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Integrating memory-mapping and N-dimensional hash function for fast and
efficient grid-based climate data query
Mengchao Xua, Liang Zhaob, Ruixin Yanga, Jingchao Yang a, Dexuan Shaa and Chaowei Yang a

aDepartment of Geography and Geoinformation Science, George Mason University, Fairfax, VA, USA; bDepartment of Information Science and
Technology, George Mason University, Fairfax, VA, USA

ABSTRACT
Database systems are pervasive components in the current big data era. However, efficiently
managing and querying grid-based or array-based multidimensional climate data are still
beyond the capabilities of most databases. The mismatch between the array data model and
relational data model limited the performance to query multidimensional data in a traditional
database when data volume hits a cap. Even a trivial data retrieval on large multidimensional
datasets in a relational database is time-consuming and requires enormous storage space.
Given the scientific interests and application demands on time-sensitive spatiotemporal data
query and analysis, there is an urgent need for efficient data storage and fast data retrieval
solutions on large multidimensional datasets. In this paper, we introduce a method for
multidimensional data storing and accessing, which includes a new hash function algorithm
that works on a unified data storage structure and couples with the memory-mapping
technology. A prototype database library, LotDB developed as an implementation, is
described in this paper, which shows promising results on data query performance compared
with SciDB, MongoDB, and PostgreSQL.
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1. Introduction

In climate earth community, with the growth of both
data volume and complexity of spatiotemporal gridded
data, the importance of efficient data storage, fast
access, and analysis are well recognized by both data
producers and data users. Using new technologies to
enhance big earth data discovery, storage, and retrieval
is attractive and demanded not only in the climate earth
community but also in all science domains and data-
related industries (Yang et al. 2017). As the nature of
many natural phenomena, they can bemodelled as array
data sets with some dimensionality and known lengths
(Baumann 1999). Grid-based data sets, raster structured
data sets, array-based data sets or data cubes are all
referring to the same concept of a data model, array
data model. It is a multidimensional (n-D) array with
values in the computer science context. In geoscience,
it is an n-D gridded data set. The Earth Observation data
is one of the main gridded data sources in climate earth
community, according to Earth Observing System Data
and Information System (EOSDIS)’s metrics of 2014, it
manages over 9 PB of data and adds 6.4 TB of data to
its archives every day (Blumenfeld 2015). Its data distri-
bution is often in forms of flat files, and almost all the
data are array based. Traditional file storage for

multidimensional arrays involves using various formats
such as the popular GeoTiff, NetCDF, and HDF. The data
in those formats are suitable for data transfer because of
their size advantages but require programming skills to
perform further analysis. In addition to the original for-
mats, data are often needed to be stored using DBMSs,
and the mainstream technologies for sensing image
management are relational database and array database
technologies (Tan and Yue 2016). For DBMSs, a well-
developed relational database management system
(RDMS) is based on the relational data model, and the
database storage structures on lower storage level are
often trees (B+ trees). Historically, since traditional
databases are not designed in the climate earth
domain, nor are they built to store array data sets,
RDMS does not directly support the array data model
to the same extent as sets and tables. Mapping
attempts have been made to utilize the mature rela-
tional model as the backend to support array data-
sets, like in van Ballegooij’s work (2004), and theories
have been developed to support array query (Libkin,
Machlin, and Wong 1996; Marathe and Salem 1997);
however, with the growth in data volume, storing,
accessing, and analysing multidimensional arrays in
RDMS became problematic.
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Meanwhile, NoSQL databases have been developed
to meet the demand to store and query the increasing
amount of data from various sources, in which, array
data could also be mapped to different data models,
like using key-value pairs to store cells of the array.
However, the data model mapping brings longer data
pre-processing time and larger data storage volume. At
the same time, as the data volume and complexity
increase, there is no promising performance to be
expected because of the corresponding increase in
unit computer resource consumption. Recently, the
array database is drawing increasing attention because
of its array data model’s support on the database level,
which provides a more native solution for array data
storage. Tree data structures, which are usually used in
relational databases’ storage level on disks, have lower
computational complexities for value search when
comparing with an array data structure. In contrast,
the array data structure offers the lowest computa-
tional complexity for data access, perfect for static
data retrieve if indexes could be presented as integers.
Popular array databases like Rasdaman and SciDB are
widely used in many practical projects (Baumann et al.
1998; Stonebraker et al. 2013b), showing promising
performance gain comparing to traditional methods.
However, existing array databases are still suffering
from the problems including 1) low performance on
non-cluster environment: the standalone version of
array databases usually have limited performance com-
pare to their clustered setup (Hu et al. 2018), 2) long
data pre-processing time: current array databases does
not provide direct support for multidimensional cli-
mate gridded data, data pre-processing is therefore
necessary and cannot be avoided (Das et al. 2015),
and 3) high data expansion rate compare to raw data:
because of the data pre-processing and data chunking
inside databases, data volume could be expanded mul-
tiply times compare to the raw data.

