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HIGHLIGHTS

GRAPHICAL ABSTRACT

The impacts of COVID-19-related inter-
ventional policies on air pollution
are spatiotemporally analyzed over
California.

The lockdown policy reduced the over-
all emissions of air pollutants in Califor-
nia.

During the lockdown, NO, decreased
near major power plants and increased
over major transportation hubs.

After reopening, state-mean air pollu-
tion metrics returned to normal trends
in California.
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Various recent studies have shown that societal efforts to mitigate (e.g. “lockdown”) the outbreak of the 2019 co-
ronavirus disease (COVID-19) caused non-negligible impacts on the environment, especially air quality. To ex-
amine if interventional policies due to COVID-19 have had a similar impact in the US state of California, this
paper investigates the spatiotemporal patterns and changes in air pollution before, during and after the lockdown
of the state, comparing the air quality measurements in 2020 with historical averages from 2015 to 2019.
Through time series analysis, a sudden drop and uptick of air pollution are found around the dates when shut-
down and reopening were ordered, respectively. The spatial patterns of nitrogen dioxide (NO,) tropospheric ver-
tical column density (TVCD) show a decreasing trend over the locations of major powerplants and an increasing
trend over residential areas near interactions of national highways. Ground-based observations around California
show a 38%, 49%, and 31% drop in the concentration of NO,, carbon monoxide (CO) and particulate matter 2.5
(PMy5) during the lockdown (March 19-May 7) compared to before (January 26-March 18) in 2020.
These are 16%, 25% and 19% sharper than the means of the previous five years in the same periods, respectively.
Our study offers evidence of the environmental impact introduced by COVID-19, and insight into related eco-
nomic influences.
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1. Introduction

The unexpected outbreak of the 2019 coronavirus disease (COVID-
19) has greatly impacted both economies and environments (Liu
etal.,, 20204, 2020b; Yang et al., 2020; Saadat et al., 2020) due to societal
efforts and policies to mitigate or “lockdown” the disease by local and
national governments—including the shutting-down of non-essential
industries and the restriction of public transportation. Currently, the
spread of coronavirus has been initially controlled in many regions of
the world and some countries have chosen to reopen. Thus, evaluations
of the impacts of COVID-19 on the environment and economy as well as
study into infection and death rates are increasingly urgent and neces-
sary to inform decision makers at all levels.

Air pollutants such as nitrogen dioxide (NO;), carbon monoxide (CO),
ozone (03) and particulate matter (PM, 5 and PM;) are important indica-
tors of economic and human activities. For example, NO, is primarily emit-
ted from fossil fuel consumption (Russell et al, 2012); and vehicle
emissions are one of the primary sources of PM, 5 (Manousakas et al.,
2017). Analysis of the spatiotemporal patterns, trends and changes of air
pollution can reflect the impact of COVID-19 mitigation efforts on industrial
production, transportation, and changes to a population's daily activities.
These metrics are essential for decision-makers to assess economic losses
to inform policy implementation, and accordingly make plans for business
reopening and industry resumption (Hilboll et al., 2017; Sinha, 2016). The
lockdown situation offers an unprecedented opportunity to study and mon-
itor the emissions of air pollutants from specific industrial power plants and
transportation facilities. Furthermore, long-term exposure to higher con-
centration of PM, 5 is proven to be associated with higher COVID-19 mortal-
ity rates (Wu et al., 2020); and PM, 5, PM;o, NO, and O3 were observed to
have significantly positive associations with newly COVID-19 confirmed
cases (Zhu et al., 2020). Therefore, understanding air pollution trends is
also critical to implement a pragmatic economic reopening.

