IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 6, 2020, accepted July 20, 2020, date of publication July 27, 2020, date of current version August 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011919

Cognitive and Scalable Technique for Securing
loT Networks Against Malware Epidemics

SAI MANOJ PUDUKOTAI DINAKARRAO !, (Member, IEEE), XIAOJIE GUO 2,

HOSSEIN SAYADI 3, (Member, IEEE), CAMERON NOWZARI“1, (Member, IEEE),

AVESTA SASAN"1, (Member, IEEE), SETAREH RAFATIRAD 2, (Member, IEEE),

LIANG ZHAO 4, (Member, IEEE), AND HOUMAN HOMAYOUN 5, (Senior Member, IEEE)

IDepartment of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030, USA
2Department of Information Science and Technology, George Mason University, Fairfax, VA 22030, USA
3Department of Computer Engineering and Computer Science, California State University, Long Beach, CA 90840, USA

#Department of Computer Science, Emory University, Atlanta, GA 30322, USA

SDepartment of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA

Corresponding author: Sai Manoj Pudukotai Dinakarrao (spudukot@ gmu.edu)

ABSTRACT The sheer volume of IoT networks being deployed today presents a major “attack surface”
and poses significant security risks at a scale never encountered before. In other words, a single IoT
device/node that gets infected with malware has the potential to spread the malicious activities across the
network, eventually ceasing the network functionality or compromising the network. Simply detecting and
quarantining the malware in IoT networks does not guarantee preventing malware propagation. On the other
hand, use of traditional control theory for malware confinement is not effective, as most of the existing
works do not consider real-time malware control strategies that can be implemented using uncertain infection
information from the nodes in the network or have the containment problem decoupled from network
performance. In response, in this work, we propose a two-pronged approach with malware detection at node-
level, and confinement of malware at network-level. We deploy a recently proposed lightweight runtime
malware detector at the node-level that employs Hardware Performance Counter (HPC) values for malware
detection. This node-level malware information is combined with the malware propagation information and
then fed during runtime to a stochastic predictive controller to confine the malware propagation without
hampering the network performance. Synthesizing the node-level malware information with the model
predictive containment strategy leads to achieving an average network throughput of nearly 200% of that
of IoT network without any defense, and up to 160% of that of network with commonly employed state-of-
the-art heuristic approaches for malware confinement. Furthermore, to scale with ever-increasing network
topology sizes, we introduce a novel multi-attribute graph translation that can predict the network topology
and node state information when provided with a snapshot of topology and node-level malware infection.
The proposed multi-attribute graph translation has <5.88 Root Mean Square Error (RMSE) compared to
the model predictive containment strategy and has shown nearly constant graph translation time and limited
resource utilization independent of the network size.

INDEX TERMS Malware epidemics, control theory, malware detection, the IoT security, malware
confinement.

I. INTRODUCTION

The grand vision of the Internet-of-Things (IoT) boasts a fully
connected global network connecting every imaginable thing
together. The benefits of such a vision are currently seen
spanning across many application domains including mobile,

The associate editor coordinating the review of this manuscript and

approving it for publication was Cong Pu

138508

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

health, smart homes, smart grids, and defense. Ameliora-
tion of miniature computing devices into the consumer and
industrial markets with enabled connectivity to the Internet
towards smart and intelligent features lead to an upsurge in
the size of networks through which the devices are linked and
communicate with each other [1], [2]. Unfortunately, with the
massive amount of potential benefits offered by IoT devices,
there comes an equal amount of potential vulnerabilities and

VOLUME 8, 2020

https://orcid.org/0000-0002-4417-2387
https://orcid.org/0000-0002-1946-1179
https://orcid.org/0000-0001-6423-0145
https://orcid.org/0000-0001-7287-9972
https://orcid.org/0000-0002-4052-8075
https://orcid.org/0000-0003-2035-8512
https://orcid.org/0000-0002-2648-9989
https://orcid.org/0000-0001-8904-4699
https://orcid.org/0000-0002-7952-0038

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

IEEE Access

security risks that have never seen before [3]-[7], as the
security is often neglected in IoT devices’ design [3], [8], [9].

From the adversaries’ perspective, the feasibility for mal-
ware! propagation via connected network with none/weakly
built defense measures, and a vast connectivity makes the IoT
devices a potential target for cyber-attacks [3]-[7], [10]-[12].
These attacks can be targeted at various IoT devices such
as routers, surveillance cameras, and mobile phones. It is
highly possible that the malware spreads across the network
as soon as one of the devices/nodes is infected, and the entire
network immediately becomes compromised [9], [13], [14].
In April 2017, an attack named ‘BrickerBot’ was launched in
the USA, where IoT devices such as routers stopped function-
ing for the users who never changed their default ‘usernames’
and ‘passwords’ for their devices. Similar attack occurred
in Germany with the hacking of Deutsche Telekom network
in November 2016, resulted in widespread Internet blackout
for three days. The amount of attacks on IoT devices are
augmenting tremendously. According to latest McAfee threat
reports [8], there is nearly 38% increase in new malware in
the year 2018 (more than 800 million samples in 2018), and
nearly 15% of the existing enterprises being attacked [15].
Unfortunately, given the magnitude of deployed and emerg-
ing IoT networks, it becomes impractical to quarantine the
infected systems as the malware would have propagated to
other devices already. More specifically, the accentuating
size and popularity of these networks further exacerbates the
challenge of securing IoT devices and restricting the malware
propagation, as we no longer have the option to just ‘restart’
the entire system, as the cost of restarting a massive network
may easily exceed the cost of potential malware existing in
the network. The propagation of malware through the IoT
networks not only leads to infecting multiple IoT devices,
but also can significantly degrade the network performance
such as throughput. Preserving the network connectivity for
the functionality and communication can be seen as potential
threat in IoT networks leading to spread of malware in IoT
network and edge devices [8], [16]-[19]. On the contrary side,
it is non-trivial to maintain the connectivity (throughput) to
facilitate the communication and preserve the functionality
while proposing effective solutions to improve the security
and/or performance. Thus, detecting threats and minimizing
the traffic/network access from the compromised nodes is
non-trivial to protect the users from different cyber-threats
including DDoS [16]-[20].

Coupling the above-discussed issues of malware attacks
on a single IoT node, and their propagation through the
network reveals some significant issues that have to be
addressed before realizing large-scale global deployments
of IoT networks. In this work, we propose a unified solu-
tion that addresses the challenge of malware detection and

1Malware, also known as malicious software, is a piece of code designed
to perform various malicious activities, such as destroying or manipulating
the data, stealing information, running destructive or intrusive programs on
devices to perform Denial-of-Service (DoS) attack, and gaining root access
without the consent of user.

VOLUME 8, 2020

propagation in an IoT network by: a) deploying an effective
yet lightweight runtime malware detection on IoT devices;
and b) confining the propagation of malware in the IoT
network with imperfect infection obtained from node-level
malware information while preserving the network connec-
tivity and overall performance. Albeit, the malware con-
finement can be performed effectively using a stochastic
optimal control technique, the scalability is limited to net-
works with few tens of nodes. To further improve it, a novel
multi-attributed graph translation method is proposed based
on multi-attributed graph translation generative adversarial
nets.

A. ASSOCIATED RESEARCH CHALLENGES

Solving the aforementioned problem involves multiple
research challenges that are highlighted in this section.

1) LIMITED RESOURCE AVAILABILITY

Unlike general network systems, IoT devices are designed
only with fundamental cyber-physical functions in mind
such as sensing and actuation with minimal computational,
storage, and communication capabilities. As such, carry-
ing out compute-intensive operations for malware detec-
tion or storing the malicious patterns to detect cyber-attacks
during runtime are impractical in these devices. For tra-
ditional computing systems, several techniques have been
explored for malware detection including dynamic binary
instrumentation [21], anomaly detection [22], information
flow tracking [23]-[25], taint-analysis and symbolic exe-
cution [26], and VM introspection [27]. There also exist
traditional approaches such as semantic [28]-[30] and
signature-based [31]-[33] solutions including off-the-shelf
anti-viruses as well. However, most of these techniques
are slow, and require large computational resources and
memory [34]-[37], making them infeasible to be adopted in
IoT and resource constrained devices. Furthermore, the emer-
gence of new malware threats often requires patching or
updating off-the-shelf software-based malware detection
solutions (such as anti-virus) and incurs a large amount of
memory, hardware resources, as well as network communi-
cation bandwidth. Therefore, IoT devices in general cannot
accommodate resource intensive solutions, thus are vulner-
able to security threats. As such, it is crucial to deploy a
lightweight malware detector for resource constrained IoT
systems. In response to the latency and processing overheads
incurred by existing malware detectors, Hardware-assisted
Malware Detection (HMD) technique® is proposed [35].
In this work, we adopt a recently proposed lightweight HMD
solution [36] on IoT nodes to detect the malware. It needs
to be noted that HMD is solely adopted based on the experi-
mental setup and other mechanism can be chosen depending
on the devices utilized. Also, we emphasize that HMD [36]
is neither contribution nor the proposed solution is bound to

2In HMD, signatures of the underlying hardware events are utilized to
detect malicious applications (malware).

138509

IEEE Access

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

HMD proposed in [36]. Deploying a lightweight malware
detector will benefit by reducing the resource consumption
and also aids when designing a malware confinement solu-
tion, as will be discussed later. It needs to be noted that HMD
is solely adopted based on the experimental setup and other
mechanism can be chosen depending on the devices utilized.
Other malware detectors that consider different attributes of
the node and/or network can also be considered as long as it
provides the estimate of presence of malware.

2) MALWARE PROPAGATION THROUGH COMMUNICATION
LINKS

In addition to the malware detection at node-level in an
IoT network, the propagation of malware poses additional
challenges in IoT networks. The connectivity between IoT
devices both in terms of close proximity, and sheer numbers
make them vulnerable to contamination. None/minimal secu-
rity measures in the networks result in compromise of other
device’s/node’s security’ through propagation. If a perfect
real-time malware detection is feasible, an effective strategy
is to simply detect and quarantine the malware to avoid
malware propagation into the network. However, constantly
evolving malware is showing that no detection technique will
be instantaneous and deliver a perfect yield, as many mal-
ware are purposely designed to avoid detection. For instance,
the work in [38] has shown the possibility of spreading a light
bulb worm which allows a reprogrammed bulb to re-flash
nearby counterparts.

In addition, due to limited computing resources at the node-
level, sophisticated and highly accurate malware detection
solutions cannot be afforded [34]-[36], [39]. Consequently,
deploying a semi-accurate malware detection method and a
proactive approach such as immediately disconnecting the
links in the network, while can confine malware, but also
impact network performance and throughput, or even can
result in communication loss, which is detrimental to the
network performance. As a result, a more effective and
methodical technique to confine malware propagation
through communication links is needed, that balances the
desire to contain the malware while preserving the net-
work functionality and performance in the presence of
semi-accurate malware detectors.

3) SCALABILITY OF TRADITIONAL MALWARE CONFINEMENT
METHODS

Malware confinement by formulating as a stochastic control
problem and optimization, though effective (solution to pre-
vious challenge of malware confinement), requires malware
propagation information to be predicted feed-forward in time
to ensure that the trade-off between performance and malware
infection is met. This incurs significant latencies, and thus
it is limited to few tens of nodes due to involved complex-
ity. The large execution time and memory consumption of

3Compromised node refers to an IoT device that has been infected by
malware.

138510

simulation-based models motivate us to consider data-driven-
based models in machine learning (ML) domain [40]. Moti-
vated by the most recent progress of self-supervised learning
in ML community, cutting-edge deep learning methods are
able to learn the transformation mapping of complex data
from one status to another [41]. For example, image trans-
lation methods transfer a painting from one style to another
based on convolutional neural networks and generative adver-
sarial nets [42]. Once the transformation mapping is learned,
the prediction is instantaneous, just the same as that of con-
ventional supervised learning method. For self-supervised
learning, although deep generative models have proven their
effectiveness on the generation of continuous data such as
images, and videos, the prediction and generation for discrete
data such as graphs are still open questions and are extremely
challenging.

However, the problem of malware confinement requires
constant prediction of the malware propagation status across
the network, which is to predict a graph based on the current
topology. The recently introduced generative deep learning
models for graphs are typically unconditioned generative
models, which typically only synthesize additional graphs
directly following the distributions of the observation graphs
and has no control over modes of the graphs being generated.
However, in our problem, we need to predict the future graph
status based on the current graph status and node status, thus
amodel that can generate a graph by conditioning on another
is required, which cannot be achieved by the existing graph
learning models.

B. OVERVIEW OF PROPOSED SOLUTION
In this work, we propose a two-pronged approach for effec-
tive malware detection and confinement in IoT networks.

First, we address the problem of malware detection on the
IoT devices by deploying effective hardware-assisted mal-
ware detection proposed in a recent work [36], under the
constraints of optimum latency, power and silicon footprint.
This is adapted in this work based on the devices we chose
in the experiments i.e., devices that host on-chip Hardware
performance counters (HPCs) registers. However, other mal-
ware detection techniques can be adopted, as the stochastic
controller is not dependent on the HMD, rather it requires
an estimate of malware at node-level. From our experimental
evaluations, we employ a lightweight rule-based JRip classi-
fier at node-level to analyze the microarchitectural events and
classify the malware and benign applications. The advantages
of employing such HMD are its low processing overheads
along with high detection performance [36]. Regardless of the
best efforts on deploying highly accurate malware detectors,
malware propagation is still feasible in IoT network, as no
“perfect” malware detector exist.

