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Abstract—Zero knowledge plays a central role in cryptog-
raphy and complexity. The seminal work of Ben-Or et al.
(STOC 1988) shows that zero knowledge can be achieved
unconditionally for any language in NEXP, as long as one is
willing to make a suitable physical assumption: if the provers
are spatially isolated, then they can be assumed to be playing
independent strategies.

Quantum mechanics, however, tells us that this assumption
is unrealistic, because spatially-isolated provers could share
a quantum entangled state and realize a non-local correlated
strategy. The MIP" model captures this setting.

In this work we study the following question: does spatial
isolation still suffice to unconditionally achieve zero knowledge
even in the presence of quantum entanglement?

We answer this question in the affirmative: we prove that
every language in NEXP has a 2-prover zero knowledge
interactive proof that is sound against entangled provers; that
is, NEXP C ZK-MIP".

Our proof consists of constructing a zero knowledge in-
teractive PCP with a strong algebraic structure, and then
lifting it to the MIP" model. This lifting relies on a new
framework that builds on recent advances in low-degree testing
against entangled strategies, and clearly separates classical and
quantum tools.

Our main technical contribution is the development of
new algebraic techniques for obtaining unconditional zero
knowledge; this includes a zero knowledge variant of the
celebrated sumcheck protocol, a key building block in many
probabilistic proof systems. A core component of our sumcheck
protocol is a new algebraic commitment scheme, whose analysis
relies on algebraic complexity theory.

Keywords-zero knowledge; multi-prover interactive proofs;
quantum entangled strategies; interactive PCPs; sumcheck
protocol; algebraic complexity;

I. INTRODUCTION

Zero knowledge, the ability to demonstrate the validity
of a claim without revealing any information about it, is
a central notion in cryptography and complexity that has
received much attention in the last few decades. Introduced
in the seminal work of Goldwasser, Micali, and Rackoff
[1], zero knowledge was first demonstrated in the model of
interactive proofs, in which a resource-unbounded prover
interacts with a probabilistic polynomial-time verifier to the
end of convincing it of the validity of a statement.

tom.gur@berkeley.edu

Tom Gur
UC Berkeley
Berkeley, CA

Nicholas Spooner
UC Berkeley
Berkeley, CA
nick.spooner@berkeley.edu

Goldreich, Micali, and Wigderson [2] showed that every
language in NP has a computational zero knowledge inter-
active proof, under the cryptographic assumption that (non-
uniform) one-way functions exist. Ostrovsky and Wigderson
[3] proved that this assumption is necessary.

Unfortunately, the stronger notion of statistical zero
knowledge interactive proofs, where both soundness and zero
knowledge hold unconditionally, is limited. For example, if
NP had such proofs then the polynomial hierarchy would
collapse to its second level [4, 5, 6].

The celebrated work of Ben-Or et al. [7] demonstrated
that the situation is markedly different when the verifier
interacts with multiple provers, in a classical world where by
spatially isolating the provers we ensure that they are playing
independent strategies — this is the model of multi-prover
interactive proofs (MIPs). They proved that every language
having an MIP (i.e., every language in NEXP [8]) also
has a perfect zero knowledge MIP. This result tells us that
spatial isolation implies zero knowledge.

In light of quantum mechanics, however, we know that
spatial isolation does not imply independence, because the
provers could share an entangled state and realize a strategy
that is beyond that of independently acting provers. For
example, it is possible for entangled provers to win a game
(e.g., the magic square game) with probability 1, whereas
independent provers can only win with probability at most
8/9 [9].

Non-local correlations arising from local measurements
on entangled particles play a fundamental role in physics,
and their study goes back at least to Bell’s work on the
Einstein—Podolsky—Rosen paradox [10]. Recent years have
seen a surge of interest in MIPs with entangled provers,
which correspond to the setting in which multiple non-
communicating provers share an entangled state and wish to
convince a classical verifier of some statement. This notion
is captured by MIP" protocols, introduced by Cleve et al. [9].
A priori it is unclear whether these systems should be less
powerful than standard MIPs, because of the richer class of
malicious prover strategies, or more powerful, because of
the richer class of honest prover strategies.

Investigating proof systems with entangled adversaries
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not only sharpens our understanding of entanglement as
a computational resource, but also contributes insights to
hardness of approximation and cryptography in a post-
quantum world. However, while the last three decades saw the
development of powerful ideas and tools for designing and
analyzing proof systems with classical adversaries, despite
much effort, there are only a handful of tools available
for dealing with quantum entangled adversaries, and many
fundamental questions remain open.

MIP" protocols were studied in a long line of work, culmi-
nating in a breakthrough result of Ito and Vidick [11], who
in a technical tour-de-force showed that NEXP C MIP*;!
this result was further improved in [12, 13]. However, it is
unknown whether these MIP protocols can achieve zero
knowledge, which is the original motivation behind the
classical MIP model. In sum, in this paper we pose the
following question:

To what extent does spatial isolation imply unconditional
zero knowledge in a quantum world?

A. Our results

Our main result is a strong positive answer to the foregoing
question, namely, we show that the NEXP C MIP* result
of Ito and Vidick [11] continues to hold even when we
require zero knowledge.

