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A B S T R A C T   

Finding geospatial data has been a big challenge regarding the data size and heterogeneity across various do
mains. Previous work has explored using machine learning to improve geospatial data search ranking, but it 
usually relies on training data labelled by subject matter experts, which makes it laborious and costly to apply to 
scenarios in which data relevancy to a query can change over time. When a user interacts with a search engine, 
plenteous information is recorded in the log file, which is essentially free, sustainable and up-to-the-minute. In 
this research, we propose a deep learning-based search ranking framework that can expeditiously update the 
ranking model through capturing real-time user clickstream data. The contributions of the proposed framework 
consist of 1) a log parser that can ingest and parse Web logs that record users’ behavior in a real-time manner; 2) 
a set of hypotheses of modelling the relative relevance of data; and 3) a deep learning based ranking model which 
can be updated dynamically with the increment of user behavior data. Quantitative comparison with a few other 
machine learning algorithms suggests substantial improvement.   

1. Introduction 

Discovering geospatial data has been a big challenge for the data size 
and heterogeneity across various domains (Michael et al., 2018; Yang 
et al., 2017b). Because of the large amount of data, it is inefficient for 
users to discover desired information or documents by looking up the 
catalogue. As a result, creating an efficient, effective, and accurate 
geospatial search engine that retrieves related information from the Web 
has become more important than ever (Jiang et al., 2016b; Yang et al., 
2017a). 

In the past few years, many data portals have been built to allow 
users to better search, discover, visualize, refine, and access geospatial 
data. For example, Earthdata Search is one of such efforts that NASA 
developed to ease the technical burden on data users that makes it 
simple to interact with NASA Earth observation data (Reese et al., 2018). 
However, to truly free scientists from data discovery to spend more 

effort on innovation endeavors, more research remains to be done. One 
major problem with geospatial data search engines is the single 
attribute-based sorting (e.g. spatial resolution, popularity). This can be 
helpful sometimes, but it also restricts user’s attention to one single data 
dimension. In reality, end users can have multiple and dynamic search 
preferences and trade-off needs to be made in order to have a balance of 
different data characteristics (Jiang et al., 2017a). 

The primary goal is to develop an online deep learning framework to 
optimize the geospatial data discovery using user behavior data. The 
contributions of this framework consist of 1) a log parser that can ingest 
and parse real-time Web logs; 2) a set of hypotheses of modelling the 
relative relevance of data; and 3) a deep learning based ranking model 
which can be updated dynamically with the increment of user behavior 
data. We hope this research can strengthen ties between Earth obser
vations and user communities by addressing the ranking challenge, an 
encumbrance in data discovery of a geospatial data portal. 
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Oceanography data archived in NASA Physical Oceanography Distrib
uted Active Archive Center (PO.DAAC) is selected as a proof of concept. 

2. Literature review 

Relevance ranking has been an active research area in fields 
including information retrieval, text mining, collaborative filtering (Yu 
et al., 2015; Severyn and Moschitti, 2015). Popular machine learning 
methods have been widely adopted to solve ranking problem named 
“learning-to-rank,” a popular approach to solve information retrieval 
tasks. Learning to rank uses the training data, which consist of sets of 
query-document pairs along with relevance labels – ranging from very 
relevant to irrelevant - to learn a ranking model (Zong and Huang, 
2014). In geospatial related domains, Martins and Calado (2010) 
applied a machine learning based ranking model algorithm to rank 
geospatial related newspaper documents. Hu et al. (2015) previously 
quantified the relevance of geospatial resources with a regression model. 
Shaw et al. (2013) introduced a spatial searching algorithm in which the 
machine learning method is leveraged to deduce users’ geographic lo
cations. As the most closely related work, Jiang et al. (2017a) proposed a 
machine learning based search ranking framework based on RankSVM, 
a Support Vector Machine (SVM) based ranking algorithm, for geo
spatial data discovery. 

