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ABSTRACT

In this paper we study the complexity of constructing a hitting
set for VP, the class of polynomials that can be infinitesimally ap-
proximated by polynomials that are computed by polynomial sized
algebraic circuits, over the real or complex numbers. Specifically,
we show that there is a PSPACE algorithm that given n, s, r in unary
outputs a set of inputs fromQn of size poly(n, s, r ), with poly(n, s, r )
bit complexity, that hits all n-variate polynomials of degree r that
are the limit of size s algebraic circuits. Previously it was known
that a random set of this size is a hitting set, but a construction that
is certified to work was only known in EXPSPACE (or EXPH as-
suming the generalized Riemann hypothesis). As a corollary we get
that a host of other algebraic problems such as Noether Normaliza-
tion Lemma, can also be solved in PSPACE deterministically, where
earlier only randomized algorithms and EXPSPACE algorithms (or
EXPH assuming the generalized Riemann hypothesis) were known.

The proof relies on the new notion of a robust hitting set which
is a set of inputs such that any nonzero polynomial that can be
computed by a polynomial size algebraic circuit, evaluates to a
not too small value on at least one element of the set. Proving the
existence of such a robust hitting set is the main technical difficulty
in the proof.

Our proof uses anti-concentration results for polynomials, basic
tools from algebraic geometry and the existential theory of the
reals.
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1 INTRODUCTION

This paper studies the following question. What is the complexity
of constructing a set of points H ⊂ Rn , of small bit complexity,
that is guaranteed to be a hitting set for polynomials that can be
infinitesimally approximated by small algebraic circuits over the
real or complex numbers? Recall that H is a hitting set for a class
of polynomials C if for every f ∈ C there is some v ∈ H such
that f (v) , 0. The class of polynomials that can be infinitesimally
approximated by poly-size algebraic circuits is commonly denoted
by VP. Thus, we ask what is the complexity of constructing a hitting
set for VP.1

Relying on a result of Heintz and Sieveking [HS80b], who proved
that the variety of efficiently computed polynomials has polynomial
dimension and exponential degree, Heintz and Schnorr [HS80a]
showed that there is a poly-size hitting set forVP, and that a random
set of the appropriate polynomial size is a hitting set with high
probability. If we were satisfied with a 99.9% percent guarantee
then pickingH at randomwould work [HS80a]. The main difficulty
however is certifying that the set that we constructed is a hitting
set.

The problem of explicitly constructing an object whose existence
is known by probabilistic arguments has received a lot of attention.
The question is usually most difficult when there is no efficiently
computable certificate to test whether a candidate construction
satisfies the required properties. For example, consider d-regular
expander graphs that have expansion larger than half the degree.
By probabilistic arguments we know that random d-regular graphs
are such expanders. Yet, we don’t know of an efficiently checkable
certificate that certifies such large expansion (for expansion less
thand/2we can use spectral methods to certify expansion). Another
such question arises in construction of Ramsey graphs. We know
that when picking a graph at random fromG(n, 1/2) (i.e. each edge

1One can think of algebraic circuits over the reals, but our results hold for the complex
numbers as well. To prove our results it will be convenient to assume that we work
over algebraically closed fields, but at the end we output a set H ⊂ Qn of small bit
complexity.
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is picked with probability 1/2) with high probability it will not have
cliques nor anti-cliques of size larger than, say, 3 logn. Despite
many recent advances it is not known how to efficiently construct
such graphs nor to check whether a given graph has this property.
Constructing binary codes that meet the Gilbert-Varshamov bound
is yet another such problem and so is the question of constructing a
truth table of length n that cannot be computed by boolean circuits
(on logn bits) of size, say,

√
n. A more extreme example is that of

constructing strings with large Kolmogorov complexity. A random
string of length n will have Kolmogorov complexity of Ω(n), but
the question of deciding the Kolmogorov complexity of a string is
undecidable.

We note that even when an object is known to exist via proba-
bilistic arguments it is still not clear that it can be deterministically
constructed, even in PSPACE. Indeed, in PSPACEwe can go over all
choices of random coins for our randomized algorithm and for each
construct the potential object, yet when no efficiently checkable
certificate is known it is not clear how to verify that the object
that we constructed have the required properties. For the questions
mentioned above, of constructing expander graphs, Ramsey graphs,
codes that meet the Gilbert-Varshamov bound or hard truth tables,
it is clear how to check in PSPACE whether they have the required
property.

The situation is quite different when we think about hitting sets
for VP. One such difference is that for hitting sets it is impossible
to go over all polynomials in VP as there are infinitely many such
polynomials. Furthermore, we do not know an efficient way of
representing them as they are limits of polynomials in VP and are
not believed to have small circuits themselves: Recall that over
the real or complex numbers VP has several equivalent definitions,
the easiest may be that a polynomial f is in VP if there exists a
sequence of polynomials { fi } such that each fi can be computed
by a size nc (for some constant c) algebraic circuit such that fi →
f coefficient-wise.2 The best upper bound on the complexity of
polynomials in VP is exponentially larger than the complexity of
the approximating polynomials (which is nontrivial as the degrees
could be polynomially large). See [LL89, Bür04] for the exponential
upper bound and also [GMQ16] for polynomial upper bound if
one tweaks the definition of VP by restricting the type of allowed
approximations. Thus, there is no guarantee that polynomials in VP
have concise representation using algebraic circuits. To get a sense
of why the complexity of a limit polynomial may be larger consider
the tensor associated with univariate polynomial multiplication
modulo X 2. That is, T = x0y0z0 + (x1y0 + x0y1)z1. It is known that
the tensor rank ofT is 3. However,T can be represented as the limit
of rank 2 tensors: For any ε , 0 consider the tensor

Tε =
1

ε
· (x0 + εx1) · (y0 + εy1) · z1 + x0 · y0 · (z0 −

1

ε
z1)

= x0y0z0 + (x1y0 + x0y1)z1 + ε · x1y1z1 .

It is clear that as ε → 0 we get Tε → T . This example shows that
limits of algebraic computations can have smaller complexity than
each of the polynomials in the sequence.

2One can define the class VP over fields of positive characteristic using notion similar
to border rank but we do not need this alternative definition here.

The question of constructing a hitting set for VP that is guaran-
teed to work was raised by Mulmuley [Mul17]. Specifically, Mul-
muley asked what is the complexity of constructing a set that is
guaranteed to be a hitting set for VP and VP. For VP he observed
that a hitting set can be constructed in PSPACE (when the param-
eters of the circuits are given in unary) and that, assuming the
generalized Riemann hypothesis (GRH for short), it can be brought
down to PH using a result of Koiran [Koi96]. The idea is to reduce
the question of checking whether a given set of points is not a hit-
ting set to a question regarding the satisfiability of a certain set of
polynomial equations in poly(n) variables and polynomial degree.
I.e., to an instance of Hilbert’s Nullstellensatz problem. However,
for VP the situation is more complicated as polynomials in this
class are not known (nor believed) to have small algebraic circuits.
Thus, it is not clear whether the question of checking whetherH
is or is not a hitting set could be reduced to Hilbert’s Nullstellen-
satz problem. Using Gröbner basis, Mulmuley gave an EXPSPACE

algorithm3 for constructing such a hitting set [Mul17].
Mulmuley raised this question due of its applicability to other

questions on the borderline of geometry and complexity, mainly
the so called Noether Normalization Lemma (NLL) question. He
showed that constructing a normalization map could be reduced
to constructing a hitting set for VP and thus concluded that it
can be solved using randomness with a Monte Carlo algorithm, or
deterministically in EXPSPACE.

We note that the problem we consider is that of constructing
a (qualitatively) optimal hitting set. This in particular implies a
deterministic black-box PIT algorithm for VP which inherits the
PSPACE complexity of our construction. However, this latter result
is easy to obtain directly, as one can simply evaluate the circuit over
the (exponentially large) set {0, . . . , r }n . The correctness follows
from polynomial interpolation, and one can iteratively evaluate a
circuit on all points of this set in PSPACE.

1.1 Our Results

Here we show that the problem of constructing a hitting set for VP
is in PSPACE, which bears the same consequences for the results
obtained in Mulmuley’s paper.

Theorem 1.1 (Informal statement of main result (Theorem 7.1)).
For integers n, s, r there is an algorithm that runs in poly(n, s, r )-
space and constructs a poly(n, s, r )-size hitting set for all polynomials

that can be infinitesimally approximated by n-variate homogeneous

algebraic circuits of size s and degree r .

From the work of Mulmuley it follows that PSPACE algorithms
could also be devised for constructing normalizing maps (as in
Noether Normalization Lemma). We refer the readers to [Mul17]
for more on Noether Normalization Lemma. As introducing all the
relevant definitions and concepts from [Mul17] requires substantial
work and this is not the main focus of our work we rely on the
notation of [Mul17] in the statement of the next two theorems.

