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ABSTRACT
Earth observations and model simulations are generating big
multidimensional array-based raster data. However, it is difficult to
efficiently query these big raster data due to the inconsistency among
the geospatial raster data model, distributed physical data storage
model, and the data pipeline in distributed computing frameworks. To
efficiently process big geospatial data, this paper proposes a three-layer
hierarchical indexing strategy to optimize Apache Spark with Hadoop
Distributed File System (HDFS) from the following aspects: (1) improve
I/O efficiency by adopting the chunking data structure; (2) keep the
workload balance and high data locality by building the global index
(k-d tree); (3) enable Spark and HDFS to natively support geospatial
raster data formats (e.g., HDF4, NetCDF4, GeoTiff) by building the local
index (hash table); (4) index the in-memory data to further improve
geospatial data queries; (5) develop a data repartition strategy to tune
the query parallelism while keeping high data locality. The above
strategies are implemented by developing the customized RDDs, and
evaluated by comparing the performance with that of Spark SQL and
SciSpark. The proposed indexing strategy can be applied to other
distributed frameworks or cloud-based computing systems to natively
support big geospatial data query with high efficiency.
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1. Introduction

In The era of ‘Big Data’, characterized by the 5 Vs, geospatial data are produced at an unprecedented
rate by fast measurements of physical conditions, environmental observation, high-precision simu-
lations of geophysical phenomena (Lynch 2008; Demchenko et al. 2013; Ma et al. 2015; Li et al.
2016a; Yang et al. 2017a). The geospatial raster data are generally managed in accordance with
their spatiotemporal dimensions and attributes. Therefore, the multi-dimensional array-based
data model is used to represent geospatial raster data in both industry and scientific communities
(Rusu and Cheng 2013; Li et al. 2017a; Yang et al. 2017a). For example, an increasing amount of
Earth observation and simulation data for long time recording of atmosphere, climate and oceans
have been archived as multi-dimensional arrays in different data formats (e.g. HDF4/5, HDF-
EOS, NetCDF3/4, GeoTiff) (Jiang, Sun, and Yang 2016). However, there still lacks an off-the-shelf
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solution for efficiently querying big geospatial raster data in terms of data pre-processing, uploading,
locating, reading, and computing (Li et al. 2017a; Yang et al. 2017a; Hu et al. 2018a).

The traditional database systems (e.g. PostgreSQL and MySQL), although they have been
widely applied for data management, are unable to handle big geospatial raster data. The differ-
ence between arrays and relations requires the complex data pre-processing. The relational data-
base requires a relational schema for the input data with a formal structure. It means that
geospatial raster data must be decomposed into points with attributes and loose spatiotemporal
constraints, which results in the lacking of ordering functions to identify the specified data
with dimensional indices. Several extra columns must be allocated to record the dimensional
index for each row, and then the data size will be much larger than the original datasets (Hu et al.
2018b). Therefore, it is quite time-, computing- and disk- consuming for traditional database
systems to query big geospatial raster data due to the complex data pre-processing (Cheng
2016; Hu et al. 2018b).

Recently, MapReduce-like high performance computing frameworks (e.g. MapReduce, Spark)
coupled with distributed file systems (e.g. HDFS, Cassandra) have been adapted to deal with big
data in a wide range of domains, including climate, biomedicine, finance, astronomy and social
science, due to their parallel processing ability and scalability (Buck et al. 2011; Palamuttam et al.
2015; Wang et al. 2015; Li et al. 2016; Li et al. 2017a, 2017b; Yang et al. 2017a). Apache Spark,
an advanced DAG (Directed Acyclic Graph) execution engine that supports cyclic data flow and
in-memory computing, has become one of the most popular frameworks for big data processing
as it powers a stack of libraries including Spark SQL, Spark MLlib for machine learning, GraphX
for network analysis, and Spark Streaming. These libraries provide users with various high-level
operators to build fast, parallel, in-memory computing applications. In the benchmarking of data
containers for big geospatial data, the Spark-based frameworks have better performance than
MongoDB, Rasdaman, SciDB, and Hive when processing large volumes of geospatial raster data
(Hu et al. 2018b).

However, there still remain several issues in Apache Spark when querying large volume of
geospatial data. First, it does not natively support geospatial data formats yet, but it is very
time- and disk- consuming to convert big geospatial raster data to other formats (Hu et al.
2018b); Second, it does not support any indexing methods for fast locating the queried geospatial
raster data. Without the index, it needs to traverse all input files to retrieve the target data. To
improve the efficiency of Apache Spark on processing big geospatial data, a hierarchical indexing
strategy for Apache Spark with HDFS is proposed with the following features: (1) improving I/O
efficiency and computing parallelism of Spark on HDFS by adopting the chunking data structure;
(2) keeping the workload balance and high data locality at the data-node level by building the
global index (k-d tree); (3) enabling Spark and HDFS to natively support geospatial raster
data formats (e.g. HDF4, NetCDF4, GeoTiff) without data pre-processing by building the local
index (hash table) to index all chunks with detailed logical and physical data model information
at the byte-, file-, and data-node levels; (4) caching and indexing the in-memory data to further
improve the efficiency of geospatial data query; (5) developing a data repartition strategy to tune
the query parallelism while keeping high data locality. The above strategies are implemented by
developing the customized Resilient Distributed Datasets (e.g. ChunkID RDD, ChunkMeta
RDD, Chunk RDD, IndexedChunk RDD). A proof-of-concept prototype demonstrates the
feasibility and efficiency of the proposed hierarchical indexing strategy for handling big
geospatial raster data.