Since the start of the worldwide COVID-19 pandemic, air pollution
has been observed to decline in some regions of the world through com-
parison of conditions before and during the COVID-19 crisis (Liu et al.,
2020a, 2020b; Zhang et al., 2020; Dutheil et al., 2020; Wang et al.,
2020). still, whether reductions are due to the pandemic cannot be con-
firmed without a comprehensive comparison to long-term historical
data in the same annual period; seasonal cycles and climate patterns
are also potential causes of air pollution changes (Wang et al., 2006).
Furthermore, local policies may vary significantly across different states
or provinces even within the same country especially for nations like
the US (Raifman et al.,, 2020). State governments have therefore imple-
mented their own COVID-19 mitigation policies and administrative
measures regarding to the shutdown and reopening. Existing studies
of air pollution patterns for some jurisdictional regions or administra-
tive scales may have limited referential significance for other areas.
Most prior studies have focused on the areas where COVID-19 emerged
first, such as China (Bao and Zhang, 2020; Wang et al., 2020) and across
Europe (Muhammad et al., 2020). Liu et al. (2020a) discovered an up-
tick in air pollution when China began gradual reopening. Whether sim-
ilar characteristics can be found in the US is still up in the air. Finally, an
overall decreasing trend doesn't indicate that air pollution drops ubiqui-
tously. It is essential to confirm and summarize specific patterns in dif-
ferent administrative zones for the assessment of regional economies.

This study conducts a thorough spatiotemporal analysis (Yang et al.,
2019, 2020b) on the changes of air pollutants before (Jan 26-March 18),
during (March 19-May 8) and after (May 9-June 14, hereafter referred
to as pre, peri and post periods) the lockdown of California (CA), USA, in
2020, and compares the patterns with the annual means of 2015-2019
(hereafter referred to as 2015-2019) to isolate the effect of COVID-19
mitigation efforts. The locations of major power plants, wildfires and na-
tional highways are also utilized as analytical factors to explain the sig-
nificance of detected patterns.

The remainder of this paper is organized as follows: the study area,
datasets and analysis methods are introduced in Section 2; the results

are described in Section 3; further discussion is offered in Section 4;
and conclusions are given in Section 5.

2. Material and methods
2.1. Study area

This study focuses on the state of California, where more than
150,000 cases were reported by June 14—the second-highest number
among all US states—and more than 5000 deaths were directly attribut-
able to the virus (NSF STC, 2020). Fig. 1 shows the cumulative confirmed
cases numbers of each county in CA by June 14. Government response to
the situation steadily grew more severe as case numbers increased. As
the death toll increased around the state, California Governor declared
a state of emergency and gradually increased lockdown orders, begin-
ning on March 4. By March 19, the state shutdown all the non-
essential business and a statewide lockdown order was issued. On
May 8, fifty days later, a 4-phase reopening strategy was announced
(COVID19.CA.GOV, 2020).

California has particularly high air pollution rates; the 2020 ‘State of
the Air’ report from the American Lung Association ranks five California
cities as having the worst air pollution from particulate matter in the na-
tion (American Lung Association, 2020). This pollution is due, in large
part to debris from wildfires (driven by climate change, Westerling
and Bryant, 2008). The report also highlights extremely high ozone pol-
lution, or smog, with six California cities demonstrating the worst levels
in the nation (American Lung Association, 2020).

Based on the relatively difficult situations on both COVID-19 pan-
demic and air pollution in CA, the analysis between these two factors
are necessary and urgent in the state.

2.2. Data

2.2.1. Ground-based air pollution observations

The ground-based observations of air pollutants are provided by the U.S.
Environmental Protection Agency (EPA, https://www.epa.gov/outdoor-air-
quality-data/download-daily-data). Due to data availability issues, all the
accessible daily maximum 1-h concentration measurements of NO,, daily
maximum 8-h concentration of Os, daily maximum 8-h concentration of
CO, daily mean concentrations of PM, 5 and PM are analyzed beginning
on January 26, when the first confirmed case was reported in CA in 2020,
and over the same period from 2015 to 2019. The data availability of each
air pollutant over the study period is shown in Fig. 2.

