies: A point anomaly is a singular point in a 
data set which deviates significantly from the set.  

Collective anomalies: Collective anomalies are events that 
are considered unusual when multiple data sets are considered.  

Contextual anomalies: Contextual anomalies are events 
that could be considered normal in one context, but are unusual 
in the analyzed context.  

What constitutes an anomaly in Bash history will vary, due 
to the diversity of what history files can include. Anomalies 
could include commands that a user has not used before, 
commands of significantly longer length than normal and 
commands that don’t make sense amongst concurrently issued 
commands.  An example of a history file showing an anomaly is 
shown in Listing 2.  Line four demonstrates a length anomaly, 
compared to the rest of the commands in the listing. It is also the 
only line that chains multiple command together at once.  Of 
course, if the user did this regularly, it would not be an anomaly. 

Listing 2. Snippet of Bash history containing an anomaly 
cd Desktop 

ls  

touch example.txt 

wget -O x 10.134.7.19 --http-user=admin 

--http-password=erqureevat; ~/x; rm 

~/x 

cd ~ 

ls 

ls -la 

C. Terminology 
A few key terms are of particular importance.  Their 

definitions are provided in this section. 

Word: A single token from a command, strictly defined as 
any segment of text with preceding and trailing white space.  

Document: A string of words, in this case usually referring 
to a command in its entirety.  

Corpus: Collection of all documents in a body of text, in this 
case referring to a Bash history file in its entirety.  

Token: The numerical representation of a word. 

IV. METHODOLOGY 
Bash history has similarities to natural language, as it 

conveys intention and action and related words are used 
proximal to each other. It differs from natural language where 
the flow of words is pseudo-random as multiple orders can have 
the same result. Placing flags in commands, for example, does 
not require a specific order unless an argument is being named 
for subsequent use. Given this focus is placed on techniques 
involving the specific use of words and the habits of users, 
instead of natural language techniques. 

Novelty detection techniques can be used to profile users 
based on their "normal" behavior. This is based on the frequency 
of use of commands and arguments to those commands. This 
profile can then be used to evaluate different snippets of Bash 
history to analyze if they were created by the same user.  

The Python libraries SciKit Learn [15], Matplotlib [16], and 
NumPy [17] were used heavily throughout this project. The 
figures in this paper were generated by Matplotlib. 

A. Pipelining Bash History 
The Isolation Forest Model does not accept strings as input, 

so the Bash history needs to be converted into numerical form 
before it can be analyzed. The commands are tokenized and 
vectorized to convert words to a corresponding numerical 
representation. The method used for this is a combination of 
count vectorization and term frequency inverse document 
frequency (TF-IDF) vectorization [18]. This combined approach 
was chosen as it is non-lossy.  The two methods simply translate 
the command strings to a constant numerical form, instead of 
adding or removing information. 

Count vectorizaiton both converts the words into numerical 
tokens and takes occurrence into account. It operates by creating 
a matrix of terms and assigning each word to its corresponding 
column inside the matrix. Words of higher frequency have lower 
index values and lower frequency words have higher index 
values. Words that did not exist in the corpus of the initial 
training set will be ignored and assigned an index of zero when 
being evaluated. With this initial vectorization of the commands, 
commands that are the same will be given identical vectors. 

TF-IDF vectorization is then used in order to limit noise 
caused by the presence of a large number of words in longer 
commands. TF-IDF item weighing is used to scale the frequency 
of words based on the size of the document they are found in. 
The longer a command is, the more instances of a word it may 
contain, thus skewing the frequency of that single word. TF-IDF 
has two parts: term frequency and inverse document frequency. 

Term frequency is the number of occurrences of a single 
word inside of a document. Each word has its column value 
scaled by the frequency of itself within the entire document. 
Terms that appear more frequently are considered more 
important and thus placed higher within the ranking of words. 
This ranking may cause words within commands that are 
common but less important to rise up higher (e.g., --help, which 
may be used frequently but is unimportant); this effect is 
reversed in inverse document frequency conversion. 

The inverse document frequency step of TF-IDF scales 
words inversely to their occurrences within the overall text. 
Thus, less common words become more prominent and more 
common words become less prominent. This is performed on a 
per word basis.  The number of documents that contain the 
specified word is determined.  Then, the inverse fraction of the 
frequency across the entire document is calculated and this 
inverse frequency is scaled logarithmically. This is useful for 
this application, as the words that are of most interest are the 
ones that the user tends to use the least frequently.   These are 
the words that are potentially used in anomalous commands.  