Section 2 reviews the related index techniques and distributed systems for querying big geospatial
raster data; Section 3 introduces the details of the proposed hierarchical index architecture and its
implementation; Section 4 evaluates the performance of the proposed strategies by the comparing
Spark SQL with SciSpark; Section 5 summarizes this research and discusses the limitations and
future work.
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2. Related work

2.1. Indexes for geospatial raster data

Index is an auxiliary data structure for the file system to quickly locate and reduce the disk-read data
when answering range queries. For a multi-dimensional geospatial raster data query, the most com-
mon indices are the hash-table- and tree-like approaches.

In hash-table-like approaches, the key point is a function of the dimensions/attributes. One of the
hash-table-like approaches, ‘grid file’, partitions the space of points along each dimension by a cer-
tain stripe into a grid, and points in a grid are sorted along that dimension. The region represented by
a grid can be treated as a bucket of a hash table, and each point in the grid has its record along each
dimension of the grid to locate the position (Hinrichs and Nievergelt 1983; Nievergelt, Hinterberger,
and Sevcik 1984). The hash-table-like approach works best on range, partial-match and nearest-
neighbour queries where data are uniformly distributed; however, its number of buckets increases
exponentially with increases in dimension. Another hash-table-like method, partitioned hash func-
tions, divides the bits of the key into n partitions representing the values for n dimensions/attributes,
and each partition has its own hash function to generate the representative value. Such hash func-
tions can be optimized for certain queries, including nearest neighbour and partial match queries
(Gionis, Indyk, and Motwani 1999; Li et al. 2003).

For tree-like approaches, there are four common structures: multiple-key index, k-d tree, quad-
tree and r-tree. The multiple-key index is an index of indexes, where nodes at each level are indexes
for an attribute. A k-d tree (k-dimensional tree) is a main-memory binary search tree in which
interior nodes use their attribute values to split their child nodes into two parts, and nodes at differ-
ent tree levels have different attributes (Ooi, McDonell, and Sacks-Davis 1987; Zhou et al. 2008). A k-
d tree is best at partial-match, range and nearest-neighbour queries (Robinson 1981). A Quad tree
divides a space into a square two-dimensional region, and each interior node splits its region into
four quadrants (Finkel and Bentley 1974; Eppstein, Goodrich, and Sun 2005). The r-tree is similar
to b-tree, but its internal nodes represent the region in any shape (Beckmann et al. 1990). It is
efficient for point location and overlapped region query but is complicated to insert/delete data.

By comparing the hash-table-like and tree-like approach, the hash-table index is more easily
maintained with better scalability than the tree-like index when inserting/deleting datasets, but
the data size of the hash-table index increases exponentially with the increase of data dimension.
Considering the above characteristics, the k-d tree is chosen as the global index hosted by the master
node to be as small as possible; the hash table is chosen as the local index for each worker node for
easy maintenance. Meanwhile, these traditional spatial indices are adapted in the proposed hierarch-
ical index because they do not support the search of where the queried data are stored in the distri-
bute environment, which is the key point for the distributed query system. Besides, these above
spatial data indexing strategies cannot be directly applied to Spark with HDFS due to the inconsis-
tency among the raster data models, distributed physical data storage model in HDFS, and the com-
plex distributed data pipeline in Spark.

2.2. Distributed systems for multi-dimensional geospatial raster data processing

As the volume of geospatial data is usually beyond a single computer’s capability, the distributed sys-
tems with the capabilities of scalable storage and computing are required for handling big geospatial
raster data. SciDB and Rasdaman are two of the most popular array-based distributed systems for
geospatial raster data. SciDB implements regular chunking with arbitrary chunk size, stores chunks
that logically belong together, and builds an index for chunks to accelerate query speed (Brown
2010). However, geospatial data need to be converted to the SciDB-specific binary format for data
uploading, which is time- and disk- consuming (Hu et al. 2018b). Rasdaman supports several geos-
patial data formats (e.g. NetCDF, GeoTiff) and various tiling structures (e.g. regular, aligned direc-
tional tiling) with specific indices to provide quick data access (Baumann 2001). Nevertheless,
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geospatial data need to be manually uploaded to each data node, and the projection coordinate infor-
mation is missing after the data are imported (Hu et al. 2018b).