Air pollution has crucial influences on both nature and human health
(Landrigan, 2017). Different air pollutants have different emission
sources, characteristics and spreading behaviors. For example, PM, 5 de-
scribes fine inhalable particles with diameters that are generally 2.5 pm
and smaller (EPA, 2019). Some PM, 5 can be directly emitted from var-
ious sources including power plants, motor vehicles, airplanes, residen-
tial wood burning, forest fires, agricultural burning, volcanic eruptions
and dust storms, while others are formed when gases and particles in-
teract with one another in the atmosphere (Jeong et al., 2019). There-
fore, other air pollutants such as sulphur dioxide and nitrogen oxides
can influence the concentration of PM; 5 (Manousakas et al., 2017). CO
is a colorless, odorless, tasteless, and toxic air pollutant that is produced
in the incomplete combustion of carbon-containing fuels, such as gaso-
line, natural gas, oil, coal, and wood (The National Academies Press,
2002). The largest anthropogenic source of CO in the United States is ve-
hicle emissions. Indoor fuel-burning appliances such as clothes dryers,
water heaters, furnaces or boilers, fireplaces (both gas and wood burn-
ing), gas stoves and ovens, motor vehicles, grills, generators, power
tools, lawn equipment, wood stoves and tobacco smoke are also emis-
sion sources of CO (Wu et al.,, 2019). NO, is the greatest concerned com-
ponent of nitrogen oxide, which comes from fossil-burning sources such
as vehicles, power plants, industrial emissions and off-road sources such
as construction, lawn and gardening equipment (EPA, 2011).
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Fig. 2. Ground-based air pollution data availability for each county of California.
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2.2.2. Satellite NO, observations

We use the Nitrogen Dioxide Product (OMNO2d) of the Ozone Mon-
itoring Instrument (OMI) aboard NASA's Earth Observing System's
(EOS) Aura satellite to calculate the mean NO, tropospheric vertical col-
umn density (TVCD) in the pre, peri and post periods of CA for both 2020
and 2015-2019. It is a level-3 gridded product where pixel-level data of
good quality are binned and averaged into 0.25-degree global grids at a
daily temporal resolution (Krotkov et al., 2019). OMI data is adopted to
analyze the spatial patterns of COVID-19 impact on NO, emission.

2.2.3. Ancillary information

The paper adopts locations of major power plants, national high-
ways and wildfires to address the potential causes on the spatial pat-
terns of air-pollution emission in CA.

The Locations of Major Power Plants are derived from Wikipedia: List
of Power Stations in California (https://en.wikipedia.org/wiki/List_of_
power_stations_in_California). Information on different kinds of power
stations is provided, including their locations and capacities. Natural gas
and coal stations with capacity larger than 500 Megawatt are utilized in
the study because NO, is mainly emitted from the combustion of fossil
fuels such as coal and natural gas (Paraschiv and Paraschiv, 2019).

Locations of major wildfires in California during the post-period are
compiled from the official website of California Department of Forestry
and Fire Protection (CAL FIRE, https://www.fire.ca.gov/incidents/2020/).
Fires with more than 100 acres burned are used in this study.

The Topologically Integrated Geographic Encoding and Referencing
(TIGER)/Line shapefiles and related database files of national highways
in California are downloaded from the official website of US Census Bu-
reau, Department of Commerce (https://catalog.data.gov/dataset/tiger-
line-shapefile-2016-nation-u-s-primary-roads-national-shapefile),
which are extracted from selected geographic and cartographic informa-
tion of the U.S. Census Bureau's Master Address File (MAF)/TIGER Data-
base (MTDB, US Census Bureau, 2016).

2.3. Analytical method

The analysis was carried out by comparing the patterns and changes
of air pollutants between 2020 and 2015-2019 averages as well as
among pre-, peri- and post- periods in both spatial and temporal dimen-
sions. Time series analysis is conducted using ground-based observa-
tions in the following steps:

1). For each pollutant, daily mean (or 1-h and 8-h maximum) concen-
trations of CA are calculated by averaging all available data during
2020 and 2015-2019 using Eq. (1):

n
e
Ce = % t =Jan.26, jan.27...Jun.14 (1)

where t is the date, C; is the daily mean concentration of the air pollutant
on date t, n is the number of available observations on this air pollutant
in CA. In 2020, all the observations (of each air pollutant) in CA are av-
eraged for each day throughout the study period. For 2015-2019, all
the available measurements (of each air pollutant) in a specific date
are averaged. Take January 26 as an example, the observations (of
each air pollutant) on January 26 of 2015, January 26 of 2016, January
26 of 2017, January 26 of 2018 and January 26 of 2019 are averaged as
the daily mean value of January 26 in 2015-2019. So as for all
other dates.