Theorem L.1. Every language in NEXP has a perfect zero
knowledge 2-prover MIP*. In more detail,

2
poly(n)
poly(n)
1/2

number of provers:

round complexity:
communication complexity:
soundness error:

NEXP C PZK-MIP"

We stress that the MIP" protocols of Theorem 1.1 enjoy
both unconditional soundness against entangled provers as
well as unconditional (perfect) zero knowledge against any
(possibly malicious) verifier.

B. Other notions of quantum zero knowledge

To the best of our knowledge, this work is the first to
study the notion of zero knowledge with entangled provers, as
captured by the MIP" model. Nevertheless, zero knowledge
has been studied in other settings in the quantum information
and computation literature; we now briefly recall these.

Watrous [14] introduced honest-verifier zero knowledge
for quantum interactive proofs (interactive proofs in which
the prover and verifier are quantum machines), and studied
the resulting complexity class QSZKyv. Kobayashi [15]
studied a non-interactive variant of this notion. Damgard,

I'While this is the popular statement of the result, [11] show a stronger
result, namely, that NEXP is exactly the class of languages decided by
MIPs sound against entangled provers. Their honest provers are classical,
and soundness holds also against entangled provers. This is also the case
in our protocols. It remains unknown whether entanglement grants provers
additional power: there is no known reasonable upper bound on MIP*.
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Fehr, and Salvail [16] achieve zero knowledge for NP against
malicious quantum verifiers, but only via arguments (i.e.,
computationally sound proofs) in the common reference
string model. Subsequently, Watrous [17] constructed quan-
tum interactive proofs that remain zero knowledge against
malicious quantum verifiers.

Zero knowledge for quantum interactive proofs has since
then remained an active area of research, and several aspects
and variants of it were studied in recent works, including
the power of public-coin interaction [18], quantum proofs
of knowledge [19], zero knowledge in the quantum random
oracle model [20], zero knowledge proof systems for QMA
[21], and oracle separations for quantum statistical zero
knowledge [22].

All the above works consider protocols between a single
quantum prover and a quantum verifier. In particular, they
do not study entanglement as a shared resource between two
(or more) provers.

In contrast, the MIP" protocols that we study differ from
the protocols above in two main aspects: (1) our proof
systems have multiple spatially-isolated provers that share
an entangled state, and (2) it suffices that the honest verifier
is a classical machine. Indeed, we show that, analogously
to the classical setting, MIP” protocols can achieve uncondi-
tional zero knowledge for a much larger complexity class
(namely, NEXP) than possible for QSZK protocols (since
QSZK C QIP = PSPACE).

II. TECHNIQUES

We begin by discussing the challenge that arises when
trying to prove that NEXP C PZK-MIP”, by outlining a
natural approach to obtaining zero knowledge MIP" protocols,
and considering why it fails.

A. The challenge

We know that every language in NEXP has a (perfect)
zero knowledge MIP protocol, namely, that NEXP C
PZK-MIP [7]. We also know that every language in
NEXP has an MIP" protocol, namely, that NEXP C
MIP* [11]. Is it then not possible to simply combine these
two facts and deduce that every language in NEXP has a
(perfect) zero knowledge MIP*?

The challenge is that the standard techniques used to
construct zero knowledge MIP protocols do not seem
compatible with those used to construct MIP® protocols
for large classes.? In fact, the former are precisely the type
of techniques that prove to be very limited for obtaining
soundness against entangled provers.

In more detail, while constructions of MIP (and PCP)
protocols typically capitalize on an algebraic structure,
known constructions of zero knowledge MIPs are of a
combinatorial nature. For example, the zero knowledge

2For example, Crépeau et al. [23] showed that the commitment scheme
in [7] is not sound against entangled adversaries.
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MIP in [7] is based on a multi-prover information-theoretic
commitment scheme, which can be thought of as a CHSH-
like game. The zero knowledge MIP in [24] is obtained
via the standard transformation from zero knowledge PCPs,
which is a form of consistency game. Unfortunately, these
types of constructions do not appear resistant to entangled
provers, nor is it clear how one can modify them to obtain
this resistance without leveraging some algebraic structure.

Indeed, initial attempts to show that NEXP C MIP*
(e.g., [25, 26, 27]) tried to apply some black box transforma-
tion to an arbitrarily structured (classical) MIP protocol to
force the provers to behave as if they are not entangled, and
then appeal to standard MIP soundness. These works were
only able to obtain limited protocols (e.g., with very large
soundness error).

In their breakthrough paper, Ito and Vidick [11] overcame
this hurdle and showed that NEXP C MIP* by taking a
different route: rather than a black box transformation, they
modified and reanalyzed a particular proof system, namely
the MIP protocol for NEXP in [8], while leveraging and
crucially using its algebraic structure. (Subsequent works
[12, 13] improved this result by reducing the number of
provers and rounds to a minimum, showing MIP* protocols
for NEXP with two provers and one round.)

In sum, the challenge lies in the apparent incompatibility
between techniques used for zero knowledge and those used
for soundness against entangled provers.

B. High-level overview

Our strategy for proving our main result is to bridge
the aforementioned gap by isolating the role of algebra in
granting soundness against entangled provers, and developing
new algebraic techniques for zero knowledge. Our proof of
Theorem I.1 thus consists of two parts.

1) Lifting lemma: a black box transformation from
algebraically-structured classical protocols into corre-
sponding MIP" protocols, which preserves zero knowl-
edge.

2) Algebraic zero knowledge: a new construction of zero
knowledge algebraically-structured protocols for any
language in NEXP.