As the multidimensional array datasets are growing
in both size and complexity, we are becoming limited in
our abilities to handle those datasets. Our objective is
to develop a solution that performs fast data retrieve
queries on grid-based climate data and minimizes the
data pre-processing time and data expansion rate at
the same time. In this paper, we present LotDB,
a prototype array database library, developed by utiliz-
ing memory-mapping technology and a new n-dimen-
sional hash function algorithm. The query run-time and
storage consumption are assessed and compared
against PostgreSQL, MongoDB, and SciDB for perfor-
mance evaluation by using the Modern-Era
Retrospective analysis for Research and Applications,
Version 2 (MERRA-2) data set.

1.1. Outline

The rest of this paper is organized as follows. In
Section 2, the studies of storing arrays in databases
are reviewed. Section 3 introduces the n-dimensional
hash function as an efficient method to execute data
retrieve for a unified data storage structure. LotDB
is introduced and compared with PostgreSQL,
MongoDB, and SciDB in Section 4. Section 5 con-
cludes this research with a summary and an outlook
for future works.

2. Related work

There are many attempts to store multidimensional
arrays in a database system, studies could be gen-
eralized as 1) array data model mapping in relational
databases, and 2) developing native array databases.
Meanwhile, recent studies that involve using big
data frameworks like Hadoop systems to store and
retrieve multidimensional climate data sets have
some excellent performance results on data analysis
queries (Li et al. 2017; Cuzzocrea, Song, and Davis
2011; Song et al. 2015). However, most of the solu-
tions were developed as customized solutions for
specific data formats or data sets and could not be
applied to arbitrary multidimensional arrays. The
related works in this section focus on the database
solutions for multidimensional array storage and
retrieval, and efforts done by researchers to enhance
array data query.

2.1. Relational database

The data model in relational databases are tables, most
of the relational database systems do not support stor-
ing multidimensional arrays natively. A natural way to
store arrays in tables is to split arrays cell into rows,
which is straightforward for 1D/2D datasets, however,
problematic for higher dimensional data. Operational
speaking, array orientated analysis is often done on
platforms like MATLAB, which is limited by memory
capacity and may have error-prone developing process.
To close this gap, in 2004, van Ballegooij introduced
array data structure in a relational database environ-
ment, developed a multidimensional array DBMS called
RAM (Relational Array Mapping) which maps array onto
a traditional relational schema. The multiple index col-
umns in a multidimensional array were compressed
into a single column in their approach. Data retrieve
process was based on existing database system with
bulk array processing. They provided an intellectual
framework and ease the use for map arrays to relational
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models in a distributed application as the implementa-
tion (van Ballegooij et al. 2005). However, mapping the
array model to relational could only be treated as the
compromised solution rather than the ideal solution.

In 2005, the prototype of MonetDB was introduced as
a main memory database system uses a column-at-a time
execution model for the data warehouse. Although
MonetDB is not a native array database but a full-
fledged relational DBMS (Idreos et al. 2012), it provided
useful thoughts and ideas for processing array models. It
is a column-oriented database and each column, or BAT
(Binary Association Table), in the database is implemented
as a C-array on storage level. (Boncz, Zukowski, and Nes
2005) MonetDB has focused on optimizing the major
components of traditional database architecture to
make better use of modern hardware in database applica-
tions that support analyse massive data volumes (Boncz,
Kersten, and Manegold 2008). In 2008, Cornacchia et al.
also introduced an example of using a matrix framework
with a Sparse Relational Array Mapping (SRAM) by
Information Retrieval (IR) researchers, they used
MonetDB/X100 as the relational backend, which provided
fast response and good precision. Thematrix framework is
based on the array abstraction, and by mapping them
onto the relational model and develop array queries,
MonetDB allows them to optimize the performance and
developed a high-performance IR application.