Besides the array-based distributed systems, Hadoop-based frameworks (e.g. Spark, Hive, MapRe-
duce, HDFS) have been widely used to solve the large computational problems in big geospatial data
(Li et al. 2016b; Yang et al. 2017b; Hu et al. 2018a). For example, SpatialHadoop integrates the spatial
index and parallel computing to analyse big spatial data by building a two-level spatial index for vector
data, and quad-trees for satellite data to improve the efficiency of MapReduce on spatial query and
analytics (Eldawy and Mokbel 2013; Eldawy et al. 2015). These index trees, however, require the
input data to be decompressed and reorganized in HDFS, so the data size will be much bigger than
the original data. Li et al. (2017a) proposed a Hive-based framework to query big array-based climate
data. The MySQL database is used to store the spatiotemporal index, but it will be the bottleneck when
querying big geospatial data because large volumes of indexing data need to be transferred from the
MySQL database to the Hive cluster. As an evolved version of MapReduce, Spark has also been applied
in big geospatial data processing with faster execution engine and more expressive API (Hu et al.
2018a). For example, SciSpark extends Spark to natively support multi-dimensional data structure
in RDD, and develops data mining algorithms (e.g. detecting climate extremes) for scientific datasets
(Palamuttam et al. 2015). ClimateSpark proposes a spatiotemporal index for the chunked climate data-
sets to provide an interactive data analytical platform with high parallel I/O efficiency (Hu et al. 2018b).

The above indexing techniques and frameworks provide initial success for efficient geospatial raster
data query and processing. However, the management of big geospatial raster data can be further
improved by avoiding the data pre-processing and enhancing the parallel query capability with high
scalability. Apache Spark has become one of themost popular big data platforms, but limited work exists
to extend Apache Spark to utilize its powerful in-memory parallel data processing for multi-dimensional
geospatial raster data. This paper presents a hierarchical indexing technology for Spark with HDFS to
efficiently query big geospatial raster data and in so doing (1) enables Spark and HDFS to natively sup-
port geospatial raster formats (e.g. HDF4, NetCDF4, GeoTiff); (2) avoids the overhead of transferring
large volumes of indexing data from the database to the Spark cluster; (3) efficiently queries big geos-
patial raster data with high parallelism, I/O efficiency, and data locality, where high data locality means
moving computation tasks/programmes close to data rather than moving data towards computation;
and (4) further accelerate the in-memory geospatial raster data query and process.

3. Methodology

3.1. Geospatial raster data model and layout in HDFS

The geospatial raster data consists of a two-dimensional matrix or multi-dimensional arrays. The
multi-dimensional array-based data model (Figure 1) is used to represent geospatial raster data
(Li et al. 2017a; Hu et al. 2018a;). It assembles a collection of cells that can be randomly accessed
by an index tuple computed from a mathematical formula (Black 2006). This logical mapping
saves storage capacity for coordinate information. An array is created by specifying dimensions
and attributes. For example, in an n-dimensional array with dimensions d1, d2,… , dn, each dimen-
sion’s size is the number of ordered values in that dimension. The combination of dimension values
identifies a cell of the array, which holds the data value called attribute. To improve the compu-
tational and I/O efficiency for big geospatial raster data, a data partitioning technology (chunk-
ing/tiling) is usually adopted to partition multi-dimensional arrays into sub-arrays (chunks/tiles).

Because the chunk size is much smaller than the block size (e.g. 64 MB/128 MB) in HDFS, the
chunk is treated as an atomic data unit and delivered to several data nodes when storing the chunked
geospatial raster data on HDFS (Li et al. 2017a; Hu et al. 2018a) (Figure 1). The data locality is one of
the essential factors for efficient parallel processing. It avoids the large data transferring via network
by moving computation tasks to the data nodes where data are stored rather than moving data
towards computation. The data location, the physical data nodes for each chunk, can be retrieved
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by querying the block metadata of the distributed file system with the chunk layout information as
follows:

hostschunki = f ( filePathchunki , byteOffsetchunki , byteLengthchunki ) (1)

According to filePathchunki , the physical locations of the blocks that the input file contains
can be derived from the metadata of HDFS; meanwhile, the combination of byteOffsetchunki
and byteLengthchunki could identify which blocks are overlapped with the queried chunk. Then,
the data host of the queried chunk (hostschunki) can be derived as the queried chunk has the same
physical hosts with the identified blocks. A programme is developed to extract the chunk layout
information from the headers of geospatial raster data files (e.g. HDF4, NetCDF4) using HDFS
I/O API.

According to the physical location of each data chunk, the query tasks can be delivered to their
corresponding data nodes to achieve high data locality. However, there are too many chunks in a
collection of big geospatial data to quickly find the specified chunks or keep the workload balance
among the worker nodes. Using MERRA-2 (a climate simulation geospatial raster data) as an
example, one collection of daily MERRA-2 production has ∼ 0.5 billion chunks varying in content
and dimensions (e.g. 2-, 3-, higher dimension), and the size of chunk metadata is about 10GB. The
MERRA-2 dataset has about 42 data collections, so the total chunk metadata size is more than
400GB. A standalone database could not efficiently manage these large volumes of information
when the queries are frequently submitted. It is also time-consuming to transfer these metadata
from the external database to the computing cluster. In addition, there are few spatial indices con-
sidering the data locality for spatial queries.

