
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Use of Bash History Novelty Detection for
Identification of Similar Source Attack Generation

Jack Hance
Department of Computer Science

North Dakota State University
Fargo, ND, USA

jack.hance@ndsu.edu

Jeremy Straub
Institute for Cyber Security Education and Research

North Dakota State University
Fargo, ND, USA

jeremy.straub@ndsu.edu

Abstract—When a cyberattack occurs, tracking the attack
back to an actual individual person can be problematic. Even
identifying the workstation or device that it originated from does
not necessarily identify the attacker, as the attacking device could,
itself, be compromised. A system to determine whether activities
that occur are from the same user or not facilitates forensic
analysis as well as the detection of concurrent attacks from
different devices by the same user. This paper proposes a system
for identifying attackers based on behaviors expressed via their
use of the Bash command line interface, the most common shell on
Linux distributions. Prior systems were limited by issues such as
requiring labeled user data which is difficult to acquire or not
being specific enough to monitor individual persons. The approach
proposed herein does not require labeled data and is specific
enough to target individual users. The proposed system analyzes
the level of variance between commands used and calculates an
anomaly score for each given command. It uses these anomaly
scores to compare Bash history sets together to identify if they
were created by the same user.

Keywords—anomaly detection, computer forensics, Bash
history, cybersecurity

I. INTRODUCTION

Humanity has entered an information age where the systems
used on a daily basis are becoming more vulnerable than ever. A
2018 study, conducted by the Center for Strategic and
International Studies and McAfee [1], estimated the cost of
cybercrime, on a global basis, at $445 billion to $608 billion.

The identification of an attacker, during and after a
cyberattack, is a critical component of responding to and
preventing future cybercrime and cyberterrorism, as well as
properly attributing actions to state actors. Attacker
identification, during an attack, can assist in defensive (and
possibly retaliatory, for some entity types) action decision-
making After a cyberattack has occurred, it is important to
identify and possibly apprehend the culprit as soon as possible,
so that stolen assets and exfiltrated information can possibly be
recovered and the extent of the damage can be projected.

Problematically, even identifying the workstation or device
that it originated from does not necessarily identify the attacker,
as the attacking device could, itself, be compromised. This
paper proposes a system that can recognize a user's Bash history
via generating a classification score that allows the use patterns

of multiple users to be compared. This allows multiple Bash
histories to be compared to tell if they have been created by the
same user. This is done by parsing the Bash history into a
workable form, and then feeding it to a model that generates an
anomaly score for the data. This score is generated for multiple
data sets that can then be compared.

The proposed work facilitates the development of systems
that are suitable for numerous applications and which focus on
the identification of users across multiple devices. Prior work
used supervised methods which required labeled datasets. Prior
systems also focused on the identification of malicious activities
instead of focusing, like the current system does, on the
identification of multiple command histories being from the
same user.

Prior approaches, which focused on malicious activity
detection, required significant manual involvement as an expert
was required to manually label the existing dataset to notate
whether individual entries are malicious or not. These
supervised approaches were also not adaptive, as threats that did
not exist in the premade comparison set are not able to be
identified in presented data. Even discounting these limitations,
the systems were designed for network monitoring as opposed
to finding or identifying a single individual person who is
responsible for a given nefarious activity.

This work is based on the thesis that users tend to fall into a
consistent pattern of switching between less common and more
common commands at a relatively constant rate. This rate of
switching between less common and more common commands
can be expressed in the form of the number of commands that
are considered anomalous in the entire data set. Since this
number would be relatively constant between data sets if they
were only considered in their own right, different Bash history
sets are compared by training a model on an initial set, and then
evaluating new sets by using the original model. Sets that have
a similar level of anomalies to the original will have a similar
amount of disparity in data when compared to the original. Data
sets that do not have a similar number of anomalies, or do not
match many patterns of the original data set, will show a very
different level of disparity. The similarity to known patterns can
be used as a virtual ‘fingerprint’ of an attacker.

II. RELATED WORK
This section presents prior work in several areas that the

current work builds upon. First, work on anomaly detection is
reviewed. Next, prior work on computer forensics is discussed.

A. System Based Anomaly Detection
Anomaly detection on systems and system logs has been

demonstrated in many different forms and for numerous
applications. Bash history is a form of a system log making these
techniques relevant to this work.