The two techniques create two different models which create 
dictionaries of words using the first Bash history file provided. 
Additional Bash history files fed through them are then profiled 
using these original dictionaries and non-similar commands are 
parsed out. This limits the Bash histories that are compared to 
the commands used in the first file, removing the noise of 
commands that are not used when profiling the second. 

B. Novelty Detection Algorithm 
Several Novelty Detection algorithms were tested on 

different sets of Bash History, including Local Outlier Factor 
[19], Isolation Forest [20], One Class SVM [21], and Elliptic 
Envelope [22].  The algorithm that was found to perform best, 
for this application, was Isolation Forest. A comparison of these 
algorithms is presented in Fig. 1. 

Isolation Forest works by using isolation trees that separate 
infrequently and frequently used commands.  As Bash history 
has a tendency to have many different types of commands 
executed frequently, there tend to be many small to medium 
sized clusters of data that would be considered non-anomalous.  
Isolation Forest handles these chaotic patterns effectively. 

It scores commands that the user uses frequently with high 
values, while scoring commands that are infrequently used with 
low values. This separation of entries into their scores is shown 
in Figure 2. This scoring of command frequency creates a profile 
of the user and what commands they tend to use often and what 
they use less often.  This allows a comparison of the disparity 
between often used and infrequently used commands between 
different Bash history files.   

The Isolation Forest model is trained using the first data set, 
so the definition of anomalies is derived only from this set and 
not skewed by commands that are only in the second. This model 
is used to generate anomaly scores for each entry in both sets. 
These two sets of anomaly scores are then analyzed to ascertain 
the level of similarity between the sets.  

C. Analysis of 
Novelty Scores 

A user's Bash history 
tends to include a relatively 
consistent amount of noise, 
since users tend to use a 
primary set of commands 
frequently and a secondary 
set of commands 
infrequently. How often a 
user switches between 
these two is a characteristic 
of the user and can be 
quantitatively calculated. 
This amount of switching 
between these two modes 
of command usage is 
characterized by the 
variance of the anomaly 
scores of the given Bash 
history file.  

The vectorizer pipeline 
and an Isolation Forest 

model are trained using one set of Bash history.  These two 
trained models are then used to vectorize the second set of Bash 
history and generate anomaly scores to remove noise and make 
their usage patterns closer.  The anomaly score of each entry in 
these sets is then calculated; these values tend to lie between -
0.3 and -0.5. The variance of each respective set is then 
calculated and directly compared to create a variance difference 
D, which is calculated using the equation:  

 

𝐷 = |𝑉𝑎𝑟(ℎ1
𝑆) − 𝑉𝑎𝑟(ℎ2

𝑆)| 
  

where ℎ𝑥𝑆 is found by creating a set of all anomaly score values 
for the original Bash history set.  

Bash histories that have a similar pattern of switching 
between the frequent and infrequent commands will have similar 
variances.  A comparison will yield a D value closer to 0.  
Alternately, sets which have a different pattern of switching 
between the modes will have a high value of D. Current work 
suggests that a value of D below 2 may be indicative that the 
Bash histories are from the same person. 

D. Requirements for User Identification 
Fundamentally, the identification of two particular Bash 

histories as belonging to a given individual user is a question of 
statistical significance.  The greater the level of difference 
between the two Bash history files, the more quickly that it can 
be shown that they are from different users.  Files that are similar 
(or perhaps even have a user trying to impersonate another user) 
will require additional data to detect their smaller differences in 
nuance.   

While showing that two files have statistically significant 
differences discounts them from potentially being produced by 
the same user engaging in a similar process, the lack of 
statistically significant differences does not guarantee that they 
are from the same user.  Evidentiary standards will need to be 

 
Fig. 1. Out of the 2000 entries given, Isolation Forest marked 100 anomalous.  Local Outlier Factor marked 97 

anomalous, One Class SVM marked 1022 anomalous, and Elliptic Envelope marked 200 anomalous. 



developed for this technology to determine what level of 
similarity is acceptable for the use of the analysis for different 
purposes (such as investigatory purposes, civil suits and 
prosecutions).  Further development and testing of this approach 
is required to evaluate its suitability for various uses and to 
identify these thresholds. 