2). The values achieved from step 1 are normalized to the mean of
their corresponding pre period to make the two period (2020
and 2015-2019) comparable using Eq. (2):

G
NC = - 2
! CpTE ( )

where NC; is the normalized daily concentration of each air pollutant,
Cpre is the mean values of pre-periods in 2020 and 2015-2019 and is cal-
culated based on Eq. (3):
Mar.18
- C
Cpre _ Zt_]an.ZG t (3)
NMpre

where n,. is the number of days in the pre-period of 2020 and
2015-2019.

3). Time-series of 7-day moving average and standard error for each
air pollutant are then calculated to smooth out daily fluctuations
in air pollution monitoring.

4). The percentage change between different periods (pre-, peri-
and post-periods) in 2020 and 2015-2019 are calculated respec-
tively using Eq. (4):

p=2=C 100y (4)
G

where P is percentage change between different periods, C; is the mean
concentration of former period, C, is the average of latter period.

We further explore the spatial patterns of NO, TVCD over CA using
OMI data as follows:

a. The average NO, TVCD in pre-, peri- and post- periods of 2020 and
2015-2019 are calculated for each pixel within CA based on Eq. (5):

d d
VD, - e TVCD,s

o (5)
where TVCD; is the average NO, TVCD of the ith pixel in each period;
start date and end date correspond to the first and last date of each pe-
riod; n is the number of days in the period. More specifically, the annual
mean values of each pixel in each period of 2020 and 2015-2019 are cal-
culated by averaging all the daily values in this period in 2020 and
2015-2019 respectively.

b. To rule out the possible influence of seasonal variations on NO,
TVCD, we calculate the anomalies by subtracting the annual mean
values of 2015-2019 from 2020 for each period;

c. Differences between peri- and pre-, post- and pre-, and post- and
peri-period are calculated based on anomalies achieved in step (b).

d. Locations of major power plants, national highways and wildfires
are utilized to explain the derived patterns.

3. Results
3.1. Time series analysis

As shown in Fig. 3, the concentrations of air pollutants are normal-
ized to the means of the pre-period. Note that the NO, and CO data in
2020 are generally lower than in previous years without normalization,
probably reflecting in part the effects of clean power plans to limit air
pollution emissions from future and existing fossil-fueled power plants
(Burtraw et al., 2015) and, more widely, the popularization of zero-
emission vehicles in CA (McConnell et al., 2019).

At the beginning of March (2020), all pollutants demonstrate a dras-
tic drop compared to the relatively stable curve of previous year and
hold steady at a period of low values thereafter. This can be attributed
to the state of emergency declared on March 4, after the first death in
CA attributable to coronavirus occurred in Placer County. By the end of
April, concentrations of O3, PM, 5 and PM;, returned to a normal trend
(compared to the 2015-2019 period) which may be correlated to the
gradual resumption of economic activities. O3 and PM; 5 maintain a
similar pattern with historical data thereafter, however, PM;, keeps
increasing at a higher rate after bouncing back to the level of the pre-
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Fig. 3. Daily variations in 7-day moving averages of the concentration for each pollutant over CA. Dates represent the midpoint of the 7-day interval. Values are normalized to the mean of
the pre-period. The shadows represent standard errors. The missing periods of PM;o, NO, and CO are due to the lack of data.

period. This pattern can be attributed to the increasing number of wild-
fires around CA since the beginning of May (https://www.fire.ca.gov/
incidents/2020/), for debris produced by wildfires are one of the
major sources of PM;, (Caseiro et al., 2009).