Theorem 1.2 (NNL for ∆[det ,m] in PSPACE (see Theorem 4.1 of
[Mul17])). The problem of constructing an h.s.o.p. for ∆[det ,m], spec-
ified succinctly, belongs to PSPACE.

3Assuming the generalized Riemann hypothesis his algorithm can be modified to yield
an EXPH algorithm using [Koi96].
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A similar result holds for other explicit varieties.

Theorem 1.3 (NNL for explicit varieties in PSPACE (see Theorem
5.5 of [Mul17])). The problem of constructing an h.s.o.p. for an explicit

varietyWn belongs to PSPACE.

Another corollary of our result is that for every s = poly(n) we
can construct in PSPACE the coefficients of an n-variate polynomial
of constant degree that cannot even be approximated by algebraic
circuits of size s .

Theorem 1.4. For every constant c there is a constant c ′ such that

there is a PSPACE algorithm that outputs the coefficients of an n

variate polynomial of degree c ′ that is not in the closure of algebraic

circuits of size nc .

Sketch of proof. The idea is to find in PSPACE a hitting set for
the closure of size s circuits. This hitting set has size |H | = poly(s).
Then, by solving a system of linear equations one can find a non
zero polynomial of degree roughly log |H |/logn, that vanishes on
the points inH . By the construction ofH this polynomial is not
in the closure of size s algebraic circuits. �

We end this part of the introduction by mentioning a natural
open problem.

Open Problem 1. Can the problem of constructing a hitting set for

VP be solved in PH (assuming GRH)?

1.2 Sketch of Proof

The first observation is that constructing a hitting set for size s and
degree r homogeneous circuits (i.e. for circuits in VP) can be done
in PSPACE. The idea is that one can enumerate over all subsets
of, say, [r2]n of size, say, (nrs)10, and for each such subset check
whether there exists a circuit that computes a nonzero polynomial
that vanishes over the subset. The existence of such a circuit can be
checked using the universal circuit. The universal circuit Ψ(x, y) is
a circuit in n essential variables x and poly(r , s) auxiliary variables
y such that for any size s and degree r circuit Φ(x) there is an assign-
ment a, to the auxiliary variables, so that the polynomials computed
by Ψ(x, a) and Φ(x) are the same. Thus, if our subset is v1, . . . , vm
we can check whether there exists a solution to Ψ(vi , a) = 0 for
all i ∈ [m] and Ψ(u, a) = 1.4 The problem of deciding whether a
system of polynomial equalities has a complex solution is known as
Hilbert’s Nullstellensatz problem in the computer science literature.
It is solvable in PSPACE and assuming the Generalized Riemann
Hypothesis (GRH) it is solvable in PH (the polynomial hierarchy),
see [Koi96].

We would like to use the same idea to construct hitting sets for
polynomials that can be infinitesimally approximated by size s and
degree r circuits. The problem is that even if H is a hitting set
for size s and degree r , it may be the case that for a sequence of
polynomials { fi }, even if fi (v) , 0 for all i , the limit polynomial
may still vanish at v. Thus, it is not clear that H also hits the
closure of size s and degree r . Indeed, consider the example given
in Section 1:

T = x0y0z0 + (x1y0 + x0y1)z1
4Since Ψ(x, a) is a homogeneous polynomial in x, if it is not identically zero then on
some input u it evaluates to 1.

and

Tε =
1

ε
· (x0 + εx1) · (y0 + εy1) · z1 + x0 · y0 · (z0 −

1

ε
z1)

= x0y0z0 + (x1y0 + x0y1)z1 + ε · x1y1z1 .
In addition to showing that the complexity ofT (measured in terms
of tensor rank) is larger than that of any of the polynomials approx-
imating it, it also demonstrates that constructing a hitting set for
VP may not be sufficient for constructing a hitting set for VP. Just
to illustrate the difference consider the input (x0,x1) = (y0,y1) =
(z0, z1) = (0, 1). Each of the tensors in the sequence is nonzero on
this input, and indeed Tε ((0, 1), (0, 1), (0, 1)) = ε , 0, but in the
limit we get zero, whereas the limit tensor is not the zero tensor.
Thus, the input (x0,x1) = (y0,y1) = (z0, z1) = (0, 1) “hits” every
polynomial in the sequence but the limit polynomial vanishes on it.
Thus, a hitting set for a class of polynomials C does not necessarily
extends to the closure of C. However, this does not rule out getting
hitting sets for C̄ via hitting sets for a class of polynomials only
slightly stronger than C, or by strengthening the notion of a hitting
set for C which is what we do here.

To overcome the discrepancy between a hitting set for VP and
a hitting set for VP, we would like to find what we call a “robust
hitting set”. In a nutshell, a robust hitting set H is such that for
every polynomial f that can be computed by a size s and degree r
circuit, after an adequate normalization, there will be a point in H
on which f evaluates to at least, say, 1. Thus, if fi are all normalized
and evaluate to at least 1 on v, then if lim fi = f then by continuity
f also evaluates to at least 1 on v. Thus, H hits f as well (this idea
is captured by Claim 5.2).

Hence, the first step in our proof is to first prove the existence
of robust hitting sets. We note that Heintz and Schnorr [HS80a]
proved the existence of a small hitting set for size s and degree r
circuits, but their proof does not yield robust hitting sets. To prove
the existence of such hitting sets we use anti-concentration results
for polynomials of Carbery-Wright [CW01]. These results show
that for a given polynomial, if we sample enough evaluation points
at random, then with high probability the polynomial will eval-
uate to a large value on at least one of those points. This is not
enough though as we cannot use the union bound since there are
infinitely many circuits. What we do instead is find an ε-net in the
set of all efficiently computable polynomials. For this we use the
bounds given by Heintz and Sieveking [HS80b] on the dimension
and degree of the algebraic variety of efficiently computable poly-
nomials. We prove that for an algebraic variety in CN , of dimension
d and degree D, there exists an ε-net of size roughly D · (N /ε)O (d ).
Combining the two results we are able to prove the existence of a
polynomially small robust hitting set for the variety of efficiently
computable polynomials. Showing the existence of robust hitting
sets is the main technical difficulty in the proof.

Now that we know that robust hitting sets exist the PSPACE

algorithm works as follows. It enumerates over all subsets of a
relevant domain of polynomial size. For each such subset it checks
whether there exists an algebraic circuit that has the right normal-
ization (e.g. that evaluates to at least 1 on some input from [−1, 1]n )
and that evaluates to at most ε on all points in the subset. If such
a solution is found then the subset is not robust and we move to
the next subset. To check whether such a solution exists we need
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to express this system of inequalities as a formula in the language
of the existential theory of the reals. Then we use the fact that
formulas in this language can be decided in PSPACE to conclude
that our algorithm works in PSPACE.

1.3 Organization

The rest of the paper is organized as follows. Section 2 contains
some preliminaries including the notation we use throughout the
paper (Section 2.1), the definition of universal algebraic circuit (Sec-
tion 2.2) and some basic results concerning norms of polynomials
and the relation between them (Section 2.3). Section 3 contains
results concerning anti-concentration of polynomials. In Section 4
we discuss basic properties of algebraic varieties and state some re-
sults concerning the variety of polynomials computed by poly-size
algebraic circuits. In Section 4.1 we give an upper bound on the
size of ε-net for algebraic varieties of polynomial dimension and
exponential degree. Then, in Section 5 we prove the existence of a
robust hitting set for algebraic circuits. We discuss the existential
theory of the reals in Section 6 and in Section 7 we give the PSPACE
algorithm for constructing a hitting set for VP.

2 PRELIMINARIES

2.1 Notation

We shall use the following notation. We do not mention which vari-
ety or circuit we study rather just that we shall use this parameters
for every circuit or variety.

• n is number of variables in the circuit
• s is size of circuit
• r is degree of circuit
• d is dimension of variety
• D is degree of variety
• N hom

n,r =
(n+r−1

r

)
is number of homogeneous monomials in

n variables of degree r
• v, u, e points in R∗

• x vector of variables
• f (x) is a polynomial and f is its vector of coefficients
• For 0 < δ < 1,Gδ = {−1,−1+δ ,−1+ 2δ , . . . , 1− 2δ , 1−δ }n
is the grid

• ι =
√
−1 is the complex imaginary root of −1

• [−1, 1]N
C
= [−1, 1]N +ι ·[−1, 1]N = {a+ι ·b | a, b ∈ [−1, 1]N }.

• For 0 < δ < 1, GC
δ
= {a + ι · b | a,b ∈ {−1,−1 + δ ,−1 +

2δ , . . . , 1 − 2δ , 1 − δ }n } is the grid in C.
• For 0 < δ < 1, Gδ,r , {a + k · b | a, b ∈ Gδ and 0 ≤ k ≤ r }.
• Ψ,Φ denote circuits

2.2 Algebraic Circuits

An algebraic circuit is a directed acyclic graph whose leaves are
labeled by either variables x1, . . . ,xn or elements from the field F,5

and whose internal nodes are labeled by the algebraic operations of
addition (+) or multiplication (×). Each node in the circuit computes
a polynomial in the natural way, and the circuit has one or more
output nodes, which are nodes of out-degree zero. The size of the
circuit is defined to be the number of wires, and the depth is defined

5In this paper we only consider fields of characteristic zero.

to be the length of a longest path from an input node to the output
node. A circuit is called homogeneous if every gate in it computes a
homogeneous polynomial.