Supervised machine learning has been previously
demonstrated for extracting anomaly information from Bash
history [2]. It requires that a set of similar data is available and
the requires an expert to manually label the data. This severely
limits the utility of the approach, as data needs to have been
previously collected and labeled. This approach benefits from
being informed from the start as to what is and is not an anomaly,
thus a self-training phase is not required. However, this approach
is unable to detect new anomalies without human intervention
and new training.

An alternate form of anomaly detection that has been used
for network security is using system administrator defined
anomalies and a system that detects them. One example is SAQL
[3]. With SAQL, system events are converted into a stream of
data which is then analyzed using predefined-by-administrator
queries (written in the SAQL language). This approach is not
able to detect new anomalies and it would not work for this
application since it does not define anomalous events abstractly
enough to create profiles for individual users.

The Bash history is a log of user commands, so log analysis
techniques are also informative. Anomaly detection has been
used with system logs previously, for example, to detect issues
and security breaches [4].

DeepLog [5] is an example of unsupervised training for log
analysis. It parses system logs and feeds them into a
continuously training unsupervised model. Both the metadata
from the logs and the content of the logs are analyzed and used
to train a model that then looks for anomalous entries.

An event based system was implemented for the Android
operating system [6]. The principal difference between event
based and log based anomaly detection is that event based
systems analyze system events in real time, rather than
retrospectively (as with log analysis).

Natural language processing has been used, along with other
data mining techniques, for log analysis in the past [7]. These
techniques were shown to have significant promise with the
predictive accuracy, in the use case described in the study, being
about 90%. The analysis of logs using neural networks for
anomaly detection was also demonstrated in [8]. In this study, a
generalized approach to detection of anomalies in systems logs
using state machines and system events was proposed.

Another approach, collective anomaly detection, considers
multiple data sets concurrently and searches for anomalies
across them. In [9], a multi-task Gaussian graphical model is
used for this. It uses the concept of nodes being dependent on
other nodes to extracting anomaly information from the data.

This approach is used heavily in the collective anomaly
detection field, due to showing promising results. Yet another
method of collective anomaly detection is demonstrated in [10].
This study proposes a new framework for the purpose of
detecting anomalies over several streams of data at once.

B. Forensics
Whether conducted in near-real time or after the fact, the

technique proposed herein is a form of forensics and is closely
related to prior work in behavior analysis. Behavior evidence
analysis is a technique normally used in physical crimes, taking
advantage of physical evidence, crime-scene characteristics, and
anything else left or surrounding a crime scene. It also has found
applications in cyber based cases. It has been used in
cyberstalking cases [11], and could be used similarly in
cyberattack investigations.

This is similar to prior use of neural networks and deep
learning to detect code similarity, both in source code [12], and
in binaries [13]. The use with source code, in particular, is quite
similar to command log files.

While not as closely related, sentiment similarity detection
in natural language processing [14] is also relevant. These
techniques assess the similarity of sentences based on evidence
of human sentence sentiment. Bash history does not hold the
same amount of sentiment as natural language, but it does have
similar structures such as the proximality of related words.

III. OVERVIEW OF KEY CONCEPTS
This work requires knowledge of key characteristics of Bash

and anomaly detection. This section provides a review of these
concepts and other terminology used throughout this document.

A. Bash Overview
Command: Command refers to any text input given to a

command line interface for interpretation. Shell style commands
consists of a first word that is the name or reference to the binary
to be executed. Subsequent words are delimited by spaces and
are arguments for the command. Some systems, such as Bash,
allow several commands to be concatenated on a single line.

Command Line History: A log of commands issued by a
user via a command line interface. This can include information
such as timestamps, but (as with Bash) it can also just include
the commands themselves (including applicable arguments).

Bash History: Bash history is the command line history
generated by the Bash command line shell. This format includes
only the commands themselves, in an unaltered form. It lacks
timestamps and any indication as to whether a command was
successful or valid. An example of this format is shown in
Listing 1.

Listing 1. Example of Bash history
cd ~

ls

cd Documents

ls

cat example.txt

vim example.txt

exit

B. Anomalies Overview
Broadly, an anomaly can be defined as anything that deviates

from a data set at a high enough degree that it is can be
considered to be out of place. There are several specific types of
anomalies that are relevant to this work that are now discussed.

Point anomalies: A point anomaly is a singular point in a
data set which deviates significantly from the set.