2.2. Array database

Research on array DBMS usually includes two parts, the
storage of multidimensional array and query language
(Baumann et al. 1999). While online analytical proces-
sing (OLAP) focuses on business array data, scientific
studies on computing and imaging have been devel-
oped formal concepts on array data manipulation, like
AQL (Libkin, Machlin, and Wong 1996) and the array
manipulation language AML (Marathe and Salem 1997),
but not been implemented and evaluated as real-life
applications before Rasdaman (Baumann 1999).
A declarative query language suitable for multiple
dimensions was firstly introduced by Libkin, Machlin,
and Wong (1996), Rasdaman introduced its algebraic
framework in 1999 for express cross-dimensional
queries, for which consists of only three operations:
an array constructor, a generalized aggregation, and
a multidimensional sorter. On data model level,
(Baumann et al. 1999) Rasdaman integrates array
model into existing overall model, which is based on
a formal algebraic framework and developed with
declarative multidimensional discrete data (MDD).
MDD is the data storage unit in Rasdaman. On storage
level, binary large objects (BLOBs) are the smallest units

of data access (Reiner et al. 2002), and size stored in
Rasdaman is from 32KB to 640 KB. MDD object is
divided into arbitrary tiles or subarrays and combined
with a spatial index to access the tile object used by
a query (Baumann et al. 1998).

Two years later, SciDB was first debuted in 2009 by
Cudré-Mauroux et al. It provides a native array data
structure on storage level and supports for clustering
(Brown 2010). Different from Rasdaman (which store
chunking information in the relational model), the meta-
data, location information of chunks are also stored
within the logical array. The size of a chunk could be
an order of 64 MB, which is much larger than Rasdaman
and MonetDB. Since the chunks are potentially over-
lapped, this characteristic increases the total data
volume stored in the database (Brown 2010). SciDB
also provided a new way of dealing will ‘not valid’ cells,
which no space is allocated in the array data chunk for
such cells (Stonebraker et al. 2013a). At the same time,
SciDB optimizes CPU performance by performing vector
processing, which was from the contribution of
MonetDB. The version 1 of SciDB was released in 2010,
same year, a science benchmark paper (SS-DB) was pub-
lished which included a comparison between SciDB and
MySQL (Cudre-Mauroux et al. 2010), SciDB presented
a high-performance potential. In 2012, Planthaber,
Stonebraker, and Frew (2012) provided an integrated
system of using SciDB to analyse MODIS level 1B data.
They pre-processed MODIS data from HDF format to
CSV, then CSV to SciDB DLF files as a system. The SciDB
engine showed a promising performance and being the
most powerful competitor of Rasdaman. Three years
after SciDB firstly announced, a SQL-based query lan-
guage called SciQL was introduced in the relational
model for scientific applications with both tables and
arrays as first-class citizens (Kersten et al. 2011; Zhang
et al. 2011). In nature, it is an array extension to MonetDB
and makes MonetDB effectively function as an array
database. However, it still involves data model mapping
and is not a fully operational solution.

In 2013, Rasdaman added the in-situ support for tiff
files and NetCDF files (Baumann, Dumitru, and Merticariu
2013). Same year, Dr. Stonebraker et al. (2013b) pointed
out the SciDB research directions are now in the areas of
elasticity, query processing, and visualization, also pre-
sented an example of using SciDB for MODIS processing
pipeline. Additional researches have been done in the
recent years to customize SciDB. For example, Soroush
and Balazinska (2013) developed TimeArr as a new sto-
ragemanager for SciDB, for which speed up the process of
creating or selecting a specific version of arrays, allow
researches explore how time changes affect the cell
values in a specific array section.
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To sum up, without the support of standard databases,
scientists tend to employ customized programs or file-
based implementations serving and analysing array data
(Baumann, Dumitru, andMerticariu 2013). Array DBMSs like
Rasdaman (Baumann 1998), SciDB (Cudré-Mauroux et al.
2009), and SciQL (Kersten et al. 2011) fill this demand by
extending the supported data structure in the database
with unlimited-size multidimensional arrays. However,
mapping array data model to the relational model is
a performance sacrifice, limited the data access ability.
Also, although data tiling and chunking are good for clus-
tering and mapping to the non-array data structure, it
causes the problem of data volume increase and decreases
the I/O performance on secondary storage by using ran-
dom access instead of sequential access.