A useful notion is that of a universal algebraic circuit, which is
a circuit that “encodes” all circuits of somewhat smaller size.

Definition 2.1 (Universal circuit). A homogeneous algebraic circuit

Ψ is said to be universal for n-variate homogeneous circuits of size s

and degree r if Ψ has n essential-inputs x andm auxiliary-inputs y,

such that for every homogeneous n-variate polynomial f of degree r

that is computed by an homogeneous algebraic circuit of size s there

exists an assignment a to them auxiliary-variables of Ψ such that

the polynomial computed by Ψ(x, a) is f (x). ♦

The existence of efficiently computable universal circuits was
shown by Raz [Raz10] (see also [SY10]).

Theorem 2.2 (Universal circuit). There exist constants c1 and c2
such that the following hold. For any natural numbers n, s, r there

exists a homogeneous circuit Ψ such that Ψ has n essential-variables,

c1 · sr4 auxiliary-variables, degree c2 · r and size c1 · sr4,6 and it is
universal for n-variate homogeneous circuits of size s and degree r .

Furthermore, for any polynomial f (x) that can be computed by Ψ

and any constant α , the polynomial α · f can also be computed by Ψ.

2.3 Norms of Polynomials

Definition 2.3 (Norm of a polynomial). For ann-variate polynomial

f (x) ∈ R[x] we denote

‖ f ‖2 :=
(∫

[−1,1]n
| f (x)|2dµ(x)

)1/2
=

(
Eµ [f 2]

)1/2
,

where µ(x) is the uniform probability measure on [−1, 1]n . We also

denote

‖ f ‖∞ = max
v∈[−1,1]n

| f (v)|.

♦

Remark 2.4.We shall also need to work with the usual Euclidean

norm of vectors. To avoid confusionwe shall denote the usual Euclidean

norm of a vector v with ‖v‖. I.e., we omit the subscript when dealing

with the Euclidean norm. ♦

Wewill need some basic results relating the L∞ norm of a polyno-
mial to its L2 norm. We start by stating a result of Wilhelmsen that
generalizes a classical result by Markov for univariate polynomials.

Theorem 2.5 (Multivariate Markov’s theorem [Wil74]). Let f :
Rn → R be a homogeneous polynomial of degree r , that for every

v ∈ [−1, 1]n satisfies | f (v)| ≤ 1. Then, for every ‖v‖ ≤ 1 it holds

that ‖∇(f )(v)‖ ≤ 2r2.

Denote with B(n,α , u) the n-dimensional ball of radius α around
u and with Vol(n,α) its volume.

Corollary 2.6. Let f : Rn → R be a homogeneous polynomial of

degree r . Then,

‖ f ‖2 ≥ 1

22n+2
‖ f ‖∞ · Vol(n, 1

4r2
) .

6We can assume without loss of generality that the number of auxiliary variables is
the same as the size of the circuit as we can ignore some of the variables.
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Proof. By normalizing f it is enough to prove the result for the
case ‖ f ‖∞ = 1.

Let u ∈ [−1, 1]n be such that 1 = ‖ f ‖∞ = | f (u)|. Assume further,
w.l.o.g. that f (u) = 1. Consider the intersection A = B(n, 1

4r 2
, u) ∩

[−1, 1]n . We have that µ(A) ≥ 1
4n · Vol(n, 1

4r 2
), where µ(x) is the

uniform measure on [−1, 1]n . Indeed, µ scales down by a factor of
2n the usual measure of A, and it is immediate that A contains at
least a fraction 2−n of Vol(B(n, 1

4r 2
, u)).

Theorem 2.5 implies that for any v ∈ A, it holds that f (v) ≥ 1
2 .

Indeed, this follows immediately from the bound on the gradient
of f , the assumption that f (u) = 1 and the fact that ‖u − v‖ ≤ 1

4r 2
.

Thus, we get that

‖ f ‖2 =
∫

| f (x)|2dµ(x) ≥ 1

4
µ(A) ≥ 1

22n+2
· Vol(n, 1

4r2
) .

�

We shall also need the following lower bound on the norm of f
when it has at least one not too small coefficient.

Lemma 2.7. Let f be an n-variate homogeneous of degree r . Assume

that one of the coefficients in f is at least α in absolute value. Then

‖ f ‖2 ≥ α · 2n/2 · e−r .

The proof will use Legendre polynomials as a basis for the space
of polynomials. Recall that Legendre polynomials {Lk (x)} are uni-
variate polynomials such that deg(Lk ) = k and∫ 1

−1
Lk (x) · Lm (x)dµ(x) = δk=m · 2

2k + 1
.

For an exponent vector ē = (e1, . . . , en ) we will denote Lē (x) :=∏n
i=1 Lei (xi ). It is again easy to see that when we run over all ē

we get an orthogonal family of polynomials. For a polynomial we
denote with f =

∑
ē cē · ∏n

i=1 x
ei
i its usual monomial expansion

and with f =
∑
ē ℓē · Lē its expansion with respect to the Legendre

basis. We shall also need the fact that the coefficient of xk in Lk (x)
is 1

2k
·
(2k
k

)
. For more on Legendre polynomials see e.g. [San91].

Claim 2.8. Let f (x) be a homogeneous polynomial of degree r . Then

for any exponent vector ē0 = (e01 , . . . , e0n ) such that
∑
i e

0
i = r we

have that

ℓē0 = cē0 ·
n∏
i=1

2e
0
i · 1(2e0i

e0i

) .
In particular ℓē0 ≥ cē0 .

Proof. From the properties above it is not hard to see that

ℓē0 =

n∏
i=1

2e0i + 1

2

∫
[−1,1)n

f · Lē0dµ(x)

=

n∏
i=1

2e0i + 1

2

∑
ē

∫
[−1,1)n

cē ·
n∏
i=1

x
ei
i · Lē0dµ(x)

Since f is homogeneous, any exponent vector ē , ē0 appearing in
the equation has a coordinate i with ei < e0i . As Le0i

(xi ) is perpen-
dicular to all lower degree polynomials we get that

=

n∏
i=1

2e0i + 1

2

∫
[−1,1)n

cē0 ·
n∏
i=1

x
e0i
i · Lē0dµ(x).

By the same reasoning can add lower degree terms to
∏n

i=1 x
e0i
i to

get the polynomial b · Lē0 where b is the inverse of the product

of the leading coefficients of the Le0i
. That is, b =

∏n
i=1 2

e0i · 1

(2e
0
i

e0
i

)
.

Hence

=

n∏
i=1

2e0i + 1

2
· cē0 ·

n∏
i=1

2e
0
i · 1(2e0i

e0i

) ·
∫
[−1,1)n

L2
ē0
dµ(x)

= cē0 ·
n∏
i=1

2e
0
i · 1(2e0i

e0i

) .
�

We now prove Lemma 2.7.

Proof of Lemma 2.7. Let f =
∑
ē ℓē · Lē be the expansion of f

in the Legendre basis. From orthogonality we get that

Eµ [f 2] =
∑
ē

Eµ [ℓ2ē · L2ē ] =
∑
ē

ℓ
2
ē ·

n∏
i=1

2

2ei + 1

≥ α2 · 2n

(2r/n + 1)n ≥ α2 · 2n · e−2r .

�

Finally, we will need the following simple result connecting the
usual Euclidean norm of the vector of coefficients of a polynomial
and its ‖‖2 norm.

Lemma 2.9. Let f (x) be an n-variate polynomial with S monomials.

Let f ∈ RS be its vector of coefficients. Then,

‖ f ‖2 ≤ ‖ f ‖∞ ≤ ‖f ‖ ·
√
S .

Proof. Let f =
∑
M cM ·M be the representation of f as sum

of monomials. We have that for all v ∈ [−1, 1]n

| f (v)| = |
∑
M

cmM(v)| ≤
∑
M

|cM |

≤
(∑
M

|cM |2
)1/2

·
√
S = ‖f ‖ ·

√
S .

�

3 ANTI-CONCENTRATION RESULTS FOR

POLYNOMIALS

We will rely on the following theorem of Carbery-Wright (see
Theorem 8 in [CW01]).

Theorem 3.1 (Carbery-Wright). There exists an absolute constant

C such that if f : Rn → R is a polynomial of degree at most r ,

0 < q < ∞, and µ is a log-concave probability measure on Rn , then,

for α > 0, it holds that(∫
| f (x)|q/rdµ(x)

)1/q
· µ{v ∈ Rn | | f (v)| ≤ α } ≤ C · q · α1/r .