3.2. The Architecture of the hierarchical index

To enable Spark with HDFS to efficiently query big geospatial raster data, a three-layer hierarchical
index (Figure 2) is proposed: (1) the global index: the k-d tree is constructed at the master node to
globally overview all the chunks’ location across the cluster; (2) the local index: the hash table is built
for each worker node to index all the chunks stored in the local worker node and provide the chunk

Figure 1. Array-based data model with chunked data structure in HDFS.
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layout information at the byte-, block-, and file- levels; (3) the RDD index: the k-d tree is built to
persist and index all the in-memory chunks in each RDD partition to accelerate spatial queries of
in-memory data. The hierarchical index is stored in HDFS to avoid the transferring of indexing
data from the external data sources. Meanwhile, the division of the global and local index reduces
the size of the index on each node to be bulk loaded in memory, and avoids chunk metadata trans-
ferring between the master and worker nodes. The hierarchical index provides the information of
chunk layout in HDFS at the byte-, chunk-, block-, file-, memory-, and node- level for the schedule
of query tasks. More details are introduced in the following sections.

3.2.1. Global index for high data locality and workload balance
To efficiently query a multi-dimensional bounding box in Spark, the first step is to identify
which chunks are overlapped with the input bounding box and find their physical host
nodes to read the data. The global index (Figure 3) is designed to index all chunks with
their physical locations to get the global overview of chunk locations across the cluster.
Since the global index is located at a single master node, it is optimized to be as small as poss-
ible. The k-d tree index structure, which is an efficient data structure for range and nearest
neighbour searches in multi-dimensional spaces, is adjusted to implement the global index.
It is known that the k-d tree indexes the points rather than cubes in a k-dimensional space.
When applied to chunks, a unique vertex of the chunk (e.g. the upper-left corner) is identified
to represent its location in the k-d tree (Figure 4). Different from the traditional k-d tree, the
physical host addresses of each chunk are added into the k-d tree, helping keep the workload
balance and data locality for the query tasks.

In details, each node in the tree is a chunk’s representative point containing its physical host
address (Figure 3). At each level of the global index, the children nodes are split along a hyperplane
that is constructed perpendicular to the corresponding dimension. All children of the root node are
split by the first dimension, so that for a children node of the root whose first-dimension coordinate
is less than the root, it is in the left-sub tree; otherwise, it is in the right sub-tree. For each level down

Figure 2. The three-layer hierarchical index.
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in the tree, it is split by the next dimension, and if all other dimensions have been exhausted, the split
dimension returns to the first dimension. To keep the balance of the k-d tree, the chunk in the centre
of the big cube is placed at the root, and every node with a smaller dimensional value is placed to the
left and larger to the right. This procedure is repeated on both the left and right sub-trees until the
last tree has only one element. The global index supports the point, range and nearest neighbour
queries.

Once the global index is achieved, the next steps are to retrieve the specified chunks and equally
partition them as the sub-query tasks for data nodes. In order to get the high data locality for each
task and keep the workload balance among the data nodes, the following algorithm is proposed
(Algorithm-1):

(1) Go through the global index with the input geospatial bounding box and retrieve the collection
of overlapped chunks S.

S = {chunki | ∀chunkj > boundingbox}

chunki = [vertexi, (dataNodei, . . . . . . , dataNodej)]

(2) Specify which nodes handle which chunks. First, the data nodes are counted and recorded as
N = {dataNodei, dataNodej, . . . . . . , dataNodem}; When assigning a retrieved chunk, it is
delivered to the data node that physically stores it but with the smaller number of assigned
chunks, resulting that each data node is assigned with a similar number of chunks and only pro-
cess the chunks that are locally stored; and

(3) To reduce the data transferring from the master to data nodes, chunks are represented by an ID,
a combination of the vertex’s coordination as idchunki = vertexi(xi, yi, zi, . . . . . . ).

Figure 3. The architecture of the global K-D tree index.
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Therefore, the outputs after querying the global index are represented as follows:

listpartioned =
(dataNodem, lnodeID{a, b, c, d, . . . . . .})

. . .

(dataNoden, lnodeID{e, f , g, h, . . . . . .})

⎧⎨
⎩ (2)

Algorithm-1 ChunkID partition

1. g ← global index
2. b ← bounding box
3. targetNum ← the predefined number of chunks assigned for each data node
4. f (g, b) ← function which returns the chunkIDs that overlapped with input bounding box
5. Set of queried chunkIDs S ← f (g, b)
6. Set of involved data nodes N ← {}
7. for each chunkID in S do
8. N ← N < {datanode | dataNode [ ChunkID but � N}
9. Set of repartitioned chunkIDs for each involved data node listrepartitioned← {l1, l1, . . . . . . , ln}
10. for each chunkID in S do
11. targetNode ← null
12. for each data node nodei in chunkID do
13. if the number of chunkIDs assigned to nodei , targetNum
14. targetNode = nodei
15. ltargetNodeID ← assign chunkID to targetNode
16. return listpartitioned

3.2.2. Local index for data chunk metadata information retrieval
After the worker/data node receives the assigned sub-query tasks, which contains the assigned query
chunk IDs, the chunk metadata information is fetched from the local index (Figure 5). The metadata
information for each chunk falls into two categories: (1) logical data information (chunk_corner,
chunk_shape, variable_name, data_type, file_name, unit, missing_value, and valid_value_range);
and (2) physical data information (byte_offset, byte_length, and compression_type), where the
byte_offset refers to the byte offset of the chunk in the original image. Each chunk ID refers to a

Figure 4. The chunked cube with the representative points. The blue point represents its corresponding chunk.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 417



pair of logical and physical metadata information, so the local index is implemented by a hash table
as follows (Figure 5):

On each worker node, a local index is built for each variable and stored in separate files, so the
local index files are loaded on demand when querying multiple variables. After the local index is
loaded into memory, the chunk metadata is retrieved according to the input chunk IDs.