3. Methodology

Arraydatabases have shownpotentials to be valid solutions
for storing and manipulating multidimensional array data.
However, current solutions fail to provide good support for
multidimensional climate gridded data and are facing
issues related to overall performance. In this section,
a new data management solution is presented as the foun-
dation to build an array database. In general, a valid data
management solution for data storage and retrieval
includes 1) a data storage structure and 2) a data access
and update method. Specifically, the solution should have
the essential functions of data manipulating: create, read,
update, and delete (CRUD). To feed the needs, a unified
data storage structure is adopted for persistent storage of
data on secondary-storage, and an n-dimensional hash
function is proposed as the main algorithm for data
manipulation.

3.1 A unified data storage structure

For array data structure on entity-level, the array data
structure provides O 1ð Þ complexity for single data retrieval;
this is the fastest way computers can achieve when retriev-
ing something. Traditional ways involve tiling and chunk-
ing big arrays (Baumann et al. 1999; Boncz, Zukowski, and
Nes 2005; Cudré-Mauroux et al. 2009). Typically, tiling and
sub-setting are necessary for array database, like in
Rasdaman, the size of its smallest element is from 32KB to
640KB, as the order of default page file size (4KB). However,
arrays are not suitable for fragmenting because it will
increase data access and search complexity. Since disks
are designed to do the sequential reading, too small and
too much tilling is not good for I/O performance. In 2002,
Reiner developed a Rþ tree for MDD tile node searching
(Reiner et al. 2002), however, since the storage rectangles
are duplicated, Rþ tree increases the data volume and

makes construction and maintenance more expansive. In
computational complexity concern, data retrieve complex-
ity will be O logMnð Þ þ O 1ð Þ. Ideally, an multidimensional
array will provide O 1ð Þ complexity when retrieving data
from it. However, because of tiling and sub-setting, the
complexity for search increases considerably if the tiling
unit is small and the whole dataset is large. Meanwhile,
when a multidimensional array is stored in a secondary
storage device, data files are often not sequentially stored
on the device and the cost to access different byte address
is different. Although the computational complexity is the
same for each cell in an array, the cost of finding the index
and let the disk head (in HDD) to retrieve is different. Even
for SSDs, which does not have a physical head inside,
random access and sequential access varies largely in
speed. Since the ability to do random read/write and
sequential read/write is different, storing data bytes closer
to each other will have better performance for data read
when they are retrieved together. Therefore, instead of
chunking and tiling, putting a multidimensional array in
a holonomic array form should have a performance gain
for sequential data retrieval.

Figure 1 illustrates the difference in storage structure
between a chunked storage and a unified storage. The
chunked storage requires additional indexing for data
storage and retrieval; however, a unified storage has the
native array index as its storage index. Another benefit of
using a unified storage is the possibility of saving storage
space. Specifically, if a multidimensional arrayZ has N
dimensions, and the size for the ithdimension is Si. Then
when it stores in a unified form, it takes the BL space in
terms of bytes as expressed in the following:

BL ¼ Bd �
YN
i¼1

Si; for Bd ¼ data type size (1)

It is the minimum space an array will cost without any
compression. For example, if a 5-D array (32-bit float) with
dimensions 10� 5� 6� 4� 7 will cost about 33KB.
The HDF and NetCDF file formats use similar structures
to hold multidimensional array along with other informa-
tion integrated. In practical use, it requires additional
programming skills to access the data set, and a full data
set load to memory space. Although a specific cell loca-
tion could be calculated through its dimension sizes, there
is no indexing function to map from the original multi-
dimensional array to its unified form for subsetting.

3.2 An N-dimensional hash function for the unified
storage structure

The unified storage structure provides a one-dimensional
native index for each cell in it. Querying an n-dimensional
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array needs a hash function to map the n-dimensional
index to the one-dimensional native index. In this section,
we propose an n-dimensional Hash Function Algorithm to
fill the demands for fast data retrieval based on the unified
array data storage structure.

Definition:

(1) Z is a multidimensional array with N dimensions.

(2) The dimensions form an ordered set as
D ¼ A1;A2;A3; . . . ;Anð Þ.

(3) The data storing order follows the same order asD.
The size of each axis forms another ordered set as
S ¼ S1; S2; S3; . . . ; Snð Þ.

(4) Query a subset of Z is expressed as

‘Find-
ðA1 Min1;Max1f g;A2 Min2;Max2f g;A2 Min2;Max2f g; . . . ;

An Minn;Maxnf g)’

Figure 1. Chunked storage and unified storage (a) chunked storage with multilayer array indexing, (b) unified storage with no extra
indexes.

