
Computers & Geosciences 142 (2020) 104520

Available online 25 May 2020
0098-3004/© 2020 Published by Elsevier Ltd.

Improving search ranking of geospatial data based on deep learning using
user behavior data

Yun Li a,1, Yongyao Jiang a,1, Chaowei Yang a,*, Manzhu Yu a, Lara Kamal a,
Edward M. Armstrong b, Thomas Huang b, David Moroni b, Lewis J. McGibbney b

a NSF Spatiotemporal Innovation Center and Department of Geography and GeoInformation Science, George Mason University, Fairfax, VA, 22030, USA
b NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA

A R T I C L E I N F O

Keywords:
Deep learning
User behavior
Search engine
Knowledge discovery
Artificial intelligence

A B S T R A C T

Finding geospatial data has been a big challenge regarding the data size and heterogeneity across various do
mains. Previous work has explored using machine learning to improve geospatial data search ranking, but it
usually relies on training data labelled by subject matter experts, which makes it laborious and costly to apply to
scenarios in which data relevancy to a query can change over time. When a user interacts with a search engine,
plenteous information is recorded in the log file, which is essentially free, sustainable and up-to-the-minute. In
this research, we propose a deep learning-based search ranking framework that can expeditiously update the
ranking model through capturing real-time user clickstream data. The contributions of the proposed framework
consist of 1) a log parser that can ingest and parse Web logs that record users’ behavior in a real-time manner; 2)
a set of hypotheses of modelling the relative relevance of data; and 3) a deep learning based ranking model which
can be updated dynamically with the increment of user behavior data. Quantitative comparison with a few other
machine learning algorithms suggests substantial improvement.

1. Introduction

Discovering geospatial data has been a big challenge for the data size
and heterogeneity across various domains (Michael et al., 2018; Yang
et al., 2017b). Because of the large amount of data, it is inefficient for
users to discover desired information or documents by looking up the
catalogue. As a result, creating an efficient, effective, and accurate
geospatial search engine that retrieves related information from the Web
has become more important than ever (Jiang et al., 2016b; Yang et al.,
2017a).

In the past few years, many data portals have been built to allow
users to better search, discover, visualize, refine, and access geospatial
data. For example, Earthdata Search is one of such efforts that NASA
developed to ease the technical burden on data users that makes it
simple to interact with NASA Earth observation data (Reese et al., 2018).
However, to truly free scientists from data discovery to spend more

effort on innovation endeavors, more research remains to be done. One
major problem with geospatial data search engines is the single
attribute-based sorting (e.g. spatial resolution, popularity). This can be
helpful sometimes, but it also restricts user’s attention to one single data
dimension. In reality, end users can have multiple and dynamic search
preferences and trade-off needs to be made in order to have a balance of
different data characteristics (Jiang et al., 2017a).

The primary goal is to develop an online deep learning framework to
optimize the geospatial data discovery using user behavior data. The
contributions of this framework consist of 1) a log parser that can ingest
and parse real-time Web logs; 2) a set of hypotheses of modelling the
relative relevance of data; and 3) a deep learning based ranking model
which can be updated dynamically with the increment of user behavior
data. We hope this research can strengthen ties between Earth obser
vations and user communities by addressing the ranking challenge, an
encumbrance in data discovery of a geospatial data portal.

* Corresponding author.
E-mail addresses: yli38@gmu.edu (Y. Li), yjiang8@gmu.edu (Y. Jiang), cyang3@gmu.edu (C. Yang), myu7@gmu.edu (M. Yu), lkamal3@gmu.edu (L. Kamal),

Edward.M.Armstrong@jpl.nasa.gov (E.M. Armstrong), Thomas.Huang@jpl.nasa.gov (T. Huang), David.F.Moroni@jpl.nasa.gov (D. Moroni), Lewis.J.Mcgibbney@
jpl.nasa.gov (L.J. McGibbney).

1 Yongyao Jiang and Yun Li developed the methodology and solution; Chaowei Yang came up with the original idea and advised on methodologies; Manzhu Yu,
Lara Kamel participated in the development of solutions, Edward M. Armstrong, Thomas Huang, and David Moroni did the validation and system test; Lewis J.
McGibbney clearned the source code.