The first part is primarily a conceptual contribution, and it
deals with quantum aspects of proof systems. The second
part is our main technical contribution, and it deals with
classical protocols (it does not require any background in
quantum information). We briefly discuss each of the parts,
and then provide an overview of the first part in Section II-C
and of the second part in Section II-D.

In the first part of the proof, we build on recent advances in
low-degree testing against entangled provers, and provide an
abstraction of techniques in [11, 12, 13]. We prove a lifting
lemma (see full version [28] for a precise statement) that
transforms a class of algebraically-structured classical proto-
cols into MIP” protocols, while preserving zero knowledge.
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This provides a generic framework for constructing MIP*
protocols, while decoupling the mechanisms responsible for
soundness against entangled provers from other classical
components.

In the second part of the proof, we construct an
algebraically-structured zero knowledge classical protocol,
which we refer to as a low-degree interactive PCP, to which
we apply the lifting lemma, completing the proof. At the
heart of our techniques is a strong zero knowledge variant
of the sumcheck protocol [29] (a fundamental subroutine
in many probabilistic proof systems), which we deem of
independent interest. In turn, a key component in our zero
knowledge sumcheck is a new algebraic commitment scheme,
whose hiding property is guaranteed by algebraic query
complexity lower bounds [30, 31]. These shed more light on
the connection of zero knowledge to algebraic complexity
theory.

C. Part I: lifting classical proof systems to MIP"

The first step towards obtaining a generic framework for
transforming classical protocols into corresponding MIP”
protocols is making a simple, yet crucial, observation.
Namely, while the result in [11] is stated as a white box
modification of the MIP protocol in [8], we observe that
the techniques used there can in fact be applied more
generally. That is, we observe that any “low-degree interactive
PCP”, a type of algebraically structured proof system that
underlies (implicitly and explicitly) many constructions in
the probabilistic proof systems literature, can be transformed
into a corresponding MIP* protocol.

The first part of the proof of Theorem I.1 formalizes this
idea, identifying sufficient conditions to apply the techniques
of [11, 12], and showing a lifting lemma that transforms
protocols satisfying these conditions into MIP* protocols.
We relate features of the original protocol to those of the
resulting MIP” protocols, such as round complexity and,
crucially, zero knowledge.

To make this discussion more accurate, we next define
and discuss low-degree interactive PCPs.

1) Low-degree interactive PCPs: An Interactive PCP
(IPCP), a proof system whose systematic study was initiated
by Kalai and Raz [32], naturally extends the notions of a
probabilistically checkable proof (PCP) and an interactive
proof (IP). An r-round IPCP is a two-phase protocol in which
a computationally unbounded prover P tries to convince a
polynomial-time verifier V' that an input z, given to both
parties, is in a language .Z. First, the prover sends to the
verifier a PCP oracle (a purported proof that x € %),
which the verifier can query at any time. Second, the prover
and verifier engage in an r-round IP, at the end of which
the verifier either accepts or rejects.’ Completeness and
soundness are defined in the usual way.

3A1ternative1y, an IPCP can be viewed as a PCP that is verified
interactively (by an IP, instead of a randomized algorithm).
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In this work we consider a type of algebraically-structured
IPCP, which we call a low-degree IPCPs. This notion
implicitly (and semi-explicitly) underlies many probabilistic
proof systems in the literature. Informally, a low-degree
IPCP is an IPCP satisfying the following: (1) low-degree
completeness, which states that the PCP oracle sent by the
(honest) prover is a polynomial of low (individual) degree;
(2) low-degree soundness, which relaxes soundness to hold
only against provers that send PCP oracles that are low-degree
polynomials.

Low-degree completeness and soundness can be viewed
as a promise that the PCP oracle is a low-degree polynomial.
Indeed, these conditions are designed to capture “compatibil-
ity” with low-degree testing: only protocols with low-degree
completeness will pass a low-degree test with probability 1;
moreover, adding a low-degree test to an IPCP with low-
degree soundness results (roughly) in an IPCP with standard
soundness.

2) From low-degree IPCP to MIP": We show that any
low-degree IPCP can be transformed into a corresponding
MIP* protocol, in a way that preserves zero knowledge (for
a sufficiently strong notion of zero knowledge IPCP). To
this end, we use an entanglement-resistant low degree test,
which allows us to essentially restrict the provers usage of
the entangled state to strategies that can be approximately
implemented via randomness shared among the provers.
Informally, the idea is that by carefully invoking such a
test, we can let one prover take on the role of the PCP
oracle, and the other to take the role of the IPCP prover, and
then emulate the entire IPCP protocol.

In more detail, we show a zero-knowledge-preserving
transformation of low-degree IPCPs to MIP" protocols, which
is captured by the following lifting lemma.

Lemma II.1 (informally stated, see full version [28]). There
exists a transformation T’ that takes an r-round low-degree
IPCP (P', V') for a language &, and outputs a 2-prover
(r* +2)-round MIP" (Py, P, V) := T(P', V") for £, where
r max{r,1}. Moreover, this transformation preserves
zero knowledge.*

We stress that the simplicity of the lifting lemma is a key
feature since, as we describe below, it requires us to only
make small structural changes to the IPCP protocol. This
facilitates the preservation of various complexity measures
and properties, such as zero knowledge.

