
FEDAT: A COMMUNICATION-EFFICIENT FEDERATED LEARNING METHOD
WITH ASYNCHRONOUS TIERS UNDER NON-IID DATA

Zheng Chai 1 Yujing Chen 1 Liang Zhao 2 Yue Cheng 1 Huzefa Rangwala 1

ABSTRACT
Federated learning (FL) involves training a model over massive distributed devices, while keeping the training
data localized. This form of collaborative learning exposes new tradeoffs among model convergence speed, model
accuracy, balance across clients, and communication cost, with new challenges including: (1) straggler problem,
where the clients lag due to data or (computing and network) resource heterogeneity, and (2) communication
bottleneck, where a large number of clients communicate their local updates to a central server and bottleneck
the server. Many existing FL methods focus on optimizing along only one dimension of the tradeoff space.
Existing solutions use asynchronous model updating or tiering-based synchronous mechanisms to tackle the
straggler problem. However, the asynchronous methods can easily create a network communication bottleneck,
while tiering may introduce biases as tiering favors faster tiers with shorter response latencies. To address
these issues, we present FedAT, a novel Federated learning method with Asynchronous Tiers under Non-i.i.d.
data. FedAT synergistically combines synchronous intra-tier training and asynchronous cross-tier training. By
bridging the synchronous and asynchronous training through tiering, FedAT minimizes the straggler effect with
improved convergence speed and test accuracy. FedAT uses a straggler-aware, weighted aggregation heuristic
to steer and balance the training for further accuracy improvement. FedAT compresses the uplink and downlink
communications using an efficient, polyline-encoding-based compression algorithm, therefore minimizing the
communication cost. Results show that FedAT improves the prediction performance by up to 21.09%, and reduces
the communication cost by up to 8.5×, compared to state-of-the-art FL methods.

1 INTRODUCTION

The number of intelligent devices, such as smartphones and
wearable devices, has been rapidly growing in the last few
years. Many of these devices are equipped with various
smart sensors and increasingly potent hardware that allow
them to collect and process data at unprecedented scales.
With advanced machine learning techniques and the growth
in computation power of these devices, federated learning
(FL) has emerged as a novel machine learning paradigm
that aims to train a statistical model among a large number
of edge device nodes , as opposed to traditional machine
learning training at a centralized location (McMahan et al.,
2017; Konečnỳ et al., 2016). FL has been used in many ap-
plication domains such as predicting human activities (Chen
et al., 2019c;b), learning sentiment (Smith et al., 2017) and
language processing (Li et al., 2019a).

In a typical FL framework, a shared model is learned from a

1Department of Computer Science, George Mason University,
Fairfax, Virginia, USA 2Department of Computer Science, Emory
University, Atlanta, Georgia, USA. Correspondence to: Zheng
Chai <zchai2@gmu.edu>.

federation of distributed clients 1 with the coordination of a
centralized server. Different clients in a FL deployment do
not share data with each other due to security and privacy
reasons (Tankard, 2016; O’herrin et al., 2004). Instead, each
client trains a local model using its (decentralized) local data,
and the centralized server, aggregates the learned gradients
of the local models to train a global model.

FL often involves a large number of clients, which fea-
ture highly heterogeneous hardware resources (CPU, mem-
ory, and network resources) and Non-i.i.d. data. The re-
source and data heterogeneity presents unique challenges
to FL algorithms. In addition, with large number of clients,
how clients communicate with server becomes a crucial
design choice. Most existing FL frameworks can be divided
into two communication modes: (1) synchronous commu-
nication (e.g., Federated Averaging, or FedAvg (McMahan
et al., 2017)), or (2) asynchronous communication (e.g.,
FedAsync (Xie et al., 2019)). When there are stragglers (i.e.,
slower clients) in the system, which is common especially
at the scale of hundreds of clients, asynchronous approaches
are more robust. However, most asynchronous implementa-
tions suffer communication bottleneck as all the clients can

1We use “clients” and “devices” interchangeably in the paper.

ar
X

iv
:2

01
0.

05
95

8v
1

 [
cs

.D
C

]
 1

2
O

ct
 2

02
0

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

asynchronously talk to the server, and clients are limited by
their communication bandwidth. Therefore, in this paper,
we focus on two significant challenges of federated learning:

Stragglers. Recent research efforts in synchronous FL as-
sume: i) no resource or data heterogeneity (Reisizadeh et al.,
2020; Sattler et al., 2019a), or ii) all the clients are available
during the whole training process (Zhao et al., 2018; Nishio
& Yonetani, 2019). However, in practice, clients may come
(online) and go (offline) frequently, or lag due to resource
constraints and/or data heterogeneity (i.e., stragglers). Ex-
isting, synchronous FL solutions (e.g., Federated Averaging,
or FedAvg (McMahan et al., 2017)) synchronously aggre-
gates model updates, where the server has to wait for the
slowest clients, therefore, leading to significantly prolonged
training time.