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

https://doi.org/10.1016/j.cageo.2020.104520
Received 14 October 2019; Received in revised form 6 May 2020; Accepted 13 May 2020

mailto:yli38@gmu.edu
mailto:yjiang8@gmu.edu
mailto:cyang3@gmu.edu
mailto:myu7@gmu.edu
mailto:lkamal3@gmu.edu
mailto:Edward.M.Armstrong@jpl.nasa.gov
mailto:Thomas.Huang@jpl.nasa.gov
mailto:David.F.Moroni@jpl.nasa.gov
mailto:Lewis.J.Mcgibbney@jpl.nasa.gov
mailto:Lewis.J.Mcgibbney@jpl.nasa.gov
www.sciencedirect.com/science/journal/00983004
https://www.elsevier.com/locate/cageo
https://doi.org/10.1016/j.cageo.2020.104520
https://doi.org/10.1016/j.cageo.2020.104520
https://doi.org/10.1016/j.cageo.2020.104520
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2020.104520&domain=pdf

Computers and Geosciences 142 (2020) 104520

2

Oceanography data archived in NASA Physical Oceanography Distrib
uted Active Archive Center (PO.DAAC) is selected as a proof of concept.

2. Literature review

Relevance ranking has been an active research area in fields
including information retrieval, text mining, collaborative filtering (Yu
et al., 2015; Severyn and Moschitti, 2015). Popular machine learning
methods have been widely adopted to solve ranking problem named
“learning-to-rank,” a popular approach to solve information retrieval
tasks. Learning to rank uses the training data, which consist of sets of
query-document pairs along with relevance labels – ranging from very
relevant to irrelevant - to learn a ranking model (Zong and Huang,
2014). In geospatial related domains, Martins and Calado (2010)
applied a machine learning based ranking model algorithm to rank
geospatial related newspaper documents. Hu et al. (2015) previously
quantified the relevance of geospatial resources with a regression model.
Shaw et al. (2013) introduced a spatial searching algorithm in which the
machine learning method is leveraged to deduce users’ geographic lo
cations. As the most closely related work, Jiang et al. (2017a) proposed a
machine learning based search ranking framework based on RankSVM,
a Support Vector Machine (SVM) based ranking algorithm, for geo
spatial data discovery.

One shortcoming of traditional machine learning based ranking al
gorithms is that they must be trained in batch processing. In the process,
a machine learning model is trained on labelled data and periodically
updated to predict relevance scores of unseen samples, which can be
utilized by the ranking algorithm (Moon et al., 2010; Jiang et al., 2018;
Burges et al., 2005). However, there are at least three drawbacks of these
traditional machine learning algorithms such as SVM. First, the time and
computation resources cost on training a model can increase over time.
Second, it assumes the data relevance to a certain query is almost static
over time. Third, machine learning based ranking algorithms typically
requires training data originated from relevance judgments provided by
subject matter experts, which makes them laborious and costly to apply.
Thus, automatic training data preparation is critical for the machine
learning based ranking, which saves time and enables dynamic data
relevance to queries.

As a new paradigm of machine learning, deep learning is capable of
discovering implicit knowledge in high-dimensional data and has ach
ieved remarkable success in many domains of science, business and
government (Lecun et al., 2015), including geospatial domains (Li et al.
2015, 2017; Song et al., 2015). One of the typical algorithms is the deep
artificial neural network, whose nature allows it to be trained in a
sequential order and update the weights using incoming data at each
step. In contrast, traditional batch training techniques train a model by
fitting the entire training data set at once. Therefore, we propose to
apply deep learning to overcoming the first limitation of batch training
of traditional machine-learned ranking algorithms.

While the learning algorithm is important, how to extract quality
training data is also crucial. Most users do not click links randomly, but
do selections based on their domain knowledge. Although user behavior
data is not perfect and can be noisy, the aggregated click patterns are
likely to reveal some information about data relevancy. Although a se
ries of works have been proposed to extract training data from user
clicking behavior automatically (Joachims, 2002; Chapelle and Zhang,
2009; Sontag et al., 2012), most of them demand an initial ranking list
displayed to users. The initial ranking results shown to users is chal
lenging to deduce and restore just from Web logs and in practice they are
generally recorded by a pre-configured third-party front/back end
software. I propose two hypotheses of generating training data from user
data to address the second and third limitation of traditional
machine-learned ranking algorithms. When a user interacts with a
search engine, a great deal of information about data relevancy is
recorded in logs. Compared to explicit feedbacks, information extracted
from user behavior logs is essentially free, sustainable and

up-to-the-minute (Gashaw and Liu, 2017).
Web log processing, which serves the purpose of reconstructing each

single user visit from raw Web logs, is an important prior step of
improving geospatial data discovery. Most existing research deals with
this problem by using an empirical and fixed timeout threshold to split
sessions (Neelima and Rodda, 2016). However, the threshold is highly
dependent on site structures and user groups. Others have proposed a
time-based hierarchical clustering method (Jiang et al., 2016a).
Although there is a faster large-scale in-memory version of this cluster
method has been proposed (Li et al., 2016; Jin et al., 2017), it mostly can
only be applied in an off-line manner. We therefore propose a real-time
log processing workflow that can ingest and process web logs to extract
training data in a real-time fashion.