Ground-based observations show a 38%, 49%, and 31% drop in the
concentration of NO,, CO and PM, 5 during peri-period compared to
pre-period in 2020. These are 16%, 25%, and 19% sharper than in the
means of the same periods in 2015-2019, respectively. Meanwhile,
21% and 14% increases are found in PM;q and Os, which are 11% and
10% lower than in previous five years. After the reopening of California,

PM, s, PM ;o and Os increase by 17%, 114% and 4% compared to 3%, —5%
(decrease) and 0.9% in 2015-2019. Therefore, policy interventions to re-
duce the spread of COVID-19 in CA such as lockdowns and reopening
have clear influences on the temporal pattern of air pollution. The lock-
down intensified the decreasing trends and impeded increasing trends
of pollutants, while the reopening brought the trends back on track
compared to previous years.

There is a 51% drop in CO concentration during the peri-period of
2020 compared to the same period of 2015-2019, which is more signif-
icant than that of NO, and PM, s (46% and 25% respectively). As
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Fig. 4. Spatial patterns of tropospheric NO, TVCD over CA. (a)-(f) are average OMI tropospheric NO,, vertical column densities in 2020 and previous years: (a) pre-period in 2020, (b) peri-
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(g) anomalies of pre-period; (h) anomalies of peri-period; (i) anomalies of post-period. (j)-(1) are differences among pre, peri and post periods: (j) difference between anomalies of peri
and pre periods; (k) difference between anomalies of post and peri periods; and (1) difference between anomalies of post and pre periods. The xs are locations of major power plants in CA.
The stars are locations of wildfires occurred in the post- period and the grey lines show U.S. National Highways.

previously illustrated, statistical results also show a sharper decline in 3.2. Spatial pattern analysis

CO concentration than NO, and PM, s when comparing between peri-

period and pre-period in 2020 (49% vs 38% and 31%). Therefore, CO Fig. 4 shows spatial patterns of NO, TVCD over CA in 2020 and
has a larger decrease than the other two air pollutants. And the concen- 2015-2019. As shown in Fig. 4(a)-(c), TVCD of NO, is generally lower
tration of PM; 5 has the gentlest decline in these three air pollutants. in the peri period than pre and rebounds over some regions in the post
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period. The overall NO, emissions decrease by 33% and 0.6% in the peri
and post-period respectively than the pre-period, compared to 30% and
3% in 2015-2019. Although the statistics are not exactly the same as
ground-based observations, the sudden drop following the lockdown
order is also captured by satellite data. Fig. 4(g)-(i) are the anomalies of
pre, peri and post periods respectively. Most regions of CA show negative
values in all three periods, demonstrating that the mean value of 2020 is
generally lower than 2015-2019. This can also be observed in EPA data
due to the air quality protection policies mentioned in previous sections.

As shown in Fig. 4(j), the anomalies of NO, TVCD decrease signifi-
cantly in the peri- period compared to the pre- period over region A
and rebound in the post- period according to Fig. 4 (k). Still, this uptick
is not large enough to remedy the lockdown reductions, which can be
observed in Fig. 4(1). There are many power plants concentrated around
region A; NO, TVCD is dominated by emissions from power plants in
this area. Due to the scale-back of non-essential industries in response
to COVID-19 crisis, NO, declines in region A during the lockdown and
recovers partially after reopening when they gradually go back to
work. California Independent System Operator (CAISO) reported a
6.7% reduction of energy loads in peak hours of weekdays during the
lockdown. Higher loads were observed by the end of May during the im-
plementation of gradual reopening policies (CAISO, 2020).

Over regions B and C, NO, anomalies increase dramatically in the
peri- period (Fig. 4(j)) and then drop in the post- period (Fig. 4(k)).
The entirety of region C and some of region B show negative values in
the comparison between post- and peri- period, however, the post-
period is still higher than the pre- period, as can be observed in Fig. 4(1).