Name: Computation of 1-D storage index from n-D query index

Input:
ArrayAz ¼ S1; S2; S3; . . . ; Sn½ �
Array AMinMax ¼ Min1;Max1;Min2;Max2;Min3;Max3; . . . ;Minn;Maxn½ �;

for h 2 Z : h 2 1; n½ �; Sh � Maxh � Minh � 1
Array AT ¼ s1; s2; s3; . . . ; sn½ �; forh 2 Z : h 2 1; n½ �; sh ¼ Maxh �Minh þ 1ð Þ
Output:

ArrayAI ¼ i1; i2; i3; . . . ; im½ �; form ¼ Pn
h¼1

ðshÞ
Procedure:
(1) Compute the first element of AI: i1

i1 ¼
Pn
h¼1

ðMinh �
Qn

k¼hþ1
ðSkÞÞ; forSnþ1 ¼ 1

ANNALS OF GIS 5



(2) Compute the last element of AI: im

im ¼ Pn
h¼1

ðMaxh �
Qn

k¼hþ1
ðSkÞÞ; forSnþ1 ¼ 1

(3) If (i1 ¼ im) then {

Return AI ¼ i1½ �}
(4) Else: index Dindex ¼ i1
(5) Compute array AStepsize ¼ g1; g2; g3; . . . ; g n�1ð Þ

h i
, for p 2 Z : p 2 1; n� 1ð Þ½ �

g n�1ð Þ ¼ ðS n�1ð Þ � s n�1ð ÞÞ þ 1

g pð Þ ¼ g pþ1ð Þ þ ðS pð Þ � s pð ÞÞ �
Pn

i¼ pþ1ð ÞðSiÞ
(6) For (R1 ¼ 1 to R1 ¼ s1) do {

For (R2 ¼ 1 to R2 ¼ s2) do {

For (R3 ¼ 1 to R3 ¼ s3) do {
. . .

For (Rn ¼ 1 to Rn ¼ sn) do {
Appending Dindex as the last element of AI

If (Rn�sn) then {Dindex ¼ Dindex þ 1}
}

. . .
If (R3�s3) then {Dindex ¼ Dindex þ g3}

}
If (R2�s2) then {Dindex ¼ Dindex þ g2}

}
If (R1�s1) then {Dindex ¼ Dindex þ g1}

}
(7) Return AI

Figure 2. Chunked storage and unified storage indexing, (a) current index, (b) proposed index.
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As a result, if the total number of data amount for
retrieve is G, the n-dimensional hash function will hold
an O Gð Þ complexity. Figure 2 shows the difference
between the idea of traditional indexing method and
the idea of the proposed indexing method. In the tradi-
tional indexing method, executing a data retrieve query
forces the index to locate the initial pointers to each
chunk and return with the integrated output. In the
proposed indexing method, the indexing system is
only used to calculate the first and last elements and
a jumping step set AStepsize

� �
and data are retrieved

sequentially with specific jumping steps. Typically, algo-
rithms are designed independently from hardware (H/
W), which may lead to a diminishing return of actual
performance. The intention to design this algorithm is to
consider the H/W limit while performing data retrieve
action. Specifically, by implementing a sequential-like
data retrieval action, the n-dimensional hash function
algorithm will utilize the sequential read ability in disks
when it is possible. It is similar to the motivation of
building MonetDB to break the memory wall (Boncz,
Kersten, and Manegold 2008).

4. Implementation and experiments

4.1. System design

LotDB is a prototype array database library developed
with C++ and the memory-mapping technology; it is an
implementation of the n-dimensional hash function and
unified data storage design. It follows a light-weight,
standalone, and single-use design. LotDB acts as both
a client-based database manager and a database library
for applications on top, like Google’s LevelDB.

4.1.1. Memory-mapping technology
In LotDB, data are stored in the secondary storage system,
and the access to it is done by utilizing memory-mapping
technology and through page files. This technology
is widely used in database systems like LMDB and
MongoDB. Specifically, instead of loading the whole file
into memory, the file handler maps the file to virtual
memory as a big array and assign a virtual memory address
to each page file without loading any actual data into the
memory other than file’smetadata. When a data access call
is made for a page file, it will cause a page fault and enable
read/write of the secondary storage. In this way, bytes are
copied to actual memory addresses directly, no need to go
through disk caches as the standard open/write will do. In
addition, by utilizing memory-mapping of arrays, LotDB
could exceed the memory cap for accessing large data
files and makes it possible for LotDB accessing big arrays
without tiling. Meanwhile, when integrating with the
n-dimensional hash function, the array indexes could be
virtually calculated with low costs and could increase data
retrieve speed exponentially when compared with tradi-
tional database solutions.