Compared with our previous work (Jiang et al., 2017a), the main
contribution of this paper contains (1) a deep learning based ranking
algorithm that can be updated in real time in contrast to RankSVM that
can only be training in batch mode and won’t be able to handle incre
mental training, which is known to be best by deep learning for
continuously improving accuracy; (2) an approach to derive training
data from user behavior; (3) a real-time log processing pipeline to ingest
and extract user behavior from Web logs.

3. Methodology

3.1. Framework architecture

Our deep learning-based search ranking framework includes four
major components: semantic similarity calculator, log processer, feature
extractor, and deep learning based ranking algorithm (Fig. 1). Given a
user query, it first gets transformed into a semantic query through the
semantic similarity calculator. For instance, “sea surface salinity” would
be translated into “sea surface salinity OR sss.” More detail can be found
at Jiang et al. (2017b). The top K related documents to the semantic
query would then get returned. Once these top K results are obtained,
ranking features would be extracted for each of the search results on the
fly, which will be discussed further in the next section. After that, the top
K results would be re-ranked by putting into a pre-trained deep learning
based ranking model. While users interact with the search engine user
interface, new logs would be generated, and the log processer would
then extract new training data to update the ranking model in real-time
or on a regular basis.

3.2. Ranking features

Ranking functions in most geospatial search engines only consider

Fig. 1. Deep learning ranking framework.

Y. Li et al.

Computers and Geosciences 142 (2020) 104520

3

term frequency. In other words, the more frequent a query term appears
in the dataset metadata, the more relevant this dataset is. However, after
discussing with domain experts, a lot of more other factors are taken into
account when selecting the most appropriate. For instance, release date
is a very important factor as more recent data tends to be more accurate
in measurements (e.g. sea surface temperature). We therefore identified
seventeen features that can be categorized into query-dependent and
query-independent features. Query-dependent features refer to features
that are determined by both the data and the query, while query-
independent are not associated with any specific query. More specif
ically, query-dependent features include text-based similarity, spatial
similarity and query-dependent popularity. Query-independent features
include release date, version number, data processing level, spatial and
temporal resolution, and query-independent popularity (Jiang et al.,
2017a).

3.3. Online log processing

An online log processing workflow is designed to split a collection of
web logs into sessions, each of which represents behaviors during one
visit of a single user. When a new web log comes in, a new session is
created if this user does not exist in all the ongoing sessions cached in
memory (Fig. 2). A unique user is determined by the combination of IP
address and user agent/browser. Otherwise, if its time interval with the
last log of the ongoing session is less than a threshold, it joins the
ongoing session. If the time interval is greater than the threshold, the
ongoing session ends, and a new session starts. In addition, if an ongoing
session does not receive any new logs longer than the time threshold, it
also ends. Whenever a session ends, it goes through the crawler detec
tion process that removes web logs generated by web crawler to the
largest extent based on user agent, robot.txt, request sending rate (Jiang
et al., 2016a) in three steps:

� For well-known search engine crawlers, we can use their identities
they use in user-agent field by maintaining a list of known crawlers.

� For other “well-behaved” crawlers which abide by standard robot
exclusion protocols, begin their site crawl by first attempting to ac
cess the exclusion file “robots.txt” in the server root directory.
Therefore, we can identify those by checking whether a request to
the robots.txt file was made.

� For many crawlers not in the previous categories, we examine other
two important features: maximum sustained request rate and the

number of request types by checking if they are beyond an upper
bound on the maximum number of clicks that a human can make
within a specific time frame.

The filtered session results are then connected with referrer/previous
page information.