Further, to confine the malware propagation in the network,
the outputs of deployed node-level malware detector are fed
to the proposed malware epidemic controller. It needs to be
noted that to solve the stochastic control problem for malware
confinement, it requires an estimate of node-level malware

VOLUME 8, 2020

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

IEEE Access

existence from the malware detector, rather than accurate
detection information. Furthermore, as accurate information
might not be always feasible, using stochastic optimization
utilizing the estimate is more beneficial. While there exists
vast research on epidemic processes control in general, there
are very few works that consider tractable real-time feed-
back control solutions working with the stochastic dynamics
of malware spreading [43]. Works such as [44] performs
the optimal control to minimize the spread of the malware,
but only considers spreading characteristics rather than node
state, which also plays a non-trivial role in malware spread-
ing. Instead, the only known works that primarily study con-
trol of the stochastic dynamics are [45]-[47]. In [45], [46], it
is shown that for the standard continuous-time (Susceptible-
Infected-Susceptible) SIS epidemic process, there exists a
finite threshold for varying the healing parameter of the
process, above which the process can be controlled to the
disease-free equilibrium exponentially quickly, and below
which it cannot. In addition, these works mathematically
characterize a sub-optimal controller for the processes and
characterize its sub-optimality. However, the computations
required to implement such controllers are known to be
NP-hard and inapproximable, indicating that they are not
applicable for real-time confinement. Instead, a tractable
fixed rolling horizon controller is developed in [47] that
considers performance constraint can be seen as a solution
addressing similar challenge, however, a mechanism to incor-
porate node-level information is not available.

In this work, instead of directly solving the stochastic
optimal control problem, which requires efficient method-
ologies for estimating and predicting the future malware
propagation in the network graphs, a similar functionality is
mimicked by our novel graph translation method, in which
the future propagation graph topology and node status (mal-
ware probability) is predicted based on the current topology
and node-level malware information. Different from graph
generation problem, graph translation considers learning the
propagation process from one graph state to another state.
Existing methods [48] only deal with the topology trans-
lation, which is not suitable for our problem, where the
node attributes (states) and propagation controlling param-
eters have influence on the propagation process. Specifi-
cally, we propose a multi-attributed deep graph translator
(MA-DGT) to learn the propagation process from the initial
graph to infected graphs, where the translation process is
controlled by node states, and topology.

C. CONTRIBUTIONS
The contributions of this work can be outlined in a four-fold
manner as follows:

« We develop a unified framework for combining the
models of malware spreading processes on IoT networks
explicitly with their direct adverse effects on network
performance and formulate a stochastic optimal control
problem for malware confinement while maintaining the
network connectivity.

VOLUME 8, 2020

o We show how the output of a node-level malware
detector can be deployed to generate imperfect esti-
mates of infection state information as an input to pro-
posed rolling horizon optimal controller for epidemic
containment.

« We propose a heuristic end-to-end detection and defense
strategy for IoT networks to solve the malware confine-
ment problem. We demonstrate its superior performance
against commonly used heuristic containment strategies.

o Lastly, to address the scalability concerns, a novel
deep learning-based graph translation method is pro-
posed based on graph convolutional neural networks and
generative adversarial nets. Once being trained, the
proposed method runs instantly and much faster than
deriving the solution for stochastic optimal problem i.e.
malware confinement.*

Il. PROBLEM FORMULATION

Here, we introduce the IoT network architecture and the
malware model, based on which we formulate the stochastic
optimal control problem for malware confinement.

A. IoT NETWORK ARCHITECTURE
The network architecture and connectivity to various
IoT nodes is shown in Figure 1. The network comprises of
multiple heterogeneous nodes, each having an on-board low-
end microprocessor to perform simple operations such as
attenuation, routing, and noise removal. The heterogeneous
IoT nodes are placed randomly in a L x M space, (L is the
length and M is the width), with each node connected to its
neighboring IoT node(s) within range R via Bluetooth. The
nodes are of type broadcasting stations, routers, or sensory
nodes. Each of these nodes are equipped with a lightweight
ML classifier to differentiate the malware and benign applica-
tions during runtime. This requirement is for the considered
experimental setup but is not a requirement nor constraint
to deploy our proposed solution. The process of malware
detection on IoT nodes is illustrated in the left zoom-out box
of Figure 1. A runtime malware detection is adopted from a
recent work [36], where it is considered the devices that has
embedded processor and utilizes ML for malware detection,
similar to [34]-[36], [49]. However, one can accommodate
other malware detection techniques, as long as it can provide
an estimate of node-level infection. In this work, we consider
all the nodes to be of same priority (all the devices are equally
important) and the nodes can host a microprocessor to execute
the adopted malware detection technique. The rationale for
such assumptions is that future IoT networks consist of smart
devices. As aforementioned, other lightweight techniques
can be considered for malware detection depending on the
utilized device’s specifications.

At time-instant 0, a set of randomly chosen nodes (2 nodes
in this work) are set to be infected. However, as the time
progresses, any of the nodes in the network and at any point

4The source code is available at https://github.com/xguo7/MA-GT-GAN

138511

IEEE Access

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

. ~=7| (Devi Devi Devi

~ - -
g o S - cel ce2 cen
52 s . @ oT Network -~

i n Malware Malware Malware

2% N Epidemic Model ‘ bil ‘ i ‘ probability
o g .. L=
o 5 Predictive ! J
2 Té Feature reduction / Controller l “. l
£ g ,
8 . . Network tivit
2 E // .@ AN ‘ Stochastic optimal controller ° Wi‘:fmi?,:iz;m Y
B /
L
S5 o B 7 @ o Connectivity update
: X beM.L classifi ler J/ = Network connectivity Performance goals met or not
PR nign or malware / . N - .
= (Probability) , f N Modlty}ng network to preserve network
8 e e =)\ & i} N integrity and meet performance goals
< ® A

FIGURE 1. The loT network comprising of numerous nodes connected with the aid of loT gateways with malware
detector deployed on each node and a centralized malware confiner.

of time can be infected. A centralized epidemic malware
predictive controller is embedded into the network to mod-
ify the network topology during runtime in order to con-
fine the malware propagation in the network. The malware
information from each node is directly communicated to the
controller. This controller is fed with the node-level malware
infection probabilities to perform a stochastic control-based
network optimization and preserve the network connectivity
and confine the malware epidemics. The process of mal-
ware confinement is illustrated in the right zoom-out box
of Figure 1. As the deployed network size is limited, a cen-
tralized controller is employed. However, for a large network,
a hierarchy of controllers can be deployed, or network can
be split using techniques such as graph slicing [50]. For
real-time confinement in large scale networks, this work
proposes MA-DGT.

B. MODELING MALWARE
We present the used notations, malware propagation model,
and the effects of malware propagation on the network here.
Notations. We use R to denote the set of non-negative
real numbers, and Zx(for the set of non-negative integers.
The expectation of a random variable X is denoted by E[X].
Note that when the measure of expectation is clear from the
context, we omit it. However, when necessary, we explicitly
include it as a subscript of the operator, i.e. £, [X] indicates
the expectation of X w.r.t. measure p. Similarly, when clear
from the context, we omit the initial condition X(0) of a
stochastic process. When necessary, we explicitly include it
as a part of the expectation’s conditioning, i.e. E[X (#)|X(0)],
or interchangeably by a bracketed superscript i.e. EXOI[X,].
Malware Spreading Model. The standard model used
in the study of computer malware epidemics is the SIS
model [51], [52]. In SIS model, the node is assumed to be
either in infected (I) or susceptible (S) states. The primary
assumptions in this work for the modeling are: the embed-
ded nodes quarantine the malware once detected and the
infection happens immediately. The considered model also
reflects the real-world malware spreading such as worms and
viruses, where the malware infects the node (node transitions
to infected (I) state) and gets quarantined by the anti-virus
techniques (i.e. node becomes malware free (S state)) [51],
[53], [54]. The deployed malware spread model is also

138512

analogous to the internet worms and viruses that infects
a node and start propagating through the network through
downloads or self-replication. Some of the real-world mal-
ware that follow this kind of model are ‘badBios’ [55],
“Yankee Doodle’ [56], and ‘Magneto’ [57]. Thus, based on
these real-world examples and the considered node architec-
ture with malware detector, ultimately, we use the stochastic
SIS, which is a well-established model for epidemics on
large-scale networks [43], [51], [58]-[60]. However, the pro-
posed malware confinement only requires the estimate of
malware propagation in the network and is applicable to
other kinds of malware spreading models. In this work, the
network is represented as a weighted directed graph G =
VY, E, W) with |V| = nnodes, £ C V x V as the directed
edges, and W € R™" is the weighted adjacency matrix.
The edge (i,j) € & means that node j is sending data to
node i at a rate proportional to w;;. Note that w;; > 0 if and
only if (i,j) € &, and w; = 0 otherwise. We denote the
set of neighbors of i as N; = {j € V|(i,)) € £}. At any
given time, the set of nodes are split into two compartments:
Susceptible (S) and Infected (I), that represents the infection
state of each node. Then, the state of node i at time ¢ is given
by the binary random variable X;(¢) € {0, 1}, where X;(t) = 1
indicates that the node i is infected with malware at time ¢, and
similarly, X;(#) = O indicates that the node i is currently free
of malware, but susceptible. The infection state of the entire
network is denoted by a vector X(¢) € {0, 1}".

The intuition of malware spreading model is as follows.
Any node i that is infected with the malware is capable of
passing it to a neighbor j € A (within radius R) randomly
with a Poissonrate 8 > 0 proportional to the amount of traffic
flow wy;, B termed as infection rate. At the same time each
infected node is also able to naturally recover with a Poisson
rate § > 0, § termed as recovery rate. Thus, the SIS spreading
process can be modeled using the Markov process as

X;: 0 — 1 withrate 8 Z wiiX;
JjeN;
X; : 1 — 0 with rate §. €))

Effect of Malware on the Network: In addition to the
malware spreading model, we also present a model to study
how the malware negatively affects the performance of a
given network. Depending on the application, we define a

VOLUME 8, 2020

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

IEEE Access

performance function P : R™" x {0, 1} — [0, 1], where
P(W,X) € [0, 1] is the performance of the network, given
network W and state of all the nodes X. If the original
network G is used and all the nodes are healthy, i.e. X () = 0,
then P(W, X(¢)) = 1 meaning the network is running at 100%
performance. As nodes are infected and links are removed
from W, the performance degrades depending on the appli-
cation of the network.

More specifically, we will consider a malware threat
parameter o € [0, 1] that models the strength of malware for a
chosen performance metric P. This malware threat parameter
is defined based on the impact that it has on the performance
of the network with 0 = 0 being the weakest and o = 1 being
the strongest, such as DoS malware. The 0 = 0 indicates
that the malware has absolutely no effect on the actual perfor-
mance of the network (benign malware such as data stealing).
In this work, the malware threat parameter is determined from
the database manually but can be determined as inverse to
degradation of the network performance. A specific example
of a performance metric P is given later in Section III-B.

C. FIXED-HORIZON STOCHASTIC OPTIMAL CONTROL
PROBLEM

Based on the introduced models and notations, we formu-
late the problem of malware propagation control in the net-
work. Let W'(#) denote the modified graph where the traffic
between some nodes may have been reduced due to different
control activities such as removal of links. In other words, as a
consequence of the control mechanism, traffic (transmission
of malicious applications) is regulated between each pair of
active links with w} < wj; to reduce the chance of node j
spreading malware to node i [61], [62]. Thus, the problem
can be defined as maximizing the objective function

T
J = . / P(W'(1), X(1)) 2
T Jo

over some time horizon T > 0. Here P(W'(t), X (¢)) denotes
the performance of the network at time-instant 7. Note
that this objective function explicitly captures the trade-offs
between shutting down links to contain the malware at the
cost of reducing instantaneous network performance and
keeping links active to maintain the network performance at
the risk of letting the malware spread.

This problem poses two challenges to address. First, in gen-
eral, we may not have access to the true infection state X (¢),
i.e. malware is often meant to be undetected. This indicates
that a mechanism to detect the malware on nodes is required
to combat the malware propagation in the network. Second,
the stochastic network dynamics already make this a non-
trivial problem even if access to the true infection state X (¢) is
available. In addition, there are only very few works that have
studied the optimal feedback control problems for stochastic
networked epidemics [43], [63]-[67].

Optimizing equation (2) is non-trivial even if the infection
state X (¢) of the network is known at all times. Thus, to solve
the problem of malware containment in the network, we

VOLUME 8, 2020

partition it into three subproblems: how to best detect the
malware on the nodes, confine the malware based on the
outputs of inaccurate malware detector and perform malware
confinement in large-scale networks.

SUBPROBLEM 1: MALWARE DETECTION AT loT
NODE-LEVEL

As aforementioned, maximizing the objective function J in
equation (2) with access to X is a complex problem to solve.
However, with a better estimate of true infection state of
nodes, the performance maximization can be enhanced by
deploying a better malware confinement technique in the IoT
network. As such, a fast, and reliable malware detector is
required to limit the malware spread in the loT network. From
the IoT device perspective, the malware detector needs to be
resource efficient, and low cost to ensure that it fits on to the
existing resource on the device.

In order to meet the above-mentioned challenges of mal-
ware detection at node-level, we adopt the hardware-assisted
malware detection proposed in recent work [36]. In this work,
the microarchitectural events are collected through the hard-
ware performance counters and fed to a ML classifier (JRip
is chosen in this work based on its superior performance
and lower overheads (1 clock-cycle latency and 80x lower
area) compared to ML classifiers like neural network) to
differentiate benign and malicious applications (shown in
left zoom-out of Figure 1). Additional details and evalua-
tions of the adopted malware detection work is presented in
Appendix B.

SUBPROBLEM 2: OPTIMAL NETWORK CONNECTIVITY
MAINTENANCE

Regardless of the malware detection method used at the
node-level, there exists misclassification (false negatives),
especially for the emerging unseen malware. Thus, even with
highly accurate malware detection, a well-connected IoT net-
work serves as a vulnerability that can allow the malware to
spread very quickly across the network before it can even
be detected. Lack of information on node infection estimate
leads to a random optimization, which is not efficient. This
indicates that in addition to the malware detection, a more
proactive and pragmatic defense mechanism to maintain the
network connectivity is needed rather than a simple ‘detect
and quarantine’ strategy, as by the time a device identified to
contain malware has been quarantined, malware could have
already spread to other devices in the network.