Communication Bottleneck. To solve the straggler
problems in synchronous FL, asynchronous FL ap-
proaches (Chen et al., 2019b; Xie et al., 2019) were pro-
posed, where the server can aggregate without waiting for
the straggling clients. Unlike synchronous FL where only
a portion of sampled clients communicate with the server
in each training round, in an asynchronous FL setting, the
server communicates with all the clients asynchronously;
therefore, the server can easily become a communication
bottleneck with tens of thousands of clients updating the
model simultaneously.

To overcome the deficiencies described above, we design
and implement FedAT, a novel communication-efficient
FL approach that combines the best of both worlds – syn-
chronous and asynchronous FL training – using a tiering
mechanism. In FedAT, the clients involved in a FL deploy-
ment are partitioned into logical tiers based on their response
latency (i.e., the time a client takes to finish a single round
of training). All the logical tiers in FedAT participate in the
global training simultaneously, with each tier proceeding at
its own pace. Clients within a single tier update a model
associated with that particular tier in a synchronous man-
ner, while each tier, as a logical, coarse-grained, training
entity, updates a global model asynchronously. Faster tiers,
with shorter per-round response latency, drive the global
model training to converge faster; slower tiers get involved
in the global training by asynchronously sending the model
updates to the server, so as to further improve the model’s
prediction performance.

Uniformly aggregating the asynchronously updated tier
model into the global model may result in biased training
(biased towards the faster tiers), as more performant tiers
tend to update the global model more frequently than the
slower tiers. To solve this issue, we propose a new weighted
aggregation heuristic, which assign higher weight to slower
tiers. Furthermore, to minimize the communication cost
introduced by asynchronous training, FedAT compresses

the model data transferred between the clients and the server
using Encoded Polyline Algorithm. In a nutshell, FedAT
synergizes the four components together, namely, the tier-
ing scheme, asynchronous inter-tier model updating, the
weighted aggregation method, and polyline encoding com-
pression algorithm, to maximize both the convergence speed
and the prediction performance while minimizing commu-
nication cost.

We make the following contributions in this paper:

• We design and implement FedAT, a novel tiered FL
framework that updates local model parameters syn-
chronously within tiers and update the global model
asynchronously across tiers.

• We propose a new optimization objective with a
weighted aggregation heuristic, which the FL server
uses to speed up model convergence and improve the
prediction performance by balancing the model param-
eters from different tiers.

• We provide rigorous theoretical analysis for our pro-
posed method for both convex and non-convex objec-
tives. We show that FedAT has provable convergence
guarantee.

• We utilize a lossy compression technique, polyline
encoding, to compress the transferred model data be-
tween the clients and the server to reduce the commu-
nication cost without affecting the model accuracy.

• We evaluate FedAT extensively on a 100-client clus-
ter. Experimental results on three real-world federated
datasets show that FedAT improves the prediction ac-
curacy by up to 21.09%, exhibits significantly less
accuracy variance during the training, and reduces the
communication cost by up to 8.5× compared with the
baseline FL methods.

2 RELATED WORK
2.1 Stragglers in Federated Learning
The main premise of FL has been collective learning us-
ing a network of common devices such as smartphones
and tablets. Thus, the assumption made by FedAvg that
all clients are available during the whole training process
is not practical. Li et al. (Li et al., 2019b) suggest to se-
lect a smaller ratio of participated clients for each global
iteration to alleviate the straggler’s effect, while with more
communications on model convergence. TiFL (Chai et al.,
2020) is a tiered FL framework that uses a synchronous,
intra-tier model updating scheme similar to that used in
FedAvg. TiFL’s favoring-faster-tier strategy may result in
biased training and lower model accuracy. FedAT uses
TiFL’s tiering approach, but differs against TiFL in that
FedAT combines the intra-tier synchronous training with
cross-tier asynchronous training to effectively avoid biased

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

training. Asynchronous FL frameworks (Xie et al., 2019;
Chen et al., 2019a;b) that allow wait-free communication
and computation have been proposed to tackle the stragglers
problem. These asynchronous approaches, however, suffer
from the communication bottleneck issue as they require
more frequent communications between all the clients and
the server.