To prove this lemma, a key tool that we use is a new
low-degree test by Natarajan and Vidick [13],° which adapts
the celebrated plane-vs-point test of Raz and Safra [33] to

4More accurately, we require the given IPCP to be zero knowledge with
query bound that is roughly quadratic in the degree of the PCP oracle. See
full version [28] for details.

SIf we do not aim to obtain the optimal number of provers in our MIP”
protocols, then it it suffices to use (an adaptation of) the low-degree test in
[12].
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the MIP* model. A low-degree test is a procedure used to
determine if a given function f: F"™ — T is close to a
low-degree polynomial or if, instead, it is far from all low-
degree polynomials, by examining f at very few locations.
In the plane-vs-point test, the verifier specifies a random
2-dimensional plane in F™ to one prover and a random point
on this plane to the other prover; each prover replies with
the purported value of f on the received plane or point; then
the verifier checks that these values are consistent.
Informally, the analysis in [13] asserts that every entangled
strategy that passes this test with high probably must satisfy
an algebraic structure; more specifically, to pass this test
the provers can only use their shared entangled state to
(approximately) agree on a low-degree polynomial according
to which they answer. We use the following soundness
analysis of the this protocol. (See full version [28] for the
standard quantum notation used in the theorem below.)

Theorem I1.2 ([13, Theorem 2], informally stated). There
exists an absolute constant ¢ € (0,1) such that, for every
soundness parameter € > 0, number of variables m € N,
degree d € N, and finite field F, there exists a low-degree
test T' for which the following holds. For every symmetric
entangled prover strategy and measurements {AZ} ,cF acpm
that are accepted by T with probability at least 1 — ¢, there
exists a measurement {L9}q, where Q is an m-variate
polynomial of degree d, such that:

1) Approximate consistency with {AZ }:

Eaern 3. 3 (W[ A; @ L9|) < °
Q 2#Q(a)

2) Self-consistency of {L%}:

> (ULP @ (1d - L9) [W) <&
Q

In fact, we actually use a more refined version, which
tests a polynomial’s individual degree rather than its fotal
degree. In the classical setting, such a test is implicit in
[34] via a reduction from individual-degree to total-degree
testing. Informally, this reduction first invokes the test for
low total degree, then performs univariate low-degree testing
with respect to a random axis-parallel line in each axis. We
extend this reduction and its analysis to the setting of MIP".
(See full version [28] for details.) The analysis of the low
individual degree test was communicated to us by Thomas
Vidick, to whom we are grateful for allowing us to include
it here.

With the foregoing low-degree test at our disposal, we are
ready to outline the simple transformation from low-degree
IPCPs to MIP” protocols. We begin with a preprocessing step.
Note that the low individual degree test provides us with
means to assert that the provers can (approximately) only use
their entangled state to choose a low-degree polynomial @,
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and answer the verifier with the evaluation of Q on a single,
uniformly distributed point (or plane). Thus, it is important
that the IPCP verifier (which we start from) only makes a
single uniform query to its oracle. By adapting techniques
from [32], we can leverage the algebraic structure of the
low-degree IPCP and capitalize on the interaction to ensure
the IPCP verifier has this property, at essentially the cost of
increasing the round complexity by 1.°

Thus we have a low-degree IPCP, with prover P and
verifier V/, in which the verification takes place as follows.
Both P and V receive an explicit input x that is allegedly in
the language .. In addition, V' is granted oracle access to a
purported low-degree polynomial 12, whose full description is
known to P. The parties engage in an r-round interaction, at
the end of which V is allowed to make a single uniform query
to R and decide whether = € . (with high probability).

We transform this IPCP into a 2-prover MIP" by con-
sidering the following protocol. First, the verifier chooses
uniformly at random whether to (1) invoke a low-degree test,
in which it asks one prover to evaluate R on a random plane
or axis-parallel line and the other prover to evaluate R on a
random point on this plane or line, or (2) emulate the IPCP
protocol, in which one prover plays the role of the IPCP
prover and the other acts as lookup for R.

We use the approximate consistency condition of The-
orem II.2 to assert that the lookup prover approximately
answers according to a low-degree polynomial, and use the
self-consistency condition to ensure that both provers are
consistently answering according to the same low-degree
polynomial.”

We remark that preserving zero knowledge introduces some
subtle technicalities (which we resolve), the main of which
is that because the analysis of the entanglement-resistant
low individual degree test requires that the provers employ
symmetric strategies, we need to perform a non-standard
symmetrization (since standard symmetrization turns out to
break zero knowledge in our case). See full version [28] for
details.

3) Towards zero knowledge MIP™ for nondeterministic
exponential time: Equipped with the lifting lemma, we are
left with the task of constructing classical zero knowledge
low-degree IPCPs for all languages in NEXP. We first
explain why current constructions do not suffice for this
purpose.

The first thing to observe is that the classical protocol
for the NEXP-complete language Oracle 3SAT by Babali,
Fortnow, and Lund [8] (neglecting the multilinearity test) can
be viewed as low-degree IPCP. Indeed, in [8] the protocol

SIndeed, if the original IPCP verifier makes a single uniform query to
its oracle, then we can save a round in Lemma II.1; that is, we obtain an
MIP" with round complexity r* + 1, rather than r* 4 2.