As mentioned, to the best of our knowledge there are no
prior works that are able to completely solve the problem
presented in equation (2). However, if we ignore the perfor-
mance aspect of the problem, there is a set of research dedi-
cated to containing epidemics. In particular, we consider the
solution proposed in [47], [68] where a rolling horizon model
predictive controller is designed for containing the stochas-
tic epidemic process as quickly as possible for a given
budget constraint. However, the novelty here is to inte-
grate the malware propagation information with node-level

138513

IEEE Access

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

information as well as modeling the malware confinement
as rate-constrained problem and deploying rolling horizon
model predictive controller. More specifically, the algo-
rithm proposed in [68] is capable of solving the following
rate-constrained allocation problem.

Rate-Constrained Allocation: Let gj; : R>o — Rxq be
decreasing function that denotes the cost of setting the weight
of an edge. More specifically, gij(w;j) is the cost required to
change the weight of edge (i,j) € £ from w;; to w;j Note
that g;;(w;) = O for all (i,j) € £ meaning there is no cost
associated with leaving a weight unchanged. Then, given a
desired decay rate r € (0, 1), the rate-constrained allocation
problem is to determine the optimal network configuration to
eradicate the disease with a decay rate of at least r. This can
be mathematically formulated as

min. Z 8ij(w)

Wikijee (hek

SLE [Z Xi(t + ADPr(Xi(1) = 1)}@]

i=1

<r (i&'(ﬂ))
i=1

Wi <wy ()€€ 3)
forall i € {1,...,N}. inen the current probability of
infection for each node X;(t) = Pr(X;(r)) and a desired

decay rate » > 0, the algorithm proposed in [68] finds
the minimum-cost allocation to realize this geometric decay
rate in expectation i.e. after one time-step, the total number
of infected nodes in the network should have decreased in
expectation, as given in Section III.

We note that although this problem is not equivalent to
optimizing equation (2), it is very closely related through
choosing the rate constraint . More specifically, r — 0
means that the algorithm wants to eradicate the malware as
quickly as possible, regardless of how many links it needs to
remove. In the case of optimizing equation (2), this is not a
practical solution as this would mean completely disconnect-
ing our network to guarantee the infection stops spreading;
unfortunately, this would mean that the primary function of
the network is completely decimated. On the other hand,
r — 1 means that the algorithm is not concerned as much
with ensuring that the malware is eradicated. Consequently,
this decay rate r, which is an input to the rate-constrained
allocation problem, can be used to balance how much we want
to cease the spreading of the malware with how important it
is to maintain connectivity of network.

SUBPROBLEM 3: SCALABILITY OF MALWARE EPIDEMIC
CONTROL

Stochastic control based solutions are slow in nature and
often involve computational complexities resulting in large
delays. To apply for large-scale IoT networks, we formulate
this scalability problem similar to translation of one graph to
another graph, where the initial graph is the state of network

138514

before solving stochastic control optimization and the out-
put (translated) graph is the graph after solving the stochastic
control problem i.e. with new interconnects that limit mal-
ware epidemics and maintain network throughput. Thus, the
problem is formalized as a multi-attributed graph translation
conditioning on two kinds of attributes: the node states and
parameters. We define an input graph Gx = (V, £, W) as an
undirected weighted graph. The infection state of the entire
network is denoted by a vector X(¢) € {0, 1}". The is also an
undirected weighted rarger graph Gy = (V', €', W’), which
is a result graph after the SIS spreading process. An external
parameter vector is given as P = {8, §, r} consisted of infec-
tion rate, recovery rate and decay rate. Typically, we focus on
learning the translation from one circuit connections Gx to
another Gy . Translation focuses on learning a translator from
an input graph Gy, a random noise U as well as the two kinds
of attributes X and P, to a target graph Gy, the translation
mapping is denoted as T : U, X, P, Gy — Gy.

IIl. MALWARE EPIDEMIC CONTROL

To perform the malware epidemic control, we first obtain
the node-level malware information using the adopted
HMD [36]. Further to confine the malware, we employ an epi-
demic model predictive controller to which the output from
the node-level malware detector is fed. We first discuss the
epidemic model predictive control optimization followed by
its deployment to solve the problem of malware confinement
in the network.

A. EPIDEMIC MODEL PREDICTIVE CONTROLLER
In order to contain the malware, we apply the rolling horizon
controller developed in [47]. Theorem 1 shows how the rate-
constrained allocation problem in equation (3) can be refor-
mulated as the equivalent convex program below.

Theorem 1 [Convex Bayesian SIS Control [47]]: Consider
the convex optimization program

minimize » 6+ Y &i(vy)
Y ey (i.j)eE
st Y 86Xi+ X
€O
+ Y kel + M EE el
ieO¢
<ry &, “)
i€V
where we additionally restrict the variables §; and y;; to the
closed unit interval, and have defined the convex functions

1 1
1 =Xy (t10)yy; Dievinxy Vi
1
VA ico

ieO°

—E D v
1
I = Tjenvinay ¥,

where w > dpax, the sets X; = {i €e VN O | X; = 1}, and the
shorthand notation X/ = (1 — X;), x{(z]r) = (1 — X(t|1)),

VOLUME 8, 2020

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

IEEE Access

and 6; = (1 — §;) for purposes of compacting notation.
1

Suppose the functions f; and g; = g;(1 — yif) are convex
in the variables 87, and y;; respectively, then equation (3) and
equation (4) are equivalent optimization problems, where the
optimal edge weights of equation (3) can be computed as
yi} =1- (yl;)w, where y is the solution to equation (4).

In Theorem 1, the set (’5 C V denotes the set of nodes for
which the binary infection data is known, and O¢ = V \ O
is the set of nodes for which no data is available. Unfortu-
nately, in our practical setup, since the malware detection
algorithm will not always be perfect, we actually do not have
access to the exact infection data X;(¢) for any nodes i € V.
Instead, the HMD provides independent estimates)?i(t) =
Pr(X;(¢) = 1). This requires determining a way manipulate
Theorem 1 to match our requirements and use it to solve
the rate-constrained allocation problem equation (3), as dis-
cussed below.

Since the true infection state X;(¢) is a binary random vari-
able for each node i, we instead maintain an estimate)A(,-(t) €
[0, 1] at all times. More specifically, we let)A(,-(t|t) be the
estimate of infection state X;(¢f) about time ¢ available at
time 7.

Taking expectations of the random binary infection vari-
ables, the dynamics according to equation (1) are given by

dE[X;](?)

o = X0+ B Y WX ©)

JjeN;
where the modified network W’ is used rather than the origi-
nal network W. In addition, we need to combine this estimate
with the updated information provided by the HMD. Using
this, we can propagate the estimates forward in time.
Given the current infection estimate X;(f¢|f¢), we propagate
this forward according to equation (6), a short time later by

Xi(te11te) = Xi(telte) + At(—8X;(te|te) 7
+B Y wiXi(tel). (8)
JeN;

However, these estimates with outputs of the deployed
malware detector (HMD) has to be combined in order to
obtain independent estimates X,-(tlt) = Pr(X;(t) = 1) each
time the malware detection algorithm is executed.

Let y;(t¢) € [0, 1] be the output of the proposed malware
detector (HMD) on node i at time f,. Assuming this out-
put is an independent probability that the node is infected
with malware, we update the probability of infection of each
node)A(i(lﬂl@) conditioned on the new information available
at each sampling time ¢ € {t¢}¢ez., as

Xitelte) = 1 — (1 = Xi(telte—))(A = yi(20))) (9)

Thus, given both a way for propagating the estimate X [t)
at time ¢ and a way to incorporate new measurements y;(fy),
we have a method for estimating X (1) of the infection state of
all nodes.

More specifically, revisiting the Theorem 1 and rather than
seeing O = { as the set of nodes, we now have the perfect

VOLUME 8, 2020

infection information, and we instead use the independent
probabilistic estimates of each node’s infection state at each
time-step {#;}¢cz. This is done by combining the propagation
equations with the outputs of HMD, we can generate artificial
observations X,-(tg|tg) = Pr(X;(z) = 1) for all nodes i € V,
as given in equation (9).

Based on this, by considering the special case of Theorem 1
where we now have @ = V and O° = ¢, and for a
fixed recovery rate § > 0, we simplify it to an equivalent
formulation as shown in Theorem 2 below.

Theorem 2 [Equivalent problem as Theorem I]: Consider
the convex optimization program

minimize) g;(w})
Wilapee (eE
st Y (1=8)X+ vy - Xy < r > X, (10)
i€O ieV

where, we have defined the convex function
M _ % VT v
¥ = 1= Xptl0)yy; Mievinay Vi

1
— XD Menvinayy; (1)

where w > dpyax and &; = {i € VN O | X; = 1}. Suppose the
function g;; is convex in the variable w;j, then equation (3) and
equation (10) are equivalent optimization problems, where
the optimal edgle weights of equation (3) can be computed as

w;j =1- (w;.)W , where w; is the solution to equation (10).

Note that the convexity of each 1//i{W} can be verified by
applying an established result from signomial optimization
works such as [69]. However, it is worth noting that product
terms are in general non-convex, and so CVX [70] may
not solve the problem. Solutions can instead be obtained by
coding standard convex optimization algorithms (see [71]).
Thus, it is possible to effectively solve the rate-constrained
allocation problem with a chosen decay rate.

B. OVERALL SOLUTION

Finally, to put the solutions of the 2 subproblems together
in a way to solve the optimization problem in equation (2),
we need to consider a specific form of the performance
function P. There exist numerous metrics to evaluate the
performance of a network such as throughput, latency, and
bandwidth. In this work, to evaluate the network performance
in terms of network throughput, as given by [72], [73]

T log(1 +w)

P(W'(1),X(1)) =t =/ Pc(l =X(@) (12)

0

where Py, is the probability of successful transmission, mod-
eled as the inverse of the node malware infection probability;
h is the number of hops; and w is the weight assigned to
the communicating nodes (signal-to-noise ratio (SNR)). The
SNR is given by
—a
L—a (13)
ZkeL(t)v 8ijd

138515

IEEE Access

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

where dj; represents the distance between nodes i, j with a
channel gain g;; in the network L(¢) at a given time #; The
path-loss exponent is given by «. As such, the traffic between
nodes is determined based on the throughput, connectivity,
and the malware infection of the nodes. The decay rate r is
provided to the epidemic controller based on the malware
threat parameter o obtained from Virustotal.com [74] as a
way to limit how much the network can be disconnected.
As r — 0, the solution to Theorem 2 provides much more
aggressive containment strategies by disconnecting the entire
network. On the other hand, as r — 1, the solution to
Theorem 2 allows the malware to spread and not disconnect
many links. Based on this, the proposed optimization solution
determines the best possible network connectivity in order
to maintain as many original connections as possible while
satisfying the desired decay rate. The proposed work can
also be extended to other network of devices under different
resource constraints, though we showcase the benefit for IoT
network here.

IV. GRAPH TRANSLATION BASED MALWARE
CONFINEMENT

In order to perform the graph translation i.e., predict the
graph (network topology) instantaneously, which is similar
to the graph predicted by the stochastic optimization solu-
tion, we propose to use a graph translation model to handle
the malware epidemic confinement problem automatically.
However, the existing translation model [48] generates output
graphs only conditioning on the input adjacent matrix W
without additional attributes, e.g.the node states as well as
the malware parameters (infection, recovery and decay rates),
which are critical to the malware epidemic confinement
process. Thus, graph translation-based malware confinement
has two challenges that cannot be solved by the existing
translation model: 1) Node state representation as the input
conditions, and 2) Fusion of different contextual information
in different dimensions.

To solve the above two challenges, we propose a fusion
representation of graphs containing both edge and node infor-
mation, and further propose a multi-attributed discrimina-
tor and generator architecture (MA-DGT) by integrating the
impacts of input graphs and external attributes on the trans-
lation process. An overview of the proposed MA-DGT archi-
tecture is shown in Figure 2. The functionality of individual
components is described below.

A. MULTI-ATTRIBUTED GENERATOR

1) FUSION REPRESENTATION

The edges of undirected weighted graph are initially pre-
sented as a symmetry matrix. To avoid redundant compu-
tations, we restrict the direction of connection from high
indexing nodes to low indexing nodes, thus transforming the
symmetry matrix to an upper triangular matrix in directed
graph. Specifically, denote the W5 e R™" as the weighted
adjacency matrix for [-th layer in m-th feature map and

138516

Node state vectors=

@@Eﬂ@a
| Noise Generator

.Spatlal rcpllcatc ! Label graph Y
! XK, pNXNxK '

P

\Parameter vector H

Generated graph Y’

Generated”
Label'7

Discriminator

FIGURE 2. Architecture of proposed MA-DGT for network translation.

W by is for the edge ¢; ;. Let A denote the weighted adjacency
matrix of the input graph. The node state information is stored
in the diagonal values of A. To incorporate the parameters
vector P, we do a spatial replication to reshape P € R3 to
P € R™"K Then the attributed input graph tensor W &
RN x4 i5 generated by concatenating adjacent matrix A and
parameter matrix P. ®; ,, € R>" and Wim € R"™! are the
incoming and outgoing kernels of /-th layer of k feature map
for a node, respectively.

2) MULTI-ATTRIBUTED GRAPH CONVOLUTION
We define a graph convolution over its in-edge(s) as the
weighted sum over all the weights of its incoming edges:

flslr;)j = D/ - W_l’.m. Similarly, we define the graph
convolution over the out-edge(s) as f; (n?};tl) = Wll R

And thus, the directed edge-to-edge convolution is defined as
follows:

ZH = o G sy s

where Wl'H " refers to the m-th value in position i, j of edge
level feature map in the (I + 1)-th layer. M; refers to the
number of feature maps in the /-th layer. The two compo-
nents of the formula refer to direction filters as talked above.
o (-) refers to activation function that can be set as linear,
or ReLu when the edge weights are assumed non-negative.
The edge-to-node convolution embeds each edge feature map
into a vector which encodes all the incoming and outgoing
edges of a node into a value from various combinations:

LS D A AL (15)

where Wl.4’” e R™! denotes the i-th node (i.e. the
4th layer in graph translator) in Figure 2 under n-th feature
map.