On one hand, fuel-burning from everyday domestic activities are an
important source of NO, emissions in residential areas (Lee et al., 2002),
such as heaters and stoves (Kousa et al., 2001). Both B and C are popu-
lous regions and transportation hubs that are located at intersections of
national highways including the city of Barstow, Napa and Woodland. It
can be intuited that citizens spent more time staying in residential areas
during the peri- period due to the stay-at-home orders and social dis-
tancing policies and would likely produce more NO, in their daily lives.

On the other hand, transportation (which produces large amounts of
NO,) between different cities is reduced, which indicates decreasing
NO, emissions along many parts of the national highways. Still, essential
vehicular use likely increased within residential areas—especially those
serving as transportation hubs—such as greater utilization of food and
grocery deliveries (Sarmiento, 2020) and cargo transportation (Bates,
2020). After stepping into the post- period, people started to resume
their normal lives and residential NO, levels drop compared with
peri- period; levels are still higher than pre- period in region C due to
the incompleteness of reopening. Region C is primarily located within
the Mojave Desert Air Basin. Prevailing winds are understood to channel
air masses through this basin due to the close proximity to the coast and
mountain ranges alongside the strong influence of Santa Ana winds
(VanCuren and Gustin, 2015). With a likely increase in transportation
during the lockdown within city limits and Santa Ana winds ending in
March, this combination of factors can impact NO, fluctuations in the
transportation hub (SB County, 2020).

Furthermore, more wildfires occurred in region B in the post-period
resulting in a higher discharge of NO, (Martin et al., 2006) than the
pre- period (Fig. 4(1)). Therefore, we do not observe a simple declining
pattern in region C in Fig. 4(k). Similar trends can be found in other res-
idential and wildfire locations.

Note that the increase/decrease of NO, anomalies over one region
does not mean a higher/lower absolute TVCD value; it indicates more/
less NO, is emitted due to non-seasonal factors. NO, primarily pollutes
the air from the burning of fossil fuel such as emissions from cars, trucks
and buses, power plants, and off-road equipment. Given that most non-
essential businesses are shutdown or limited in peri- and post- periods,
COVID-19 related shutdown and reopening policies are the most likely
reasons accounting for the change of NO, spatial patterns, especially
when there are no major wildfires.

4. Discussion

To combat the spread of COVID-19 pandemic, the CA government
implemented a series of policies including the shutdown of non-
essential businesses, mandating social distancing, and the prohibition
of large gatherings. These measures caused non-negligible influences
on the air pollution emissions which reflect statewide economic condi-
tions. This paper analyzed the spatiotemporal patterns and changes of
air pollution before, during and after the lockdown of CA since the
first confirmed COVID-19 case was reported in the state. The concentra-
tions of air pollution are influenced by complex variables such as wind,
temperature, burning material, policies and other anthropogenic fac-
tors. This study accounts for the seasonal-cycle related impacts by com-
paring the 2020 data with the means of the previous five years. Then
potential effects of COVID-19 are further explored by combining the
analysis with the locations of major power plants, wildfires and national
highways in California.

Through time series analysis, we find that when interventional pol-
icies are implemented to mitigate the COVID-19 crisis, the temporal
trends of air pollutants present correspondence to the policy order
dates. Once the shutdown and stay-at-home policies were imple-
mented, the time series data show significant pollution reductions;
when the reopening phases are put into effect, pollution rebounds to
normal trends, as compared with previous years.

Spatial patterns of tropospheric NO, TVCD are also influenced by
COVID-19 policy interventions. Decreases are observed around the loca-
tions of power plants while increases occurred in residential regions fol-
lowing the lockdown order. Ruling out the seasonal trends and natural
factors such as wildfires, the restriction of non-essential industries and
quarantine of people in residential areas are the most likely factor to ac-
count for these patterns. Although transportation was reduced between
cities, it increased within residential communities, especially those
serving as transportation hubs.

Although overall trends are similar in ground-based observations
and satellite data, discrepancies still exist between the two data sources
mainly due to the following reasons:

(1) Ground stations monitor the concentrations of air pollutants near
the surface, whereas satellite data retrieves the vertical column
density of NO, in troposphere;

(2) Ground-based observations are sparsely distributed; not every
county in CA has available data.