7Since the players are allowed the use of entanglement, we cannot hope
for a single function that underlies their strategy. Indeed, the players could
measure their entangled state to obtain shared randomness and select a
random R according to which they answer.
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is stated as an “oracle protocol”, which is equivalent to an
IPCP. The oracle is encoded as a low-degree polynomial, and
so low-degree completeness is satisfied. Alas, the foregoing
protocol is not zero knowledge. We remark that since the
MIP" protocol in [11] relies on the protocol in [8], the former
inherits the lack of zero knowledge from the latter.

Proceeding to consider classical zero knowledge proof
systems, for example the protocols in [24, 35, 36], we
observe that while some of these proof systems can be viewed
as IPCPs, they are not low-degree IPCPs. This is because
they achieve zero knowledge via combinatorial techniques
that do not admit the algebraic structure that we require.
We stress that the natural way of endowing an IPCP with
algebraic structure by taking the low-degree extension of the
PCP oracle does not necessarily preserve zero knowledge.®
Correspondingly, the MIP" protocols in [12, 13], which rely
on applying the low-degree extension code to a PCP, do not
preserve zero knowledge for this reason.

Finally, we observe that recent advances in algebraic zero
knowledge [37] (building on techniques from [38]) already
provide us with a classical proof system that is compatible
with our framework, and can thus be used to derive a zero
knowledge MIP” protocol, albeit only for languages in #P.

To strengthen the aforementioned result and show that
NEXP C PZK-MIP” (matching the NEXP C MIP*
containment, and showing that zero knowledge can, in a sense,
be obtained for “free” in the setting of MIP” protocols), we
need to construct a much stronger zero knowledge low-degree
IPCP. The second part of Theorem I.1, which is our main
technical contribution, provides exactly that. We proceed
to provide an overview of the techniques that we use to
construct such protocols.

D. Part II: new algebraic techniques for zero knowledge

The techniques discussed thus far tell us that, if we wish
to obtain a zero knowledge MIP* for NEXP, it suffices to
obtain a zero knowledge low-degree IPCP for NEXP (an
IPCP wherein the oracle is a low-degree polynomial). Doing
so is the second part of our proof of Theorem 1.1, and for
this we develop new algebraic techniques for obtaining zero
knowledge protocols. Our techniques, which build on recent
developments [38, 37], stand in stark contrast to other known
constructions of zero knowledge PCPs and interactive PCPs
(such as [24, 35, 36]). We remind the reader that this part of
our work only deals with classical protocols, and does not
require any knowledge of quantum information.

1) A zero knowledge low-degree IPCP for NEXP: Our
starting point is the protocol of Babai, Fortnow, and Lund [8]
(the “BFL protocol”). We first recall how the BFL protocol
works, in order to explain its sources of information leakage
and how one could prevent them via algebraic techniques.

8Intuitively, a single point in the encoded oracle can summarize a large
amount of information from the original oracle (e.g., very large linear
combinations).
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These are the ideas that underlie our algebraic construction of
an unconditional (perfect) zero knowledge low-degree IPCP
for NEXP.

The BFL protocol, and why it leaks: Oracle 3SAT
(O3SAT) is the following NEXP-complete problem: given
a boolean formula B, does there exist a boolean function A
(a witness) such that

B(Z, bl,bg, bg, A(bl), A(bg), A(bg)) = 0
for all z € {07 1}T,b1,b2,b3 S {0, ].}S ?

The BFL protocol is an IPCP for O3SAT that is then
(generically) converted to an MIP. In the BFL protocol, the
honest prover first sends a PCP oracle A: F* — F that is the
unique multilinear extension (in some finite field IF) of a valid
witness A: {0,1}* — {0,1}. The verifier must check that
(a) A is a boolean function on {0,1}*, and (b) A’s restriction
to {0,1}* is a valid witness for B. To do these checks, the
verifier arithmetizes the formula B into an arithmetic circuit
B, and reduces the checks to conditions that involve fl, B,
and other low-degree polynomials. A technique in [39] allows
the verifier to “bundle” all of these conditions into a single
low-degree polynomial f such that (with high probability
over the choice of f) the conditions hold if and only if f
sums to 0 on {0, 1}7 353, The verifier checks that this is the
case by engaging in a sumcheck protocol with the prover.’

We observe that the BFL protocol is not zero knowledge
for two reasons: (i) the verifier has oracle access to A and,
in particular, to the witness A; (ii) the prover’s messages
during the sumcheck protocol leak further information about
A (namely, hard-to-compute partial sums of f, which itself
depends on A).

A blueprint for zero knowledge: We now describe the
“blueprint” for an approach to achieve zero knowledge in
the BFL protocol. The prover does not send A directly, but
instead a commitment to it. After this, the prover and verifier
engage in a sumcheck protocol with suitable zero knowledge
guarantees; at the end of this protocol, the verifier needs to
evaluate f at a point of its choice, which involves evaluating
A at three points. Now the prover reveals the requested values
of A, without leaking any information beyond these, so that
the verifier can perform its check. We explain how these
ideas motivate the need for certain algebraic tools, which we
later develop and use to instantiate our approach.