4.1.2. LotDB system architecture
The general architecture of LotDB is shown in Figure 3. The
system core is the LotDB engine, which consists of the
n-dimensional hash function algorithm and memory-
mapping module. Data are stored in files and separated
from their metadata files; data retrieve queries are called
through built-in functions, and results are stored in mem-
ory. Functions are designed to perform different calcula-
tions and services, including upload multidimensional
arrays directly from their original formats like HDF or
NetCDF, etc. Meanwhile, the query communications are

Figure 3. Architecture of LotDB.

ANNALS OF GIS 7



done through a query language parser and a client. For
spatiotemporal grid-based climate datasets, they are often
produced andpackagedwithout the demandof over-write.
The empty cells in a grid-based climate data product do not
require adjustments when storing, such cells or usually
referred as noise will only be eliminated when the analysis
is performed and will stay with the original data. LotDB is
designed to meet this characteristic of climate datasets, it
will be fast to store static array data which does not change
once captured, and the drawback for this is that data
updating will be very expensive if it involves changes in
array shape or size and the empty cells cost same storage
spaces as the non-empty cells. Although keeping the
empty cells does waste storage space and not ideal for
sparse data, it accelerates the data retrieval by simplifying
the data storage architecture on disks.

4.2. Experiment design and performance
evaluation

4.2.1. Experiment setup and design
The MERRA-2 dataset is collected and selected as the
experiment data, which is produced and provided by

Global Modelling and Assimilation Office of NASA
Goddard Space Flight Centre. MERRA-2 dataset is
stored in NetCDF4 format and contains about 49 variables
(e.g. Surface Wind Speed, Precipitation, Surface Air
Temperature, etc.). PRECTOTCORR is chosen as the variable
to use in this experiment, which is the bias-corrected pre-
cipitation output from an atmospheric model. The spatio-
temporal resolution of this variable is 0.625 degree by 0.5
degree with hourly reads for each day of the year. The year
selected for this experiment is 2017, and the dataset is a 4D
array with dimensions 365� 24� 361� 576, and its
datatype is 32-bit float. This one-year dataset contains
around 1.8 Billion grid points. As an example, Figure 4
shows the plot view and the array view of this dataset at
one time step in Chesapeake Bay area.

To compare the performance of LotDB with other
databases, three popular databases are chosen; specifi-
cally, they are PostgreSQL 9.3 (Relational Database),
MongoDB 4.0.4 (NoSQL Database), and SciDB 18.1 (Array
Database). PostgreSQL is an open source object-relational
database management system, it has been launched for
30 years and maintained a very stable performance in
different domains. MongoDB is a document-oriented

Figure 4. MERRA-2 in Panoply: (a) gridded dataset in plot view, (b) gridded dataset in array view.
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NoSQL database system, which follows a schema-free
design and is one of the most popular databases for
modern applications. SciDB, as mentioned in the previous
section, is a high-performance array database that
designed specifically for storing and querying scientific
datasets. All these databases are installed as standalone
modes on individual servers with the same hardware
configuration: Intel Xeon CPU X5660 @ 2.8 Ghz×24 with
24GB RAM size and 7200 rpm HDD, installed with CentOS
6.6 or Ubuntu 14.04. Data were uploaded to each data-
base, and pre-processing work was done for databases
that do not support NetCDF format. The databases are
evaluated in the following aspects: (1) data uploading and
pre-processing time, (2) data storage consumption, and
(3) spatiotemporal query run-time. Different spatiotem-
poral queries are designed to evaluate the performance of
selected databases (Table 1) for the year 2017 with raw
data size be 3.45 GB. Different raw data sizes were chosen
to evaluate the data storage consumption in different
databases in additional to 3.45 GB, specifically, they are
10 MB, 100 MB, 1 GB, and 10 GB. The number of grid
points is the estimated number of array cells to be
retrieved for the corresponding query. The query run-
time refers to the elapsed real time or wall-clock time in
this experiment.