Collective anomalies: Collective anomalies are events that
are considered unusual when multiple data sets are considered.

Contextual anomalies: Contextual anomalies are events
that could be considered normal in one context, but are unusual
in the analyzed context.

What constitutes an anomaly in Bash history will vary, due
to the diversity of what history files can include. Anomalies
could include commands that a user has not used before,
commands of significantly longer length than normal and
commands that don’t make sense amongst concurrently issued
commands. An example of a history file showing an anomaly is
shown in Listing 2. Line four demonstrates a length anomaly,
compared to the rest of the commands in the listing. It is also the
only line that chains multiple command together at once. Of
course, if the user did this regularly, it would not be an anomaly.

Listing 2. Snippet of Bash history containing an anomaly
cd Desktop

ls

touch example.txt

wget -O x 10.134.7.19 --http-user=admin

--http-password=erqureevat; ~/x; rm

~/x

cd ~

ls

ls -la

C. Terminology
A few key terms are of particular importance. Their

definitions are provided in this section.

Word: A single token from a command, strictly defined as
any segment of text with preceding and trailing white space.

Document: A string of words, in this case usually referring
to a command in its entirety.

Corpus: Collection of all documents in a body of text, in this
case referring to a Bash history file in its entirety.

Token: The numerical representation of a word.

IV. METHODOLOGY
Bash history has similarities to natural language, as it

conveys intention and action and related words are used
proximal to each other. It differs from natural language where
the flow of words is pseudo-random as multiple orders can have
the same result. Placing flags in commands, for example, does
not require a specific order unless an argument is being named
for subsequent use. Given this focus is placed on techniques
involving the specific use of words and the habits of users,
instead of natural language techniques.

Novelty detection techniques can be used to profile users
based on their "normal" behavior. This is based on the frequency
of use of commands and arguments to those commands. This
profile can then be used to evaluate different snippets of Bash
history to analyze if they were created by the same user.

The Python libraries SciKit Learn [15], Matplotlib [16], and
NumPy [17] were used heavily throughout this project. The
figures in this paper were generated by Matplotlib.

A. Pipelining Bash History
The Isolation Forest Model does not accept strings as input,

so the Bash history needs to be converted into numerical form
before it can be analyzed. The commands are tokenized and
vectorized to convert words to a corresponding numerical
representation. The method used for this is a combination of
count vectorization and term frequency inverse document
frequency (TF-IDF) vectorization [18]. This combined approach
was chosen as it is non-lossy. The two methods simply translate
the command strings to a constant numerical form, instead of
adding or removing information.

Count vectorizaiton both converts the words into numerical
tokens and takes occurrence into account. It operates by creating
a matrix of terms and assigning each word to its corresponding
column inside the matrix. Words of higher frequency have lower
index values and lower frequency words have higher index
values. Words that did not exist in the corpus of the initial
training set will be ignored and assigned an index of zero when
being evaluated. With this initial vectorization of the commands,
commands that are the same will be given identical vectors.

TF-IDF vectorization is then used in order to limit noise
caused by the presence of a large number of words in longer
commands. TF-IDF item weighing is used to scale the frequency
of words based on the size of the document they are found in.
The longer a command is, the more instances of a word it may
contain, thus skewing the frequency of that single word. TF-IDF
has two parts: term frequency and inverse document frequency.

Term frequency is the number of occurrences of a single
word inside of a document. Each word has its column value
scaled by the frequency of itself within the entire document.
Terms that appear more frequently are considered more
important and thus placed higher within the ranking of words.
This ranking may cause words within commands that are
common but less important to rise up higher (e.g., --help, which
may be used frequently but is unimportant); this effect is
reversed in inverse document frequency conversion.

The inverse document frequency step of TF-IDF scales
words inversely to their occurrences within the overall text.
Thus, less common words become more prominent and more
common words become less prominent. This is performed on a
per word basis. The number of documents that contain the
specified word is determined. Then, the inverse fraction of the
frequency across the entire document is calculated and this
inverse frequency is scaled logarithmically. This is useful for
this application, as the words that are of most interest are the
ones that the user tends to use the least frequently. These are
the words that are potentially used in anomalous commands.

The two techniques create two different models which create
dictionaries of words using the first Bash history file provided.
Additional Bash history files fed through them are then profiled
using these original dictionaries and non-similar commands are
parsed out. This limits the Bash histories that are compared to
the commands used in the first file, removing the noise of
commands that are not used when profiling the second.