(1) Randomized low-degree extension: Even if the
prover reveals only three values of A, these may still
leak information about A. We address this problem via a
randomized low-degree extension. Indeed, while the prover
in the BFL protocol sends the unique multilinear extension
of A, one can verify that any extension of A of sufficiently
low degree also works. We exploit this flexibility as follows:

9The soundness of the sumcheck protocol depends on the PCP oracle
being the evaluation of a low-degree polynomial, and so the verifier in [8]
checks this using a low-degree test. In our setting of low-degree IPCPs a
low-degree test is not necessary.
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the prover randomly samples A in such a way that any
three evaluations of A do not reveal any information about
A. Of course, if any of these evaluations is within the
systematic part {0,1}°, then no extension of A has this
property. Nevertheless, during the sumcheck protocol, the
prover can ensure that the verifier chooses only evaluations
outside of {0, 1}° (by aborting if the verifier deviates), which
incurs only a small increase in the soundness error.'® With
this modification in place, it suffices for the prover to let A
be a random degree-4 extension of A: by a dimensionality
argument, any 3 evaluations outside of {0,1}° are now
independent and uniformly random in F. We are thus able
to reduce a claim about A to a claim which contains no
information about A.

(2) Algebraic commitments: As is typical in zero
knowledge protocols, the prover will send a commitment
to fl, and then selectively reveal a limited set of evaluations
of A. The challenge in our setting is that this commitment
must also be a low-degree polynomial, since we require
a low-degree oracle. For this, we devise a new algebraic
commitment scheme based on the sumcheck protocol; we
discuss this in Section II-D2.

(3) Sumcheck in zero knowledge: We need a sumcheck
protocol where the prover’s messages leak little information
about f. The prior work in [37] achieves an IPCP for
sumcheck that is “weakly” zero knowledge: any verifier
learns at most one evaluation of f for each query it makes to
the PCP oracle. If the verifier could evaluate f by itself, as
was the case in that paper, this guarantee would suffice for
zero knowledge. In our setting, however, the verifier cannot
evaluate f by itself because f is (necessarily) hidden behind
the algebraic commitment.

One approach to compensate would be to further randomize
A by letting A be a random extension of A of some well-
chosen degree d. Unfortunately, this technique is incompatible
with our low-degree IPCP to MIP" transformation: such a
low-degree extension is at most d-wise independent, whereas
our lifting lemma, and more generally low-degree testing,
requires zero knowledge against any 2(d?) queries.

We resolve this by relying on more algebraic techniques,
achieving an IPCP for sumcheck with a much stronger
zero knowledge guarantee: any malicious verifier that makes
polynomially-many queries to the PCP oracle learns only a
single evaluation of f. This suffices for zero knowledge in
our setting: learning one evaluation of f implies learning
only three evaluations of A, which can be made “safe” if
A is chosen to be a random extension of A of sufficiently
high degree. Our sumcheck protocol uses as building blocks
both our algebraic commitment scheme and the “weak” zero
knowledge sumcheck in [37]; we summarize its construction
in Section II-D3.

10The honest verifier will be defined so that it always chooses evaluations
outside of {0,1}°, so completeness is unaffected.
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2) Algebraic commitments from algebraic query complex-
ity lower bounds: We provide a high-level description of an
information-theoretic commitment scheme in the low-degree
IPCP model (i.e., a low-degree interactive locking scheme
[36]). See full version [28] for details.!!

In this scheme, the prover commits to a message by sending
to the verifier a PCP oracle that perfectly hides the message;
subsequently, the prover can reveal positions of the message
by engaging with the verifier in an interactive proof, whose
soundness guarantees statistical binding.

Committing to an element: We first consider the simple
case of committing to a single element @ in FF. Let k be a
security parameter, and set N := 2*. Suppose that the prover
samples a random B in FY such that vazl B; = a, and
sends B to the verifier as a commitment. Observe that any
N — 1 entries of B do not reveal any information about
a, and so any verifier with oracle access to B that makes
fewer than N queries cannot learn any information about a.
However, as B is unstructured it is not clear how the prover
can later convince the verifier that 27]\;1 B; =a.

Instead, we can consider imbuing B with additional
algebraic structure. Namely, the prover views B as a function
from {0, 1}* to IF, and sends its unique multilinear extension
B:F¥ — F to the verifier. Subsequently, the prover can
reveal a to the verifier, and then engage in a sumcheck
protocol for the claim “Zﬁe{o,l}k B(f) = a” to establish
the correctness of a. The soundness of the sumcheck protocol
protects the verifier against cheating provers and hence
guarantees that this scheme is binding.

However, giving B additional structure calls into question
the hiding property of the scheme. Indeed, surprisingly, a
result of Juma et al. [31] shows that this new scheme is
in fact not hiding (in fields of odd characteristic): it holds
that B(271,...,271) = a- 2% for any choice of B, so the
verifier can learn a with only a single query to B!

Sending an extension of B has created a new problem:
querying the extension outside of {0,1}*, the verifier can
learn information that may require many queries to B to
compute. Indeed, this additional power is precisely what
underlies the soundness of the sumcheck protocol. To resolve
this, we need to understand what the verifier can learn about
B given some low-degree extension B. This is precisely the
setting of algebraic query complexity [30].'2

Indeed the foregoing theory suggests a natural approach
for overcoming the problem created by the extension of B:
instead of considering the multilinear extension, we can let

1 We use the commitment scheme perspective to illustrate the key ideas
in our construction. In the technical sections, we prove the zero knowledge
property directly using algebraic query complexity lower bounds, without
explicitly using any commitment scheme.