3.2.3. RDD index for in-memory data query
Based on the chunk metadata, the byte streams for each chunk can be retrieved from HDFS and
decompressed into arrays, and these arrays in different worker nodes will be organized together
as an RDD. but these arrays are not ordered yet. That means, for each query, the arrays need to
be linearly scanned even for querying a small number of points. Therefore, an RDD index (k-d
tree) is built for each RDD partition to improve the query efficiency. The k-d tree structure in the
RDD index is the same with that in the global index, but the content of each node is the combination
of the chunk’s dimensions and their array values rather than chunk IDs.

3.2.4. The workflow of Apache Spark with the hierarchical index
The workflow of Apache Spark working with the hierarchical index to retrieve the chunks (Figure 6)
has several distinct steps as follows:

(1) Input the querying range on the master node and proceed through the global index to retrieve
the specified chunk IDs and their physical locations;

(2) Equally partition these chunk IDs by their physical hosts and deliver the grouped chunkID lists
to their corresponding worker/data node. This step keeps the workload balance among the
worker nodes, while achieving high data locality for the assigned tasks in the next step.

(3) Each executor on the worker node launches a task to retrieve the chunk metadata from the local
index according to the assigned chunk IDs; and

(4) Equally split each chunk metadata list into several sub-partitions to keep workload balance
among threads, and for each partition, launch a task to read the data specified by the metadata
as array.

(5) Once the real arrays are read out, they will be organized as an RDD and the RDD index will be
built for each RDD partition.

Figure 5. The architecture of the local index.
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3.3. Customized RDD for the hierarchical index

Resilient Distributed Dataset (RDD) is the basic data abstraction in Spark, which represents an
immutable partitioned collection of elements processed in parallel. However, the default RDDs do
not support the array-based geospatial data with the hierarchical index yet, so four kinds of custo-
mized RDDs are proposed: ChunkID RDD, ChunkMeta RDD, Chunk RDD, and IndexedChunk
RDD (Figure 7).

. ChunkID RDD

Querying the global index generates a list of chunk IDs specified by the input bounding box.
ChunkID RDD is designed to represent these queried chunk IDs. The ChunkID RDD is split into
several partitions according to the chunk’s physical data hosts (Section 3.2.1). That is, each partition
of the ChunkID RDD is a list of chunk IDs for a certain physical data node, and the number of par-
titions is the same as the number of nodes.

. ChunkMeta RDD

In the local index each chunk ID maps to the referred chunk’s metadata (ChunkMeta), including
its logical information and physical information used to read the chunk data out from HDFS. Passing
each partition of the ChunkID RDD into its corresponding local index generates a partition of chunk
metadata, the collection of which is a ChunkMeta RDD. Accordingly, the ChunkMeta RDD has the
same number of partitions with ChunkID RDD, and their corresponding partitions are stored at the
same node.

The data specified for each chunk is read by using the logical and physical information in Chunk-
Meta RDD. However, the current ChunkMeta RDD has a small number of partitions, the same as
the number of data nodes. That means there is only one task launched on each data node. However,
the data node with multiple cores should be able to run multiple tasks at the same time. Therefore,

Figure 6. Workflow of Apache Spark working with hierarchical index.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 419



the strategy for tuning parallelism is designed in Section 3.5 to better leverage the available comput-
ing resources.

. Chunk RDD and IndexedChunk RDD for in-memory query

Given the meta data information in ChunkMeta RDD, the specified data are retrieved via HDFS
I/O API and stored as Chunk RDD with high data locality, but the chunks in each ChunkRDD par-
tition is still not ordered. Therefore, the RDD index (k-d tree) is built for each partition of
ChunkRDD to generate the IndexedChunk RDD, which can efficiently query the target chunk with-
out visiting all chunks.

3.4. Tuning parallelism

Each partition of an RDD launches a task, so the parallelism can be adjusted by changing the par-
tition number of RDDs. Although the default RDD in Spark supports the repartition of RDDs, it
does not keep the partition’s original data location, resulting in large volumes of data shuffling
and consuming a large partition of network and memory resources.

Instead, a new repartition strategy (Algorithm-2) is proposed, changing the partitions of custo-
mized RDD to control the parallelism level while avoiding the shuffling to achieve high data locality.
The repartition strategy has two parts - increasing parallelism and decreasing parallelism (Figure 8).
With increasing parallelism, the partitions of ChunkMeta RDD are equally split into several small
partitions. For keeping data locality, new sub-partitions are at the same node with its parent par-
tition. The increasing number of partitions enables the ChunkMeta RDD to launch more tasks to
read data in parallel. With decreasing parallelism, the ChunkMeta RDD combines small partitions
to get bigger partitions, each of which has larger number of chunks. If the current parallelism takes
the best of the available resources, ChunkMeta RDD keeps the same number of partitions to main-
tain the current parallelism.