(3) Ground-based NO, data reflects daily mean 1-h maximum con-
centrations while satellite observations are retrieved at the mo-
ment when the sensor scanned across the area.

This study is an initial effort to understand the impact of COVID-19
mitigation efforts on air pollution and several related factors still have
not been quantitatively considered. For example, the patterns of air pol-
lution could also be influenced by climate and geographical changes,
such as global warming (Williams et al., 2019) and vegetation (Solins
et al.,, 2018). Although these effects are partially accounted for by
comparing with previous years and observing anomalies, they cannot
be entirely eliminated from the results, leading to complex interaction
of influential variables in some regions. Spontaneous reduction in
human mobility before the lockdown announcement could also influ-
ence air pollution emissions (Chinazzi et al., 2020), especially those re-
lating to inter-state and international travels. Detailed transportation
volumes within residential areas also need to be further investigated
and integrated into a comprehensive analysis.

Similar studies have been done by other researchers in other areas or
scales. Liu et al. (2020a, 2020b) conducted a similar study in China and
found that satellite measurements showed a 48% drop in NO, TVCD
from the 20 days averaged before the lockdown to the 20 days averaged
after. This decline is 21% larger than that from 2015 to 2019. The drop
from the pre- to peri-period in California was 33% in 2020, which is 3%



8 Q. Liu et al. / Science of the Total Environment 750 (2021) 141592

larger than that of 2015-2019. Compared to China, California has a rel-
atively smaller decline and variation in NO, TVCD due to the COVID-19
mitigation policies. Berman and Ebisu (2020) assessed air quality during
the COVID-19 pandemic NO, in the continental United States and dis-
covered a 26% and a 5% reduction in NO, and PM, 5 respectively in
2020 compared to the same period in 2017-2019. The declines are
46% and 25% for NO, and PM, 5 respectively during peri-periods be-
tween 2020 and previous years. The drops in air pollutants are more sig-
nificant in California than the US overall may be potentially due to the
fact that air pollution before the pandemic is more severe (American
Lung Association, 2020) and mitigation-policy stringency in CA is higher
than most of other states (12 out of 54, Fig. A.2). The European Environ-
ment Agency detected a similar large drop in air pollution across
European cities (European Environmental Agency, 2020). From March
16 to 22, 2020, it was reported that Bergamo, Italy and Barcelona,
Spain showed declines of 47% and 55% in NO, compared to the same pe-
riod in 2019. These numbers are comparable to that of California (46%)
in the peri-period.

Despite the effort made by this study and all the other research,
more work needs to be done on the impact of COVID-19 mitigation ef-
forts, including:

(1) Conducting similar research over other parts of the world espe-

cially those areas that have rarely been studied, such as Africa,

and analyzing the impact of COVID-19 mitigation efforts on dif-

ferent income groups, e.g. low-income countries and high-

income countries.

Including other potential factors that affect the patterns and

trend of air pollution such as human mobilities, inner-city trans-

portation, climate and geographical changes, to isolate the influ-

ence of COVID-19 mitigation efforts more accurately;

(3) Further investigation of the COVID-19 impacts after reopening is
carried out.

(4) Investigating the impact of COVID-19 mitigation efforts on the
California economy.

(5) Studying the impact of air pollution and other climate factors on
the spread of COVID-19.

—
N

5. Conclusions

According to the experiments and analysis results, this study has
come to the following conclusions:

(1) The spatiotemporal patterns of air pollution in CA were influ-
enced by the COVID-19 mitigation lockdown and reopening pol-
icies.

(2) The lockdown policy generally reduced the concentration of air
pollutants in CA; the reopening increased the emissions of air
pollution back to a normal trend, as compared to previous years.

(3) The concentration of CO has a sharper decline than that of NO,
and PM s during the pandemic.

(4) NO, emissions decreased over locations of major power plants
and increased over populous residential areas, especially those
serving as transportation hubs at the intersections of national
highways.
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