We give a version specialized to our purposes.
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Theorem 3.2 (Carbery-Wright). There exists an absolute constant

CCW such that if f : Rn → R is a polynomial of degree at most r ,

and ‖ f ‖2 = 1 then, for α > 0, it holds that

Pr
v∈U [−1,1)n

[| f (v)| ≤ α] ≤ CCW · r · α1/r .

Proof. Apply Theorem 3.1 for µ the uniformmeasure on [−1, 1)n
and q = 2 deg(f ). Observe that∫

[−1,1)n
| f (x)|q/rdµ(x) =

∫
[−1,1)n

| f |2dµ(x) = ‖ f ‖22 = 1.

�

We need a discrete version of this theorem which we state below.
Let δ > 0 be such that 1/δ is an integer. Recall thatGδ = {−1,−1+
δ ,−1 + 2δ , . . . , 1 − 2δ , 1 − δ }n .
Theorem 3.3 (Discrete Carbery-Wright). Let CCW be the constant

guaranteed in Theorem 3.2. Let δ > 0 be such that 1/δ is an integer.

If f : Rn → R is a homogeneous polynomial of degree at most r with

‖ f ‖2 = 1 then, for α > 0, it holds that

Pr
v∈UGδ

[
| f (v)| ≤ α − δ · (8nr2)n+1

]
≤ CCW · r · α1/r .

For the proof of the theorem it will be helpful to think of the
uniform distribution onGδ as generated in the following way: we
first sample a point v ∈ [−1, 1)n uniformly at random and then
round each coordinate vi to miδ for some integer mi such that
miδ ≤ vi < (mi + 1)δ .

To prove the theorem we need the following simple result re-
garding polynomials.

Lemma 3.4. Let f : Rn → R be a homogeneous polynomial of

degree at most r . Let δ > 0 be such that 1/δ is an integer. Let v ∈
[−1, 1)n and u be obtained from v by the rounding process described

above (i.e. rounding each coordinate vi to the largest integer multiple

of δ that is smaller than or equal to vi ). Then | f (v) − f (u)| ≤ δ ·
(8nr2)n+1 · ‖ f ‖2.

Proof. By the mean value theorem there exists a point w on
the line segment connecting u and v such that | f (v) − f (u)| =
‖u − v‖ · | f ′(w)|, where f ′(w) is the derivative of f in direction
u − v evaluated at w. From Theorem 2.5 it follows that | f ′(w)| ≤
2 · ‖ f ‖∞ · r2. Corollary 2.6 implies that

| f (v) − f (u)| = ‖u − v‖ · | f ′(w)| ≤ 2 · ‖u − v‖ · ‖ f ‖∞ · r2

≤ 2 · ‖u − v‖ · r2 · ‖ f ‖2 · 22n+2 ·
1

Vol(n, 1
2r 2

)
.

As ‖u − v‖ ≤ δ · √n and Vol(n, 1
2r 2

) ≥
(

1
2nr 2

)n
we get that

| f (v) − f (u)| ≤ δ ·
√
n · r2 · ‖ f ‖2 · 22n+3 · (2nr2)n

≤ δ · (8nr2)n+1 · ‖ f ‖2 .
�

Corollary 3.5. Let f : Rn → R be a polynomial of degree at most r

with ‖ f ‖2 = 1. Let δ > 0 be such that 1/δ is an integer. Assume that

for some v ∈ [−1, 1]n , | f (v)| > α and that u is obtained from v by

the rounding process described above. Then | f (u)| > α −δ · (8nr2)n+1.
We now give the proof of Theorem 3.3.

Proof of Theorem 3.3. We use the sampling procedure given
above to sample a point u ∈ Gδ . That is, we first pick v ∈ [−1, 1)n
at random and then round it to u. By Theorem 3.2 with probability
at least 1−CCW ·r ·α1/r , v is such that | f (v)| > α . By Corollary 3.5,
for any such v we have that | f (u)| > α − δ · (8nr2)n+1. Thus, the
probability that we sample u with | f (u)| ≤ α − δ · (8nr2)n+1 is at
most CCW · r · α1/r . �

Wewill be working over the complex numbers and so we need to
slightly adjust the results above. Let f : Cn → C be a homogeneous
polynomial of degree r . Consider the real and imaginary parts of
f , ℜ(f ) and ℑ(f ), respectively. We can view both as polynomials
ℜ(f ),ℑ(f ) : R2n → R. That is, for every a, b ∈ Rn , f (a + ιb) =
ℜ(f )(a, b) + ι · ℑ(f )(a, b). It is clear that both ℜ(f ) and ℑ(f ) are
homogeneous polynomials of degree r as well. We define ‖ f ‖2 ,
‖ℜ(f )‖2 + ‖ℑ(f )‖2. As we work over the complex numbers we
will refer to the set GC

δ
= {a + ι · b | a, b ∈ Gδ }.

Theorem 3.6 (Discrete Carbery-Wright over C). Let CCW be the

constant guaranteed in Theorem 3.2. If f : Cn → C is a homogeneous

polynomial of degree at most r with ‖ f ‖2 = 1 then, for α > 0, it holds
that

Pr
v∈UGCδ

[
|(f )(v)| ≤ α − 1

2
δ · (16nr2)2n+1

]
≤ CCW · r · (2α)1/r .

Proof. As ‖ f ‖2 = 1 either ‖ℜ(f )‖2 ≥ 1/2 or ‖ℑ(f )‖2 ≥ 1/2.
Assume without loss of generality the former happens. Note also
that if |ℜ(f )(a, b)| > γ then | f (a + ι · b)| > γ . Theorem 3.3 implies
that the probability that we sample a, b ∈ Gδ with |ℜ(f )(a, b)| ≤
2α − δ · (16nr2)2n+1 · ‖ℜ(f )‖2 is at most CCW · r · (2α)1/r . Thus,
with probability at least 1 −CCW · r · (2α)1/r we get that (a + ιb) is
such that

| f (a + ι · b)| > 2α − δ · (16nr2)2n+1 · ‖ℜ(f )‖2

≥ 1

2
(2α − δ · (16nr2)2n+1) .

�

4 THE ALGEBRAIC VARIETY OF SMALL

ALGEBRAIC CIRCUITS

We start by providing some basic definitions from algebraic ge-
ometry. For more on algebraic geometry see [CLO06]. We follow
essentially the same treatment given in [HS80a, HS80b].

Definition 4.1 (Basic AG definitions). A subset V ⊆ Cn is called

(Zariski-)closed7 if there exists a set of polynomials F ⊆ C[x] such
that V = {v ∈ Cn | ∀f ∈ F , f (v) = 0}. The closed sets define the

Zariski topology of Cn . The closure of a setV ⊆ Cn is the intersection

of all closed sets containingV . A closed setV is called irreducible if for

any two closed sets V1,V2 such that V1 ∪V2 = V it holds that either

V1 = V or V2 = V . ♦

Closed sets are also called varieties. Irreducible closed sets are
irreducible varieties.

7Over C if a set is closed in the Zariski topology then it is also closed in the usual
Euclidean topology.
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Definition 4.2 (Dimension). The dimension of an irreducible variety

V , denoted dim(V ) is the maximal integerm such that there existm

irreducible varieties {Vi } satisfying ∅ ( V1 ( V2 ( . . . ( Vm ( V .

The dimension of a reducible variety is the maximal dimension of its

irreducible components. ♦

We now give some basic facts.

Fact 4.3. (1) Each variety V can be represented uniquely as a

minimal finite union of irreducible varieties. Each irreducible

set in this representation is called a component of V .

(2) The dimension of every variety ∅ , V is finite.

(3) If U ,V are varieties, where U is irreducible and U * V then

dim(U ∩V ) < dim(U ).

It is a basic fact that any irreducible variety over C is connected
(as a complex manifold).

Theorem 4.4 (Irreducible varieties are connected). Every irre-

ducible variety V ⊆ CN is connected as a topological space (in the

usual Euclidean topology).

Proof. The claim follows immediately from Theorem 1 in Chap-
ter VII section 2.2 of [Sha88], noting that in our variety every point
is closed (thus, X (C) in the statement of Theorem 1 there is our
irreducible variety). �

Another important definition is that of a degree of a variety.

Definition 4.5 (Degree). The degree of an irreducible variety V ⊆
Cn , denoted deg(V ), is the maximal cardinality of a finite intersection

of V with an affine linear space. That is,

deg(V ) = max
{
|V ∩A| | A ⊂ Cn is an affine linear space,

and |V ∩A| < ∞} .
When V is not irreducible, let V = ∪iVi , where Vi are the irreducible
components of V . We define deg(V ) as

deg(V ) =
∑
i

deg(Vi ) .

♦

We will rely on the following estimates of Heintz and Sieveking.