Algorithm-2 Tuning Parallelism

1. g ← global index
2. l ← local index
3. b ← input bounding box
4. f (g, b) ← function which returns the chunkIDs that overlapped with input bounding box
5. h ( chunkID, l) ← function which returns the chunk metadata for the specified chunk
6. p ← the folds of increasing the number of partition
7. d ← the folds of decreasing the number of partition
8.
9. set of chunkIDs S ← f (g, b)

(Continued )

Figure 7. Workflow for customized RDD transformation.
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Continued.

Algorithm-2 Tuning Parallelism

10. set of dataNodes N ← the data nodes that store the queried chunks
11. set of chunk metadata M ← {m1, m2, . . . . . . , mn}
12. ni ← the number of chunks assigned for the node Ni

13. for each data node Ni [ N do
14. Si ← Assign ni ChunkIDs from S to Ni where the chunks are physically stored
15. chunkID RDD ← parallelize {S1, S2, . . . . . . , Sn}
16. for each partition pi in chunkID RDD do
17. for each chunkID in pi do
18. mi ← mi <

h (chunkID, li )
19. SplitPartition(M, p) ← split each partition mi into p sub-partitions
20. CombinePartition(M, d) ← combine d sub-partitions on the same node into one partition
21. chunkmeta RDD ← derived from the repartitioned {m1, m2, . . . . . . , mn}
22. Chunk RDD ← utilize HDFS IO API to read the chunks specified by chunkmeta RDD
23. for each partition pi in chunk RDD do
24. indexedPartitioni ← build k-d tree for pi
25. IndexedChunk RDD ←{indexedParition}

4. Performance evaluation

4.1. Experimental design

The hierarchical index is implemented and integrated with Apache Spark to efficiently query big
geospatial raster data. To evaluate the proposed hierarchical indexing technology, the performance
of Spark with the proposed hierarchical index is compared with that of Spark SQL and SciSpark. The
experiment data are MERRA-2 tavg1_2d_int_Nx data (M2T1NXINT) in NetCDF4 data format and
mixed with 2-, 3-, and 4-dimensional variables. The total data size approaches 7.35 TB from 01/01/
1980 to 12/31/1995. The spatial resolution is 0.625 * 0.5 degree, and the temporal resolution is
hourly. Inside the dataset, each grid is split into 16 chunks with the resolution of 91 by 144 points,
and there are ∼ 494.5 millions of chunks in the 16-year data.

The Spark cluster (v1.5.0 + Hadoop v2.6.0) consists of one master node and 19 worker nodes, and
the cluster resource is managed by Yarn.1 Each node is configured with 24 CPU cores (2.35 GHz)
and 24 GB RAM on CentOS 7.2 and connected with 20 GB Ethernet (GPS).

Figure 8. Dynamic parallelism change.
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Since Apache Spark does not natively support the binary data in NetCDF data format, the
experiment raster dataset is converted to points and saved in the relation table in Parquet for-
mat.2 Subsequently, Spark SQL is applied to query/process the data, which is the default
query fashion in Spark. SciSpark and the Spark with the proposed hierarchical index can directly
query and compute the data without data pre-processing, since they both natively support the
experiment data format. For the hierarchical index, the global index is built for the master
node, whereas the local indexes are built for each data node and stored on the corresponding
nodes. The experiments on temporal queries, spatial queries, and in-memory queries investigate
the proposed hierarchical index from three perspectives: (1) how it handles different volumes of
data; (2) how it searches geospatial raster data with high efficiency; and (3) how it accelerates
multi-dimensional data query in memory. Each experiment is replicated ten times and from
which a mean is calculated.

4.2. Temporal query

The temporal query subsets the data in a specified time range, and the data volume increases at the
same speed as the query time range increases. For each query, the data specified by the time range
in Colorado area are extracted from the data pool, and the monthly spatial average is calculated.
The queried time range increases from 1 to 10 years in a one-year step, and the corresponding
queried data sizes increase from 0.45TB to 4.59TB. The hierarchical index has the best perform-
ance, increasing by a factor of 5 from 7.4 to 36.9 seconds. The runtime for Spark SQL and SciSpark
increases by a factor of ∼ 2.6 (20.2 to 51.7 seconds) and ∼14 (108 to 1512 seconds) respectively
(Figure 9).

Spark SQL provides an SQL-style fashion for users to easily implement and run Spark jobs. The
high-level SQL query script can be parsed to the logical plan and then optimized by Spark’s comput-
ing optimiser (Catalyst) at multiple levels to choose the best physical plan for high data locality and
efficient task execution (Yadav 2015). Then, according to the optimized physical plan, the query
script can be automatically translated to Spark RDD APIs. This kind of cost-based optimization
algorithms for the computational directed acyclic graph makes sure the query run as fast as possible
in the distributed environment. Besides, in the Parquet files, all the columns are stored separately,
and each column is split into several groups with metadata to describe its data layout. Spark SQL
natively support the structure of Parquet files with high I/O efficiency and data locality. When read-
ing the input Parquet data, Spark SQL first reads the queried columns in the SQL script with high
data locality to figure out which rows of the table are queried, and then only read the identified rows.
This data pipeline improves the I/O efficiency by reducing the reading of unnecessary data. However,
irrespective of the input time range, Spark SQL still needs to read and traverse the entire columns
that are specified in the query script due to the lack of column indexing. That is why the query
time for Spark SQL increases much slower with the enlarged temporal query range. Meanwhile,
the conversion of the raster data to a relational table causes repeating coordinate information in
the table, and then more data reading and memory allocation when running the query tasks.
That means the relational table-like data structure is not an efficient way to store geospatial raster
data (Hu et al. 2018b). The low efficiency of identifying the queried rows and the redundant data
in the tables slows down the performance of Spark SQL.