V. DATA AND ANALYSIS 
Fig.3 shows a comparison of two matching and two non-

matching sets of Bash history. The top graph within the figure 
shows that the anomalies within the two data sets are relatively 
similar, while the bottom graph shows that the two data sets have 
a very different level of variance in the data.  

The top data sets consist of two different sets of Bash 
histories generated by the same user across two different 
computers. The bottom data sets consists of one of the original 
generated sets from the top graph along with one artificially 
generated set of commands resembling the workflow of a C++ 
developer. A weighted graph system was used to produce 
pseudo natural, but still artificial, history file.   A comparison of 
these two non-matching Bash histories can be seen in Listing 3.  

The limited data sets compared demonstrate the potential 
promise of this technique.  The evaluation of the technique with 
a larger set of data from multiple users collected across an 
extended period of time is a key area of future work.  

VI. APPLICATION CASES 
Identification of users from Bash history has a large number 

of applications in the security and forensics fields.  The data 
could be used to identify if multiple concurrent intrusions or 
intrusions that occurred over time may be from the same source.  
This could help in assessment of the threat that is posed by the 
detected attacks, help predict the potential for future attacks and 
help determine what type of response is most appropriate.  

The tool may also be helpful for forensics evidence 
processing.  If samples of user histories are available or can be 
collected, it may be possible to identify who committed the 

attack or confirm that a suspect is 
the perpetrator using the 
technique. 

 One example of how this 
could be effective is the case of an 
insider attack.  Insider threats and 
their detection are a subject of 
ongoing study [23], [24].  The 
proposed technique could be used 
to demonstrate that a suspect is the 
culprit or to help clear an innocent 
user whose credentials or 
workstation have been used. 

For example, if there has been 
a breach of information from an 
employee's computer, it is possible 
that someone else has used their 
computer without their 
knowledge.  A method of reducing 
the suspect pool size would be to 

compare the bash history of each employee to that of what was 
left from the attack. This can be done without alerting individual 
employees, as only their Bash history would be needed for 
analysis. This would be a low-cost method of determining who 
might have been involved (and clearing those who are likely not 
involved).  

Another potential use case, in organizational policy 
enforcement, would be to gather Bash history from employee 
computers and compare this against verified history files 
generated by users in the past. This could detect if someone other 
than the employee is using the computer (possibly in real time),  
if the histories are significantly different. This may serve as an 
indication that a laptop has been lost or stolen or that users are 
improperly sharing credentials. 

VII. WEAKNESSES OF THE APPROACH 
The proposed approach has several weaknesses that could 

impair its performance, generally, or in specific circumstances.  
Several identified weaknesses are now discussed.  

A. Possibility of False Positives  
Due to the method of feature extraction used on the history 

logs, there is a chance of false positive associations. The 
proposed method does not examine the content of the history. 
This could cause users’ activity to appear similar if users have a 
similar level of proficiency or similar training and perform 
similar activities.  

B. Requirement of Similar Activities 
If the activities in two sets of Bash history from the same 

individual are different enough, then the two histories could be 
erroneously classified as being from different sources. What is 
considered anomalous is defined based on one of the sets.  Thus, 
if the actions that are being performed are different enough, for 
example comparing sets from a user’s home and work computer, 
they may be classified as being from different users.  

This may not always occur, as the analysis of a user 
switching between less common and more common commands 

 
Fig. 2. Isolation Forest score distribution on a set of 2,000 entries.  The lower a point is on the graph, the more 

anomalous the corresponding command is considered. 



still may be present between different types of tasks.  If the 
switching pattern used is similar, then the two sets could be 
identified as being from the same user.  

C. Requirement of Attacker Leaving Bash History Unaltered 
To be effective, this approach requires unaltered log files.  

Bash history is a relatively easy log file to access and change or 
delete on many systems, so the risk of it being altered or 
destroyed during or after an attack is high.  An attacker may 
delete the history simply to attempt to hide what he or she did, 
without even being aware of the possibility of its analysis for 
identification. This issue is part of the broader area of anti-
forensics [25].  This type of an approach would require several 
layers of protection against file manipulation or deletion. While 
a missing history file is problematic for any forensic 
investigation, the proposed technique cannot be used if files are 
not available. 