After the edge-to-node convolution layer, each node is
embedded into a vector w; € RM+*1 consisting of My features
and the whole graph is embedded as a matrix W e RM+x7,
In this node level representation, we input the node states
vector X € R!*" to concatenate matrix W and vector X,
generating the matrix W € RM4+DX" a5 input of the decon-
volution part.

VOLUME 8, 2020

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

IEEE Access

3) MULTI-ATTRIBUTED GRAPH DECONVOLUTIONS

After graph encoder, it requires to deconvolute the node
representation back to target graph. This calls for a reverse
process of “‘edge-to-node convolution” as shown in Figure 2.
To achieve this, the node representation Wik e RIX% jn |-th
layer in k-th feature map will be multiplied by the transpose of
incoming and outgoing kernels to obtain weighted adjacency
matrix in the (I + 1)-th layer:

I+1, M T Lk Lk T
ziftm=3 ol -2 i+ 12)

(16)

where [-]; means the i-th element of a vector. The
decoded edges from node representation still encom-
passes highly-ordered connectivity knowledge, which will
be released and translated back to the neighborhood of
incident incoming and outgoing edges by ‘“‘edge-to-edge
deconvolution™:

I+1, n T I n I T
Wi mZU([Zk:] P ka;n]i+[2k=1 Zi,l?l'\yl»m]i)
(17)

To ensure the generated graph is undirected, we still constrict
the weighted adjacent matrix is upper triangular matrix by
multiplying the output matrix W from last layer with a unit
upper triangular matrix O € R"*".

B. MULTI-ATTRIBUTED GRAPH DISCRIMINATOR
Discriminator is used to identify whether the generated
graphs follow the same distribution of target graphs, which
encodes a second-order change between input and target
graphs. Different from DGT, we propose a multi-attributed
conditioned discriminator, as shown in Figure 2. The input
of the discriminator is multi-attributed graph tensor Z €
R"*"%4 same as the input of generator. Specifically, the input
graph tensor and target graph are together inputted into dis-
criminator after being concatenated into a n X n x 5 ten-
sor which can be considered as a 5-channel weighted adja-
cency matrix of a multi-graph. Next, each of the channels
are mapped to its corresponding feature maps and then to
the separated edge-to-edge layers. The edge-to-node layer
is again applied to obtain node representations, which is
then mapped to graph embedding by a fully connected layer.
Finally, a softmax layer is implemented to distinguish the
generated graphs and target graphs. All the weights of filters
in the network are initialized and optimized through ADAM
optimization algorithm.

C. TIME AND MEMORY COMPLEXITY

Due to the similar convolution operations, the multi-
attributed graph generator and discriminator share same time
complexity. For generalization, we assume all the layers
(except input and output) have the same number of feature
maps as M. S is the length of the fully connected layer. K
is the number of parameters. Then, the worst-case (i.e. when
the weighted adjacency matrix is dense) total complexity is
0((0.5 ®Mo(K + 1) + 2n°M3) + n* M + n* My S), where

VOLUME 8, 2020

the first, second, and third terms are for the ‘“‘edge-to-edge
convolutions”, “‘edge-to-node convolutions™, and fully con-
nected layers in conditional graph discriminator with the indi-
rect input matrix, respectively. Similarly, the total memory
complexity is O((4nMo + 4.5n>My) + 3nMo + (nMyS + 25))
for all the “edge-to-edge convolutions”’, “edge-to-node con-
volutions™’, and fully connected layers in conditional graph
discriminator. Compared to the analytical solutions that needs
large search time to determine the (sub-)optimal solution,
the MA-DGT requires training with the graph topology and
predicted information. However, predicting at runtime is the
main objective of this work and hence, we compare the
runtime analysis in this work and performing online learning

for MA-DGT is out of scope.

V. EXPERIMENTAL RESULTS

We present the evaluation of the malware epidemic control
with the aid of proposed stochastic control technique and
graph translation.

A. EXPERIMENTAL SETUP
The malware propagation performed in the experiments is
similar to that in [75]-[78].

Network and Hardware Setup: A small-scale setup
of 20 IoT nodes encompassing temperature sSensors con-
nected with Intel ATLASEDGE board, Beagle Boards (Bea-
gleBone Blue) having ARM processor, communicating via
Bluetooth protocol are deployed as described in Section II-A
in an area of 5 x 5 m? (in our lab). The deployed boards host
RISC architecture with embedded Linux OS running on them.
The devices are statically placed during the experiments.
The epidemic model predictive controller is executed on a
controller built on Intel Haswell core i5 processor.

Software Framework: On each device, i.e. at the node-
level, in order to extract the HPC information, Perf tool
is employed. It exploits perf_event_open function call in
the background to measure multiple events simultaneously.
We perform feature reduction using correlation extraction and
observe a limited number (four) of critical HPCs for malware
detection due to limited resource availability. We employ
JRip ML classifier for malware detection, similar to that
in [34], [36], which achieves an accuracy of 91.08% with
1 clock-cycle latency. This is also explained in Appendix B.
The Python framework is utilized to develop graph
translation.

Applications: We executed 3000 benign and malware
applications for HPC data collection. Benign applications
include MiBench [79] and SPEC2006 [80], Linux sys-
tem programs, browsers, text editors, and word processor.
For malware applications, Linux malware is collected from
virustotal.com [74] and classified on virusshare.com [81].
Malware applications include Linux ELFs, python scripts,
perl scripts, and bash scripts, which are created to per-
form malicious activities consisting of four classes of mal-
ware including 452 Backdoor, 350 Rootkit, 650 Virus, and
1169 Trojans. The functionality of the deployed malware

138517

IEEE Access

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

applications is: Backdoor applications try to provide remote
access to the remote user (attacker) and facilitates information
leakage; Rootkit applications provide the attackers with priv-
ilege even to modify the registers and authorized programs;
Trojans perform phishing of information stored in the system,
and passwords; self-duplicating Viruses and self-replicating
worms that can launch DoS attacks are deployed on the IoT
nodes.

B. EVALUATION OF MALWARE EPIDEMIC CONTROL

We evaluate the performance of malware epidemic controller
discussed in Section III-B on the network with 20 nodes
deployed in our lab within a 5 x 5m? area. 1000 exper-
iments are carried out with each experiment lasting for
40 seconds. Devices in the network are affected by mal-
ware randomly at any point of time, with multiple attacks
on each of the devices to replicate real-world scenario.
At the initial time-instant (t = 0), two nodes are deployed
with self-propagating malware. We evaluate the network
performance in terms of overall throughput, averaged over
1000 experiments.

1) THROUGHPUT WITH TIME

The variation of throughput with time is presented
in Figure 3. The lower bound and the upper bounds represent
the best-case and worst-case scenarios achieved by employ-
ing the proposed malware epidemic model predictive con-
troller is shown here. One can observe that in most of the cases
(i.e. average) the proposed method achieves throughput close
to the upper bound. By employing, the proposed epidemic
model predictive controller, a throughput ~ 95% of the upper
bound is achieved in most of the experiments. This confirms
the effectiveness of the proposed malware confinement and
ensures the throughput is not hampered, irrespective of the
attack.

Throughput (Mbps)

I Upper bound
6 Il Average
[ILower bound
4
2
0
0 5 10 15 20 25 30 35 40

Time (s)

FIGURE 3. Throughput with time (along with upper and lower bounds).

138518

2) THROUGHPUT UNDER DIFFERENT MALWARE
PROPERTIES

Figure 4 presents the overall network performance (through-
put) under different malware infection and recovery rates.
With the increase in recovery rate, the network throughput
increases and is highest at lower infection rate and high recov-
ery rate. However, the infection rate increase hampers the
overall throughput, and it has higher impact on the throughput
compared to recovery rate. It can be seen that the right-most
corner in Figure 4 i.e. high infection and high recovery rate
has slightly lower throughput compared to the high recovery
and low infection rate. This shows that runtime malware
detection and quarantining (recovering) is not the panacea
to have secure IoT networks, as infection (propagation) has
higher impact than recovery (quarantining). Additional anal-
ysis with malware parameters is presented in Appendix A.

606

610

600
600 ‘ 598
1
0.5

Throughput (Mbps)

590 |..
585
0.5

Infection Rate 00 Recovery Rate

FIGURE 4. Network performance (throughput) with the infection rate and
recovery rate.

3) NETWORK PERFORMANCE COMPARISON

Figure 5 presents the network performance (throughput) of
the proposed epidemic predictive controller based malware
confinement provided with real-time malware infection, state
of the nodes in the network, and the performance when
other heuristic methods are deployed in the IoT network as
a defense for malware propagation. The deployed heuristics
are: disconnect the node as soon as the malware is detected
(denoted as ‘Imm. Disc.”); disconnect the node after 1 cycle of
malware propagation (denoted as ‘After 1 cyc.”); no defense
in the network (‘ND’); greedy algorithms based on the mal-
ware infection probability (‘Greedy 1°) i.e., disconnect the
node if malware is detected by HMD with a probability
higher than a threshold (0.75); and based on the degree of
infected node (‘Greedy 2’) i.e., disconnect infected node with
highest neighbors. Figure 5(a) shows the throughput w.r.t.
time executed for 12 hours. As seen the proposed technique
leads to a better convergence compared to other techniques.
It needs to be noted that the Figure 5 looks like plain bars,
however, it is not the case and has significant overlaps with
some other techniques. Figure 5(b) shows a zoom-in snapshot

VOLUME 8, 2020

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

IEEE Access

—— Imm. Disc.

— After 1 Cyc.
No Disc.
Greedyl
Greedy2
Proposed

Throughput

0 0.5 1 1.5 2 2.5 3 35 4
Time (s) «10%

(a)

20

/g 15 ‘A‘ —<4—Proposed)
2 Imm. Disc.
2 ——ND
B 1ok —*—Greedy 1 |
,_% —4— After 1 Cyc.
Y -4A-Greedy 2
2 WL X e L X X X 1
£ st
w i) TNy LINN
. T I T
0 5 10 15 20 25 30 35 40
Time (s)
(b)

FIGURE 5. Throughput with time when different malware confinement
techniques are employed: (a) experiment executed for nearly 12 hours to
observe convergence; (b) zoom-in snapshot.

of the throughput. One can observe that with the proposed
technique, the throughput remains close to the maximum
bound. The immediate disconnect and disconnecting the node
after one cycle achieve the next best throughput, respec-
tively. Similarly, the greedy 1 and no disconnect performs
worse, as the malware propagates through the network. The
greedy 2 i.e. disconnecting the infected node with highest
neighbors performs better than Greedy 1 indicating that infec-
tion spreads much faster than quarantining the malware and
malware propagation has more impact on the overall network
throughput. The network throughput obtained for the experi-
ments deployed with various schemes is listed in Table 1 with
first row describing the scheme for malware confinement,
and the second row providing the overall network throughput
(Thr in Mbps). Nearly 200% throughput is achieved com-
pared to network without having any defense for malware
propagation defense. Similarly, up to 160% is achieved with
proposed malware epidemic control provided with real-time
infection data. Additionally, the number of infected nodes
with a probability more than 70% are averaged for all the
conducted experiments and presented third row (#Inf.) of
Table 1. It can be seen that the number of infected nodes with

VOLUME 8, 2020

TABLE 1. Network throughput and infected nodes (average) under
different malware confinement schemes.

Technique | Proposed | Imm. disc. | After I cycle | Nodisc. | Greedy I | Greedy 2
Thr. (Mbps) | 596.0528 | 460.9631 418.9087 182.143 [310.6328 [243.2209
Inf. 1.27 2.48 3.32 - 14.79 2.71

proposed control mechanism is nearly 50% less compared to
the immediate disconnect, which has the second best through-
put compared to the proposed method.

C. EVALUATION OF MALWARE STATE TRANSLATION

For the evaluation of MA-DGT, we use the network data (net-
work topology, state of nodes, infection rate, recovery rate,
and decay rate, network topology after deploying stochastic
controller) and the output of stochastic controller to train
the MA-DGT. The number of such data samples used are
343 with 200 of them used for training and the rest used for
testing. Furthermore, three datasets with different network
sizes (e.g. 40, and 20 termed as I, and II) are explored. The
number of feature maps in each of the layers of MA-DGT are
5—10—10—-10—5 —11in generator and 5 — 10 — 10 — 20
in discriminator. The learning rate is chosen as 0.0001 for
both generator and discriminator and in the training process.
The mini batch for optimization is 20. All experiments are
conducted on a 64-bit machine with Nvidia GPU (GTX
1070,1683 MHz, 8 GB GDDRS5). The model is trained by
ADAM optimization algorithm.

To evaluate the performance of the MA-DGT, we compare
the generated graphs to the label graphs (output of stochas-
tic controller) based on five graph property metrics. First,
the Accuracy is utilized to evaluate the ratio of edges that are
correctly predicted by computing the percentage of correctly
generated edges among all the possible edges. To measure the
edge weights which are continuous values, RMSE (root mean
squared error), R2 (coefficient of determination score), Pear-
son and Spearman correlation are computed between weights
of generated and real target graphs. To validate the superi-
ority of the MA-DGT over other existing graph generation
methods in deep learning domain, we conduct additional two
comparison experiments on two models: 1) GraphVAE [82]: a
probability-based graph generation method for small graphs
and 2) GraphRNN [83]: a recent graph generation method
based on sequential generation with LSTM model. The aver-
age evaluation results of the whole testing samples are shown
in Table 2

TABLE 2. Evaluation of proposed MA-DGT for malware epidemics for two
network sizes.

Dataset Method Accuracy RMSE R2 Pearson Spearman
GraphRNN 70.54% 4415 044 0.29 0.24
)i GraphVAE 60.60% 49.09 0.73 0.16 0.17
MA-DGT 90.33% 2151 0.13 0.81 0.86
GraphRNN 83.97% 4213 0.16 0.23 0.19
1 GraphVAE 81.19% 4592 0.39 0.32 0.35
MA-DGT 94.53% 2345 0.63 0.80 0.79
138519

IEEE Access

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

As shown in Table 2, the MA-DGT outperforms the other
two methods in almost all the metrics. Specifically, in terms
of edge accuracy, the graph generation methods (GraphRNN
and GraphVAE) cannot handle the graph translation and
got low accuracy of around 60% at dataset II, and 80%
at dataset I, while MA-DGT achieves better results with
accuracy of 90%. The MA-DGT outperforms the other two
methods with an average 76.8% superiority in RMSE, 60.1%
in Pearson correlation and 73.2% in Spearman correlation.