The proposed hierarchical index enables Spark to query the global k-d tree index, about 0.003% of
the input data size, to quickly identify the queried chunks and subsequently launch tasks on the local
physical machine with high data locality to read and compute the data. At the same time, although
the optimiser in Spark SQL could not work for RDD-based programmes, the customized RDDs
make sure that the sub-query tasks are executed as expected. Besides, the array data model is
used in the cumulative data pipeline to organize the data in both files and memory, which is
more disk-, network- and memory-saving than the relational data model in Spark SQL. In terms
of run time increasing speed, the hierarchical index is faster than Spark SQL. That is because

422 F. HU ET AL.



Spark with the hierarchical index only reads and decompresses the data specified by the query
bounding box, so the processed data volume increases with query time range; But Spark SQL always
reads the whole queried columns even for the different temporal query range, so the run time
increases slowly but is inefficient.

SciSpark, although natively supporting the experiment data, does not consider the data locality
or chunking data structure in the experiment data. Basically, it randomly allocates the query
tasks to worker nodes. Each worker node reads the assigned files using HDFS I/O APIs and
then interpret the byte streams using NetCDF Java library.3 Consequently, large volumes of data
serialization and transferring via network put heavy pressure on the network and memory
resources of the Spark cluster; at the same time, when the memory usage reaches the limitation,
the java’s ‘stop-the-world’ garbage collection leads to a significant latency in SciSpark (Palamuttam
et al. 2015).

4.3. Spatial query

In the spatial queries, the eight different bounding boxes enlarge at a factor of two (Figure 10) and the
involved data sizes increases from 0.28TB to 2.30TB. Each query has the same time range from 1:00
am to 2:00 am from 01/01/1986 to 12/31/1990, and the temporal average is computed for each point
in the queried time series. The run time for the hierarchical index, Spark SQL, and SciSpark are 10.8
to 14.9 seconds, 36.2 to 48.5 seconds, and 734 to 782 seconds (Figure 10). In each query the hierarch-
ical index encompasses less time (∼ 2.5 fold less) than the Spark SQL and ∼40 times faster than SciS-
park. The performance of SciSpark gets worse than the temporal query. It is caused by the data
aggregation difference between the spatial and temporal queries. The temporal average in the spatial
query aggregates each point’s values along the time dimension rather than aggregating all into a
single point as the temporal query. That means much more data need to be transferred via network.
It brings serious network overhead while putting heavy pressure on the Java virtual machine since
large volume of data need to be serialized and deserialized. However, Spark SQL can automatically
optimize the query execution to minimize the data transferring by the Catalyst optimizer; the data
pipeline in the proposed hierarchical indexing approach is optimized by the customized RDDs to

Figure 9. Time for computing daily mean with varied query time.
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move the computing programmes to the data as much as possible. The spatial query results further
prove the importance of data locality and I/O efficiency for locating data and reducing data transfer-
ring when answering range queries in the distributed big data system.

4.4. In-memory data query

One of the biggest advantages in Spark is to accelerate the iterative computing by caching data. In
Section 3.4.3, the design of IndexedChunk RDD improves the data accessibility in memory. To evalu-
ate the advantages of IndexedChunk RDD, the performance of IndexedChunk RDD, Spark SQL, and
SciSpark for querying the cached data is compared by using single point, range, and nearest neigh-
bour queries (top 8 nearest neighbours) (Figure 11). In the single point and range queries, Spark with
the hierarchical index and SciSpark have similar performance but are faster than Spark SQL. Spark
SQL needs to compare the input boundary with each point, whereas IndexedChunk RDD can filter
out the unspecified chunks according to the k-d tree, and extract the points using array indices; SciS-
park designs the tensor data structure to combine neighbour chunks as arrays in memory, so the
queried points can be fast identified by array indices. For the nearest neighbour search, Spark
SQL first computes each point’s distance to the query point and sorts the points by distance to
get the top 8 nearest neighbours; this is a time-consuming task for processing ∼ 5.5 billion points.
For IndexedChunk RDD each partition of its chunks is indexed by the k-d trees and cached. When
querying the nearest neighbours, the first step goes through the k-d tree to identify the nearest chunk
and subsequently finds the nearest points in the nearest chunk. This avoids sorting the points by
their distance to the target point, which is necessary for Spark SQL, by leveraging the spatial
chunk-level topology information in the k-d tree. The tensor in SciSpark contains the queried neigh-
bour points in the same array, so SciSpark could efficiently locate the neighbour points using array
indices, which illustrates the efficiency of array-based data model in querying the in-memory geos-
patial raster data.