D. Requirement of Large Amount of History for Comparison 
 In order for there to be significant comparison between 

multiple sets of Bash history, each history log must be of 
substantial length. It was noted during this work that sets of 
history with under 200 entries were unreliable for comparison. 
Due to the nature of Bash history, it is common for large 
amounts to be naturally generated quickly so, in many cases, 
there will still be sufficient Bash history for comparison. 

VIII. AREAS OF POTENTIAL 
FUTURE WORK 

This paper presented initial work 
on the topic of user identification 
from history analysis.  Given this, 
there are a number of areas of 
prospective future work, which are 
discussed in this area. 

A. Use of Supervised 
Learning on Bash History  

A method of analysis that would 
be worthwhile to pursue in future 
work is the use of supervised 
learning on Bash history rather than 
the unsupervised approach used in 
this research. Supervised learning 
requires effort to label large amounts 
of data for analysis. Thus, it may not 
be suitable for all uses but it could 

have promising results. Supervised learning could be used for 
detecting anomalies or it could be used for labeling if two sets of 
Bash history were created by the same source or not. 

B. Different Methods of Pipelining Bash History for Analysis 
The method of pipelining used herein maintained words 

position and content. The words are simply converted to 
numbers with slight calculation to scale them across the entire 
document. There are other methods for performing pipelining 
that could be considered. 

One established method of converting words to vectors for 
analysis is Word2Vec [26], [27].  This approach holds the 
context of words after vectorization, which maintains word 
proximity knowledge. The current approach does not consider 
word proximity, losing the command’s context.  

The Word2Vec approach would facilitate consideration of 
the order of flags in commands. This would allow the system to 
differentiate between typical and atypical behavior at a more 
granular level. Users may have different common orderings of 
command flags.  Using the Word2Vec approach could 
differentiate between entries with different flag patterns. 

Data regarding the use of command characteristics and the 
use of special functions could also be analyzed, independent 

 
Fig. 3. Comparison of matching and non-matching Bash history data sets. 

Listing 3. Comparison of two unlike Bash histories in text form. 
 

SET A (Human Generated) SET B (Pseudo Human Generated) 
 ./qr g++ matrixproxy.cpp -o a.out 

 objdump -d qr touch vgui_bitmapimage.cpp 

 base64 qr touch initializer.cpp 

 objdump –help g++ matrixproxy.cpp vgui_bitmapimage.cpp  

 objdump qr initializer.cpp -o a.out 

 hexdump qr ./a.out 

 hexdump –help g++ matrixproxy.cpp vgui_bitmapimage.cpp  

 hexdump -h initializer.cpp -o a.out 

 xxd qr g++ matrixproxy.cpp vgui_bitmapimage.cpp  

 hexdump qr | xxd -r temp initializer.cpp -o a.out 

 hexdump qr | xxd -r g++ matrixproxy.cpp vgui_bitmapimage.cpp  

 hexdump qr | xxd -r > temp  initializer.cpp -o a.out 



from just being considered as part of the Bash history.   
Examples of potentially interesting functionality and 
characteristics include command length, the use of privilege 
escalation, the number of arguments used, use of command 
chaining, whether commands are run in the background, writing 
results to a file and accessing the internet.  Changes in the use of 
these commands may be identifiable anomalies for analysis.  

Using multiple input sources could enhance the accuracy of 
identifying usage patterns and, thus, users. This could lower the 
possibility of data sets being mistakenly flagged as similar by 
providing more ways for distinctions to be identified. 

C. Different Modes of Extraction of Bash History 
There are several methods used for storing command history 

on Linux systems. The method considered in this work is the 
.bash_history file, which is typically located in a user’s home 
directory. While this is a convenient way of collecting Bash 
history, it may not be the method that provides the most 
information. Many Linux distributions also include a history 
command that provides the command history held in memory.  

Bash history is not written to the user's history file until 
shutdown, on many systems. The history command provides all 
history currently available on the system for the current user. 
The use of this command instead of collecting from the user's 
home directory would potentially provide a larger set and more 
current history data to be analyzed.  Notably, the common 
forensics response technique of unplugging a suspect computer 
(to avoid processes changing stored data) may result in the loss 
of recent history data if action is not taken to preserve it. 