2Interestingly, in [30] a connection between algebra and zero knowledge
is also exhibited. Namely, to show that the result NP C CZK [2]
algebrizes, it is necessary to exploit the algebraic structure of the oracle to
design a zero knowledge protocol for verifying the existence of certain sets
of query answers.
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B be chosen uniformly at random from the set of degree-d
extensions of B, for some d > 1. It is not hard to see that
if d is very large (say, |F|) then 2 queries are required to
determine the summation of B on {0, 1}*. However, we need
d to be small to achieve soundness. Fortunately, a result of
[31] shows that d = 2 suffices: given a random multiquadratic
extension B of B, one needs 2* queries to B to determine
Z Ge gJ 1}k 5 ) 13
ommitting to a polynomial: The prover in our zero
knowledge protocols needs to commit not just to a single ele-
ment but rather to the evaluation of an m-variate polynomial
Q@ over I of degree d > 1. We extend our ideas to this setting.
We follow a similar general approach, however, arguing the
hiding property now requires a stronger algebraic query
complexity lower bound than the one proved in [31]. Not
only do we need to know that the verifier cannot determine
Q(a&) for a particular & € F™, but we need to know that the
verifier cannot determine Q (&) for any & € F™, or even any
linear combination of any such values. We prove that this
stronger guarantee holds in the same parameter regime: if
d > 1 then 2% queries are both necessary and sufficient. See
the discussion full version [28] for a more detailed overview.
Decommitting in zero knowledge: To use our commit-
ment scheme in zero knowledge protocols, we must ensure
that, in the decommitment phase, the verifier cannot learn
any information beyond the value a := Q(&), for a chosen
a. To decommit, the prover sends the value a and has to
convince the verifier that the claim “ZEG 0,1} 3(52, g) =a”
is true. However, if the prover and verifier simply run the
sumcheck protocol on this claim, the prover leaks partial sums
Z,@e{o 1yeei B(@,c1y...,¢, ), for ¢1,...,¢; € F chosen
by the verifier, which could reveal additional information
about . Instead, the prover and verifier run on this
claim the IPCP for sumcheck of [37], whose “weak” zero
knowledge guarantee ensures that this cannot happen. (Thus,
in addition to the commitment, the honest prover also sends
the evaluation of a random low-degree polynomial as required
by the IPCP for sumcheck of [37].)
3) A zero knowledge sumcheck protocol: We describe the

“strong” zero knowledge variant of the sumcheck protocol

that we use in our construction. The protocol relies on the
algebraic commitment scheme described in the previous
section. We first cover some necessary background, and
then describe our protocol.

Previous sumcheck protocols: The sumcheck protocol
[29] is an IP for claims of the form “} . ... F(d) =07,
where H is a subset of a finite field F and F' is an m-variate
polynomial over F of small individual degree. The protocol
has m rounds: in round ¢, the prover sends the univariate
polynomial g7(X7) aeHm—i F(Cl, R 7 I Xi, &),
where c1,...,c;—1 € F were sent by the verifier in previous

13This is the main reason why our application to constructing MIP”
protocols requires low-degree test against entangled provers, rather than just
a multilinearity test, as was used in [11].
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rounds; the verifier checks that ZaieH gi(a;) = gi—1(ci—1)
and replies with a uniformly random challenge c¢; € F. After
round m, the verifier outputs the claim “F(cy,...,¢p) =
gm(c1,...,cm)”. If F is of sufficiently low degree and does
not sum to a over the space, then the output claim is false
with high probability. Note that the verifier does not need
access to F.

The “weak” zero knowledge IPCP for sumcheck in [37]
modifies the above protocol as follows. The prover first
sends a PCP oracle that (allegedly) equals the evaluation of a
random “masking” polynomial R; the verifier checks that R
is (close to) low degree. Subsequently, the prover and verifier
conduct the following interactive proof. The prover sends
z € T that allegedly equals ) ;. ;;m R(&), and the verifier
responds with a uniformly random challenge p € F*. The
prover and verifier now run the (standard) sumcheck protocol
to reduce the claim “Y . ;o pF (&) + R(Q) = pa+ 2" to a
claim “pF'(¢)+ R(¢) = b”, for a random & € F™. The verifier
queries R at & and then outputs the claim “F'(¢) = @
If > gcpm F(Q) # a, then with high probability over p and
the verifier’s messages in the sumcheck protocol, this claim
is false.

A key observation is that if the verifier makes no queries
to R, then the prover’s messages are identically distributed
to the sumcheck protocol applied to a random polynomial
(. When the verifier does make queries to R, simulating the
resulting conditional distribution involves techniques from
Algebraic Complexity Theory, as shown in [37]. Given Q,
the verifier’s queries to R(&), for & € F™, are identically
distributed to Q(&) — pF(&). Thus, the simulator need only
make at most one query to F' for every query to R; that is,
any verifier making ¢ queries to R learns no more than it
would learn by making ¢ queries to F' alone.

As discussed, this zero knowledge guarantee does not
suffice for the application that we consider: in the NEXP
protocol, the polynomial F' is defined in terms of the NEXP
witness. In this case the verifier can learn enough about F' to
break zero knowledge by making only O(deg(F')) queries
to R.

Our sumcheck protocol: The “strong” zero knowledge
guarantee that we aim for is the following: any polynomial-
time verifier learns no more than it would by making one
query to F', regardless of its number of queries to the PCP
oracle.

The main idea to achieve this guarantee is the following.
The prover sends a PCP oracle that is an algebraic commit-
ment Z to the aforementioned masking polynomial R. Then,
as before, the prover and verifier run the sumcheck protocol
to reduce the claim “) . ;. pF' () + R(d) = pa + 2” to
a claim “pF(¢) + R(¢) = b” for random ¢ € F™.