One shortcoming of traditional machine learning based ranking al
gorithms is that they must be trained in batch processing. In the process, 
a machine learning model is trained on labelled data and periodically 
updated to predict relevance scores of unseen samples, which can be 
utilized by the ranking algorithm (Moon et al., 2010; Jiang et al., 2018; 
Burges et al., 2005). However, there are at least three drawbacks of these 
traditional machine learning algorithms such as SVM. First, the time and 
computation resources cost on training a model can increase over time. 
Second, it assumes the data relevance to a certain query is almost static 
over time. Third, machine learning based ranking algorithms typically 
requires training data originated from relevance judgments provided by 
subject matter experts, which makes them laborious and costly to apply. 
Thus, automatic training data preparation is critical for the machine 
learning based ranking, which saves time and enables dynamic data 
relevance to queries. 

As a new paradigm of machine learning, deep learning is capable of 
discovering implicit knowledge in high-dimensional data and has ach
ieved remarkable success in many domains of science, business and 
government (Lecun et al., 2015), including geospatial domains (Li et al. 
2015, 2017; Song et al., 2015). One of the typical algorithms is the deep 
artificial neural network, whose nature allows it to be trained in a 
sequential order and update the weights using incoming data at each 
step. In contrast, traditional batch training techniques train a model by 
fitting the entire training data set at once. Therefore, we propose to 
apply deep learning to overcoming the first limitation of batch training 
of traditional machine-learned ranking algorithms. 

While the learning algorithm is important, how to extract quality 
training data is also crucial. Most users do not click links randomly, but 
do selections based on their domain knowledge. Although user behavior 
data is not perfect and can be noisy, the aggregated click patterns are 
likely to reveal some information about data relevancy. Although a se
ries of works have been proposed to extract training data from user 
clicking behavior automatically (Joachims, 2002; Chapelle and Zhang, 
2009; Sontag et al., 2012), most of them demand an initial ranking list 
displayed to users. The initial ranking results shown to users is chal
lenging to deduce and restore just from Web logs and in practice they are 
generally recorded by a pre-configured third-party front/back end 
software. I propose two hypotheses of generating training data from user 
data to address the second and third limitation of traditional 
machine-learned ranking algorithms. When a user interacts with a 
search engine, a great deal of information about data relevancy is 
recorded in logs. Compared to explicit feedbacks, information extracted 
from user behavior logs is essentially free, sustainable and 

up-to-the-minute (Gashaw and Liu, 2017). 
Web log processing, which serves the purpose of reconstructing each 

single user visit from raw Web logs, is an important prior step of 
improving geospatial data discovery. Most existing research deals with 
this problem by using an empirical and fixed timeout threshold to split 
sessions (Neelima and Rodda, 2016). However, the threshold is highly 
dependent on site structures and user groups. Others have proposed a 
time-based hierarchical clustering method (Jiang et al., 2016a). 
Although there is a faster large-scale in-memory version of this cluster 
method has been proposed (Li et al., 2016; Jin et al., 2017), it mostly can 
only be applied in an off-line manner. We therefore propose a real-time 
log processing workflow that can ingest and process web logs to extract 
training data in a real-time fashion. 

Compared with our previous work (Jiang et al., 2017a), the main 
contribution of this paper contains (1) a deep learning based ranking 
algorithm that can be updated in real time in contrast to RankSVM that 
can only be training in batch mode and won’t be able to handle incre
mental training, which is known to be best by deep learning for 
continuously improving accuracy; (2) an approach to derive training 
data from user behavior; (3) a real-time log processing pipeline to ingest 
and extract user behavior from Web logs. 

3. Methodology 

3.1. Framework architecture 

Our deep learning-based search ranking framework includes four 
major components: semantic similarity calculator, log processer, feature 
extractor, and deep learning based ranking algorithm (Fig. 1). Given a 
user query, it first gets transformed into a semantic query through the 
semantic similarity calculator. For instance, “sea surface salinity” would 
be translated into “sea surface salinity OR sss.” More detail can be found 
at Jiang et al. (2017b). The top K related documents to the semantic 
query would then get returned. Once these top K results are obtained, 
ranking features would be extracted for each of the search results on the 
fly, which will be discussed further in the next section. After that, the top 
K results would be re-ranked by putting into a pre-trained deep learning 
based ranking model. While users interact with the search engine user 
interface, new logs would be generated, and the log processer would 
then extract new training data to update the ranking model in real-time 
or on a regular basis. 