To further validate the effectiveness of the MA-DGT,
we show two cases for analysis in Figure 6. These two cases
have different parameters. Each line is a translation case con-
sisting of input graph, label or target graph and the generated
graph. The input graph has many connections and the after
de-infected process, some connections are deleted as shown
in label graphs. In this malware problem, the performance of
translation can be directly viewed from the topology com-
parison between labeled graphs and the generated graphs.
In Figure 6, each of the circles represent a node and the
number in the circle refers to node index. The edges 2-11,
2-13 and 7-14 are deleted in the labeled graph and this also
happens in the generated graph, while for both label and
generated graphs, the 6-15, 9-3, 10-3 edges remain in the
translation process. This validates that the translation process
learns the way of how to de-infected the malware circuits
depending on different parameters and nodes states.

Input graph Label graph Generated graph

SE A AT - -
183516 W 516

FIGURE 6. Two cases for malware state translation.

Lastly, we evaluate the time and memory cost of the pro-
posed MA-DGT to determine the scalability of the technique.
It needs to be noted that we compare the inference time
of MA-DGT with the stochastic control technique. Also,
we compare the resource consumption with that of the pro-
posed stochastic control technique (Section III). The time and
memory consumption are depicted in Figure 7. As the training
of MA-DGT is performed offline, it can be ignored in the
given work based on the objective, however, it has to be noted
that the training of MA-DGT is inherently expensive. Given
the objective of this work, improving learning convergence is
out of scope of this work. It needs to be noted that the stochas-
tic technique does not require training. Figure 7 presents the
comparison of MA-DGT based technique and stochastic opti-
mization solution (represented as ED - Epidemic controller)
in terms of time and memory consumption. One can observe
that the time consumption and memory requirements for MA-
DGT based malware epidemic control is smaller compared
to the stochastic technique. However, for smaller networks
(such as 20 nodes), the stochastic optimization (EC) solutions

138520

80 8000
70 =Time-MA-DGT 2| 7000
ZATime-EC
60 6000
—Memory-MA-DGT m
@50 —~+Memory-EC / 5000 é
g 40 4000 g
& 30 3000 &
20 7| 2000 =
10 E | 1000
0 =28

20 40 60 80 100 120 140 160 180
Network size (# nodes)

FIGURE 7. Scalability of MA-DGT in time and memory cost and
comparison with stochastic technique (Testing phase).

outperform the MA-DGT, due to the involved complexity
in MA-DGT. Furthermore, one can note that the memory
requirements for MA-DGT are nearly constant (irrespective
of network size), whereas the memory requirement grows
exponentially for the stochastic technique. This proves the
ability to perform the malware epidemic control for large
scale networks using the proposed MA-DGT effectively with
training data obtained from the stochastic controller.

VI. RELATED WORK
We differentiate the proposed work from state-of-the-art both
in terms of malware confinement and graph translation.

A. MALWARE CONFINEMENT IN IoT NETWORK:
COMPARISON WITH THE STATE-OF-THE-ART

Controlling epidemics or infection spreading is one of the
widely researched areas. A recent survey on controlling epi-
demics on networks [43] highlights the currently noticeable
gap in the literature needed to solve the problems we propose.
Specifically, the overwhelming majority of works that study
the theoretical containment or eradication of a disease or
malware only consider deterministic approximations of the
actual stochastic dynamics, and also only consider one-time
optimal resource allocation problems rather than real-time
feedback control strategies.

These relaxations to the problem arise from the inherent
complexity in networked epidemic systems: the stochastic
dynamics which describe the fundamental aspects of the
process entangle the components of the system’s state, mak-
ing their analysis difficult. This issue is typically addressed
by using a mean-field type approximation (see, e.g., [84]),
in which the random variables studied in the process are
assumed to be uncorrelated with each other across time.
This, in effect, assumes that the problems introduced by
entanglement have only a weak effect on the evolution of the
system, and as such, the resulting approximated probabilities
are representations of the statistics of the process itself.

The work in [44] presents a framework in which the spread-
ing infection (Worm) intends to kill the infected node in order
to refrain from getting killed and detected by the defender.
Despite effective, this work differs in terms of considering

VOLUME 8, 2020

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

IEEE Access

both node-level and network-level attributes to control the
epidemic. Further, the assumption that malware need to kill
an infected node to minimize the spread is not required in this
work.

For sufficiently simple epidemic processes (see, e.g., [85])
the mean-field approach yields dynamics which provides
an upper-bound for the expectation of the stochastic pro-
cess. However, in general, this is not the case. Indeed, even
for simple models with multiple compartments, simulations
have shown standard mean-field approximations to be unre-
liable proxies for the statistics of the underlying stochastic
process (see, e.g., [86]). Ultimately, most works that con-
sider containing or eradicating any type of spreading process
on a network finish with an analysis of the deterministic
mean-field approximation dynamics, and it remains unclear
exactly how this analysis connects to the original stochastic
dynamics. Unfortunately, we do not have this luxury as the
actual stochastic dynamics are what will ultimately drive
the spreading of the infection, meaning we must consider
the exact stochastic dynamics rather than an approximation.
Instead, in this work we develop a tractable real-time stochas-
tic controller that can operate on the exact stochastic dynam-
ics. For 10T networks, techniques such as HoneyPot [87],
deception [88] are proposed. These techniques are effective in
detecting the malware or security breaches in the network by
luring the attackers to probe the decoys. However, they lack
a sophisticated mechanism to defend against attacks [89].

B. GRAPH TRANSLATION: COMPARISON WITH THE
STATE-OF-THE-ART
In recent years, there are emerging research works on
neural networks for graph learning, which has a wide
range of applications, e.g. security, computer networks,
bio-information and social network connectivity determina-
tion [48], [90]-[92], [93]-[95]. As one category of graph
learning domain, graph generation has attracted a great
attention, which is highly tailored to only address the graph
generation in specific type of applications such as molecule
generation. Generic graph generation can handle general
graphs that are not restricted to specific applications. Existing
works all proposed in the most recent year, which are based
on VAE [82], [96], generative adversarial nets (GAN) [97]
and others [83], [98]. Specifically, A graph net proposed
by [98] generates nodes and edges sequentially to form a
whole graph, which is sensitive to the generation order and
time-consuming for the large graphs. Works in [82] and [96]
are all new variational autoencoders in parallel for whole
graph generation, though they typically only handle very
small graphs (e.g., with < 50 nodes) and cannot scale well in
both memory and runtime for large graphs. Different from the
above methods, GraphRNN represents graphs as sequences
using different node ordering, and then builds an autoregres-
sive generative model on these sequences with LSTM model.
A new graph learning problem ‘“‘graph translation™ is
initially proposed in [48]. In real-world applications, rare
events such as catastrophic events and cyber-attacks only

VOLUME 8, 2020

occurred in few locations (can be treated as different local
networks), but all the other locations without historical rare
event occurrence also need the capability of early detection
and reaction. Therefore, it is highly desirable to learn the
shared pattern of rare events in those locations with historical
rare events, and then proactively synthesize the event occur-
rence situations exclusive to all the other locations. Graph
translation problem aims to learn and transfer the shared
complex patterns across different networks with different
structures and sizes. However, in the GT-GAN (Graph Trans-
lation Generative Adversarial Network) proposed by [48],
the translation process only depends on the topology of the
input graph and does not consider the node attributes of the
input graphs. Whereas, in our problem, the translation process
depends not only on the graph topology, but also depends on
the node attributes and controlling parameters(e.g. inference
rate, reconstruction rate and decay rate). To deal with this
problem, we propose the MA-DGT (Multi-Attributed Deep
Graph Translation), which is a novel deep graph transla-
tion structure considering the node attribute and translation
parameters.

VII. CONCLUSION

A single compromised node in an IoT network can infect
other nodes in the network, as a consequence of malware
spread. The existing works on malware confinement are
either too theoretical or does not have any malware detec-
tion strategy nor considers true infection state of the nodes.
In contrast, in this work we propose a novel practical solution
for securing IoT networks against malware epidemics. To this
aim, a lightweight runtime malware detector is deployed on
IoT nodes for detecting malware with high accuracy. Unfortu-
nately, since the malware detection algorithms are not perfect,
their outputs cannot be immediately used in theoretical opti-
mal control problems. Instead, we use the outputs of malware
detector to generate probabilistic outputs about the infec-
tion state rather than binary deterministic ones that can be
used (with small modifications) in a rolling horizon optimal
control algorithm. The epidemic model predictive controller
considers the network connectivity, estimated infection state
of the nodes, performance requirements of the network and
performs a stochastic optimization to minimize the infection
spread in the network while limiting the losses to the network
performance. The deployed malware detector achieves a mal-
ware detection accuracy of ~92% on average. The proposed
malware epidemic control method achieves a throughput of
up to 160% compared to heuristic based approaches. Further-
more, for the purpose of scalability, a Multi-attributed graph
translation technique is proposed.

APPENDIX

A. MOTIVATIONAL CASE STUDIES

We perform case study to evaluate the need for malware con-
finement at the network-level and deploying multi-attributed
deep graph translation to highlight the security risk in
IoT networks.

138521

IEEE Access

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

1) IMPACT OF MALWARE CONFINEMENT ON THROUGHPUT
IN loT NETWORK

We investigate the impact of malware propagation on the
network performance if no malware confinement strategy is
deployed. To evaluate the impact of malware propagation on
network performance (throughput), we consider a small-scale
IoT network of 20 nodes with no restriction on malware
propagation enforced. The throughput of each node is set
to be 1 Mbps. We assume the malware infection model for
IoT devices as Susceptible-Infected-Susceptible (SIS). More
details on infection model are presented in Section II-B.

In a SIS model, an IoT node is susceptible to infection
(malware attack), and can be recovered from infection after
certain time i.e. malware can be quarantined and the node
is again susceptible for future infections. The impact of
malware propagation on the network throughput is depicted
in Figure 8. As seen, if no defense mechanism for malware
containment is deployed, all the nodes in the network eventu-
ally gets infected, reducing the network throughput (to zero
at some time instants). It needs to be noted that the observed
increase in throughput is due to the considered SIS model
i.e. a node recovers from infection after quarantining. This
shows that an effective malware epidemic control has to be
deployed to maintain the network performance. For this case
study, the infection rate is 0.3 with a recovery rate of 0.1.
These parameters are chosen based on the observed infection
and recovery rates for the employed virus samples. However,
it is observed that the trend of network throughput is same
for all the different experimented malware. More details on
experimental setup are in Section V-A.

18

—_ —
~ N
T

—Throughput

Throughput (Mbps)
& o ®» o o

NS}
T

0 I I I I Il
0 2 4 6 8 10 12 14 16 18

Time (s)

FIGURE 8. Throughput with time for the loT network of 20 nodes, but
without any malware confinement strategy.

2) NEEDS OF CONVOLUTION OPERATIONS ON DYNAMIC
AND ARBITRARY GRAPH STRUCTURES

Existing deep learning models for the translation of data [42]
(e.g. image data, audio and text) assumes the data struc-
ture is fixed before and after the translation. For instance,
in case of the image translation, only the intensity of pixels
vary, whereas the pixel properties such as the number of
neighboring pixels are retained, as shown in Figure 9(a).

138522

However, in the problem of malware propagation in IoT net-
works, there are substantial differences: 1) the graph topology
and connectivity are highly flexible, as shown in Figure 9(b).
And hence, the deep learning models designed based on
convolution operations on grids (such as images) are not
directly applicable to IoT network problem. 2) Further, in
graph translation problem, both the nodes’ statuses and the
connectivity structure among the nodes change, as shown
in Figure 9(b), while in image translation, the node connectiv-
ity structure is always fixed, as shown in Figure 9(a). Hence,
new methodologies are imperative for graph translation that
predicts both node status as well as node connectivity is
needed.

(b) multi-attributed graph translation

(a) Image translation

FIGURE 9. Translation on graph-structured data requires different
convolution operations. (a) In image translation, the connectivity among
nodes is always grid-structure and will not change. (b) In multi-attributed
graph translation problem, the connectivity among nodes can be any
generic graph and can change before and after the translation.

B. HARDWARE-ASSISTED RUNTIME MALWARE
DETECTION

To perform effective node-level malware detection in IoT
network, we adopt a lightweight, hardware-assisted malware
detection technique (HMD) recently proposed in [34], [36].
We briefly describe the adopted technique below.

1) OVERVIEW OF HARDWARE-ASSISTED MALWARE
DETECTION

The general overview of deployed malware detector (HMD),
depicted in Figure 10, adopted from [34], [36]. It comprises
of feature selection, and runtime malware detection stages.
Feature selection is performed offline, and malware detection
is performed online.

......................

Correlation Analysis
& Attribute Evaluation
Capturing) 1 TTTTTITm [remmemeT
HPCs via
PerfTool)~ 1 Semmmmmceao A ;

.................... /
Mals ML
o Feature ﬁ Feature lassifi \ﬁ
Extraction Reduction Classifiers
Benign * Ry [

FIGURE 10. Overview of adopted runtime malware detector HMD.

Applications HPCs
(Malware and Benign)

a: FEATURE SELECTION

For runtime malware detection, we employ HPC traces in
this work. To alleviate hardware overhead and facilitate run-
time malware detection irrelevant data (unneccessary HPC
features) is identified and removed using a feature reduction
algorithm and as such only a subset of HPCs that represent
the most critical features required for malware detection are

VOLUME 8, 2020

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

IEEE Access

selected. This feature selection process is performed offline
to determine the most critical microarchitectural events to be
captured by the limited available HPCs.