We now face two problems. First, the verifier cannot simply
query R at & and then output the claim “F(¢) = @”
since the verifier only has oracle access to the commitment
Z of R. Second, the prover could cheat the verifier by having

s
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Z be a commitment to an R that is far from low degree,
which allows cheating in the sumcheck protocol.

The first problem is addressed by the fact that our algebraic
commitment scheme has a decommitment sub-protocol that
is zero knowledge: the prover can reveal R(¢) in such a way
that no other values about R are also revealed as a side-effect.
As discussed, this relies on the protocol of [37], used as a
subroutine.

The second problem is addressed by the fact that our
algebraic commitment scheme is “transparent” to low-degree
structure; that is, the algebraic structure of the scheme implies
that if the commitment Z is a low-degree polynomial (as in
a low-degree TPCPs), then R must also be low degree (and
vice versa).

Overall, the only value that a malicious verifier can learn is
F(c), for ¢ € I'™ of its choice (where I is some sufficiently
large subset of IF, fixed in advance). More precisely, we prove
the following theorem, which shows a strong zero knowledge
sumcheck protocol.

Theorem IL.3 (Informally stated, see full version [28]).
There exists a low-degree IPCP for sumcheck, with respect
to a low-degree polynomial F, that satisfies the following
zero knowledge guarantee: the view of any probabilistic
polynomial-time verifier in the protocol can be perfectly and
efficiently simulated by a simulator that makes only a single
query to F.

Our sumcheck protocol leaks a single evaluation of F'.
We stress that this limitation is inherent: the honest verifier
always outputs a true claim about one evaluation of £, which
it cannot do without learning that evaluation. Nevertheless,
this guarantee is strong enough for our application, as we
can ensure that learning a single evaluation of F' does not
harm zero knowledge.

We remark that our strong zero knowledge sumcheck
protocol can be transformed into a standard IPCP, by the
standard technique of adding a (classical) low-degree test to
the protocol.

III. DISCUSSION AND OPEN PROBLEMS

The framework that we use to prove that NEXP C
PZK-MIP" elucidates the role that algebra plays in the
design of proofs systems with entangled provers. Namely,
we show that a large class of algebraic protocols (low-
degree IPCPs) can be transformed in a black box manner
to MIPs with entangled provers. This abstraction decouples
the mechanisms responsible for soundness against entangled
adversaries from other classical components in the proof
system. In turn, this allows us to focus our attention on
designing proof systems with desirable properties (zero
knowledge, in this work), without having to deal with the
complications that arise from entanglement, and then derive
MIP* protocols from these classical protocols.
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These ideas also enable us to re-interpret prior construc-
tions of MIP" protocols at a higher level of abstraction. For
example, the protocol in [11] can be viewed as applying our
lifting lemma to the (low-degree) IPCP in [8]. As another
example, one can start with any PCP for some language .,
low-degree extend the PCP, and then apply our lifting lemma
to obtain a corresponding MIP" protocol for .#; in fact, the
protocol in [12] can be viewed in this perspective.

In more detail, we say that a transformation from IPCP
to MIP" is black box if it maps an IPCP protocol into
an MIP" protocol whose verifier can be expressed as an
algorithm that only accesses the queries and messages of
the IPCP verifier, but does not access its input (apart from
its length). The following corollary shows that any IPCP
protocol can be transformed into an MIP" protocol via a
black box transformation. While a proof of this fact is implicit
in [12, 13], the framework developed in this paper allows
us to crystallize its structure and give a compellingly short
proof of it.

Corollary IIL.1. There is a black box transformation that
maps any r-round IPCP protocol for a language £ to a
2-prover (r + 1)-round MIP" for &

The round complexity of r+1 in Corollary III.1 is less than
in our lifting lemma (r + 2), because now we do not require
that zero knowledge is preserved. We make the foregoing
discussion precise in the full version [28].

We conclude this section by discussing several open
problems.

In this work we show that there exist perfect zero
knowledge MIP* protocols for all languages in NEXP,
with polynomially-many rounds. Since round complexity is a
crucial resource in any interactive proof system, it is essential
to understand whether zero knowledge MIP* protocols
with low round complexity exist. (After all, without the
requirement of zero knowledge, every language in NEXP
has a MIP" protocol with just one round [12, 13].) We remark
that the “oracularization” technique of Ito et al. [26] reduces
the round complexity of any MIP* to one round, but this
technique does not preserve zero knowledge.

Open Problem 1. Do there exist constant-round zero
knowledge MIP" protocols for NEXP?

At the beginning of this section, we reflected on the
fact that known results that establish the power of MIP*
protocols rely on algebraic structure, which enables classical-
to-quantum black box transformations of protocols. But
is algebraic structure inherently required, or does some
combinatorial structure suffice?

Open Problem 2. Is there a richer class of classical protocols
(beyond low-degree IPCPs) that can be black-box transformed
into MIP" protocols?

For instance, could we replace low-degree polynomials
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with, say, error correcting codes with suitable local testability
and decodability properties? One place to start would be to
understand whether local testers for tensor product codes
[40] are sound against entangled provers.

Open Problem 3. When suitably adapted to the multi-prover
setting, is the random hyperplane test in [40] for tensor
product codes sound against entangled provers?
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