The online log processer is implemented with Spark Streaming APIs
which support scalable and efficient stream processing of live data such
as Web logs. Data can be ingested from a single file, HDFS, or advanced
messaging software like Kafka. Internally, Spark Streaming APIs ingests
streaming data and split them into small batches. Then, these small
batches are get transformed to generate the live processing results in
batches (Fig. 3). Spark streaming handles one batch at a time. Addi
tionally, the individual data items within each batch are processed in
their order within the batch. By default, if spark doesn’t have enough
time to get to all the data items in a batch when the next one comes,
those data items will be dropped. Therefore, it is important to balance
the batch interval and batch processing time to prevent data loss.

3.4. Creating training data from user session

Fig. 4 describes a typical data search scenario. After users put in some
keywords, they click on a few data in the search results. After that, they
add a search filter (e.g. processing level) and click on some data again.
Eventually, they end up downloading some data. One may guess de
pendencies exist between query, filter, viewed data, and downloaded
data. While this kind of dependency is fascinating for analysis, it can also
involve lots of noise. For example, the fact that data 2 is clicked after
data 1 does not suggest that data 2 is more relevant than data 1. Studies
have also shown that users are less likely to click on an item that is low in
the ranked list, regardless of how relevant the item is to the search
query. In an extreme situation, the probability turns to nearly zero for a
link at rank 10.000 to be clicked even though the link is very relevant to
the query (Langville et al., 2008). Therefore, a view on a data cannot be
regarded as an absolute relevance judgment, and it is more plausible to
make inference about relative relevance judgment. In this context, two
hypotheses of modelling the relative judgments are proposed. Since
users’ behaviors can be quite complicated, we simplified the modelling
process and summarized them into two hypotheses. In the hypotheses,
symbols “>” and “<” represent the level of relevancy between two data
to the same query. Data in the left side of “>” is more relevant to a query
than that of the data in the right side, and vice versa for “<“.

Fig. 2. Workflow of the online processing.

Y. Li et al.

Computers and Geosciences 142 (2020) 104520

4

H1. Downloaded data are more relevant than the data viewed before.
Take Fig. 4 as an example, data 1, data 2, and data 3 < data4.

H2. In addition to H1, the filtered results are more relevant that the
data viewed before. The rationale behind this is that the reason users
click on a specific filter is because they prefer those filtered results. In
this case, data 1, data 2, and data 3 < data4; data 1 and data 2 < data 3;
data 1 and data 2 < data 5. No inference of relevancy is made between
data 3 and data 5, data 1 and data 2.

For example, Fig. 5 illustrates a session extracted from PO.DAAC
logs, where the user:

� viewed sles_l2_jason2_v1 (d1) after searching sea surface topography.
� added a filter processing level 4 to the query
� viewed recon_sea_level_ost_l4_v1 (d2)
� downloaded alt_tide_gauge_l4_ost_sla_us_west_coast (d3).

According to H1, d3 > d1, d3 > d2. According to H2, d2 > d1 is also
extracted. Comparing H1 and H2, experiments in the result section found
that more training data can be extracted by applying H2, but more noise
will also be introduced to the training data.

3.5. Deep learning based ranking algorithm

This ranking algorithm consists of three major steps:

Step 1: Calculate the difference between each data pair. The goal of
this step is to convert the ranking problem into a binary classifica
tion. As shown in Fig. 6, the left table shows the original feature
vectors, and the right one lists the feature difference vector. For each
pair di �dj, if data i is less relevant than data j, a negative label is

assigned, reversely, a positive label is applied. Through this trans
formation, we get to work with the difference vectors of all possible
data pairs rather than directly deal with the initial feature vectors (e.
g., d1 and d2).
Step 2: Apply a deep neural network to the transformed dataset and
calibrate all weights by repeating two key steps, forward propagation
and back propagation (Fig. 7). Though we used four hidden layers,
the figure below only uses one hidden layer to illustrate the idea.

There are usually three different training strategies when fitting a
neural network (Fig. 8). Stochastic Gradient Descent (SGD) fits neural
network using one sample at a time. Mini-batch gradient descent fits it
with one small group of samples at a time, while the regular gradient
descent trains the network using the entire dataset each time. As we can
see, although SGD and mini-batch go through many oscillations to
converge, they can both eventually converge and are a lot faster to
compute as they require less data. The kind of nature of neural network
makes it possible to implement a real-time ranking model which can
update itself as users interact with search engines. A bonus that comes
with this implementation is that the ranking function can then adapt to
users’ changing search preferences.

Step 3: Implement a sorting algorithm (e.g. quicksort) to transform
the neural network prediction back to an ordered list and present to
users.