We collected 44 possible diverse microarchitectural events
using the available HPCs for the employed IoT devices by
repeating the experiments multiple times. As the maximum
number of HPCs that can be collected in one iteration is lim-
ited to number of available on-chip HPCs (4 in the employed
hardware), we ran experiments multiple iterations to obtain
all the 44 HPCs. Further, we apply a feature reduction tech-
nique to determine the critical HPC events. For feature reduc-
tion, we apply “Correlation Attribute Evaluation” to rank the
most critical HPC events. Correlation evaluation algorithm
calculates the Pearson correlation coefficient between each
attribute and class, as given below.

oy = 4O (18)
Vvar(Z;) var(C)

where p is the Pearson correlation coefficient. Z; is the input
dataset of event i (i = 1,...,44). C is the output dataset
containing labels, i.e. “Malware” or “Benign” in our case.
The cov(Z;, C) measures the covariance between input data
and output data. The var(Z;) and var(C) measure variance
of both input and output datasets, respectively. Based on the
ranking of p, top 8 features are selected for analysis, given
in Table 3. The features are ranked based on their impor-
tance and relevance to the target variable through the fea-
ture scoring process. The reduced set of prominent features
include HPCs representing pipeline front-end, pipeline back-
end, cache subsystem, and main memory behaviors which are
influential in the performance of standard applications.

TABLE 3. Microarchitectural (HPC) events of high priority for runtime
malware detection.

Rank Event name Rank Event name
1 Branch Instructions 5 dTLB_store_misses
2 Branch Loads 6 LLC_prefetch_misses
3 iTLB_load_misses 7 L1_dache_stores
4 dTLB_load_misses 8 cache_misses

Depending on the available number of HPCs, these
selected features or events are monitored online on the IoT
devices and are provided to the deployed ML classifier
to classify and detect malware from benign applications,
as described below.

b: MALWARE DETECTION BY ML CLASSIFIERS

Once the key features are selected, they are used to train
the ML classifiers in the HMD. For evaluation, we experi-
mented various ML classifiers and compare them in terms of
malware detection accuracy, hardware overhead, power con-
sumption, and the time required to detect malware (latency).
The running application is profiled every 1ms i.e. non-trivial
HPCs are collected continuously at 1ms interval and fed to
the ML classifier. A k-fold (k=10) validation is employed
in this work for evaluating and comparing the malware
detection accuracy of different classifiers. The ML classifiers
are trained with the non-trivial HPCs and is performed offline.

VOLUME 8, 2020

For the inference and runtime malware detection, the crit-
ical HPCs listed in Table 3 are captured during application
execution and provided as input to the ML classifiers. Based
on the derived model in the training phase, the ML classi-
fiers provide information regarding the existence of malware.
As the malware detection is performed on individual nodes,
it is independent of the network topology. The deployed
epidemic controller for malware confinement requires an
estimate of infection rather than deterministic infection state
of the node, the HMD’s output will be fed to the epidemic
controller.

Based on these experimental evaluations (presented
in VII-2), HMD employing JRip ML classifier that has
relatively smaller area (80x lower than neural network
(MLP)), lower latency (1 clock-cycle) for malware detec-
tion is deployed on the IoT devices in this work. We would
like to emphasize that HMD is not a contribution of this work
nor the proposed malware confinement is limited by HMD.
As the devices we experimented in this work host HPCs,
we adopted this methodology. However, depending on the
configuration of IoT devices, one can adopt other techniques
such as [99]. The critical part is to employ a node-level
malware detector whose information (malware estimates) can
be fed to the proposed malware confinement solution.

2) EVALUATION OF ADOPTED MALWARE DETECTION

We evaluate the deployed HMD with different ML classi-
fiers in terms of malware detection accuracy, resource con-
sumption, and processing overheads to verify the suitability
for runtime malware detection on IoT devices. A 10-fold
cross-validation is used to verify the performance of mal-
ware detection with reduced features. For the detection accu-
racy, we calculate the percentage value of samples that are
correctly classified. The experimental setup is same as that
described in the earlier section.

Table 4 presents the 10-fold validation of the HMD’s per-
formance and the silicon overhead incurred by the malware
detector that employs 4 HPCs. As the software implementa-
tion of ML classifiers for malware detection is slow, in the
range of tens of milliseconds which is an order of magni-
tude higher than the latency needed to capture malware at
runtime [34], hardware implementation is performed in this
work. The deployed HMD’s hardware footprint is evaluated
on a FPGA for a fair comparison, as the experimented het-
erogeneous IoT devices have different hardware resources

TABLE 4. Evaluation of different ML classifiers when deployed in HMD
using 4 HPCs.

. Accurac Area | Power Latenc;

Classifier (%) y (%) mw) | (@I Onsy) F1-score
MLP 93.03 41.5 0.78 93 0.93
JRip 91.08 0.2 0.28 1 0.92

Logistic Reg. 92.21 19.9 0.55 58 0.92
SVM 81.55 4.1 0.42 13 0.82
J48 92.62 0.9 0.26 3 0.93
SGD 92.21 4.1 0.39 13 0.92

138523

IEEE Access

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

available. We use Vivado HLS compiler to develop the HDL
implementation of the classifiers (HMD) and deploy on Xil-
inx Virtex 7 FPGA. FPGA is a target in our study, as few
modern microprocessors have on-chip FPGAs available
for programmable logic implementation. Such arrangement
makes it feasible to implement reprogrammable low-level
malware detection logic (ML model) which can detect mal-
ware by reading the CPU HPCs through the shared memory
bus. Latency unit is represented in terms of the number of
clock cycles (cycles @10 ns) required to classify input vector.
In order to compare the area overhead of the implemented
hardware-based ML classifiers, we consider the OpenSPARC
implementation as a reference and calculate the area overhead
relative the core size. The area is a function of total number
of utilized LUTSs, FFs, and DSP units inside Virtex 7 FPGA.

One can observe from Table 4, that among all the exper-
imented classifiers, complex techniques such as multi-layer
perceptron (MLP) i.e. neural network delivers the highest
performance of 93.03%;, but incurs a large area overhead and
delays. To be able to accommodate on IoT devices, we per-
form malware detection with small footprint and overhead,
yet obtaining a good accuracy. we chose and deploy JRip
based HMD on each of the nodes for malware detection.
It needs to be noted that the underlying system architecture
(instruction set and pipeline) is not modified, rather a separate
unit that utilizes existing architecture is designed.

3) MALWARE DETECTION AT NODE-LEVEL: COMPARISON
WITH THE STATE-OF-THE-ART

Detection of malware with software based approaches
(including off-the-shelf anti-virus) technique have set backs
of are large runtime, inefficient detection based on signa-
ture, and complexity which makes it an unattractive solution
for IoT networks [100]-[102]. In response, hardware-based
malware detection is proposed, which will be reviewed here.
The work in [35] was the first study that proposed to uti-
lize the HPC data for malware detection and demonstrated
the effectiveness of offline machine learning algorithms in
malware classification. They showed high detection accu-
racy results for Android malware by applying complex ML
algorithms, namely Artificial Neural Network (ANN) and
K-Nearest Neighbor (KNN). This work lacks runtime mal-
ware detection, and mostly applicable for larger systems due
to the resource consumption of the employed classifier and
the number of HPCs used.

The researchers in [103] and [104] discussed the feasibility
of employing unsupervised learning method on low-level
features to detect Return-oriented programming (ROP) and
buffer overflow attacks by finding an anomaly in the hard-
ware performance counters’ information. Although unsuper-
vised algorithms are more effective in detecting new malware
and attacker evolution, they are complex in nature demanding
more sophisticated analysis, computational overheads. In a
different study [28], Ozsoy and et al., used sub-semantic
features to detect the malware. Additionally, they suggested
changes in microprocessor pipeline to detect malware in truly

138524

real-time nature. The discussed computational and processing
overheads are too high to be adopted for IoT devices. Addi-
tionally, changing microprocessor pipeline for IoT devices is
not a cost-effective solution. In contrast, adopted HMD does
not require any change in processor pipeline and lightweight
in nature. The work in [105] collected hardware performance
counters to construct support vector machine (SVM) detec-
tors to identify malicious programs in real-time. The SVMs
are heavy-weight classifiers and incurs heavy computational
overheads, making them not a good option to be deployed on
IoT devices. In contrast, we employ a simple ML classifier
with less number of HPCs for malware detection.

The work in [49] uses logistic regression to classify mal-
ware into multiple classes and trained a specialized classifier
for detecting malware class. They further used specialized
ensemble learning to improve the accuracy of logistic regres-
sion. Despite good accuracy, the computational overheads
posed are high, and employs large number of HPCs for classi-
fication. One of the recent works [106] uses ‘“‘sample-locally-
analyze-remotely” technique, where the HPCs are collected
locally, but analyzed on a server. Compressed sensing is
utilized to minimize the communication bandwidth. This
technique though mitigates the on-chip processing overheads,
the communication costs are still high for IoT devices and is
not effective for IoT networks, as the malware propagation
in network is faster than the time to communicate with the
sever. In contrast to the existing works, the deployed mal-
ware detector in this work employs one single lightweight
ML classifier (‘JRip’), employing limited number of HPCs,
with low computational overheads, and suitable for runtime
malware detection. Most importantly, the utilized malware
detector [34] is devised in order to suit the needs of IoT
devices.

C. MALWARE PROPAGATION EVALUATION
Throughput with Malware Propagation

Figure 4 presents the overall network performance (through-
put) under different malware infection and recovery rates.
With the increase in recovery rate, the network throughput
increases and is highest at lower infection rate and high recov-
ery rate. However, the infection rate increase hampers the
overall throughput, and it has higher impact on the throughput
compared to recovery rate. It can be seen that the right-most
corner in Figure 4 i.e. high infection and high recovery rate
has slightly lower throughput compared to the high recovery
and low infection rate. This shows that runtime malware
detection and quarantining (recovering) is not the panacea
to have secure IoT networks, as infection (propagation) has
higher impact than recovery (quarantining).

Throughput with Malware Threat Level

We evaluate the throughput of the network when pro-
posed solution is employed under different malware threat
levels (o). Figure 11 shows the impact of network throughput
with the infection rate for malware threat levels (o) at a con-
stant recovery rate of 0.5. Increase in the infection rate leads
to a reduced throughput, irrespective of malware threat level.

VOLUME 8, 2020

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

IEEE Access

With the proposed solution, in the presence of malware with
smaller threat level, the network lets the disease to propagate
to a certain extent, as long as the decay rate r is satisfied,
leading to a lower throughput compared to the case with high
malware threat level. In case of malware with higher threat
level, the proposed solution shuts the links or reduces the
traffic aggressively to control the epidemics and reduce the
impact of malware, leading to a higher average throughput.
This can be observed from the circles in the box-plot (Fig-
ure 11), where each circle represents the throughput achieved
in different experiments. Also, in case of higher infection rate,
one can see that more experiments lead to throughput higher
than (and closer to) the average indicating that the proposed
solution maintains the network throughput.

B Low threat level [__| High threat level

—~ 660 —

5 : f T |
2 600 . H | :
= | : I — i
0 550 S : = :

XL 3

540 —=

1=0.1 1=0.3 1=0.5 1=0.7 1=0.9

FIGURE 11. Overall network throughput when nodes are deployed with
malware of different threat levels and has different infection rates.

Similarly, we also evaluate the network throughput under
different recovery rates and malware threat levels at a constant
infection rate of 0.5. Figure 12 shows the impact of net-
work throughput under different recovery rates for malware
threat levels (o). It has been observed that for malware with
low threat levels, the average throughput remains constant.
However, the maximum throughput achieved increases due
to higher recovery rate. However, for malware having higher
threat levels, the malware confinement equipped with faster

700
- Low threat level |:| High threat level

630
2 660
2
4

s 640
= 620
=
2600 3
i ¢
2580
= 560+
=)

540

520 :
R=0.1 R=0.
500

J
<

i
'
.
0
.
:
I
.
i
;
| #
1
|
]
]
]

R=0.7 R=0.9

FIGURE 12. Network throughput when nodes are deployed with malware
of different threat levels and has different recovery rates.

VOLUME 8, 2020

recovery lead to an increased average throughput obtained
across the experiments conducted.

REFERENCES

[11 A. K. Sikder, G. Petracca, H. Aksu, T. Jaeger, and
A. S. Uluagac, “A Survey on sensor-based threats to Internet-of-
Things (IoT) devices and applications,” 2018, arXiv:1802.02041.
[Online]. Available: https://arxiv.org/abs/1802.02041

[2] A. Mosenia and N. K. Jha, “A comprehensive study of security of
Internet-of-Things,” IEEE Trans. Emerg. Topics Comput., vol. 5, no. 4,
pp. 586—602, Oct. 2017.

[3] T. Abera, N. Asokan, L. Davi, F. Koushanfar, A. Paverd, A. R. Sadeghi,

and G. Tsudik, “Things, trouble, trust: On building trust in IoT systems,”

in ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2016, pp. 1-6.

J. Wurm, K. Hoang, O. Arias, A.-R. Sadeghi, and Y. Jin, “Security

analysis on consumer and industrial IoT devices,” in Proc. 21st Asia

South Pacific Design Autom. Conf. (ASP-DAC), Jan. 2016, pp. 519-524.

S. Koley and P. Ghosal, “Addressing hardware security challenges in

Internet of Things: Recent trends and possible solutions,” in Proc. IEEE

12th Int. Conf. Ubiquitous Intell. Comput. IEEE 12th Int. Conf. Auto-

nomic Trusted Comput. IEEE 15th Int. Conf. Scalable Comput. Commun.

Associated Workshops (UIC-ATC-ScalCom), Aug. 2015, pp. 517-520.

[6] K. Yang, D. Forte, and M. M. Tehranipoor, “Protecting endpoint devices
in IoT supply chain,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2015, pp. 351-356.

[7]1 T. Xu, J. B. Wendt, and M. Potkonjak, ““Security of IoT systems: Design

challenges and opportunities,” in Proc. IEEE/ACM Int. Conf. Comput.-

Aided Design (ICCAD), Nov. 2014, pp. 417-423.