Figure 10. Time for computing temporal mean with varied query area. The bounding box for the eight queries are as follows: (1)
(−45◦ , − 90◦) � (0◦ , 90◦); (2) (−45◦ , − 90◦) � (45◦ , 90◦); (3) (−45◦ , − 90◦) � (90◦ , 90◦); (4) (−90◦ , − 90◦) �
(90◦ , 90◦); (5) (−90◦ , − 180◦) � (45◦ , 120◦); (6) (−90◦ , − 180◦) � (45◦ , 180◦); (7) (−90◦ , − 180◦) � (90◦ , 120◦); and
(8) (−90◦ , − 180◦) � (90◦ , 180◦).
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4.5. Increasing and decreasing parallelism level

The parallelism level is an important parameter for the performance of Spark. The proposed method
(Section 3.4) optimizes the parallelism by adjusting the number of partitions in customized RDDs to
better utilize the available computing resources. To evaluate the feasibility of the proposed method,
we design a group of experiments, each of which computes the global monthly mean value from 01/
01/1986 to 12/31/1990 but launches different numbers of tasks (Figure 12). By increasing the number
of tasks, the run time initially decreases but begins to increase after the number of tasks exceeds 3652.
This result has two explanations. First, when the task number is small, each task processes more data
sequentially and more memory is consumed. This places more pressure on garbage collection,
requiring more data being split to disk, which in turn causes disk I/O and memory wasted. Second,
when the task number is large, each task processes less data but consumes more time to allocate/
release the task resources. As the number of task increases, more repeated operations in each task
are required.

5. Conclusion and discussion

Big geospatial raster data require scalable data management systems and efficient computing fra-
meworks for scientists to discover the hidden knowledges (Buck et al. 2011; Li et al. 2017b; Yang et
al. 2017b). As an advanced distributed computing framework, Apache Spark has been utilized to
process and analyse big geospatial data, but a gap remains between Apache Spark and multi-
dimensional array-based geospatial raster data. This paper designs and implements a hierarchical
index strategy for Apache Spark with HDFS to efficiently query and process multi-dimensional
data without data pre-processing. The combination of a global k-d tree index for the master
node and the local hash table for each data node provides a scalable indexing strategy to search
big geospatial raster data in a distributed environment. Moreover, the index structure is adjusted
to provide the indexing information at node, file, block, and byte level while indexing the data in
the memory to further improve the performance of Spark on in-memory data query. The

Figure 11. Comparison of the query performance of IndexedDataChunkRDD and Spark SQL for cached data: (1) single point query:
query the point at (80.5◦ , − 174.5◦) at 2:00 am 01/01/1987; (2) range query: query the points at (80.5◦ , − 174.5◦) during 1:00
am to 2:00 am from 01/01/1987 to 01/31/1987; (3) nearest neighbour query: find the 8 nearest neighbours for the point at
(80.5◦ , − 174.5◦) at 2:00am 1987/01/01.
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hierarchical index is integrated with Spark by developing customized RDDs (i.e. ChunkID,
ChunkMeta, Chunk, IndexedChunk). By experimentally comparing the performance of the
proposed hierarchical index method, Spark SQL, and SciSpark, the hierarchical index strategy
accomplishes the following: (1) efficiently queries multi-dimensional geospatial raster data without
unnecessary data reading by utilizing the logical and physical data information provided by the
hierarchical index; (2) reads data with high data locality to avoid the network bottleneck;
(3) indexes the cached multi-dimensional data to improve the spatial query efficiency; and
(4) tunes the parallelism by repartitioning the customized RDDs with high workload balance
and data locality.

For the future research, several lines of investigation are suggested as follows:

(1) The proposed hierarchical index is implemented by the low-level RDD APIs, which are not used
as easily as Spark SQL or DataFrame APIs. The User Defined Functions (UDFs) provided by
Spark SQL will be utilized to wrap the customized RDDs and add the query functions into
the Spark SQL language. Then, users just need to write SQL-like scripts to query large volumes
of geospatial raster data.

(2) The number of tasks need to be changed by the method proposed in Section 3.4, but an intel-
ligent scheduling algorithm needs to be found for the most appropriate number of tasks in light
of the available computing resources.

(3) As the latest version of Spark (released on Feb. 2018) starts to support Kubernetes, the proposed
hierarchical index strategies could be further revised to leverage the scalability provided by the
Kubernetes cluster, such as dynamically adding more nodes to improve the parallelism.

(4) The hierarchical indexing method can be extended to support other MapReduce-style comput-
ing frameworks (e.g. Hive and MapReduce) to improve the geospatial raster data accessibility
and query efficiency. Besides, the proposed index strategies can be applied to index the layout
of geospatial raster data in the cloud object storage systems (e.g. Seagate Kinetic Open Storage
Platform, AWS S3, and OpenStack Swift) as well to avoid large volumes of data transferring and
iterations.

Figure 12. Run time for different number of tasks to compute the global mean from 01/01/1986 to 12/31/1990.
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(5) The proposed global index may not work efficiently with the cases that frequently update data,
such as the applications with real-time data sources. The trade-off between the query speed and
the efficiency of index maintenance needs to be further investigated.

Notes

1. https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html.
2. https://parquet.apache.org/.
3. https://www.unidata.ucar.edu/software/thredds/current/netcdf-java/.
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