3.2. Ranking features 

Ranking functions in most geospatial search engines only consider 

Fig. 1. Deep learning ranking framework.  
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term frequency. In other words, the more frequent a query term appears 
in the dataset metadata, the more relevant this dataset is. However, after 
discussing with domain experts, a lot of more other factors are taken into 
account when selecting the most appropriate. For instance, release date 
is a very important factor as more recent data tends to be more accurate 
in measurements (e.g. sea surface temperature). We therefore identified 
seventeen features that can be categorized into query-dependent and 
query-independent features. Query-dependent features refer to features 
that are determined by both the data and the query, while query- 
independent are not associated with any specific query. More specif
ically, query-dependent features include text-based similarity, spatial 
similarity and query-dependent popularity. Query-independent features 
include release date, version number, data processing level, spatial and 
temporal resolution, and query-independent popularity (Jiang et al., 
2017a). 

3.3. Online log processing 

An online log processing workflow is designed to split a collection of 
web logs into sessions, each of which represents behaviors during one 
visit of a single user. When a new web log comes in, a new session is 
created if this user does not exist in all the ongoing sessions cached in 
memory (Fig. 2). A unique user is determined by the combination of IP 
address and user agent/browser. Otherwise, if its time interval with the 
last log of the ongoing session is less than a threshold, it joins the 
ongoing session. If the time interval is greater than the threshold, the 
ongoing session ends, and a new session starts. In addition, if an ongoing 
session does not receive any new logs longer than the time threshold, it 
also ends. Whenever a session ends, it goes through the crawler detec
tion process that removes web logs generated by web crawler to the 
largest extent based on user agent, robot.txt, request sending rate (Jiang 
et al., 2016a) in three steps:  

� For well-known search engine crawlers, we can use their identities 
they use in user-agent field by maintaining a list of known crawlers.  

� For other “well-behaved” crawlers which abide by standard robot 
exclusion protocols, begin their site crawl by first attempting to ac
cess the exclusion file “robots.txt” in the server root directory. 
Therefore, we can identify those by checking whether a request to 
the robots.txt file was made.  

� For many crawlers not in the previous categories, we examine other 
two important features: maximum sustained request rate and the 

number of request types by checking if they are beyond an upper 
bound on the maximum number of clicks that a human can make 
within a specific time frame. 

The filtered session results are then connected with referrer/previous 
page information. 

The online log processer is implemented with Spark Streaming APIs 
which support scalable and efficient stream processing of live data such 
as Web logs. Data can be ingested from a single file, HDFS, or advanced 
messaging software like Kafka. Internally, Spark Streaming APIs ingests 
streaming data and split them into small batches. Then, these small 
batches are get transformed to generate the live processing results in 
batches (Fig. 3). Spark streaming handles one batch at a time. Addi
tionally, the individual data items within each batch are processed in 
their order within the batch. By default, if spark doesn’t have enough 
time to get to all the data items in a batch when the next one comes, 
those data items will be dropped. Therefore, it is important to balance 
the batch interval and batch processing time to prevent data loss. 

3.4. Creating training data from user session 

Fig. 4 describes a typical data search scenario. After users put in some 
keywords, they click on a few data in the search results. After that, they 
add a search filter (e.g. processing level) and click on some data again. 
Eventually, they end up downloading some data. One may guess de
pendencies exist between query, filter, viewed data, and downloaded 
data. While this kind of dependency is fascinating for analysis, it can also 
involve lots of noise. For example, the fact that data 2 is clicked after 
data 1 does not suggest that data 2 is more relevant than data 1. Studies 
have also shown that users are less likely to click on an item that is low in 
the ranked list, regardless of how relevant the item is to the search 
query. In an extreme situation, the probability turns to nearly zero for a 
link at rank 10.000 to be clicked even though the link is very relevant to 
the query (Langville et al., 2008). Therefore, a view on a data cannot be 
regarded as an absolute relevance judgment, and it is more plausible to 
make inference about relative relevance judgment. In this context, two 
hypotheses of modelling the relative judgments are proposed. Since 
users’ behaviors can be quite complicated, we simplified the modelling 
process and summarized them into two hypotheses. In the hypotheses, 
symbols “>” and “<” represent the level of relevancy between two data 
to the same query. Data in the left side of “>” is more relevant to a query 
than that of the data in the right side, and vice versa for “<“. 