“Infographic: Mcafee Labs threats report,” McAfee Labs,

Tech. Rep., Aug. 2019. [Online]. Available: https://www.mcafee.com/

enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf

[9] S.-M. Cheng, P-Y. Chen, C.-C. Lin, and H.-C. Hsiao, “Traffic-aware
patching for cyber security in mobile IoT,” IEEE Commun. Mag., vol. 55,
no. 7, pp. 29-35, Jul. 2017.

[10] M. B. Barcena and C. Wueest, “Insecurity in the Internet of Things,”
Tech. Rep., Apr. 2015. [Online]. Available: https://docs.broadcom.
com/doc/insecurity-in-the-internet-of-things-en

[11] S. Shukla, G. Kolhe, S. M. P D, and S. Rafatirad, “Stealthy malware
detection using RNN-based automated localized feature extraction and
classifier,” in Proc. IEEE 31st Int. Conf. Tools with Artif. Intell. (ICTAI),
Nov. 2019, pp. 590-597.

[12] S. Shukla, G. Kolhe, S. M. Pd, and S. Rafatirad, “RNN-based classifier
to detect stealthy malware using localized features and complex symbolic
sequence,” in Proc. 18th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA),
Dec. 2019, pp. 406—409.

[13] J. Granjal, E. Monteiro, and J. Sa Silva, “Security for the Internet of
things: A survey of existing protocols and open research issues,” IEEE
Commun. Surveys Tuts., vol. 17, no. 3, pp. 1294-1312, 3rd Quart., 2015.

[14] P-Y. Chen, C.-C. Lin, S.-M. Cheng, H.-C. Hsiao, and C.-Y. Huang,
“Decapitation via digital epidemics: A bio-inspired transmissive attack,”
IEEE Commun. Mag., vol. 54, no. 6, pp. 75-81, Jun. 2016.

[15] Kaspersky, “Attacks with exploits: From everyday threats to targeted
campaigns,” White Paper, pp.1-12, 2017. [Online]. Available:
https://media.kaspersky.com/en/business-security/enterprise/KL_Report
Exploits_in_2016_final.pdf

[16] T. Wang, G. Zhang, A. Liu, M. Z. A. Bhuiyan, and Q. Jin, “A secure
IoT service architecture with an efficient balance dynamics based on
cloud and edge computing,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4831-4843, Jun. 2019.

[17] C. Miao, W. Jiang, L. Su, Y. Li, S. Guo, Z. Qin, H. Xiao, J. Gao, and
K. Ren, “Privacy-preserving truth discovery in crowd sensing systems,”
ACM Trans. Sensor Netw., vol. 15, no. 1, pp. 1-32, Feb. 2019.

[18] M.Z. A.Bhuiyan, T. Wang, T. Hayajneh, and G. M. Weiss, ‘‘Maintaining
the balance between privacy and data integrity in Internet of Things,” in
Proc. Int. Conf. Manage. Eng., Softw. Eng. Service Sci. (ICMSS), 2017,
pp. 177-182.

[19] T. Wang, M. Z. A. Bhuiyan, G. Wang, L. Qi, J. Wu, and T. Hayajneh,
“Preserving balance between privacy and data integrity in edge-assisted
Internet of Things,” IEEE Internet Things J., vol. 7, no. 4, pp. 2679-2689,
Apr. 2020.

[20] M. H. R. Khouzani, S. Sarkar, and E. Altman, “Optimal control of epi-
demic evolution,” in Proc. IEEE INFOCOM, Apr. 2011, pp. 1683-1691.

[21] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis
via hardware virtualization extensions,” in Proc. 15th ACM Conf. Com-
put. Commun. Secur., 2008, pp. 51-62.

[4

=

[5

—

[8

—

138525

IEEE Access

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “Bothunter:
Detecting malware infection through ids-driven dialog correlation,” in
Proc. USENIX Secur. Symp., 2007, pp. 1-16.

Y. Fan, S. Hou, Y. Zhang, Y. Ye, and M. Abdulhayoglu, “Gotcha-Sly
Malware!: Scorpion a metagraph2vec based malware detection system,”
in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2018, pp. 253—262.

M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh, and T. Suri, “SIFT: A low-
overhead dynamic information flow tracking architecture for smt proces-
sors,” in Proc. 8th ACM Int. Conf. Comput. Frontiers, 2011, pp. 1-11.
H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, ‘“Panorama: Captur-
ing system-wide information flow for malware detection and analysis,”
in Proc. 14th ACM Conf. Comput. Commun. Secur., 2007, pp. 116-127.
E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to Ask),” in Proc. IEEE Symp. Secur. Privacy,
May 2010, pp. 317-331.

T. Garfinkel and M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2003, pp. 1-16.

M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Ponomarev,
“Malware-aware processors: A framework for efficient online malware
detection,” in Proc. IEEE 21st Int. Symp. High Perform. Comput. Archit.
(HPCA), Feb. 2015, pp. 651-661.

M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of
malicious behavior,” in Proc. Ist Conf. India Softw. Eng. Conf. (ISEC),
2008, pp. 5-14.

R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, ‘A fast automaton-
based method for detecting anomalous program behaviors,” in Proc.
IEEE Symp. Secur. Privacy (S&P), May 2000, pp. 144-155.

M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and N. Abu-Ghazaleh,
“SCRAP: Architecture for signature-based protection from code reuse
attacks,” in Proc. IEEE 19th Int. Symp. High Perform. Comput. Archit.
(HPCA), Feb. 2013, pp. 258-269.

K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart, and X. Zhang,
“Hardware counter driven on-the-fly request signatures,” in Proc. 13th
Int. Conf. Architectural support for Program. Lang. Operating Syst. (ASP-
LOS XIII), 2008, pp. 189-200.

A. A. Elhadi, M. A. Maarof, and A. H. Osman, ‘“Malware detection based
on hybrid signature behaviour application programming interface call
graph,” Amer. J. Appl. Sci., vol. 9, no. 3, p. 283, 2012.

N. Patel, A. Sasan, and H. Homayoun, “Analyzing hardware based mal-
ware detectors,” in Proc. 54th Annu. Design Autom. Conf., Jun. 2017,
pp. 1-6.

J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,
S. Sethumadhavan, and S. Stolfo, “On the feasibility of online malware
detection with performance counters,” ACM SIGARCH Comput. Archit.
News, vol. 41, no. 3, pp. 559-570, Jun. 2013.

H. Sayadi, N. Patel, S. M. P. D., A. Sasan, S. Rafatirad, and
H. Homayoun, “Ensemble learning for effective run-time hardware-
based malware detection: A comprehensive analysis and classification,”
in Proc. 55th ACM/ESDA/IEEE Design Autom. Conf. (DAC), Jun. 2018,
pp. 1-6.

S. M. P. Dinakarrao, S. Amberkar, S. Bhat, A. Dhavlle, H. Sayadi,
A. Sasan, H. Homayoun, and S. Rafatirad, “Adversarial attack on
microarchitectural events based malware detectors,” in Proc. 56th Annu.
Design Autom. Conf., Jun. 2019, pp. 1-6.

E. Ronen, A. Shamir, A.-O. Weingarten, and C. OFlynn, “IoT goes
nuclear: Creating a ZigBee chain reaction,” in Proc. IEEE Symp. Secur.
Privacy (SP), May 2017, pp. 195-212.

B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I. Cervesato, “On
the detection of kernel-level rootkits using hardware performance coun-
ters,” in Proc. ACM Asia Conf. Comput. Commun. Secur., Apr. 2017,
pp. 483-493.

A. Vashist, D. R. Bhanushali, R. Relyea, C. Hochgraf, A. Ganguly,
P. D. Sai Manoj, R. Ptucha, A. Kwasinski, and M. E. Kuhl, “Indoor
wireless localization using consumer-grade 60 GHz equipment with
machine learning for intelligent material handling,” in Proc. IEEE Int.
Conf. Consum. Electron. (ICCE), Jan. 2020, pp. 1-6.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image trans-
lation with conditional adversarial networks,” 2017, arXiv:1611.07004.
[Online]. Available: https://arxiv.org/abs/1611.07004

138526

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

C. Nowzari, V. M. Preciado, and G. J. Pappas, “Analysis and control of
epidemics: A survey of spreading processes on complex networks,” IEEE
Control Syst., vol. 36, no. 1, pp. 26-46, Feb. 2016.

V. Karyotis and M. Khouzani, “Optimal control based techniques,” in
Malware Diffusion Models for Wireless Complex Networks. San Mateo,
CA, USA: Morgan Kaufmann, 2016, pp. 139-154.

K. Drakopoulos, A. Ozdaglar, and J. Tsitsiklis, “An efficient curing policy
for epidemics on graphs,” in Proc. 53rd IEEE Conf. Decis. Control,
Dec. 2014, pp. 67-75.

K. Drakopoulos, A. Ozdaglar, and J. N. Tsitsiklis, “An efficient curing
policy for epidemics on graphs,” IEEE Trans. Netw. Sci. Eng., vol. 1,
no. 2, pp. 67-75, Jul. 2014.

N. J. Watkins, C. Nowzari, and G. J. Pappas, “Inference, prediction and
control of networked epidemics,” in Proc. Amer. Control Conf. (ACC),
May 2017, pp. 5611-5616.

X. Guo, L. Wu, and L. Zhao, “Deep graph translation,” 2018,
arXiv:1805.09980. [Online]. Available: http://arxiv.org/abs/1805.09980
K. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and
D. Ponomarev, “Ensemble learning for low-level hardware-supported
malware detection,” in Research in Attacks, Intrusions, and Defenses.
Springer, 2015.

P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori,
V. Sciancalepore, N. Sastry, O. Holland, S. Tayade, B. Han,
D. Bega, D. Aziz, and H. Bakker, ‘“Network slicing to enable scalability
and flexibility in 5G mobile networks,” IEEE Commun. Mag., vol. 55,
no. 5, pp. 72-79, May 2017.

R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free
networks,” Phys. Rev. Lett., vol. 86, no. 14, pp. 3200-3203, Apr. 2001.
E. Valdano, M. R. Fiorentin, C. Poletto, and V. Colizza, “‘Epidemic thresh-
old in continuous-time evolving networks,” Phys. Rev. Lett., vol. 120,
no. 6, Feb. 2018, Art. no. 068302.

D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos, “Epi-
demic thresholds in real networks,” ACM Trans. Inf. Syst. Secur., vol. 10,
no. 4, pp. 1-26, Jan. 2008.

Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, “Epidemic spread-
ing in real networks: An eigenvalue viewpoint,” in Proc. 22nd Int. Symp.
Reliable Distrib. Syst., Oct. 2003, pp. 25-34.

(2013). badbios. Accessed: Aug. 7, 2018. [Online]. Available:
https://arstechnica.com/information-technology/2013/10/meet-badbios-
the -mysterious-mac-and-pc-malware-that-jumps-airgaps/

(2007). Yankee Doodle. Accessed: Aug. 7, 2018. [Online]. Avail-
able: https://www.symantec.com/security-center/writeup/2000-121914-
2303-99

(2017). Magneto. Accessed: Aug. 7, 2018.
https://magento.com/security/tag/malware

G. H. Weiss and M. Dishon, “On the asymptotic behavior of the stochas-
tic and deterministic models of an epidemic,” Math. Biosci., vol. 11,
nos. 3—4, pp. 261-265, Aug. 1971.

R. H. Norden, “On the distribution of the time to extinction in the
stochastic logistic population model,” Adv. Appl. Probab., vol. 14, no. 04,
pp. 687-708, Dec. 1982.

R. J. Kryscio and C. Lefévre, “On the Extinction of the S—I-S stochastic
logistic epidemic,” J. Appl. Probab., vol. 26, no. 4, pp. 685-694, 1989.
D. Acarali, M. Rajarajan, N. Komninos, and B. B. Zarpeldo, ‘““Modelling
the spread of botnet malware in IoT-based wireless sensor networks,”
Secur. Commun. Netw., vol. 2019, pp. 1-13, Feb. 2019.

A. Kumar and T. J. Lim, “EDIMA: Early detection of IoT malware
network activity using machine learning techniques,” in Proc. IEEE 5th
World Forum Internet Things (WF-IoT), Apr. 2019, pp. 289-294.

M. Bloem, T. Alpcan, and T. Basar, “Optimal and robust epidemic
response for multiple networks,” Control Eng. Pract., vol. 17, no. 5,
pp. 525-533, May 2009.

A. Khanafer and T. Basar, “An optimal control problem over infected
networks,” in Proc. Int. Conf. Control, Dyn. Syst., Robot., Ottawa, ON,
Canada, 2014, pp. 1-6.

S. Eshghi, M. Khouzani, S. Sarkar, and S. Venkatesh, “Optimal patching
in clustered malware epidemics,” IEEE/ACM Trans. Netw., vol. 24, no. 1,
pp. 283-298, Feb. 2016.

W. K. Chai, “Modelling spreading process induced by agent mobil-
ity in complex networks,” IEEE Trans. Netw. Sci. Eng., vol. 5, no. 4,
pp- 336-349, Oct. 2018.

L.-X. Yang, X. Yang, and Y. Wu, “The impact of patch forwarding on the
prevalence of computer virus: A theoretical assessment approach,” Appl.
Math. Model., vol. 43, pp. 110-125, Mar. 2017.

[Online]. Available:

VOLUME 8, 2020

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

IEEE Access

[68]

[69]

[70]

[71]
[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

N. J. Watkins, C. Nowzari, and G. J. Pappas, “Robust economic
model predictive control of continuous-time epidemic processes,” 2017,
arXiv:1707.00742. [Online]. Available: http://arxiv.org/abs/1707.00742
A. Lundell, Transformation Techniques for Signomial Functions in
Global Optimization. Turku, Finland: Abo Akademi Univ., 2009.

M. Grant and S. Boyd. (Mar. 2014). CVX: MATLAB Software for
Disciplined Convex Programming, Version 2.1. [Online]. Available:
http://cvxr.com/cvx

J. Nocedal and S. Wright, Numerical Optimization. Springer, 2006.

P. H. J. Nardelli, P. Cardieri, and M. Latva-aho, “Efficiency of wireless
networks under different hopping strategies,” IEEE Trans. Wireless Com-
mun., vol. 11, no. 1, pp. 15-20, Jan. 2012.