2.2 Communication-efficient Federated Optimization
McMahan et al. propose a FL approach called Fe-
dAvg (McMahan et al., 2017), where instead of commu-
nicating after every iteration, each client performs multiple
iterations of SGD to compute a weight update. By reducing
the communication frequency, FedAvg reduces the commu-
nication cost and can work with partial client participation.
In a follow-up work, Konečnỳ et al. (Konečnỳ et al., 2016)
propose two approaches to reduce the uplink communica-
tion costs, i.e., structured updates and sketched updates,
combined with probabilistic quantization. This approach,
however, significantly slows down the convergence speed in
terms of SGD iterations.

In the broader realm of communication-efficient distributed
deep learning, a wide variety of methods has been proposed
to reduce the amount of communication during the training
process. Chen et al. (Chen et al., 2019c) propose a layerwise
asynchronous update scheme that updates the parameters
of the deep layers less frequently than those of the shallow
layers. Mills et al. (Mills et al., 2019) adapt FedAvg to use
a distributed form of Adam optimization and compress the
uploaded parameters. Jeong et al. (Jeong et al., 2018) de-
velop federated distillation that follows an online version of
knowledge distillation to compress the model. Reisizadeh
et al. (Reisizadeh et al., 2020) present a periodic averag-
ing and quantization approach to reduce communication
costs. However, these works only target uplink commu-
nication compression and are developed for synchronous
frameworks that neglect the real-life scenario in which the
straggler problem is a common phenomenon in learning on
end devices. Besides the above mentioned server-worker
topology, communication bottleneck via quantization and
compression in distributed learning has also gained consid-
erable attention in serverless approaches (Koloskova et al.,
2019; Wang et al., 2019; Reisizadeh et al., 2019). While
such techniques can be used to reduce communication cost
in federated learning, the network topology without a server
in distributed learning is fundamentally different.

Our proposed communication-efficient federated learning
framework combines synchronous and asynchronous up-
dates together to mitigate the challenge associated with
stragglers and improve model convergence rate. We ap-
ply a weighted aggregation strategy on server to improve
the model’s prediction performance and compress both the
uplink and downlink communications.

3 BACKGROUND: FEDERATED LEARNING

3.1 Preliminaries: Federated Learning and FedAvg

FL algorithms involve hundreds to millions of remote de-
vices training locally on their device-generated data, and
collectively train a global, shared model, under the coordi-
nation of a centralized server serving as an aggregator. In
particular, the FL algorithm optimizes the following objec-
tive function:

f(w) =

K∑
k=1

nk
N
Fk(w), (1)

where Fk(w)
def
= 1

nk

∑
i∈Dk

`i(xi, yi;w), is the local em-
pirical loss of client k, and `i(xi, yi;w) is the corresponding
loss function for data sample {xi, yi}. K is the total number
of devices. Dk for k ∈ {1, . . . ,K} denotes data samples
stored locally on device k. nk = |Dk|, is the number of
data samples on device k; and N =

∑K
k=1 |Dk| is the total

number of data samples stored on K devices. Assuming for
any k 6= k

′
, Dk

⋂
Dk′ = ∅.

The ultimate goal is to find a model w∗ that minimizes the
objective function:

w∗ = arg min f(w). (2)

FedAvg (McMahan et al., 2017) is a commonly used method
to solve the optimization problem defined in Equation 2 in a
non-convex setting with a synchronous update fashion. This
method runs by randomly sampling a subset of clients with
a certain probability at each round; each selected client per-
forms E epochs of training locally on its own data using an
optimizer such as stochastic gradient descent (SGD). This
kind of local update methods enable flexible and efficient
communication compared to traditional mini-batch meth-
ods (Yu et al., 2018; Wang & Joshi, 2018; Woodworth et al.,
2018).

In a typical real-world scenario, the data stored across de-
vices follow a Non-i.i.d. (non-independent and identical)
distribution; that is, the training data distributed across the
clients are often non-uniform, since the data of a given client
is typically based on the usage of the particular edge device
and will not be representative of the population distribu-
tion (McMahan et al., 2017). Although FedAvg can work
with partial client participation at each training round, train-
ing on Non-i.i.d. data may lead each client towards its local
optimal model as opposed to achieving a global optimal
one.

In addition, slow clients (stragglers), which perform local
training at a relatively slower speed (due to weaker com-
puting resources and/or larger local data size), may have
poor prediction performance due to less training, and thus
may prevent the shared model from converge to a global

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

optimal solution. Therefore, solving Equation 2 in this syn-
chronous manner can implicitly introduce high variance in
prediction performance given the existence of straggling
clients. To better evaluate the robustness of FL training
with stragglers, we define new metrics as a measure of the
straggler tolerance level in a typical FL setup.