B. Novelty Detection Algorithm
Several Novelty Detection algorithms were tested on

different sets of Bash History, including Local Outlier Factor
[19], Isolation Forest [20], One Class SVM [21], and Elliptic
Envelope [22]. The algorithm that was found to perform best,
for this application, was Isolation Forest. A comparison of these
algorithms is presented in Fig. 1.

Isolation Forest works by using isolation trees that separate
infrequently and frequently used commands. As Bash history
has a tendency to have many different types of commands
executed frequently, there tend to be many small to medium
sized clusters of data that would be considered non-anomalous.
Isolation Forest handles these chaotic patterns effectively.

It scores commands that the user uses frequently with high
values, while scoring commands that are infrequently used with
low values. This separation of entries into their scores is shown
in Figure 2. This scoring of command frequency creates a profile
of the user and what commands they tend to use often and what
they use less often. This allows a comparison of the disparity
between often used and infrequently used commands between
different Bash history files.

The Isolation Forest model is trained using the first data set,
so the definition of anomalies is derived only from this set and
not skewed by commands that are only in the second. This model
is used to generate anomaly scores for each entry in both sets.
These two sets of anomaly scores are then analyzed to ascertain
the level of similarity between the sets.

C. Analysis of
Novelty Scores

A user's Bash history
tends to include a relatively
consistent amount of noise,
since users tend to use a
primary set of commands
frequently and a secondary
set of commands
infrequently. How often a
user switches between
these two is a characteristic
of the user and can be
quantitatively calculated.
This amount of switching
between these two modes
of command usage is
characterized by the
variance of the anomaly
scores of the given Bash
history file.

The vectorizer pipeline
and an Isolation Forest

model are trained using one set of Bash history. These two
trained models are then used to vectorize the second set of Bash
history and generate anomaly scores to remove noise and make
their usage patterns closer. The anomaly score of each entry in
these sets is then calculated; these values tend to lie between -
0.3 and -0.5. The variance of each respective set is then
calculated and directly compared to create a variance difference
D, which is calculated using the equation:

𝐷 = |𝑉𝑎𝑟(ℎ1
𝑆) − 𝑉𝑎𝑟(ℎ2

𝑆)|

where ℎ𝑥𝑆 is found by creating a set of all anomaly score values
for the original Bash history set.

Bash histories that have a similar pattern of switching
between the frequent and infrequent commands will have similar
variances. A comparison will yield a D value closer to 0.
Alternately, sets which have a different pattern of switching
between the modes will have a high value of D. Current work
suggests that a value of D below 2 may be indicative that the
Bash histories are from the same person.

D. Requirements for User Identification
Fundamentally, the identification of two particular Bash

histories as belonging to a given individual user is a question of
statistical significance. The greater the level of difference
between the two Bash history files, the more quickly that it can
be shown that they are from different users. Files that are similar
(or perhaps even have a user trying to impersonate another user)
will require additional data to detect their smaller differences in
nuance.

While showing that two files have statistically significant
differences discounts them from potentially being produced by
the same user engaging in a similar process, the lack of
statistically significant differences does not guarantee that they
are from the same user. Evidentiary standards will need to be

Fig. 1. Out of the 2000 entries given, Isolation Forest marked 100 anomalous. Local Outlier Factor marked 97

anomalous, One Class SVM marked 1022 anomalous, and Elliptic Envelope marked 200 anomalous.

developed for this technology to determine what level of
similarity is acceptable for the use of the analysis for different
purposes (such as investigatory purposes, civil suits and
prosecutions). Further development and testing of this approach
is required to evaluate its suitability for various uses and to
identify these thresholds.

V. DATA AND ANALYSIS
Fig.3 shows a comparison of two matching and two non-

matching sets of Bash history. The top graph within the figure
shows that the anomalies within the two data sets are relatively
similar, while the bottom graph shows that the two data sets have
a very different level of variance in the data.

The top data sets consist of two different sets of Bash
histories generated by the same user across two different
computers. The bottom data sets consists of one of the original
generated sets from the top graph along with one artificially
generated set of commands resembling the workflow of a C++
developer. A weighted graph system was used to produce
pseudo natural, but still artificial, history file. A comparison of
these two non-matching Bash histories can be seen in Listing 3.