Fig. 2. Workflow of the online processing.  
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H1. Downloaded data are more relevant than the data viewed before. 
Take Fig. 4 as an example, data 1, data 2, and data 3 < data4. 

H2. In addition to H1, the filtered results are more relevant that the 
data viewed before. The rationale behind this is that the reason users 
click on a specific filter is because they prefer those filtered results. In 
this case, data 1, data 2, and data 3 < data4; data 1 and data 2 < data 3; 
data 1 and data 2 < data 5. No inference of relevancy is made between 
data 3 and data 5, data 1 and data 2. 

For example, Fig. 5 illustrates a session extracted from PO.DAAC 
logs, where the user:  

� viewed sles_l2_jason2_v1 (d1) after searching sea surface topography.  
� added a filter processing level 4 to the query  
� viewed recon_sea_level_ost_l4_v1 (d2)  
� downloaded alt_tide_gauge_l4_ost_sla_us_west_coast (d3). 

According to H1, d3 > d1, d3 > d2. According to H2, d2 > d1 is also 
extracted. Comparing H1 and H2, experiments in the result section found 
that more training data can be extracted by applying H2, but more noise 
will also be introduced to the training data. 

3.5. Deep learning based ranking algorithm 

This ranking algorithm consists of three major steps: 

Step 1: Calculate the difference between each data pair. The goal of 
this step is to convert the ranking problem into a binary classifica
tion. As shown in Fig. 6, the left table shows the original feature 
vectors, and the right one lists the feature difference vector. For each 
pair di �dj, if data i is less relevant than data j, a negative label is 

assigned, reversely, a positive label is applied. Through this trans
formation, we get to work with the difference vectors of all possible 
data pairs rather than directly deal with the initial feature vectors (e. 
g., d1 and d2). 
Step 2: Apply a deep neural network to the transformed dataset and 
calibrate all weights by repeating two key steps, forward propagation 
and back propagation (Fig. 7). Though we used four hidden layers, 
the figure below only uses one hidden layer to illustrate the idea. 

There are usually three different training strategies when fitting a 
neural network (Fig. 8). Stochastic Gradient Descent (SGD) fits neural 
network using one sample at a time. Mini-batch gradient descent fits it 
with one small group of samples at a time, while the regular gradient 
descent trains the network using the entire dataset each time. As we can 
see, although SGD and mini-batch go through many oscillations to 
converge, they can both eventually converge and are a lot faster to 
compute as they require less data. The kind of nature of neural network 
makes it possible to implement a real-time ranking model which can 
update itself as users interact with search engines. A bonus that comes 
with this implementation is that the ranking function can then adapt to 
users’ changing search preferences. 

Step 3: Implement a sorting algorithm (e.g. quicksort) to transform 
the neural network prediction back to an ordered list and present to 
users. 

4. Experiment 

In the experiment, we used all publicly available metadata from PO. 
DAAC. These metadata describe data of over 30 variables ranging from 
sea surface temperature, circulation, salinity to ocean wind and gravity. 

Fig. 3. Implementation of the online log processer.  

Fig. 4. Typical user search scenario.  

Fig. 5. Usage scenario for applying H1 and H2.  
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As for user behavior, five years of Web logs (600 million records, 150G) 
from PO.DAAC data search engine were used. These web logs can be 
seen as structured data that contains fields such request time, IP address, 
page requested, HTTP code, user agent, referrer, and bytes served (Jiang 
et al., 2016a). 

The proposed deep learning ranking algorithm was compared 
against a few other machine learning algorithms by replacing the al
gorithm used in step 2 (e.g. KNN, logistic regression). Data derived from 
Web logs based on H1 and H2 were randomly split into training data and 
validation data. Fifty queries were randomly selected from the web logs 
such as “sea surface temperature”, “ocean waves”, “gravity”, and “saline 
density AND Atlantic Ocean”, etc. Each query has about 80 search results 
on average. Validation dataset was created by a few ocean scientists and 
graduate students who labelled the retrieval results of each query 
manually using a seven-point scale ranging from 0 to 7 to indicate how 
relevant a data is. 