P. H. J. Nardelli, H. Alves, C. H. M. de Lima, and M. Latva-aho,
“Throughput maximization in multi-hop wireless networks under a
secrecy constraint,” Comput. Netw., vol. 109, pp. 13-20, Nov. 2016.
(2018). Virustotal Intelligence Service. Accessed: Aug. 7,2018. [Online].
Available: www.virustotal.com/intelligence

L. Feng, X. Liao, Q. Han, and H. Li, “Dynamical analysis and control
strategies on malware propagation model,” Appl. Math. Model., vol. 37,
nos. 16-17, pp. 8225-8236, Sep. 2013.

Z. Chen and C. Ji, “Spatial-temporal modeling of malware propagation
in networks,” IEEE Trans. Neural Netw., vol. 16, no. 5, pp. 1291-1303,
Sep. 2005.

C. Fleizach, M. Liljenstam, P. Johansson, G. M. Voelker, and A. Mehes,
“Can you infect me now?: Malware propagation in mobile phone net-
works,” in Proc. ACM Workshop Recurring Malcode (WORM), 2007,
pp- 61-68.

S. Hosseini, M. A. Azgomi, and A. T. Rahmani, “Malware propagation
modeling considering software diversity and immunization,” J. Comput.
Sci., vol. 13, pp. 49-67, Mar. 2016.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. 4th Annu. IEEE Int. Workshop Workload
Characterization (WWC), Dec. 2001, pp. 3-14.

J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1-17, Sep. 2006.
(2018). Virusshare Team. Accessed: Aug. 7, 2018. [Online]. Available:
www.virusshare.com

M. Simonovsky and N. Komodakis, “GraphVAE: Towards generation of
small graphs using variational autoencoders,” 2018, arXiv:1802.03480.
[Online]. Available: http://arxiv.org/abs/1802.03480

J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, “GraphRNN:
Generating realistic graphs with deep auto-regressive models,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 5694-5703.

P. Van Mieghem, J. Omic, and R. Kooij, “Virus spread in networks,”
IEEE/ACM Trans. Netw., vol. 17, no. 1, pp. 1-14, Feb. 2009.

P. Simon and I. Z. Kiss, “On bounding exact models of epidemic
spread on networks,” Apr. 2017, arXiv:1704.01726. [Online]. Available:
https://arxiv.org/abs/1704.01726

N. J. Watkins, C. Nowzari, V. M. Preciado, and G. J. Pappas, “Opti-
mal resource allocation for competitive spreading processes on bilayer
networks,” IEEE Trans. Control Netw. Syst., vol. 5, no. 1, pp. 298-307,
Mar. 2018.

D. Fraunholz, M. Zimmermann, and H. D. Schotten, ‘“An adaptive honey-
pot configuration, deployment and maintenance strategy,” in Proc. 19th
Int. Conf. Adv. Commun. Technol. (ICACT), 2017, pp. 53-57.

V. E. Urias, W. M. S. Stout, and H. W. Lin, “Gathering threat intelligence
through computer network deception,” in Proc. IEEE Symp. Technol. for
Homeland Secur. (HST), May 2016, pp. 1-6.

Smokescreen. (2018). 7 Deadly Sins—How to Fail at Implementing Decep-
tion Technology. [Online]. Available: https://www.smokescreen.io/7-
deadly-sins-how-to-fail-at-implementing-deception-technology/

L. Holder, D. Cook, J. Coble, and M. Mukherjee, ““Graph-based relational
learning with application to security,” Fundam. Informaticae, vol. 66,
nos. 1-2, pp. 83-101, 2005.

M. J. Kusner, B. Paige, and J. Miguel Herndandez-Lobato, “Grammar
variational autoencoder,” 2017, arXiv:1703.01925. [Online]. Available:
http://arxiv.org/abs/1703.01925

R. Gémez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernandez-Lobato,
B. Sanchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,
R. P. Adams, and A. Aspuru-Guzik, “Automatic chemical design using
a data-driven continuous representation of molecules,” ACS Central Sci.,
vol. 4, no. 2, pp. 268-276, Feb. 2018.

VOLUME 8, 2020

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

8.

H. Dai, Y. Tian, B. Dai, S. Skiena, and L. Song, ““Syntax-directed vari-
ational autoencoder for molecule generation,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 1-10.

W. Jin, R. Barzilay, and T. Jaakkola, “Junction tree variational
autoencoder for molecular graph generation,” 2018, arXiv:1802.04364.
[Online]. Available: http://arxiv.org/abs/1802.04364

S. Cavallari, V. W. Zheng, H. Cai, K. C.-C. Chang, and
E. Cambria, ‘“Learning community embedding with community
detection and node embedding on graphs,” in Proc. ACM Conf. Inf.
Knowl. Manage., Nov. 2017, pp. 377-386.

B. Samanta, A. De, G. Jana, P. Kumar Chattaraj, N. Ganguly, and
M. Gomez-Rodriguez, “NeVAE: A deep generative model for
molecular graphs,” 2018, arXiv:1802.05283. [Online]. Available:
http://arxiv.org/abs/1802.05283

A. Bojchevski, O. Shchur, D. Ziigner, and S. Giinnemann, “Net-
GAN: Generating graphs via random walks,” 2018, arXiv:1803.00816.
[Online]. Available: http://arxiv.org/abs/1803.00816

Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning
deep generative models of graphs,” 2018, arXiv:1803.03324. [Online].
Available: http://arxiv.org/abs/1803.03324

A. Azmoodeh, A. Dehghantanha, and K.-K.-R. Choo, ‘“Robust mal-
ware detection for Internet of (Battlefield) things devices using deep
eigenspace learning,” IEEE Trans. Sustain. Comput., vol. 4, no. 1,
pp. 88-95, Jan. 2019.

E. Ronen and A. Shamir, “Extended functionality attacks on IoT devices:
The case of smart lights,” in Proc. IEEE Eur. Symp. Secur. Privacy
(EuroS&P), Mar. 2016, pp. 3—12.

T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, ““‘Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for
the Internet-of-Things,” in Proc. 14th ACM Workshop Hot Topics Netw.,
2015, pp. 1-7.

Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and
S. Shieh, “ToT security: Ongoing challenges and research opportunities,”
in Proc. IEEE 7th Int. Conf. Service-Oriented Comput. Appl., Nov. 2014,
pp. 230-234.

A. Garcia-Serrano, “Anomaly detection for malware identification using
hardware performance counters,” 2015, arXiv:1508.07482. [Online].
Available: https://arxiv.org/abs/1508.07482

A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-
based malware detection using hardware features,” in Research in
Attacks, Intrusions and Defenses. Springer, 2014.

M. B. Bahador, M. Abadi, and A. Tajoddin, “HPCMalHunter: Behavioral
malware detection using hardware performance counters and singular
value decomposition,” in Proc. 4th Int. Conf. Comput. Knowl. Eng.
(ICCKE), Oct. 2014, pp. 703-708.

X. Wang, S. Chai, M. Isnardi, S. Lim, and R. Karri, “Hardware perfor-
mance counter-based malware identification and detection with adaptive
compressive sensing,” ACM Trans. Archit. Code Optim., vol. 13, no. 1,
pp. 1-23, Apr. 2016.

SAl MANOJ PUDUKOTAI DINAKARRAO
(Member, IEEE) received the master’s degree
in information technology from the International
Institute of Information Technology Bangalore
(IIITB), Bengaluru, India, in 2012, and the Ph.D.
degree in electrical and electronics engineering
from Nanyang Technological University, Singa-
pore, in 2015. He was a Postdoctoral Research
Scientist with the System-on-Chip Group, Institute
of Computer Technology, Vienna University of

Technology (TU Wien), Vienna, Austria. He was also a Research Assistant
Professor and a Postdoctoral Research Fellow with George Mason University
(GMU), Fairfax, VA, USA, where he is currently an Assistant Professor
with the Department of Electrical and Computer Engineering (ECE). His
current research interests include on-chip hardware security, neuromorphic
computing, adversarial machine learning, self-aware SoC design, image
processing and time-series analysis, emerging memory devices, and hetero-
geneous integration techniques. He was a recipient of the A. Richard Newton
Young Research Fellow Award, in 2013. His team received the Xilinx Open
Hardware Contest, in 2017 (student category). He has nominated for the Best
Paper Awards from DATE, in 2018, and ICCAD, in 2019. His works received
the best paper awards from multiple top-tier conferences, including ICDM,
in 2019, and ICCE, in 2020.

138527

IEEE Access

S. M. Pudukotai Dinakarrao et al.: Cognitive and Scalable Technique for Securing loT Networks

XIAOJIE GUO received the B.E. and M.S. degrees
in control engineering from Soochow University,
China. She is currently pursuing the Ph.D. degree
with the Department of Information Science and
Technology, George Mason University under the
supervision of Dr. L. Zhao. Her research interests
include interpretable machine learning and deep
learning on graphs.

HOSSEIN SAYADI (Member, IEEE) received
the M.Sc. degree in computer engineering (com-
puter architecture) from the Sharif University of
Technology, in 2014, and the Ph.D. degree in
electrical and computer engineering from George
Mason University, in 2019. He is currently
an Assistant Professor with the Department of
Computer Engineering and Computer Science,
California State University, Long Beach, CA,
USA. He has focused on developing effective and
complexity-aware machine learning-based solutions for enhancing the secu-
rity and energy-efficiency of modern computer systems in various applica-
tions, including high-performance computing, embedded systems, and the
Internet-of-Things. His research interests include computer systems cyberse-
curity, machine learning, hardware security, computer architecture, run-time
malware detection, and side-channel attacks analysis. He was a two-time
recipient of the Provost Doctoral Fellowship from George Mason University.

CAMERON NOWZARI (Member, IEEE) received
the Ph.D. degree in mechanical engineering
from the University of California, San Diego,
in September 2013. He held a postdoctoral posi-
tion with the Electrical and Systems Engineering
Department, University of Pennsylvania, in 2016.
He is currently an Assistant Professor with the
Electrical and Computer Engineering Department,
George Mason University, Fairfax, VA, USA. His
current research interests include dynamical sys-
tems and control, distributed coordination algorithms, robotics, event- and
self-triggered control, Markov processes, network science, spreading pro-
cesses on networks, and the Internet of Things. He received several awards,
including the American Automatic Control Council’s O. Hugo Schuck Best
Paper Award and the IEEE Control Systems Magazine Outstanding Paper
Award.

AVESTA SASAN (Member, IEEE) received the
B.Sc. degree (Summa Cum Laude) in computer
engineering and the M.Sc. and Ph.D. degrees in
electrical and computer engineering from the Uni-
versity of California Irvine, in 2005, 2006, and
2010, respectively. He was with the Industry in
Broadcom and Qualcomm Company, in 2016.
He joined George Mason University, in 2016,
where he is currently an Associate Professor
with the Department of Electrical and Computer
Engineering.

138528

SETAREH RAFATIRAD (Member, IEEE) received
the M.Sc. and Ph.D. degrees in computer sci-
ence from the University of California Irvine,
in 2009 and 2012, respectively. She is currently an
Associate Professor with the Department of Infor-
mation Sciences and Technology, George Mason
University. She has published more than 50 tech-
nical papers in the prestigious conferences and
journals on the subject. She has directed over 1.3M
in research funding with NSF, DARPA, and AFRL.
She is also directing multiple research projects focused on applying tradi-
tional and deep machine learning techniques on different domains, including
malware detection, emerging big data application benchmarking, charac-
terization on heterogeneous architectures, house price, and rent prediction.
Her research interests include applied machine learning in several important
domains, including computer system cybersecurity, big data computing,
cloud scheduling, and real-estate analytics. She received several awards and
nominations, including the ICDM 2019 Best Paper Award and the ICCAD
2019 Best Paper Award Nomination.

LIANG ZHAO (Member, IEEE) received the Ph.D.
degree from Virginia Tech, in 2016. He is cur-
rently an Assistant Professor with the Department
of Computer Science, Emory University. He has
been organizing several prestigious venues, such
as SSTD, in 2017, KDD, in 2019, ICDM, in 2019,
CIKM, in 2019, ACM SIGSPATIAL, in 2020, and
SecureCom, in 2020. His research interests include
.E data mining, artificial intelligence, and machine

i learning, with special interests in spatiotemporal
and network data mining, deep learning on graphs, nonconvex optimization,
and interpretable machine learning. He received the Outstanding Doctoral
Student from the Department of Computer Science, Virginia Tech, in 2017,
the Jeffress Trust Award, in 2019, the Best Paper Award from ICDM, in 2019,
and the NSF CAREER Award, in 2020.

HOUMAN HOMAYOUN (Senior Member,
IEEE) received the B.S. degree in electrical engi-
neering from the Sharif University of Technology,
in 2003, the M.S. degree in computer engineering
from the University of Victoria, in 2005, and
the Ph.D. degree in computer science from the
University of California Irvine, in 2010. He was an
Associate Professor with the Department of Elec-
trical and Computer Engineering, George Mason
University (GMU). From 2010 to 2012, he spent a
period of two years with the University of California, San Diego, as a NSF
Computing Innovation (CI) Fellow, awarded by CRA-CCC. He is currently
an Associate Professor with the Department of Electrical and Computer
Engineering, University of California, Davis. He conducts research in
hardware security and trust, data-intensive computing, and heterogeneous
computing. He has published more than 100 technical papers in the pres-
tigious conferences and journals on the subject. He was a recipient of
the four-year University of California and the Irvine Computer Science
Department Chair Fellowship. He received several best paper awards and
nominations in various conferences, including GLSVLSI, in 2016, ICCAD,
in 2019, and ICDM, in 2019. He was a Technical Program Co-Chair of
GLSVLSI, in 2018, and the General Chair of 2019 Conference. Since 2017,
he has been serving as an Associate Editor for the IEEE TRANSACTIONS ON
'VERY LARGE SCALE INTEGRATION.

VOLUME 8, 2020