The limited data sets compared demonstrate the potential
promise of this technique. The evaluation of the technique with
a larger set of data from multiple users collected across an
extended period of time is a key area of future work.

VI. APPLICATION CASES
Identification of users from Bash history has a large number

of applications in the security and forensics fields. The data
could be used to identify if multiple concurrent intrusions or
intrusions that occurred over time may be from the same source.
This could help in assessment of the threat that is posed by the
detected attacks, help predict the potential for future attacks and
help determine what type of response is most appropriate.

The tool may also be helpful for forensics evidence
processing. If samples of user histories are available or can be
collected, it may be possible to identify who committed the

attack or confirm that a suspect is
the perpetrator using the
technique.

 One example of how this
could be effective is the case of an
insider attack. Insider threats and
their detection are a subject of
ongoing study [23], [24]. The
proposed technique could be used
to demonstrate that a suspect is the
culprit or to help clear an innocent
user whose credentials or
workstation have been used.

For example, if there has been
a breach of information from an
employee's computer, it is possible
that someone else has used their
computer without their
knowledge. A method of reducing
the suspect pool size would be to

compare the bash history of each employee to that of what was
left from the attack. This can be done without alerting individual
employees, as only their Bash history would be needed for
analysis. This would be a low-cost method of determining who
might have been involved (and clearing those who are likely not
involved).

Another potential use case, in organizational policy
enforcement, would be to gather Bash history from employee
computers and compare this against verified history files
generated by users in the past. This could detect if someone other
than the employee is using the computer (possibly in real time),
if the histories are significantly different. This may serve as an
indication that a laptop has been lost or stolen or that users are
improperly sharing credentials.

VII. WEAKNESSES OF THE APPROACH
The proposed approach has several weaknesses that could

impair its performance, generally, or in specific circumstances.
Several identified weaknesses are now discussed.

A. Possibility of False Positives
Due to the method of feature extraction used on the history

logs, there is a chance of false positive associations. The
proposed method does not examine the content of the history.
This could cause users’ activity to appear similar if users have a
similar level of proficiency or similar training and perform
similar activities.

B. Requirement of Similar Activities
If the activities in two sets of Bash history from the same

individual are different enough, then the two histories could be
erroneously classified as being from different sources. What is
considered anomalous is defined based on one of the sets. Thus,
if the actions that are being performed are different enough, for
example comparing sets from a user’s home and work computer,
they may be classified as being from different users.

This may not always occur, as the analysis of a user
switching between less common and more common commands

Fig. 2. Isolation Forest score distribution on a set of 2,000 entries. The lower a point is on the graph, the more

anomalous the corresponding command is considered.

still may be present between different types of tasks. If the
switching pattern used is similar, then the two sets could be
identified as being from the same user.

C. Requirement of Attacker Leaving Bash History Unaltered
To be effective, this approach requires unaltered log files.

Bash history is a relatively easy log file to access and change or
delete on many systems, so the risk of it being altered or
destroyed during or after an attack is high. An attacker may
delete the history simply to attempt to hide what he or she did,
without even being aware of the possibility of its analysis for
identification. This issue is part of the broader area of anti-
forensics [25]. This type of an approach would require several
layers of protection against file manipulation or deletion. While
a missing history file is problematic for any forensic
investigation, the proposed technique cannot be used if files are
not available.

D. Requirement of Large Amount of History for Comparison
 In order for there to be significant comparison between

multiple sets of Bash history, each history log must be of
substantial length. It was noted during this work that sets of
history with under 200 entries were unreliable for comparison.
Due to the nature of Bash history, it is common for large
amounts to be naturally generated quickly so, in many cases,
there will still be sufficient Bash history for comparison.

VIII. AREAS OF POTENTIAL
FUTURE WORK

This paper presented initial work
on the topic of user identification
from history analysis. Given this,
there are a number of areas of
prospective future work, which are
discussed in this area.

A. Use of Supervised
Learning on Bash History

A method of analysis that would
be worthwhile to pursue in future
work is the use of supervised
learning on Bash history rather than
the unsupervised approach used in
this research. Supervised learning
requires effort to label large amounts
of data for analysis. Thus, it may not
be suitable for all uses but it could

have promising results. Supervised learning could be used for
detecting anomalies or it could be used for labeling if two sets of
Bash history were created by the same source or not.