5. Results and evaluation 

5.1. Online learning curve 

Fig. 9 shows how loss and accuracy changes during the mini-batch 
process. Blue line represents the training data derived from H1 and or
ange line is the testing data (i.e. human labelled data). As we iterate 
through the training process, the loss of testing data keeps going down 
and the accuracy keeps going up, while there is oscillation with training 
data. This result demonstrates that the accuracy can indeed converge 
during the mini-batch training process. In this case, the accuracy 
eventually converges at 82.06%. 

5.2. Comparison of H1 and H2 

Table 1 shows the accuracy of H1 and H2 with five different machine 
learning algorithms. These accuracies are the best we could achieve 
using grid search and hyper-parameter tuning. As can be seen, the ac
curacy of H1 is generally better than H2. A possible explanation is that H2 
introduces more noise although it produces more training data. In the 
meanwhile, as the most flexible non-linear learning algorithm, DNN 
outperforms all the other algorithms with H1. Combined with the sup
port for SGD and mini-batch training, it justifies the selection of deep 
neural network for this work. 

5.3. Precision at K 

Precision at K (P(K)) as a well-recognized evaluation metric for 
ranking was also used to measure how the proposed algorithm performs 
over the ranked testing data. P(K) essentially measures the ratio of rel
evancy of the top K data in the rank list. A relevant data is required to 
have a relevance score above “3” is our specific setting. As presented in 
Fig. 10, DNN demonstrates significant improvement over the other 
ranking methods. Although KNN tends to have similar performance after 
position 5, DNN perform better for the first five positions which are the 
most important in the ranking scenario. 

5.4. A concrete example 

Fig. 11 compares the search results of “ocean OR wind” in PO.DAAC 
search engine and MUDROD, the Web interface we have developed. PO. 
DAAC retrieves 382 matches while MUDROD has 471 matches. The first 
two search results on PO.DAAC search engine are about ocean temper
ature and sea surface topography (the orange words suggest dataset’s 

Fig. 6. Concrete example of pairwise transformation.  

Fig. 7. Artificial neural network.  

Fig. 8. Neural network training strategies.  
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topics), while most results on MUDROD are about ocean wind except the 
second one. The example suggests improvements of our system with 
regard to both recall and precision. 

6. Conclusion and discussion 

This article reports our work to tackle a crucial challenge in geo
spatial data discovery, the ranking problem, using deep learning and 
user behavior data, in other words, the wisdom of crowd. When a user 
interacts with a search engine, plenteous information is recorded in the 
log file, which is essentially free, sustainable, and up-to-the-minute. 

Fig. 9. How accuracy changes during the mini-batch training.  

Table 1 
Comparison of two hypotheses’ accuracy.   

H1 H2 

DNN 82.06% 67.61% 
Logistic regression 79.67% 64.27% 
SVM 80.76% 69.34% 
KNN 74.55% 63.26% 
Random forest 80.37% 71.62%  

Fig. 10. Evaluation with precision at K.  
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Experiment has shown that the log processing workflow can success
fully, automatically and efficiently produce training data from real-time 
Web streaming logs. Specifically, the evaluation shows H1 tend to pro
duce more reliable and stable training data than H2. The proposed deep 
learning ranking algorithm shows significant improvements over the 
existing machine learning ranking techniques. 

There are a few directions where this research can be improved. 
First, we are going to add more ranking features and conduct more so
phisticated feature engineering in order to further improve the model 
accuracy. Second, we plan to investigate the search engine bias issue - 
“winner-take all” effect originated from top placement in a search list. 
Some literature pointed out it can be mitigated through personalized 
search (Goldman, 2008). In addition, we are exploring how to do 
ranking with the proposed algorithm in scale, in other words, how do 
conduct efficient ranking with millions of search results (Jin et al., 
2017). The performance of the method for large training datasets should 
be improved to leverage the advantages of big training datasets for 
further improving the results (Yang et al., 2019). To improve the us
ability of the tools developed, we are also planning to produce a dock
er/container image that can be readily spun off by anyone who are 
familiar with the latest cloud computing technologies (Yang et al., 
2017c). 

Computer code availability 

All source code developed is open source and available at GitHub site 
https://github.com/stccenter/MUDROD. 
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