Definition 3.1. (Robust training with straggling clients).
For two trained models w and w′, we say that model w
is more robust against straggling clients than model w′,
if (1) model w converges faster than model w′; (2) the
test accuracy of model w for the K clients, {P1, ..., PK},
exhibits lower variance than that of model w′ for the same
set of K clients (where Pc represents the test accuracy of
the model w over the testing data for client c), and (3) model
w has better prediction performance than model w′.

As discussed in the previous sections, the existence of strag-
glers cause longer training times and prevent the model from
converging to the optimal solution. The rational of using
these three metrics, namely, convergence speed, accuracy
variance, and prediction accuracy, as a means to quantify
the robustness of a FL approach against stragglers, is that:
(1) stragglers not only cause slow convergence speed, but
also a loss in prediction performance, and (2) existing litera-
ture fail to comprehensively consider all these aspects (Chai
et al., 2020; Chen et al., 2019c; Jeong et al., 2018; Xie et al.,
2019; Chen et al., 2019a;b).

4 FEDAT: FEDERATED LEARNING WITH
ASYNCHRONOUS TIERS

FedAT consists of three main components: (1) a central-
ized server for global model synchronization; (2) a group
of clients that are logically partitioned into different perfor-
mance tiers; and (3) a tiering module that profiles clients’
training performance and performs client tiering based on
the response latency of each client.

We next illustrate the FL training process of FedAT
(as depicted in Figure 1 and listed in Algorithm 1).
The tiering module profiles and partitions the involved
clients into M tiers based on their response latencies:
{tier1, tier2, ..., tierM}, where tier1 is the fastest tier and
tierM is the slowest tier. The server maintains a list of M
models, {wttier1 , ..., w

t
tierM

}, one for each tier, reflecting
the most updated view of per-tier local models, at a certain
round t. Correspondingly, the server also maintains a global
model w that gets asynchronously updated from M tiers.

Each tier performs synchronous update process, a fraction of
clients (S) are selected randomly and compute the gradient
of the loss on their local data, then send the compressed
weights to the server for a synchronous and update the tier
model on server.

Clients

…

…

…
…

t! t" t#t$ t%

Server

"#$%&

"#$%$

"#$%"

'&'()*
&* ,

… , '&'()+
&*

Aggregation

,*+

Aggregation

,*,

Aggregation

,*-,*.

,&-

'&'()*
&* ,

'&'()-
&- ,…

'&'()*
&. ,

'&'()-
&- , …

'&'()*
&. ,

… , '&'()+
&/

,*/

Aggregation

Compression

Compression

Compression

Compression

deCom deCom deCom deCom

Tiering Module

timeline

Figure 1. Overview of FedAT. tier1, ..., tierM are M tiers, and
wt

tier1 , ..., w
t
tierM

are their according weights, respectively.
deCom denotes the decompression process of clients’ models
in a certain tier on the server.

Figure 1 shows an example of the intra-tier synchronous
and cross-tier asynchronous training process. At time t1,
the clients in tier1 quickly finish their local training, com-
press their trained models and send to the server. The server
then performs the following steps: (1) decompresses the
local models received from tier1, (2) applies synchronous
update to the received models of tier1 and get wt1tier1 (high-
lighted in red color in Figure 1), and (3) aggregates the
latest updates sent from all the tiers (including tier1) us-
ing a weighted average aggregation method (see §4.1), to
generate a new global model wt1 .

At time t2, the last client of tier2 finishes its local train-
ing and sends the compressed model to the server. The
server follows the same procedure as tier1 to get a new
global model wt2 . Then the server sends the latest global
model wt2 to the next ready tier (in this example tier1) and
starts the next round. Note that a tier in FedAT directly
interacts with the server to update the global model when-
ever it finishes a round of local training, thus forming an
asynchronous, cross-tier process.

Since clients are partitioned into tiers based on their re-
sponse latencies and the tiers asynchronously update the
global mode, stragglers may not become a performance bot-
tleneck that would otherwise slow down the global training

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

progress. However, as the server interacts more frequently
with the faster tiers than with the relatively slower ones, this
would inevitably lead to biases towards the faster tiers. To
address this issue, we introduce a new objective onto the
server-side optimization, which uses a weighted aggregation
strategy to more fairly balance the mode updating processes
from different tiers.