B. Different Methods of Pipelining Bash History for Analysis
The method of pipelining used herein maintained words

position and content. The words are simply converted to
numbers with slight calculation to scale them across the entire
document. There are other methods for performing pipelining
that could be considered.

One established method of converting words to vectors for
analysis is Word2Vec [26], [27]. This approach holds the
context of words after vectorization, which maintains word
proximity knowledge. The current approach does not consider
word proximity, losing the command’s context.

The Word2Vec approach would facilitate consideration of
the order of flags in commands. This would allow the system to
differentiate between typical and atypical behavior at a more
granular level. Users may have different common orderings of
command flags. Using the Word2Vec approach could
differentiate between entries with different flag patterns.

Data regarding the use of command characteristics and the
use of special functions could also be analyzed, independent

Fig. 3. Comparison of matching and non-matching Bash history data sets.

Listing 3. Comparison of two unlike Bash histories in text form.

SET A (Human Generated) SET B (Pseudo Human Generated)
 ./qr g++ matrixproxy.cpp -o a.out

 objdump -d qr touch vgui_bitmapimage.cpp

 base64 qr touch initializer.cpp

 objdump –help g++ matrixproxy.cpp vgui_bitmapimage.cpp

 objdump qr initializer.cpp -o a.out

 hexdump qr ./a.out

 hexdump –help g++ matrixproxy.cpp vgui_bitmapimage.cpp

 hexdump -h initializer.cpp -o a.out

 xxd qr g++ matrixproxy.cpp vgui_bitmapimage.cpp

 hexdump qr | xxd -r temp initializer.cpp -o a.out

 hexdump qr | xxd -r g++ matrixproxy.cpp vgui_bitmapimage.cpp

 hexdump qr | xxd -r > temp initializer.cpp -o a.out

from just being considered as part of the Bash history.
Examples of potentially interesting functionality and
characteristics include command length, the use of privilege
escalation, the number of arguments used, use of command
chaining, whether commands are run in the background, writing
results to a file and accessing the internet. Changes in the use of
these commands may be identifiable anomalies for analysis.

Using multiple input sources could enhance the accuracy of
identifying usage patterns and, thus, users. This could lower the
possibility of data sets being mistakenly flagged as similar by
providing more ways for distinctions to be identified.

C. Different Modes of Extraction of Bash History
There are several methods used for storing command history

on Linux systems. The method considered in this work is the
.bash_history file, which is typically located in a user’s home
directory. While this is a convenient way of collecting Bash
history, it may not be the method that provides the most
information. Many Linux distributions also include a history
command that provides the command history held in memory.

Bash history is not written to the user's history file until
shutdown, on many systems. The history command provides all
history currently available on the system for the current user.
The use of this command instead of collecting from the user's
home directory would potentially provide a larger set and more
current history data to be analyzed. Notably, the common
forensics response technique of unplugging a suspect computer
(to avoid processes changing stored data) may result in the loss
of recent history data if action is not taken to preserve it.

D. Supplemental Information Added to Bash History During
Runtime
Bash history, in its unaltered state, provides a large amount

of information. However, it lacks several types of data that
would be beneficial for post-attack analysis. Logging additional
data on systems could aid future analysis.

Bash history provides no indication of the time between
commands. One feature that would facilitate analysis is the
inclusion of timestamps in bash history. While this is a feature
that can be used in bash history [28], it is not implemented by
default on many popular Linux distributions.

The inclusion of timestamps would allow for the analysis of
usual patterns in the context of time. For example, the time
between commands submitted may be of interest. Changes in
command timing could indicate different user levels of
proficiency, typing speeds or even automated input.

Bash allows programs to return error codes at the end of their
execution. These error codes hold information about the status
of the program that ran or the command itself. By default in
Bash, an error code is returned when an invalid command is
submitted. This data would be interesting for analysis. A change
in the level of erroneous commands issued could indicate a
different level of operating fluency or a lack of knowledge about
the system’s configuration. Both could potentially be indicators
that a different user was operating the system.

Bash also allows the level of privilege of the current user on
the system to be altered. Commands can be individually

performed at a heightened level of privilege, or a user may move
to a higher level of privilege and issue several commands in
sequence at that level. The use of privilege change commands,
if they are not normally used, could indicate that a malicious
third-party is executing commands on a victim's computer.