4.2.2. LotDB system architecture
PostgreSQL and MongoDB do not have native support for
NetCDF format, and SciDB does not have a stable and fully
functional plugin for NetCDF data import. Therefore, data
were converted into the CSV format and then uploaded to
each database. Meanwhile, LotDB is developed with data
import functions to upload multidimensional data directly
from the NetCDF/HDF format. In order to accelerate the
pre-processing process, SSDs are utilized to store the raw
datasets and intermediate results. Then, the pre-processed

results were uploaded to servers. Table 2 lists the proces-
sing time and intermediate data size in CSV format,
from 120 MB to 168 GB as the raw data increases from 10
MB to 10 GB.

After the pre-processing, PostgreSQL, SciDB, and
MongoDB all require additional time for data uploading.
The detailed time variation is shown in Figure 5. The
vertical axis records the data uploading time to each
database from CSV files, and the horizontal axis repre-
sents different uploading cases for different raw data
size. The data uploading time in this figure is indepen-
dent from the pre-processing time. As the figure shows,
MongoDB took the longest time for data uploading in
almost all the cases. Meanwhile, LotDB used the least
time amount for data uploading because of its native
support for NetCDF data files and unified data storage
design. As a representative of relational database in this
experiment, PostgreSQL shows a stable increase in
uploading time as raw data size increases, it has an
advantage when dealing with small amount of array
datasets compare to MongoDB and SciDB. SciDB is
increasing in its data uploading time with a decrease
speed change, which implies a potential advantage on
handling larger datasets. MongoDB has the highest rate
of time complexity while LotDB has an almost linear rate
for data uploading. As designed in LotDB data import
function, data are dumped directly from the raw dataset
if it was stored linearly in multidimensional array data
formats like NetCDF. Therefore, it is not surprised that
LotDB has significant advantages in multidimensional
data uploading.

The corresponding data storage volume in different
containers for different cases is also recorded and dis-
played in Figure 6. The graph compares the difference in
data expansion from raw data format to data storage
volume in different databases. It is observed that although

Table 1. Spatiotemporal queries.
Index Query Content Number of Grid Points Retrieved

Q1 What’s the precipitation in D.C. at 9:30 a.m. on August 1st, 2017? 1
Q2 What’s the precipitation in D.C. from 9:30 a.m. to 21:30 p.m. for each day in June 2017? 403
Q3 What’s the precipitation in D.C. from 9:30 a.m. to 21:30 p.m. for each day in 2017? 4,745
Q4 What’s the precipitation in the Chesapeake Bay at 9:30 a.m. on August 1st, 2017? 72
Q5 What’s the precipitation in the Chesapeake Bay from 9:30 a.m. to 21:30 p.m. for each day in June? 29,016
Q6 What’s the precipitation in the Chesapeake Bay from 9:30 a.m. to 21:30 p.m. for each day in 2017? 341,640
Q7 What’s the precipitation in the U.S. at 9:30 a.m. on August 1st, 2017? 4,753
Q8 What’s the precipitation in the U.S. from 9:30 a.m. to 21:30 p.m. for each day in June 2017? 1,915,459
Q9 What’s the precipitation in the U.S. from 9:30 a.m. to 21:30 p.m. for each day in 2017? 22,552,985

Table 2. Pre-processing data (from NetCDF to CSV).
Raw Data (NetCDF format) 10 MB 100 MB 1 GB 3.45 GB 10 GB

Intermediate Data (CSV format) 120 MB 1.4 GB 16.3 GB 52 GB 168 GB
Pre-processing Time (hours) 0.01 0.13 1.4 4 13.4
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MongoDB took the longest time to upload data, it didn’t
use the most storage space; instead, PostgreSQL con-
sumed the largest storage space in all cases, and data

volume increased about 20 to 30 times from the raw data
size. SciDB used much less space and has a data expan-
sion rate around 5. LotDB performed the best in all cases

Figure 5. Data uploading time for PostgreSQL, MongoDB, SciDB, and LotDB.

Figure 6. Data volume in different containers.
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and has a 2 times data expansion rate; this meets the
design of the unified storage structure and shows signifi-
cant advantages compare to other tested databases. As
data are stored in a unified storage structure in LotDB, no
extra indexes or data chunks are needed. PostgreSQL and
MongoDB are using non-array data model to store arrays,
extra storage for indexes are expected. SciDB uses an
over-lapped chunking design, which costs additional sto-
rage space for the redundant part.

Consider the performance for different database on
spatiotemporal queries, MERRA-2 data set for the year
2017 was chosen. Table 3 lists the detailed data pre-
processing and uploading time for this specific case.
Among these data containers, MongoDB took the long-
est time, and PostgreSQL required the largest space for
data storage. By implementing the array as the funda-
mental data structure, SciDB and LotDB acquired much
less storage. LotDB holds the top place both in data
uploading time, and data storage size compare with
the other three.