4.1 Cross-Tier Weighted Aggregation

A straightforward idea to achieve unbiased, more balanced
training is to assign relatively higher weights to slower tiers
that update less frequently, so that the global model would
not bias towards the faster tiers. To this end, FedAT uses
a new cross-tier, weighted aggregation heuristic, which dy-
namically adjusts the relative weights assigned to each tier
based on the number of times a tier has updated the global
mode. The goal of the weighted aggregation heuristic is to
help the global training converge faster.

Assuming there are M tiers, the number of updates from
each tier till now is Ttier1 , Ttier2 , ..., TtierM , respectively,
and the total number of updates from all the tiers till now is
Ttier1 + Ttier2 + ...+ TtierM = T , we define the objective
function of FedAT as:

f(w) =

M∑
m=1

Ttier(M+1−m)

T
ftierm(w), (3)

where
Ttier(M+1−m)

T is the relative weight of tierm, and∑M
m=1

Ttier(M+1−m)

T = 1. To understand the heuristic, a rel-
atively slower tier with a tier number m would get assigned

a relatively larger weight value,
Ttier(M+1−m)

T , asM+1−m
corresponds to a relatively faster tier, tier(M+1−m), whose
historical updating frequency Ttier(M+1−m)

is expected to
be higher. In this way, FedAT can dynamically steer and
balance the global model training, avoid potential bias to-
wards a subset of faster tiers, and effectively improve the
convergence rate.

ftierm(w) is the weighted average of the models from the
selected clients within tierm. Assuming at round t, tierm
happens to be in communication with the server, we have
the update of ftierm(w) as follow:

ftierm(w) =

|St|∑
k=1

nk
Nc

Fk(w), (4)

where St, |St|, and Nc denote a subset of randomly selected
clients in tierm, the number of selected clients in tierm,
and the total number of data samples in St, respectively.

4.2 Training at Local Clients

As mentioned in §3.1, for training with Non-i.i.d. data, fre-
quent local updates may potentially cause the local models

Algorithm 1: FedAT’s Training Process
Input: wtierm , t, T and Ttierm . wtierm denotes the

weights of Tier m. t represents the global
round t. T is the maximum global rounds.
Ttierm is the number of updates of tier m

Server: Initialize wtier1 , wtier2 ...wtierM to wt0 .
Initialize t, Ttier1 ...TtierM to 0

for each tier m ∈M in parallel do
while t < T do

w = WeightedAver-
age(wtier1 , wtier2 ...wtierM)
Sm = (random set of clients from tier m)
for each client k ∈ Sm in parallel do

nk = |Dk|
wt+1
k = wtk − η∇h(wt)

Nc =
∑|Sm|
k=1 nk

wtierm =
∑|Sm|
k=1

nk

Nc
∗ wt+1

k

Ttierm = Ttierm + 1

t = t+ 1

function
WeightedAverage(wtier1 , wtier2 ...wtierM)

if t == 0 then
return wt0

else
return

∑M
m=1

Ttier(M+1−m)

T ∗ wtierm

to diverge due to the varying updating frequency of different
tiers and the underlying data heterogeneity. We propose to
add a constraint term to the local subproblem by restricting
the local updates to be closer to the global model. Thus,
instead of just minimizing the local function Fk , client k
applies an update with the constraint using the following
surrogate objective hk:

hk(wk) = Fk(wk) +
λ

2
||wk − w||2, (5)

where wk, w are the local model of client k and server
model, respectively. Then we will update (4) as:

ftierm(w) =

|St|∑
k=1

nk
Nc

hk(wk)

=

|St|∑
k=1

nk
Nc

(Fk(wk) +
λ

2
||wk − w||2).

(6)

The constraint term addresses the issue of Non-i.i.d. by
restricting the local updates to be closer to the global model.
In the ideal situation, with λ = 0, and all clients share
the same latency, thus we get one tier and FedAT becomes
FedAvg. The approach of FedAT is detailed in Algorithm 1.

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

4.3 Compression, Marshalling, and Unmarshalling

Previous works on communication-efficient FL mentioned
in §2 almost exclusively consider i.i.d. data distribution
among the clients, which is not practical in real-world
scenarios of FL, where the client data typically follows
a Non-i.i.d. distribution (McMahan et al., 2017). As studied
in (Sattler et al., 2019a), many compression methods (Bern-
stein et al., 2018; Sattler et al., 2019b) suffer from slow
convergence rates in the Non-i.i.d. cases. Non-i.i.d. of-
ten introduces divergence of model weights collected from
resource-heterogeneous clients. Due to such divergence,
lossy compression methods such as quantization and de-
quantization (Zhang et al., 2020) may inevitably lead to
huge errors and global performance reducing. Furthermore,
as asynchronous FL methods aggregate more frequently
than synchronous FL methods, highly frequent updates dras-
tically amplify such divergence, and result in a poor global
performance. Therefore, with frequent communications in
asynchronous FL approaches, it is crucial to select a com-
pression technique that can efficiently reduce the communi-
cation cost while effectively guaranteeing a fast convergence
to the optimal solution.