E. Other Anomaly Detection Methods
There are many methods of anomaly detection, including

those based on statistical analysis and machine learning. Each
approach has different strengths and weaknesses and different
accuracy when applied to a given application. Thus, evaluating
the performance of other techniques could be beneficial.

One potential approach, autoencoders, use a method of
abstracting data into a simplified form. They then use this
minimized abstract form to try to recreate the original data. This
can be used for anomaly detection by measuring the difference
between what was expected and what was produced by the
encoding and decoding process. This method has been
successfully demonstrated in [29]. It has also been demonstrated
to be effective for natural language analysis applications, such
as grammar analysis and generation [30].

Another potentially useful form of machine learning, for this
application, is cluster analysis. Cluster analysis has been
previously used for anomaly detection. In [31], it was
demonstrated for use in detecting outliers in the use of graphical
interfaces. This may be effective for log analysis as it may reveal
detailed data about what a user does within their Bash history.

Many anomaly detection techniques label in a binary fashion
without providing insight as to why a certain item was flagged
as anomalous while others were not. Cluster analysis provides
more meaning for individual commands’ anomaly scores. The
principal drawback of this technique is that the actual labeling of
anomalous scores cannot be done as easily automatically.
Instead of evaluating commands by their spread anomaly scores,
it may be beneficial to compare them by the number of clusters
present and the clusters’ shapes.

IX. CONCLUSION
This paper has presented a technique for user identification

based on log file analysis. Specifically, the analysis of Bash logs
has been studied. The technique has been described in this paper
and the results of initial analysis have been presented. The paper
has also discussed several prospective weaknesses with the
proposed system, under some circumstances, and has presented
a number of possible areas for future work.

The goal and focus of this work was to find a method of
natural text analysis on human generated commands issued on
the Bash command shell, that would yield significant and
specific enough information on users that it would allow for
direct comparison of the data between different data sets. This
would aid in forensic research as it has a low monetary and time
cost in the initial phases of post-attack forensics. It does not
require user involvement, past potentially providing system logs.
It can also be applied to a broader set of applications such as
verification of individuals using the correct workstations in an
office and the detection of laptop theft. The method of analysis
presented is a starting point for a large field of analysis that can

be performed based on user pattern detection in Bash history and
other similar log files.

This work is part of a larger field of analyzing human
generated text. This is growing application area for machine
learning and statistical analysis. The work presented herein can,
thus, potentially benefit from advances in this broad field.

With the growing number of cyberattacks and the
considerable threat that they pose, computer forensics
techniques are critical for analyzing attacks to facilitate recovery
and to prepare for future attacks. User analysis can aid computer
forensics efforts by generating meaningful information about
user habits that would normally be not available using only
traditional analysis techniques.

ACKNOWLEDGMENT
This research was supported by the United States National

Science Foundation (NSF award # 1757659). Some facilities
and equipment were provided by the NDSU Institute for Cyber
Security Education and Research and the NDSU Department of
Computer Science. Thanks are given to Ben Bernard for his
involvement.

REFERENCES
[1] J. Lewis, “Economic Impact of Cybercrime—No Slowing Down,” Feb.

2018.
[2] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly

detection techniques,” Journal of Network and Computer Applications,
vol. 60. Academic Press, pp. 19–31, 01-Jan-2016.

[3] P. Gao et al., “Saql: A Stream-based Query System for Real-Time
Abnormal System Behavior Detection,” in Proceedings of the 27th Usenix
Security Symposium, 2018.

[4] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience Report: System Log
Analysis for Anomaly Detection,” in Proceedings - International
Symposium on Software Reliability Engineering, ISSRE, 2016, pp. 207–
218.

[5] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings of
the ACM Conference on Computer and Communications Security, 2017,
pp. 1285–1298.

[6] G. Safi, A. Shahbazian, W. G. J. Halfond, and N. Medvidovic, “Detecting
event anomalies in event-based systems,” in Proceedings of the 2015 10th
Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 2015, pp. 25–37.

[7] C. Bertero, M. Roy, C. Sauvanaud, and G. Tredan, “Experience Report:
Log Mining Using Natural Language Processing and Application to
Anomaly Detection,” in Proceedings - International Symposium on
Software Reliability Engineering, ISSRE, 2017, vol. 2017-October, pp.
351–360.

[8] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols, “Recurrent neural
network attention mechanisms for interpretable system log anomaly
detection,” in Proceedings of the 1st Workshop on Machine Learning for
Computing Systems, 2018, vol. 18, pp. 1–8.