Figure 7 illustrates the spatiotemporal query run-time
across four containers for nine queries. In terms of perfor-
mance, LotDB used the shortest time in all the queries even
compared with SciDB. The queries were designed to
increase in its complexity both spatially and temporally;
the general run-time patterns of PostgreSQL and
MongoDB are similar to each other. They both tend to be

stable in a certain range, the cost to do a simple query as
Q1 is not much different from a complex query as Q9,
although the number of data points retrieved varies largely.
It implies that there exist some initial costs for each
spatiotemporal query when executed in both databases.
MongoDB is a document-based database, and PostgreSQL
is a relational database. Both of them are not expected to
have better performance than SciDB because their data
models are mismatching with the array data model,
which also agrees with the results from our previous stu-
dies on different data containers’ abilities for handling big
multidimensional array dataset (Hu et al. 2018). As an
insight for MongoDB, it tends to memory-map the whole
collection into the physical memory of the machine during
the query. When the total size of the dataset is enormously
larger than the physical memory, a large number of mem-
ory page faults are observed and thus delayed query
speed. As an array database, SciDB has much better per-
formance outputs than PostgreSQL and MongoDB and
proved to be one of the best databases on the market
when handling multidimensional arrays. For LotDB, it has
a significant time advantage among all selected databases.
The reason behind the outstanding performance is due to
the following: 1) LotDB implemented a native array data
structure on the storage level, 2) memory-mapping tech-
nology is utilized for data retrieval on byte level, 3) query
process is accelerated by the N-Dimensional hash function.

5. Conclusion and future works

Although array is one of the oldest data structures, the
study of storing and retrieving large multidimensional
array datasets are limited. As earth observations and cli-
mate model simulations are producing larger and larger
outputs in forms of multidimensional arrays due to
increases in model resolution and remote sensing tech-
nologies, it is challenging to provide solutions to handle
big multidimensional datasets. The primary goal of this

Table 3. Data pre-processing & uploading time and data size in
different containers.

Container
Preprocessing Time

(hours)
Uploading Time

(hours)
Data Size
(GB)

Raw Data (NetCDF
format)

N/A N/A 3.45

PostgreSQL 9.3
(SQL)

4 1.97 89

MongoDB 4.0.4
(NoSQL)

4 7.3 55

SciDB 18.1 (Array
Database)

4 3.3 12.06

LotDB 0 0.03 6.78

Figure 7. Spatiotemporal query run-time of PostgreSQL, MongoDB, SciDB and LotDB.
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research was to design and implement a solution for
efficient gridded data storage and faster data retrieval.
We reviewed past attempts for storing multidimensional
arrays in both relational databases and array databases,
although array databases are more native and advanced
solutions than relational databases, current solutions still
have their own limitations regarding query performance
and data volume expansion problem. Therefore, an
n-dimensional hash function algorithm was proposed to
perform a fast data retrieval action on a unified data
storage structure, and a prototype database library
(LotDB) was developed as an implementation, which inte-
grated memory-mapping technology and this algorithm.
PostgreSQL, MongoDB, and SciDB were selected to com-
pare the performance with LotDB on MERRA-2 data sto-
rage and retrieval. The preliminary experimental results
have shown promising potentials of LotDB for efficient
multidimensional gridded data storage, and abilities for
fast data retrieval. The run-time results are validated by
using multiple timers and repeating the same experi-
ments several times. In addition, to avoid the effect of
using in-memory cache, physical memory is cleaned each
time before the query execution and cold-run time is
recorded instead of hot-run. Therefore, the results are
credible for general analysis. However, the standalone
mode for NoSQL databases are far less potent than the
clustered mode, MongoDB and SciDB would have better
results if they were deployed in a cluster.

The work presented in this paper shows a potential
for seeking fast gridded data retrieve and efficient sto-
rage solutions using existing technologies; however, it is
challenging to provide up-to-date solutions as the data
size is also growing in an increasing speed. There are
many directions for related future works, include but not
limited to: (1) design a strategy for big data store and
retrieve, (2) design and develop LotDB into a complete
database system, (3) extend current storage structure
and algorithm to a distributed system. Current version
of LotDB acts as a fast implementation of the
N-Dimensional hash function algorithm, further imple-
mentations could be developed to enhance the data
retrieve performance in large multidimensional arrays
in different scenarios.
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