To this end, we design a simple yet effective compression
scheme based on Encoded Polyline Algorithm 2 (or polyline
encoding). Polyline encoding is a lossy compression
algorithm that converts a rounded binary value into a
series of character codes for ASCII characters using
the base64 encoding scheme. It can be configured to
maintain a configurable precision by rounding the value
to a specified decimal place. More importantly, it can
achieve a high compression ratio of up to 3.5× under the
FL communication scenarios (we evaluate the effectiveness
of compression in §6.3). FedAT compresses both the uplink
and downlink communications. The process is as follow:
(1) FedAT flattens (marshalling) the weights of each layer
to get a list of decimal values. (2) Then, using polyline
encoding, every decimal value in the list gets converted
into a compressed ASCII string; along with the compressed
weights, the dimensions of the weights of each layer is
transmitted as well. (3) When the server/clients receive the
compressed weights, a decompression process is performed,
and then the decompressed weights are reshaped back
(unmarshalling) to the original dimensions based on the
dimension information received.

5 CONVERGENCE ANALYSIS
In this section, we show that FedAT converges to the global
optimal solution for both strongly convex and non-convex
functions on Non-i.i.d. data. First, we introduce some

2https://developers.google.com/maps/
documentation/utilities/polylinealgorithm

definitions and assumptions as follow.
Definition 5.1. (Smoothness) The function f has Lipschitz
continuous gradients with constant L > 0 (in other words,
f is L-smooth) if ∀x1, x2,

f(x1)−f(x2) ≤ 〈∇f(x2), x1−x2〉+
L

2
||x1−x2||2. (7)

Definition 5.2. (Strong convexity) The function f is µ-
strongly convex with µ > 0 if ∀x1, x2,

f(x1)−f(x2) ≥ 〈∇f(x2), x1−x2〉+
µ

2
||x1−x2||2. (8)

Definition 5.3 has been made by the work (Li et al., 2018).
Definition 5.3. (γ-inexactness) For a function h(w) =
F (w) + λ

2 ||w − w0||2, and γ ∈ [0, 1]. w∗ is a γ-inexact so-
lution for minw h(w) if ||∇h(w∗)|| ≤ γ||∇h(w0)||, where
∇h(w) = ∇F (w) + λ(w − w0).

According to (Li et al., 2020), this definition aims to allow
flexible performance of local clients in each communica-
tion round, such that each of the local objectives can be
solved inexactly. The amount of local computation vs. com-
munication can be tuned by adjusting the number of local
iterations, i.e., more local iterations indicates more exact
local solutions.

Further, we make the following assumptions on the objective
functions:
Assumption 5.1. The central objective f(w) is bounded,
i.e., min f(w) = f(w∗) > −∞
Assumption 5.2. The expected squared norm of stochastic
gradients is uniformly bounded, i.e., there exists a scalar G,
such that E||∇F (wt)||2 ≤ G2, all t = 0, ..., T − 1.

Assumption 5.3. With ḡt(wt) (ḡt =
∑m
k=1

nk

Nc
∇hk(wt))

as the averaged gradients from certain tier with m clients,
there exists a scalar σ > 0 such that∇f(wt)>E(ḡt(w

t)) ≥
σ||∇f(wt)||2.

Assumption 5.1 is easy to satisfy as there exists a mini-
mum value for the central objective f(w). The conditions
in Assumption 5.2 on the variance of stochastic gradients is
customary. While this is a much weaker assumption com-
pared to the one that uniformly bounds the expected norm
of the stochastic gradient. Assumption 5.3 ensure that the
gradient of local tier ḡt is an estimation of∇f(wt). And as
σ = 1, we have ḡt as the unbiased estimation of∇f(wt).