Theorem 4.6 (Variety of easy polynomials [HS80b]). For every

natural numbers n, s, r there exists a setW (n, s, r ) ⊆ CN hom
n,r such

thatW (n, s, r ) contains the coefficient vectors of all n-variate homo-

geneous polynomials, f ∈ C[x], of degree r , that can be computed by

homogeneous algebraic circuits of size at most s . Furthermore,

dim(W (n, s, r )) ≤ (s + 1 + n)2

and

deg(W (n, s, r )) ≤ (2sr )(s+1+n)2 .

Remark 4.7.We note that the result above holds not only for ho-

mogeneous polynomials and can be slightly improved if we restrict

our attention to the homogeneous case as we do here, but this is not

crucial for our purposes. ♦

Remark 4.8. We note that the main message behind Theorem 4.6 is

that the dimension of the ambient space, N hom
n,r , does not appear in

the upper bounds on dim(W (n, s, r )) and deg(W (n, s, r )). ♦

To prove our main result it will be convenient to consider the
universal circuit. As the universal circuit forn-variate homogeneous
circuits of size s and degree r has sizeO(sr4)we obtain the following
immediate corollary. Note that when speaking of the polynomials
that can be computed by the universal circuit we think of the set
of polynomials that is obtained by running over all assignments to
the auxiliary variables. Indeed, for any such assignment the circuit
that is obtained is homogeneous in its essential variables and of
size O(sr4).

Theorem 4.9 (Variety of projection of the universal circuit). For

all natural numbers n, r , s there exists a set V (n, s, r ) ⊆ CN hom
n,r such

that V (n, s, r ) contains the coefficient vectors of all homogeneous

polynomials of degree r that can be computed by the universal circuit

for n-variate homogeneous circuits of size s and degree r . Furthermore,

there exists a constant c such that

dim(V (n, s, r )) ≤ c · (sr4 + 1 + n)2

and

deg(V (n, s, r )) ≤ (csr5)c ·(sr 4+1+n)2 .

To ease notations we shall use the following corollary.

Corollary 4.10. LetV (n, s, r ) be as in Theorem 4.9. Then, there exists

a constant c4.10 such that

dim(V (n, s, r )) ≤ (srn)c4.10

and

deg(V (n, s, r )) ≤ 2(srn)
c4.10
.

Theorem 4.9 speaks about a variety containing coefficient vectors
of easy polynomials. As varieties are closed, the same variety also
contains all coefficient vectors of polynomials that are limits of easy
polynomials.

Definition 4.11 (Closure of easy polynomials). A homogeneous

polynomial f ∈ C[x] is in the closure of size s and degree r algebraic

circuits if there exists a sequence of n-variate, degree r , homogeneous

polynomials { fi (x)}, such that each fi can be computed by a homo-

geneous circuit of size s and degree r , and limi→∞ fi = f . In other

words, there exists a sequence of homogeneous algebraic circuits of

degree r and size s such that the coefficients vector of the polynomials

they compute converge to the coefficient vector of f . ♦

Remark 4.12. At first sight it may seem, thanks to the definition

of the universal circuit Ψ(x, y), that if f ∈ VP that f also has a

small circuit. Indeed, if fi → f and fi = Ψ(x, ai ) then it seems that

f = Ψ(x, limi→∞ ai ). The problem with this argument however is

that {ai } may not converge. An example for this phenomenon may

be seen in the the difference between the border rank of a tensor and

its rank. It may be the case that a tensor has border rank r yet it’s

rank may be larger. See e.g. Section 1 in this paper and Section 6 in

[Blä13]. ♦

Corollary 4.13. The variety V (n, s, r ) defined in Theorem 4.9 con-

tains all coefficient vectors of homogeneous polynomials that are in

the closure of size s and degree r algebraic circuits.

Finally, we define a notion that will be useful in the upcoming
proofs.
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Definition 4.14 (Axis-parallel random variety). We say that a vari-

ety V is axis-parallel random if for any axis-parallel affine subspace

A (i.e. a subspace defined by setting some coordinates to constants) it

holds that dim(V ∩A) ≤ dim(V ) − codim(A). ♦

Oneway to think of this definition is that a variety is axis-parallel-
random if by restricting a variable to a constant wemove to a strictly
smaller subvariety.

It is clear that if V is axis-parallel random then for every axis-
parallel affine subspaceA,V∩A is also axis-parallel random. Nextwe
show that by slightly perturbing a variety makes it an axis-parallel
random one. That is, we will show that for a linear transformation
T , the variety T (V ) is axis-parallel random.

Theorem 4.15 (A random perturbation makes a variety axis-paral-
lel random). Let 0 < δ and let T = IN +A, where IN is the N × N

identity matrix and A is a random matrix where each ai, j is cho-

sen independently uniformly at random from [0,δ ]. Let V ⊆ CN
be a variety of dimension d . Then T (V ) with probability 1 T (V ) is
axis-parallel random.

To prove the theorem we will need the following theorem that
characterizes the dimension of a variety in terms of the algebraic
rank of the polynomials defining that variety. See e.g. Theorem 2
in Chapter 9, §5 of [CLO06].

Theorem 4.16 (Characterization of dimension via algebraic de-
pendence). Let V ⊆ CN be a variety and let I = I (V ) be the ideal
of all polynomials vanishing on V . Let the coordinate ring of V be

C[V ] , C[x]/I . Then the dimension ofV equals the maximal number

of elements of C[V ] that are algebraically independent.

Proof of Theorem 4.15. To prove the theorem we first show
that with high probability no variable (or actually no linear function
of the form xi = c) will be in the ideal I (V ). Then we prove that
restricting any variable to a constant reduces the algebraic rank of
C[V ].

Lemma 4.17. Let L ⊂ I (T (V )) be the linear space of all linear func-
tions in I (T (V )). If dim(V ) = d then for any d variables xi1 , . . . ,xid
the probability that there exists a non zero linear combination

∑d
j=1 α j ·

xi j + α0 ∈ I (T (V )) is 0.8

Proof. First observe that d ≤ N − dim(L), or dim(L) ≤ N − d .
Further, observe that the effect of applyingT toV on L is essentially
applying T−1 to the linear functions in L. Thus, the event that we
are considering checks whether a random subspace of dimension
at most N − d intersects a given d dimensional affine space. This
probability is 0 over the reals. This holds even for a T chosen as in
the theorem. For example, this can be seen by noting that the two
subspaces intersect iff a certain determinant is zero: the rows of the
determinant will compose of the basis for the two subspaces. It is
easy to see that the determinant is a nonzero polynomial in the A
variables and thus it is nonzero with probability 1. �

Next we wish to show that setting any k ≤ dim(V ) variables to
constant reduces the algebraic rank of C[V ] by k with probability 1.
We prove this property for irreducible varieties and then conclude

8That is, this can fail only for a set of matrices of measure zero

it to arbitrary varieties. A property that will be useful is that if V is
an irreducible variety then I (V ) is a prime ideal (see e.g., [CLO06]).

Lemma 4.18. Let f1, . . . , fd be algebraically independent polyno-

mials in C[T (V )]. Let xi1 , . . . ,xik be any k ≤ d different variables.

Then for any k field elements α1, . . . ,αk restricting xi = αi reduces

the algebraic rank of { fi } by k with probability 1 (over the choice of
T ).

Proof. We will prove the claim by induction on k . For k = 1
note that since the fi are maximally algebraically independent in
C[T (V )] then for any other nonzero polynomial д in C[T (V )] there
exists a nonzero polynomial Fд(z1, . . . , zd+1) such that we have
the identity Fд(f1, . . . , fd ,д) ≡ 0, where by that we mean that
Fд(f1, . . . , fd ,д) is the zero element in C[T (V )], that is, we have
that Fд(f1, . . . , fd ,д) ∈ I (T (V )). Observe further that since I (T (V ))
is a prime ideal (applying an invertible linear transformation does
not affects the irreducibility of the variety) if д · h ∈ I (T (V )) then
h ∈ I (T (V )). Hence, we can assume without loss of generality that
zd+1 does not divide Fд .

From Lemma 4.17 we know that for any α , д = xi1 − α is
not the zero polynomial in C[T (V )]. Thus, there is such polyno-
mial Fд . As zd1 does not divide Fд we can express it as Fд =
zd+1 ·F1(z1, . . . , zd+1)+F0(z1, . . . , zd ), where F0 , 0. Thus the poly-
nomialд·F1(f1, . . . , fd ,д)+F0(f1, . . . , fd ) is in I (T (V )). Now, adding
the linear polynomialд to I (T (V )) to get I (1) = (I (T (V )),д) (the ideal
generated by I (T (V )) and д), it follows that F0(f1, . . . , fd ) ∈ I (1).
Thus, the { fi } become algebraic dependent when setting д = 0, i.e.
when restricting xi1 = α .

To prove the case of general k we just notice that the same
argument will work thanks to Lemma 4.17, where at the kth step
we consider any algebraically independent set f ′1 , . . . , f

′
d−k+1 in

C[I (k−1)]. �

The proof of Theorem 4.15 now follows since the probability of
a bad event is 0 and each variety it the union of a finite number of
irreducible components.