4. Experiment

In the experiment, we used all publicly available metadata from PO.
DAAC. These metadata describe data of over 30 variables ranging from
sea surface temperature, circulation, salinity to ocean wind and gravity.

Fig. 3. Implementation of the online log processer.

Fig. 4. Typical user search scenario.

Fig. 5. Usage scenario for applying H1 and H2.

Y. Li et al.

Computers and Geosciences 142 (2020) 104520

5

As for user behavior, five years of Web logs (600 million records, 150G)
from PO.DAAC data search engine were used. These web logs can be
seen as structured data that contains fields such request time, IP address,
page requested, HTTP code, user agent, referrer, and bytes served (Jiang
et al., 2016a).

The proposed deep learning ranking algorithm was compared
against a few other machine learning algorithms by replacing the al
gorithm used in step 2 (e.g. KNN, logistic regression). Data derived from
Web logs based on H1 and H2 were randomly split into training data and
validation data. Fifty queries were randomly selected from the web logs
such as “sea surface temperature”, “ocean waves”, “gravity”, and “saline
density AND Atlantic Ocean”, etc. Each query has about 80 search results
on average. Validation dataset was created by a few ocean scientists and
graduate students who labelled the retrieval results of each query
manually using a seven-point scale ranging from 0 to 7 to indicate how
relevant a data is.

5. Results and evaluation

5.1. Online learning curve

Fig. 9 shows how loss and accuracy changes during the mini-batch
process. Blue line represents the training data derived from H1 and or
ange line is the testing data (i.e. human labelled data). As we iterate
through the training process, the loss of testing data keeps going down
and the accuracy keeps going up, while there is oscillation with training
data. This result demonstrates that the accuracy can indeed converge
during the mini-batch training process. In this case, the accuracy
eventually converges at 82.06%.

5.2. Comparison of H1 and H2

Table 1 shows the accuracy of H1 and H2 with five different machine
learning algorithms. These accuracies are the best we could achieve
using grid search and hyper-parameter tuning. As can be seen, the ac
curacy of H1 is generally better than H2. A possible explanation is that H2
introduces more noise although it produces more training data. In the
meanwhile, as the most flexible non-linear learning algorithm, DNN
outperforms all the other algorithms with H1. Combined with the sup
port for SGD and mini-batch training, it justifies the selection of deep
neural network for this work.

5.3. Precision at K

Precision at K (P(K)) as a well-recognized evaluation metric for
ranking was also used to measure how the proposed algorithm performs
over the ranked testing data. P(K) essentially measures the ratio of rel
evancy of the top K data in the rank list. A relevant data is required to
have a relevance score above “3” is our specific setting. As presented in
Fig. 10, DNN demonstrates significant improvement over the other
ranking methods. Although KNN tends to have similar performance after
position 5, DNN perform better for the first five positions which are the
most important in the ranking scenario.

5.4. A concrete example

Fig. 11 compares the search results of “ocean OR wind” in PO.DAAC
search engine and MUDROD, the Web interface we have developed. PO.
DAAC retrieves 382 matches while MUDROD has 471 matches. The first
two search results on PO.DAAC search engine are about ocean temper
ature and sea surface topography (the orange words suggest dataset’s

Fig. 6. Concrete example of pairwise transformation.

Fig. 7. Artificial neural network.

Fig. 8. Neural network training strategies.

Y. Li et al.

Computers and Geosciences 142 (2020) 104520

6

topics), while most results on MUDROD are about ocean wind except the
second one. The example suggests improvements of our system with
regard to both recall and precision.

6. Conclusion and discussion

This article reports our work to tackle a crucial challenge in geo
spatial data discovery, the ranking problem, using deep learning and
user behavior data, in other words, the wisdom of crowd. When a user
interacts with a search engine, plenteous information is recorded in the
log file, which is essentially free, sustainable, and up-to-the-minute.

Fig. 9. How accuracy changes during the mini-batch training.

Table 1
Comparison of two hypotheses’ accuracy.

H1 H2

DNN 82.06% 67.61%
Logistic regression 79.67% 64.27%
SVM 80.76% 69.34%
KNN 74.55% 63.26%
Random forest 80.37% 71.62%

Fig. 10. Evaluation with precision at K.