To convey our proof clearly, we first introduce and prove
certain useful lemmas.
Lemma 5.1. With Definition 5.3, the local functions h(·)
are γ-inexact. For aggregated tier model ḡt(wt), we have

E||ḡt(wt)||2 ≤ γ2G2c2, (9)

where c is the total number of clients within the given tier.

https://developers.google.com/maps/documentation/utilities/polylinealgorithm
https://developers.google.com/maps/documentation/utilities/polylinealgorithm

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

Lemma 5.2. If f(w) is µ-strongly convex, then with Defini-
tion 5.2, we have:

2µ(f(wt)− f(w∗)) ≤ ||∇f(wt)||2. (10)

We show that the averaged model of local tier is bounded
in Lemma 5.1. The detailed proof is in Appendix A.1.
While the proof of Lemma 5.2 is supported by the literature
(Nesterov, 2013; Bottou et al., 2018), we also provide a
detailed proof in Appendix A.2.

Theorem 5.1. Suppose that the central objective function
f(w) is L-smooth and µ-strongly convex. The local func-
tions h(·) are γ-inexact. Let Assumption 5.2 and Assumption
5.3 hold. After T global updates on the server, FedAT con-
verges to a global optimum w∗:

E[f(wT)− f(w∗)]

= (1− 2µBησ)T (f(w0)− f(w∗)) +
L

2
η2γ2B2G2c2,

(11)

where c is the total number of clients within one tier, and
B =

Ttier(M+1−m)

T ≤ 1.

We direct the reader to Appendix A.3 for a detailed proof.
The convergence bound in Theorem 5.1 depends on local
constrain µ, weighted parameterB and learning rate η. Note
that B varies in each global iteration because the update
number of each tier changes at every global iteration. A
also varies due to the data heterogeneity of each tier.

Theorem 5.2. Suppose that the central objective function
f(w) is L-smooth and non-convex. The local functions
h(·) are γ-inexact. Let Assumption 5.1,Assumption 5.2 and
Assumption 5.3 hold, then after T global updates we have:

T−1∑
t=0

BE[||∇f(wt)||2]

≤ f(w0)− f(w∗)

ησ
+

L

2σ
T 2ηγ2BG2c2,

(12)

where c is the total number of clients within one tier, and
B =

Ttier(M+1−m)

T ≤ 1.

6 EVALUATION
6.1 Experimental Setting
Federated Datasets. We evaluate FedAT using three dif-
ferent real-world federated datasets on both the convex and
non-convex models described as follows:

• CIFAR-10: We train a convolutional neural network
(CNN) on the 10-class CIFAR-10 (Krizhevsky et al.,
2009) dataset. The network architecture includes three
convolutional layers, each with 32, 64 and 64 filters,

followed by two fully connected layers with units of
64 and 10. We partition the dataset into 100 clients
and follow the same Non-i.i.d. setting of CIFAR-10 as
(McMahan et al., 2017).

• Fashion-MNIST: We use a 10-class Fashion-MNIST
dataset (Xiao et al., 2017) to train an image classifica-
tion model with the same mode structure, number of
clients and Non-i.i.d. setting as CIFAR-10. The input
of the model is a flattened 784-dimensional (28× 28)
image, and the output is a class label between 0 and 9,
with each label corresponding to one cloth type.

• Sentiment140: In order to evaluate the model perfor-
mance under a convex setting, we train a logistic re-
gression model on a text sentiment analysis task on
tweets from the Sentiment140 (Go et al., 2009) dataset.
Each twitter account corresponds to a client.

FL Methods. We compare FedAT against three syn-
chronous and asynchronous FL methods:

• FedAvg (McMahan et al., 2017): A baseline syn-
chronous FL method proposed by McMahan et al.

• TiFL (Chai et al., 2020): A synchronous FL method
that partitions training clients into different tiers based
on their responding latency. TiFL’s server uses the
same aggregation method as that of FedAvg.

• FedAsync (Xie et al., 2019): A baseline asynchronous
FL method using weighted averaging to update the
server model.

Implementation and Setup. We have implemented FedAT
and the comparison methods all in TensorFlow (Abadi et al.,
2016). We simulate a FL setup using a 192-core Chameleon
Cloud cluster, which consists of three bare-metal machines,
each equipped with a 64-core Intelr Xeonr Gold 6242
CPU, and 192 GB main memory. We deploy the FL server
exclusively on one machine, and all clients on the rest two,
where each client gets assigned one CPU core. We evaluate
100 clients in most tests, unless otherwise specified. FedAT
is configured to use Precision 4 as the precision of the
compressor (§6.3.2) throughout the evaluation.

Hyperparameters. We randomly split each client’s local
data into an 80% training set and a 20% testing set. For
intra-tier synchronous training, we adopt the same sampling
scheme as FedAvg: sampling clients (within a particular
tier) randomly at each round. We use Adam (Kingma &
Ba, 2014) as the local solver and set the local constrain
parameter λ as 0.4. For each dataset, we tune the learning
rate on FedAvg (local epoch E = 3, batch size = 10) and
use the same learning rate for all the four FL methods on
that dataset. We set the number of randomly selected clients
as 10 for FedAvg, TiFL and FedAT on all datasets.