D. Supplemental Information Added to Bash History During 
Runtime 
Bash history, in its unaltered state, provides a large amount 

of information.  However, it lacks several types of data that 
would be beneficial for post-attack analysis.  Logging additional 
data on systems could aid future analysis.  

Bash history provides no indication of the time between 
commands. One feature that would facilitate analysis is the 
inclusion of timestamps in bash history. While this is a feature 
that can be used in bash history [28], it is not implemented by 
default on many popular Linux distributions. 

The inclusion of timestamps would allow for the analysis of 
usual patterns in the context of time. For example, the time 
between commands submitted may be of interest. Changes in 
command timing could indicate different user levels of 
proficiency, typing speeds or even automated input. 

Bash allows programs to return error codes at the end of their 
execution. These error codes hold information about the status 
of the program that ran or the command itself. By default in 
Bash, an error code is returned when an invalid command is 
submitted. This data would be interesting for analysis. A change 
in the level of erroneous commands issued could indicate a 
different level of operating fluency or a lack of knowledge about 
the system’s configuration.  Both could potentially be indicators 
that a different user was operating the system.  

Bash also allows the level of privilege of the current user on 
the system to be altered. Commands can be individually 

performed at a heightened level of privilege, or a user may move 
to a higher level of privilege and issue several commands in 
sequence at that level. The use of privilege change commands, 
if they are not normally used, could indicate that a malicious 
third-party is executing commands on a victim's computer. 

E. Other Anomaly Detection Methods 
There are many methods of anomaly detection, including 

those based on statistical analysis and machine learning. Each 
approach has different strengths and weaknesses and different 
accuracy when applied to a given application. Thus, evaluating 
the performance of other techniques could be beneficial. 

One potential approach, autoencoders, use a method of 
abstracting data into a simplified form.  They then use this 
minimized abstract form to try to recreate the original data. This 
can be used for anomaly detection by measuring the difference 
between what was expected and what was produced by the 
encoding and decoding process. This method has been 
successfully demonstrated in [29]. It has also been demonstrated 
to be effective for natural language analysis applications, such 
as grammar analysis and generation [30].  

Another potentially useful form of machine learning, for this 
application, is cluster analysis.  Cluster analysis has been 
previously used for anomaly detection. In [31], it was 
demonstrated for use in detecting outliers in the use of graphical 
interfaces.  This may be effective for log analysis as it may reveal 
detailed data about what a user does within their Bash history. 

Many anomaly detection techniques label in a binary fashion 
without providing insight as to why a certain item was flagged 
as anomalous while others were not. Cluster analysis provides 
more meaning for individual commands’ anomaly scores. The 
principal drawback of this technique is that the actual labeling of 
anomalous scores cannot be done as easily automatically.  
Instead of evaluating commands by their spread anomaly scores, 
it may be beneficial to compare them by the number of clusters 
present and the clusters’ shapes. 

IX. CONCLUSION 
This paper has presented a technique for user identification 

based on log file analysis.  Specifically, the analysis of Bash logs 
has been studied.  The technique has been described in this paper 
and the results of initial analysis have been presented.  The paper 
has also discussed several prospective weaknesses with the 
proposed system, under some circumstances, and has presented 
a number of possible areas for future work. 

The goal and focus of this work was to find a method of 
natural text analysis on human generated commands issued on 
the Bash command shell, that would yield significant and 
specific enough information on users that it would allow for 
direct comparison of the data between different data sets. This 
would aid in forensic research as it has a low monetary and time 
cost in the initial phases of post-attack forensics. It does not 
require user involvement, past potentially providing system logs.  
It can also be applied to a broader set of applications such as 
verification of individuals using the correct workstations in an 
office and the detection of laptop theft. The method of analysis 
presented is a starting point for a large field of analysis that can 



be performed based on user pattern detection in Bash history and 
other similar log files. 

This work is part of a larger field of analyzing human 
generated text.  This is growing application area for machine 
learning and statistical analysis. The work presented herein can, 
thus, potentially benefit from advances in this broad field.   

With the growing number of cyberattacks and the 
considerable threat that they pose, computer forensics 
techniques are critical for analyzing attacks to facilitate recovery 
and to prepare for future attacks.  User analysis can aid computer 
forensics efforts by generating meaningful information about 
user habits that would normally be not available using only 
traditional analysis techniques. 
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