[9] T. Ide, D. T. Phan, and J. Kalagnanam, “Multi-task multi-modal models
for collective anomaly detection,” in Proceedings - IEEE International
Conference on Data Mining, ICDM, 2017, vol. 2017-November, pp. 177–
186.

[10] Y. Jiang, C. Zeng, J. Xu, and T. Li, “Real time contextual collective
anomaly detection over multiple data streams,” in Proceedings of the
ODD’14 Conference, 2014.

[11] N. Al Mutawa, J. Bryce, V. N. L. Franqueira, and A. Marrington,
“Forensic investigation of cyberstalking cases using behavioural evidence
analysis,” in DFRWS 2016 EU - Proceedings of the 3rd Annual DFRWS
Europe, 2016, vol. 16, pp. S96–S103.

[12] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” Proceedings of the 31st
IEEE/ACM International Conference on Automated Software
Engineering, 03-Sep-2016. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7582748?casa_token=mur
8dqJfq7MAAAAA:mOvQDPxGy3fmqKQxVRv43dJJGShxaKs2NM1Z
uixcEZCMwusHFsfYwsxxBApyA92afX86PMVgaQ. [Accessed: 27-Jul-
2020].

[13] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural Network-
based Graph Embedding for Cross-Platform Binary Code Similarity
Detection,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 363–376.

[14] H. He and J. Lin, “Pairwise Word Interaction Modeling with Deep Neural
Networks for Semantic Similarity Measurement,” in Proceedings of
NAACL-HLT, 2016, pp. 937–948.

[15] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, 2011.

[16] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput. Sci.
Eng., vol. 9, no. 3, pp. 99–104, May 2007.

[17] T. E. Oliphant, Guide to NumPy, 1st ed. CreateSpace Independent
Publishing Platform, 2015.

[18] L. Havrlant and V. Kreinovich, “A simple probabilistic explanation of
term frequency-inverse document frequency (tf-idf) heuristic (and
variations motivated by this explanation),” Int. J. Gen. Syst., vol. 46, no.
1, pp. 27–36, Jan. 2017.

[19] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, 2000, pp. 93–104.

[20] F. T. Liu, K. M. Ting, and Z. H. Zhou, “Isolation forest,” in Proceedings
of the IEEE International Conference on Data Mining, 2008.

[21] C. C. Chang and C. J. Lin, “LIBSVM: A Library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27,
2011.

[22] P. J. Rousseeuw and K. Van Driessen, “A fast algorithm for the minimum
covariance determinant estimator,” Technometrics, vol. 41, no. 3, pp.
212–223, 1999.

[23] A. Sanzgiri and D. Dasgupta, “Classification of insider threat detection
techniques,” in Proceedings of the 11th Annual Cyber and Information
Security Research Conference, 2016, pp. 1–4.

[24] B. Bose, B. Avasarala, S. Tirthapura, Y. Y. Chung, and D. Steiner,
“Detecting Insider Threats Using RADISH: A System for Real-Time
Anomaly Detection in Heterogeneous Data Streams,” IEEE Syst. J., vol.
11, no. 2, pp. 471–482, Jun. 2017.

[25] M. Gül and E. Kugu, “A survey on anti-forensics techniques,” in IDAP
2017 - International Artificial Intelligence and Data Processing
Symposium, 2017.

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv, Sep. 2013.

[27] Y. Goldberg and O. Levy, “word2vec Explained: deriving Mikolov et al.’s
negative-sampling word-embedding method,” arXiv.org, Feb. 2014.

[28] V. Gite, “Bash History Display Date And Time For Each Command,”
nixCraft Website, 2018. [Online]. Available:
https://www.cyberciti.biz/faq/unix-linux-bash-history-display-date-
time/. [Accessed: 27-Jul-2020].

[29] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“Anomaly detection using autoencoders in high performance computing
systems,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2019, vol. 2495, no. 01.

[30] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar
Variational Autoencoder,” arXiv.Org, vol. 4, Mar. 2017.

[31] V. Avdiienko, K. Kuznetsov, I. Rommelfanger, A. Rau, A. Gorla, and A.
Zeller, “Detecting behavior anomalies in graphical user interfaces,” in
Proceedings - 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion, ICSE-C 2017, 2017, pp. 201–203.