Y. Li et al.

Computers and Geosciences 142 (2020) 104520

7

Experiment has shown that the log processing workflow can success
fully, automatically and efficiently produce training data from real-time
Web streaming logs. Specifically, the evaluation shows H1 tend to pro
duce more reliable and stable training data than H2. The proposed deep
learning ranking algorithm shows significant improvements over the
existing machine learning ranking techniques.

There are a few directions where this research can be improved.
First, we are going to add more ranking features and conduct more so
phisticated feature engineering in order to further improve the model
accuracy. Second, we plan to investigate the search engine bias issue -
“winner-take all” effect originated from top placement in a search list.
Some literature pointed out it can be mitigated through personalized
search (Goldman, 2008). In addition, we are exploring how to do
ranking with the proposed algorithm in scale, in other words, how do
conduct efficient ranking with millions of search results (Jin et al.,
2017). The performance of the method for large training datasets should
be improved to leverage the advantages of big training datasets for
further improving the results (Yang et al., 2019). To improve the us
ability of the tools developed, we are also planning to produce a dock
er/container image that can be readily spun off by anyone who are
familiar with the latest cloud computing technologies (Yang et al.,
2017c).

Computer code availability

All source code developed is open source and available at GitHub site
https://github.com/stccenter/MUDROD.

Acknowledgements

Research reported is supported by NSF (1835507, 1841520) and
NASA (NNX15AM85G).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.

org/10.1016/j.cageo.2020.104520.

References

Burges, C., et al., 2005. Learning to rank using gradient descent. In: Proceedings of the
22nd International Conference on Machine Learning, pp. 89–96.

Chapelle, O., Zhang, Y., 2009. A dynamic bayesian network click model for web search
ranking. In: Proceedings of the 18th International Conference on World Wide Web,
pp. 1–10.

Gashaw, Y., Liu, F., 2017. Performance evaluation of frequent pattern mining algorithms
using web log data for web usage mining. In: Image and Signal Processing,
BioMedical Engineering and Informatics (CISP-BMEI), 2017 10th International
Congress on, pp. 1–5.

Goldman, E., 2008. Search Engine Bias and the Demise of Search Engine Utopianism.
Web Search. Springer, pp. 121–133.

Hu, Y., et al., 2015. Metadata topic harmonization and semantic search for linked-data-
driven geoportals: a case study using ArcGIS online. Trans. GIS 19 (3), 398–416.

Jiang, Y., et al., 2016a. Reconstructing sessions from data discovery and access logs to
build a semantic knowledge base for improving data discovery. ISPRS Int. J. Geo-Inf.
5 (5), 54.

Jiang, Y., et al., 2017a. Towards intelligent geospatial data discovery: a machine learning
framework for search ranking. Int. J. Dig. Earth 1–16.

Jiang, Y., et al., 2018. A smart web-based geospatial data discovery system with
oceanographic data as an example. ISPRS Int. J. Geo-Inf. 7 (2), 62.

Jiang, Y., et al., 2017b. A comprehensive methodology for discovering semantic
relationships among geospatial vocabularies using oceanographic data discovery as
an example. Int. J. Geogr. Inf. Sci. 31 (10), 19.

Jiang, Y., et al., 2016b. Polar CI portal: a cloud-based polar resource discovery engine. In:
Cloud Computing in Ocean and Atmospheric Sciences, pp. 163–185.

Jin, B., et al., 2017. A high performance, spatiotemporal statistical analysis system based
on a Spatiotemporal Cloud Platform. ISPRS Int. J. Geo-Inf. 6 (6), 165.

Joachims, T., 2002. Optimizing search engines using clickthrough data. In: Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 133–142.

Langville, A.N., Meyer, C.D., Fern�andez, P., 2008. Google’s pagerank and beyond: the
science of search engine rankings. Math. Intel. 30 (1), 68–69.

Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.
Li, S., et al., 2015. Using CA-Markov model to model the spatiotemporal change of land

use/cover in Fuxian Lake for decision support. ISPRS Ann. Photogr. Remote Sens.
Spatial Info. Sci. 2 (4), 163.

Li, Y., et al., 2016. Leveraging Cloud Computing to Speedup User Access Log Mining. In:
OCEANS 2016 MTS/IEEE Monterey, pp. 1–6.

Li, Y., et al., 2017. Leveraging LSTM for rapid intensifications prediction of tropical
cyclones. In: ISPRS Annals of Photogrammetry, Remote Sensing & Spatial
Information Sciences, 4.

Fig. 11. Comparison of “ocean OR wind” search results on two search engines.