�

4.1 ε-nets for Algebraic Varieties

In this section we construct ε-nets for varieties. We shall use the
Euclidean norm for this and to avoid confusion we shall denote the
Euclidean norm of a vector a with it with ‖a‖. That is, there is no
subscript 2 when using the Euclidean norm.

Definition 4.19 (ε-net). Let V ⊆ CN . A set E ⊆ V is an ε-net for V

if for every v ∈ V there exists e ∈ E such that ‖e − v‖ ≤ ε . ♦

Recall the notation [−1, 1]N
C
= [−1, 1]N + ι · [−1, 1]N = {a+ ι ·b |

a, b ∈ [−1, 1]N }.

Theorem 4.20 (ε-net for varieties). LetN ,d,D be integers such that

d <
√
N , and ε > 0. LetV ⊆ CN be a d-dimensional variety of degree

D which is axis-parallel random. Denote V̂ = V ∩ [−1, 1]N
C
. There

exists an ε-net E ⊆ V̂ of size smaller or equal to D · (75N 2/ε2)d+1.

Proof. The proof is by induction on the dimension of V . If
dim(V ) = 0 then |V | = D and the claim is trivial. Furthermore, it is
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a δ -net for any δ > 0. Assume d > 0. For α ∈ C and i ∈ [N ] let

Hi (α) = {v ∈ CN | vi = α }.

That is, Hi (α) is the hyperplane obtained by fixing the i’th coordin-
ate to α . Let Vi (α) = V ∩Hi (α) and V̂i (α) = Vi (α) ∩ [−1, 1]N

C
. As V

is axis-parallel random, Vi (α) is a variety of dimension d − 1 and
degree at most D, which is also axis-parallel random. Let η,δ > 0
be constants to be determined later, such that 1/η is an integer. By
the induction hypothesis, there is a subset Ei (α) ⊆ V̂i (α) which is
a δ -net for Vi (α) ∩ [−1, 1]N

C
of size D · (75N 2/δ )(d−1)+1. Let

E ′ =
⋃

i ∈[N ],α,β ∈{−1,−1+η, ...,1−η,1}
Ei (α + ι · β).

It is clear that

|E ′ | ≤ N · (2/η + 1)2 · D · (75N 2/δ2)d .

The set E ′ is almost our ε-net. All that is left to do is to cover points
of V that are not close to any intersection point of V with any of
the hyperplanes we considered.

Let

H =
⋃

i ∈[N ],α,β ∈{−1,−1+η, ...,1−η,1}
Hi (α + ι · β).

Consider the set [−1, 1]N
C
\H . It is a union of disjoint “cells” whose

“walls” have been removed (the walls being the hyperplanes). Recall
that by Theorem 4.4 we have that an irreducible variety is con-
nected. Thus, when considering the irreducible components of V ,
we see that each component either intersects a “wall” of a cell or is
completely contained in it (or completely disjoint from it). Thus, as
V is of degree D, it has at most D irreducible components and in
particular, at most D of V ’s irreducible components are contained
in cells. From each connected component that is contained in such a
cell pick any point. Let B be the set of points thus chosen. It follows
that, |B | ≤ D. Finally, let E = E ′ ∪ B. We claim that for

η =
1

⌈ 2Nε ⌉
and δ =

(
1 − 1

√
2N

)
· ε ,

the set E is an ε-net for V̂ . Indeed, let v ∈ V̂ be arbitrary. Consider
the connected component to which v belongs. If this component is
contained in one of the cells, then there is some e ∈ B ⊆ E in the
same cell as v. As each cell is contained in a cube whose diameter
is
√
2Nη, it holds that ‖v − e‖ ≤

√
2Nη ≤ ε . On the other hand, if

the connected component containing v is not contained in any of
the cells, then it must intersect the closure of the cell containing v.
Let u be this intersection point. By the construction of E ′, there is
some point e such that ‖e − u‖ ≤ δ . As ‖v − u‖ ≤

√
2Nη we get by

the triangle inequality that ‖e − v‖ ≤
√
2Nη + δ ≤ ε . To conclude

the proof we note that

|E | ≤ N · (2/η + 1)2 · D · (75N 2/δ2)d + D

≤ N · (5N /ε)2 · D ·
(
75

(
1 +

1
√
N

)
N 2/ε2

)d
+ D

≤ (70N 2/ε2) · D ·
(
75N 2/ε2

)d
+ D

≤ D · (75N 2/ε2) ·
(
75N 2/ε2

)d
= D ·

(
75N 2/ε2

)d+1
,

where we have used the fact that for N ≥ 2 and d <
√
N it holds

that (1 + 1/
√
N )d < 2.8. �

We would like to apply the result of Theorem 4.20 for V (n, s, r ).
A small technical issue is that V (n, s, r ) is not axis-parallel random.
Nevertheless, Theorem 4.15 guarantees that for a random transfor-
mation T the set T (H) is an (η/2)-robust hitting set for V (n, s, r ).

Let T be as guaranteed by Theorem 4.15 for V = V (n, s, r ). Note
that if V = V (F ) and we define V ′

= V (F ◦ T ) then V = T (V ′).
Indeed, v ∈ V ′ iff (f ◦T )(v) = 0 for all f ∈ F which is equivalent
to Tv ∈ V or v ∈ T−1V .

Lemma 4.21. Let V ′
= T−1(V ) ⊆ CN be an axis-parallel random

variety whereT = I +A such that each entry of A lies in [0, 1/N 2d ].9
Let E ′ ⊆ V ′ be an ε-net for V ′ ∩ [−1, 1]N

C
. Then E := T (E ′) ⊂ V is

an (1 + 1/N ) · ε-net for V ∩ [−(1 − 1
N ), 1 − 1

N ]N
C
.

Proof. Note that by construction of T we have that T−1
= I +∑∞

k=1(−A)
k and that each entry of T−1 − I is bounded in absolute

value by, say, 1
N d . In particular,

T−1
(
[−(1 − 1

N
), 1 − 1

N
]N
C

)
⊆ [−1, 1]N

C
,

where, as before, we have [−(1 − 1
N ), 1 − 1

N ]N
C
= [−(1 − 1

N ), 1 −
1
N ]N + ι[−(1 − 1

N ), 1 − 1
N ]N .10

Let v ∈ V ∩ [−(1 − 1
N ), 1 − 1

N ]N
C
. We have that

T−1(v) ∈ T−1(V ) ∩T−1
(
[−(1 − 1

N
), 1 − 1

N
]N
C

)

⊆ T−1(V ) ∩ [−1, 1]N
C
= V ′ ∩ [−1, 1]N

C
.

Let e ∈ E ′ be such that ‖e′ − T−1(v)‖ ≤ ε . We thus have that
‖T (e)−v‖ ≤ ‖T ‖ · ‖e−T−1v‖ ≤(∗) (1+1/N )ε , where inequality (∗)
follows easily from the construction of T (and ‖T ‖ is the operator
norm of T ). �

As corollary we get the same parameters for varieties that are
not necessarily axis-parallel random.

Corollary 4.22 (ε-net for varieties). Let N ,d,D be integers such

that d <
√
N , and ε > 0. Let V ⊆ CN be a d-dimensional variety of

degree D. Denote V̂ = V ∩ [−(1− 1
N ), 1− 1

N ]N
C
. There exists an ε-net

E ⊆ V̂ of size smaller or equal to D · (76N 2/ε2)d+1.
9Observe that the conclusion of Theorem 4.15 holds for any choice of 0 < δ , in

particular for δ = N −2d .
10Notice that as T is real it operates on the real part and the imaginary part of each
vector separately.
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Proof. This follows from Theorem 4.20 and Lemma 4.21 by
plugging ε ′ = ε/(1 + 1

N ) to the bounds there. �

5 ROBUST HITTING SETS

In this section we define the notion of a robust hitting set and prove
its existence.

Definition 5.1 (ε-Robust hitting set). A subset H ⊆ Cn is an ε-

robust hitting set for a set of polynomialsV ⊆ F[x] if for every f ∈ V
there is some v ∈ H such that | f (v)| ≥ ε · ‖ f ‖2.

Let n, r , s be integers. We say that H is an ε-robust hitting set

for size s and degree r if it is an ε-robust hitting set for the set of

n-variate polynomials that can be computed by size s and degree r

homogeneous algebraic circuits. ♦

The next claim shows that a robust hitting set for size s algebraic
circuits is also a robust hitting set for the closure of such circuits,
that is for V (n, s, r ).

Claim 5.2. If a finiteH ⊆ Rn is an ε(n)-robust hitting set for size
s and degree r then for any f ∈ V (n, s, r ) there is v ∈ H such that

| f (v)| ≥ ε(n) · ‖ f ‖2.