Y. Li et al.

https://github.com/stccenter/MUDROD
https://doi.org/10.1016/j.cageo.2020.104520
https://doi.org/10.1016/j.cageo.2020.104520
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref1
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref1
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref2
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref2
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref2
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref3
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref3
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref3
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref3
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref4
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref4
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref5
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref5
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref6
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref6
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref6
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref7
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref7
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref8
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref8
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref9
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref9
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref9
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref10
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref10
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref11
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref11
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref12
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref12
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref12
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref13
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref13
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref14
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref15
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref15
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref15
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref16
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref16
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref17
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref17
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref17

Computers and Geosciences 142 (2020) 104520

8

Martins, B., Calado, P., 2010. Learning to rank for geographic information retrieval. In:
Proceedings of the 6th Workshop on Geographic Information Retrieval, p. 21.

Michael, R., Jonathan, B., David, S., 2018. Enabling discovery of ocean science data in
the modern era using geospatial and information science. In: BOOK OF ABSTRACTS.

Moon, T., et al., 2010. Online learning for recency search ranking using real-time user
feedback. In: Proceedings of the 19th ACM International Conference on Information
and Knowledge Management, pp. 1501–1504.

Neelima, G., Rodda, S., 2016. Predicting user behavior through sessions using the web
log mining. In: Advances in Human Machine Interaction (HMI), 2016 International
Conference on, pp. 1–5.

Reese, M., Lynnes, C., Newman, D., 2018. End-to-End Solution for Data Customization
with NASA’s Earthdata Search.

Severyn, A., Moschitti, A., 2015. Learning to rank short text pairs with convolutional
deep neural networks. In: Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 373–382.

Shaw, B., et al., 2013. Learning to rank for spatiotemporal search. In: Proceedings of the
Sixth ACM International Conference on Web Search and Data Mining, pp. 717–726.

Song, J., Wu, J., Jiang, Y., 2015. Extraction and reconstruction of curved surface
buildings by contour clustering using airborne LiDAR data. Optik-Int. J. Light
Electron Opt. 126 (5), 513–521.

Sontag, D., et al., 2012. Probabilistic models for personalizing web search. In:
Proceedings of the Fifth ACM International Conference on Web Search and Data
Mining, pp. 433–442.

Yang, C., et al., 2017a. Utilizing cloud computing to address big geospatial data
challenges. Comput. Environ. Urban Syst. 61, 120–128.

Yang, C.P., et al., 2017. An architecture for mitigating near earth object’s impact to the
earth. In: Aerospace Conference, 2017. IEEE, pp. 1–13.

Yang, C., et al., 2017c. Big Data and cloud computing: innovation opportunities and
challenges. Int. J. Dig. Earth 10 (1), 13–53.

Yang, C., et al., 2019. Big Earth data analytics: a survey. Big Earth Data 3 (2), 83–107.
Yu, J., et al., 2015. Learning to rank using user clicks and visual features for image

retrieval. IEEE Trans. Cybernet. 45 (4), 767–779.
Zong, W., Huang, G.-B., 2014. Learning to rank with extreme learning machine. Neural

Process. Lett. 39 (2), 155–166.

Y. Li et al.

http://refhub.elsevier.com/S0098-3004(19)30960-4/sref18
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref18
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref19
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref19
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref20
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref20
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref20
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref21
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref21
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref21
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref22
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref22
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref23
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref23
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref23
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref24
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref24
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref25
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref25
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref25
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref26
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref26
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref26
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref27
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref27
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref28
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref28
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref29
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref29
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref30
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref31
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref31
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref32
http://refhub.elsevier.com/S0098-3004(19)30960-4/sref32

	Improving search ranking of geospatial data based on deep learning using user behavior data
	1 Introduction
	2 Literature review
	3 Methodology
	3.1 Framework architecture
	3.2 Ranking features
	3.3 Online log processing
	3.4 Creating training data from user session
	3.5 Deep learning based ranking algorithm

	4 Experiment
	5 Results and evaluation
	5.1 Online learning curve
	5.2 Comparison of H1 and H2
	5.3 Precision at K
	5.4 A concrete example

	6 Conclusion and discussion
	Computer code availability
	Acknowledgements
	Appendix A Supplementary data
	References