Proof. Let f ∈ V (n, s, r ). For i ∈ N let fi ∈ V (n, s, r ) be such that
limi→∞ fi = f and each fi is computed by a homogeneous circuit
of size s and degree r . Clearly, it also holds that limi→∞ ‖ fi ‖2 =
‖ f ‖2. As H is finite there is v ∈ H at which infinitely many fi
evaluate (in absolute value) to at least ε(n) · ‖ fi ‖2. Thus, there is
a subsequence fi j satisfying limj→∞ fi j = f and | fi j (v)| ≥ ε(n) ·
‖ fi j ‖2. By continuity it holds that | f (v)| ≥ ε(n) · ‖ f ‖2 as well. �

In the next lemma we think of each point f ∈ CN hom
n,r as being

the coefficient vector of some homogeneous n variate polynomial
f of degree r . That is f (x) = ∑

deg(M )≤r fM ·M(x), and we index

coordinates of CN
hom
n,r with degree r monomials. The lemma shows

that in order to construct a robust hitting set for a set of polynomials
it is enough to construct a good enough robust hitting set for an
ε-net in the variety.

Lemma 5.3. Let V ⊆ [−1, 1]N
hom
n,r

C
be such that if f ∈ V and αf ∈

[−1, 1]N
hom
n,r

C
then αf ∈ V .11 Let E ⊆ V an ε-net for V . Assume that

H ⊆ [−1, 1]n
C
is such that for every g ∈ E there exists v ∈ H such

that д(v) ≥ η · ‖д‖2, for some η < 1. Assume further that η, ε,N hom
n,r

and r satisfy that

10 · ε ·
√
N hom
n,r <

1

8
η · 2n/2 · e−r < 1

4
.

Then, for every f ∈ V there exists v ∈ H such that | f (v)| ≥ 1
4η‖ f ‖2.

Proof. Let f ∈ V . Assume w.l.o.g. that the maximal coefficient
of f is 1/2. This can be easily obtained by multiplying f by a field
element. Let g ∈ E be such that ‖f − g‖ ≤ ε . Observe that ‖ f ‖2 ≤
‖д‖2 + ‖ f − д‖2 and that by Lemma 2.9

‖ℑ(f ) − ℑ(д)‖∞ , ‖ℜ(f ) − ℜ(д)‖∞

≤ ‖f − g‖ ·
√
N hom
n,r = ε ·

√
N hom
n,r .

11Notice that this property holds for V (n, s, r ) ∩ [−1, 1]N
hom
n,r

C
.

Thus

‖ f − д‖∞ ≤
√
2 · ε ·

√
N hom
n,r .

Sinceℜ(f ) has a large coefficient and ‖f −g‖ ≤ ε < 1/10 it follows
that some coefficient in R(д) is at least 1/4. Let v ∈ H be such that
|д(v)| ≥ η · ‖д‖2. Then,

| f (v)| ≥ |д(v)| − |(f − д)(v)|

≥ η · ‖д‖2 −
√
2 · ε ·

√
N hom
n,r

≥ η · ‖д‖2 −
1

8
η · 2n/2 · e−r (5.4)

≥ 1

2
η · ‖д‖2 (5.5)

≥ 1

4
η · ‖ f ‖2 (5.6)

where Equation 5.4 holds because of the assumption in the lemma,
Equation 5.5 follows from Lemma 2.7 using the fact that some
coefficient inд is at least 1/4. Indeed, Lemma 2.7 implies that ‖д‖2 ≥
1
42

n/2 · e−r . Finally, Equation 5.6 holds since

‖ f ‖2 ≤ ‖д‖2 + ‖ f − д‖2
= ‖д‖2 + ‖ℜ(f − д)‖2 + ‖ℑ(f − д)‖2
≤ ‖д‖2 + ‖ℜ(f − д)‖∞ + ‖ℑ(f − д)‖∞

≤ ‖д‖2 + 2ε ·
√
N hom
n,r ≤ 2‖д‖2.

�

5.1 Robust Hitting Sets for Polynomial

Varieties

In this section we prove that for any variety of n-variate degree r
polynomials of polynomial dimension and exponential degree there
exists an exp(−poly(nr )) robust hitting set of polynomials size.

As before we think of every point f ∈ CN hom
n,r as vector of coeffi-

cients of a homogeneous n-variate, degree r polynomial f (x).

Theorem 5.7 (Robust hitting sets for varieties). LetV ⊂ CN hom
n,r be

a variety of dimension d and degree D satisfying the assumption of

Lemma 5.3. Let η = 2−n · 1
2·(CCW ·n ·r )r and δ =

η

(16nr 2)2n+1 . There

exists an (η/4)-robust hitting set H for V satisfying H ⊂ GC
δ
of size

|H | = max{2 logD, 12r (n + r ) · d}.

Proof. Let k be given by k = max{2 logD, 18(n+r ) ·d}. Sample
k points v1, . . . , vk ∈ GC

δ
uniformly and independently at random.

Set H = {v1, . . . , vk }.
Let ε =

(
1

N hom
n,r

)r
and E ⊂ V (n, s, r ) ∩ [−(1− 1

N ), 1− 1
N ]N
C

be the

ε-net guaranteed by Corollary 4.22. From Theorem 3.6 (by taking
α = η · ‖д‖2) it follows by the union bound that the probability that
there exists g ∈ E such that for every i ,

|д(vi )| ≤
(
η − 1

2
· δ · (16nr2)2n+1

)
· ‖д‖2 = η/2 · ‖д‖2,
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is at most

(CCW · r · (2η)1/r
)k

· |E |

≤
(
CCW · r · (2η)1/r

)k
· D · (75N hom

n,r
2/ε2)d+1

< 2−nk/r ·
(
1

n

)k
· D · N hom

n,r
12rd

< 2−nk/r ·
(
1

n

)k
· D · 212rd (n+r )

≤ 1,

where the last inequality follows from the definition of k . Notice
that our choice of η and ε satisfy the condition in Lemma 5.3, that
is,

10 · ε ·
√
N hom
n,r <

1

8
η · 2n/2 · e−r < 1

4
.

The claim of the theorem now follows from Lemma 5.3. �

Corollary 5.8 (Robust hitting sets for V (n, s, r )). There exists a

constant c such that for every integersn, s, r , forη = 2−n · 1
2·(CCW ·nr )r

and δ =
η

(16nr 2)2n+1 , there is an η/4-robust hitting set H ⊂ GC
δ
, for

V (n, s, r ), of size
|H | ≤ (nsr )c .

Proof. The proof follows immediately from applying Theo-
rem 5.7 to V (n, s, r ), and then using the estimates given in Corol-
lary 4.10. �

We note that the proof above gives a robust hitting set H for
V (n, s, r ) whose points come from Cn . We obtain a hitting set for
V (n, s, r ) over R by using a simple trick.

Theorem5.9 (Robust-hitting sets forV (n, s, r ) overR). LetH be an

ε-robust hitting set forV (n, s, r ). For each v = a+ ι ·b ∈ H and an in-

teger k let vk = a+k ·b. SetHR , {vk | v ∈ H and k ∈ {0, . . . , r }}.
It holds that HR is an ε

(r+2)! -robust hitting set for V (n, s, r ).

Proof. The fact that HR hits V (n, s, r ) is simple. Let z be a new
variable. For each v = a + ι · b ∈ H and f ∈ V (n, s, r ) consider a
new univariate polynomial Fv(z) = f (a + z · b). Clearly, there is
some v ∈ H for which Fv(z) . 0 as setting z = ι gives Fv(ι) = f (v).

Let ck , for k ∈ {0, . . . , r }, be constants satisfying that for every
degree r polynomial д it holds that д(ι) = ∑r

k=0 ck · д(k). Such
constants exist by simple interpolation. Furthermore, we have that
|ck | ≤ (r + 1)!. Indeed, note that ck is the k’th entry in the result of
the following matrix-vector product: The vector has length (r + 1)
and its k’th entry is ιk . That is, denoting the vector withw we have
thatwk = ι

k . The matrix is the inverse matrix of the Vandermonde
matrix A whose (k, ℓ)-entry, for k, ℓ ∈ {0, . . . , r }, is kℓ , where 00 =
1. To get the bound on |ck | we observe that the ℓ’th column of the
inverse matrix is given by the coefficient vector of the polynomial∏

k,ℓ (x−k )∏
k,ℓ (ℓ−k ) . The (very) crude bound we gave on |ck | follows easily.

To see thatHR is a robust hitting set we note that for v ∈ H for
which | f (v)| ≥ ε · ‖ f ‖2 we have that

ε · ‖ f ‖2 ≤ | f (v)| = |Fv(ι)| =

�����
r∑

k=0

ckFv(k)
�����

=

�����
r∑

k=0

ck f (vk )
�����

≤ (r + 1) ·max
k

|ck | ·max
k

| f (vk )|

≤ (r + 2)! ·max
k

| f (vk )| .

�

We now state the consequence for the robust hitting set con-
structed in Corollary 5.8. We denote Gδ,r , {a + k · b | a, b ∈
Gδ and 0 ≤ k ≤ r }.

Corollary 5.10 (Robust-hitting sets for V (n, s, r ) over R). There

exists a constant c such that for every integers n, s, r , for η = 2−n ·
1

20·(CCW ·nr 2)r and δ =
η

(16nr 2)2n+1 , there is an η/4-robust hitting set
H ⊂ Gδ,r , for V (n, s, r ), of size

|H | ≤ (nsr )c .

Proof. The proof follows immediately from combining Corol-
lary 5.8 with Theorem 5.9 and observing that (r + 2)! < 10r r . �

6 EXISTENTIAL THEORY OF THE REALS

We will need the following theorem regarding the decidability of
existential formulas over the reals. To keep this manuscript at a
reasonable length we will not give a formal definition of sentences
and formulas over the reals. The interested reader is referred to
[BPR06]. Intuitively, formulas are constructed as follows. The atoms
are polynomial equalities “f (x) = 0” or inequalities “f (x) ≥ 0”.
From them we build formulas in a similar fashion to the way we
build formulas in first order logic using the connectives ¬,∨,∧
and the quantifiers ∃,∀ (however, in the existential theory we only
allow existential quantifiers). For a set of polynomials F ⊂ R[x],
an F -formula is a formula in which all the polynomials appearing
in the atoms are from F .

Theorem 6.1 (Existential theory of the reals in PSPACE [Can88]).
Let F ⊂ R[x] be a set of poly(n) polynomials each of degree at most

r = poly(n). Consider the formula ∃x1∃x2 . . . ∃xnF (x1, . . . ,xn ),
where F (x) is a quantifier free F -formula. There is a PSPACE al-

gorithm for deciding the truth of the sentence, where the size of the

input to the algorithm is the bit complexity of the formula F .

6.1 Formulas Capturing Computations by

Algebraic Circuits

Lemma 6.2 (Computation by the universal circuit). Let n, s, r be

natural numbers and ε be a rational number with poly(n) bit com-

plexity. For real vectors v, a over the reals there exists an existential

sentence over the reals, ϕ(v, a, ε), such that ϕ(a, v, ε) is true iff the

polynomial computed by the universal circuit for size s and degree

r , whose auxiliary variables are set to a, evaluates on input v, in

absolute value, to at least ε . That is, for Ψ(x, y) as in Theorem 2.2,

|Ψ(v, a)| ≥ ε .
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Proof. Let Ψ(x, y) be the universal circuit for size s and degree r
(and n variables), where y are the auxiliary variables. For each gate
u of Ψ let Ψu (x, y) be the polynomial computed at u. For each gate
u of Ψ let zu be a new variable and denote with zo be the variable
corresponding to the output gate.

For each internal gate we assign a polynomial equation as fol-
lows: Ifu is an addition gate with childrenw1 andw2 then we assign
the equation zu − (zw1 + zw2 ) = 0 to u. If it is a multiplication gate
with childrenw1,w2 then we assign the equation zu −zw1 ·zw2 = 0
to u. In addition we assign the inequality z2o ≥ ε2 to the output
gate. For an input gate u corresponding to a variable xi consider
the equation zu −vi = 0. For an input gate corresponding to yi we
have the equation zu − ai = 0.

Let F be the set of all equalities and inequalities constructed
above. Consider the sentence

ϕ(v, a, ε) , ∃z
∧
д∈F

д(z) ,

where ∃z is a short hand for writing ∃zu for all gates u in Ψ. It is
not hard to see that the exists an assignment to the zu satisfying
this sentence iff |Ψ(v, a)| ≥ ε . �

The next lemma shows that deciding whether a polynomial
computed by the universal circuit evaluates to at least 1 on some
input from [−1, 1]n can be done in PSPACE.

Lemma 6.3. Let Ψ(x, y) be the universal circuit for size s and degree
r (and n variables). Let f (x) ∈ R[x] be computed by Ψ(x, y) when
assigning a to the auxiliary variables. That is, f (x) = Ψ(x, a). Given
n, s, r in unary encoding there is a PSPACE algorithm for deciding

whether there exists v ∈ [−1, 1]n on which | f (v)| ≥ 1.

Proof. Let F be the set of polynomials in the definition of
ϕ(v, a, 1) in Lemma 6.2. Define

ψ (a, 1) , ∃v∃z
©­«
∧
д∈F

д(z)ª®¬
∧ (∧

i

(
(1 −v2i ) ≥ 0

))
.

It is not hard to see thatψ (a, 1) is true iff there exists v ∈ [−1, 1]n
such that | f (v)| = |Ψ(v, a)| ≥ 1. �

7 CONSTRUCTION OF A HITTING SET FOR

VP IN PSPACE

Algorithm 1 : Finding a robust hitting set

Input: Parameters n, s, r
1: Let η,δ be as in Corollary 5.10.

2: Set ε = 1
4 · η ·

(
1

32·n ·r 2
)n
.

3: Letm = (nsr )c (as in Corollary 5.10).
4: Let v1, . . . , vm ∈ Gδ,r so that (v1, . . . , vm ) is the lexicographi-

cally first string in Gm
δ,r

.

5: while Robust set not found yet do
6: Check whether there is a for whichψ (a, 1) (of Lemma 6.3) is

true and for all i ∈ [m], ϕ(vi , a, ε) (of Lemma 6.2) is false.
7: If no solution a is found then halt and return H =

{v1, . . . , vm }.
8: Otherwise, move to the next v1, . . . , vm ∈ Gδ,r

Theorem 7.1 (Main theorem). Let c be a constant as in Corol-

lary 5.10). Algorithm 1 returns an ε = 1
4 ·

(
1

CCW ·n ·r
)r

·
(

1
32·n ·r 2

)n
robust hitting set of size (nsr )c for V (n, s, r ) and can be executed in

PSPACE, given n, s, r in unary encoding.

Proof. We first prove that the algorithm always returns some
H and then prove that any H returned by the algorithm is an ε
robust hitting set.

The algorithm always outputs some set: Corollary 5.10 guarantees
that for m = (nsr )c there exist v1, . . . , vm ∈ Gm

δ,r
so that H =

{v1, . . . , vm } is an 1
4 · 2−n

20·(CCW ·n ·r 2)r robust hitting set forV (n, s, r ).
Assume that our while loop reached that set v1, . . . , vm (that is, the
algorithm did not output any set so far).

Let a be any assignment for the auxiliary variables of the uni-
versal circuit and let f = Ψ(x, a). If ψ (a, 1) (of Lemma 6.3) is true
then for some u ∈ [−1, 1]n , | f (u)| ≥ 1. As ‖ f ‖∞ ≥ 1, Corollary 2.6
implies that

‖ f ‖2 ≥ 1

22n+2
·V (n, 1

4r2
) ≥

(
1

32 · n · r2
)n
.

As H is an
η
4 =

1
4 · 2−n

20·(CCW ·n ·r 2)r robust hitting set for V (n, s, r ),
for some i ,

| f (vi )| ≥
1

4
· 2−n

20 ·
(
CCW · n · r2

)r · ‖ f ‖2

≥ 1

4
· 2−n

20 ·
(
CCW · n · r2

)r ·
(

1

32 · n · r2
)n
= ε .

Thus, ϕ(vi , a, ε) will return true. In particular, no solution a will be
found and so the algorithm will returnH if it did not halt before
reaching this particularH . Finally, note that there are polynomials
f for which ψ (a, 1) is true. Indeed, if f . 0 then there is some
multiple of it that at some point in [−1, 1]n will get value at least 1.
By Theorem 2.2 this multiple of f is also computed by the universal
circuit.

Every output is a robust hitting set: Assume that the algorithm re-
turned some setH = {u1, . . . , um }. Let f be a nonzero polynomial
computed by a homogeneous algebraic circuit of size s and degree r
and assume further that ‖ f (u)‖∞ = 1.12 In particular there is some
assignment a to the auxiliary variables of the universal circuit Ψ
so that Ψ(x, a) = f (x). Clearly, for this a,ψ (a, 1) is true. As H was
returned it means that for some i , | f (ui )| ≥ ε . As ‖ f ‖2 ≤ ‖ f ‖∞ = 1
we get that

| f (ui )| ≥ ε ≥ ε · ‖ f ‖2 .
As both size of the equation scale the same way when we multiply
f by a field element, this equation holds regardless of ‖ f ‖∞. In
other words,H is an ε-robust hitting set for all polynomials that
can be computed by size s and degree r homogeneous circuits and
hence it is an ε-robust hitting set for V (n, s, r ).

Complexity: The fact that the algorithm can be run in PSPACE

follows from the fact that all the vectors that are considered
(and also ε) have polynomial bit length and from Lemma 6.2 and
Lemma 6.3. �

12We can restrict our attention to such f ’s as for any constant α the universal circuit
also computes α · f . See Theorem 2.2.
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