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

Table 1. Comparison of prediction performance and variance to baseline approaches. #class indicates the number of labels (i.e., classes)
each client has. The Accuracy columns show the best prediction accuracy that each FL approach reaches after each model converges.
The Norm.Var. columns show the average variance of test accuracy among all clients, normalized to that of FedAT. We show FedAT’s
absolute variance values (Abs.Var.). We show the absolute values for FedAT’s accuracy variance. impr.(a) and impr.(b) are the
accuracy improvement of FedAT compared with the best and worst baseline FL method, respectively. The best performance results are
highlighted in bold font.

Dataset (#class)
FedAvg TiFL FedAsync FedAT

Accuracy Norm. Var. Accuracy Norm. Var. Accuracy Norm. Var. Accuracy Abs. Var. impr.(a) impr.(b)

CIFAR-10 (#2) 0.547 2 0.527 1.26 0.480 2 0.591 0.0042 7.44% 18.78%
CIFAR-10 (#4) 0.628 5.07 0.615 2.79 0.541 3.93 0.633 0.0014 0.79% 14.53%
CIFAR-10 (#6) 0.654 4.33 0.654 1.33 0.531 2.08 0.673 0.0012 2.82% 21.09%
CIFAR-10 (#8) 0.667 3.1 0.655 1.3 0.561 1.54 0.681 0.0010 2.05% 17.62%
CIFAR-10 (i.i.d.) 0.686 4.23 0.685 2.12 0.567 2.69 0.701 0.00052 2.13% 19.11%
Fashion-MNIST (#2) 0.842 1.86 0.859 1.29 0.795 2 0.873 0.007 1.60% 8.93%
Sentiment140 0.741 3.72 0.739 2.75 0.740 5.69 0.748 2.67e−5 0.93% 1.20%

0 1000 2000 3000 4000 5000 6000
Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

FedAT
TiFL
FedAvg
FedAsync

FedAt TiFL FedAvg
Target accuracy: 0.47

0

10000

Ti
m

e(
s)

1308.48

8205.29 8722.45

(a) CNN @ CIFAR10.

0 2000 4000 6000 8000
Time(s)

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

FedAT
TiFL
FedAvg
FedAsync

FedAT TiFL FedAvg
Target accuracy: 0.76

0

2500

5000

Ti
m

e(
s)

1457.41
2593.86

3753.45

(b) CNN @ Fashion-MNIST.

0 500 1000 1500 2000 2500 3000
Time(s)

0.66

0.68

0.70

0.72

0.74

0.76

Te
st

 A
cc

ur
ac

y

FedAT
TiFL
FedAvg
FedAsync

FedAT TiFL FedAvg FedAsync
Target accuracy: 0.735

0

1000

Ti
m

e(
s)

178.48

783.33
1144.37

232.9

(c) Logistic @ Sentiment140.

Figure 2. Performance comparison of different FL methods on 2-class Non-i.i.d. CIFAR10, Fashion-MNIST, and Sentiment140 datasets.
Above (test accuracy timeline curves): The results are average-smoothed for every 40 global rounds. Bottom (bar charts): the time it
takes for each evaluated FL methods to reach a target accuracy of N% as specified in the X-axis’ labels. (Note that FedAsync is not able
to reach the target accuracy for Cifar10 and FMnist, thus is omitted.)

Simulating Different Performance Tiers. We add random
delays to the computations conducted by clients to simulate
different levels of straggler effects that could be potentially
caused by weaker computing powers and intermittent net-
work connections in a real-world FL setup. We first evenly
divide all the clients into 5 parts, then randomly assign de-
lays of 0s, 0 ∼ 5s, 6 ∼ 10s, 11 ∼ 15s and 20 ∼ 30s to
the clients in each part at every round, respectively. Each
part is called one tier. To guarantee fair comparison, each
client, once selected, would follow a fixed, pseudo-random
mini-batch schedule. The same strategy is applied to all
the FL methods that we test (including FedAT’s intra-tier
synchronous training). Furthermore, to simulate unstable
network connections, for all the tests that we run, we ran-
domly select 10 “unstable” clients, which would drop out at
any time during the training process. Once the client drops
out, it will not come back and rejoin the training process
again.

6.2 Prediction Performance
Table 1 presents the results of the prediction performance
and the variance of the test accuracy on all the datasets.
We report the best test accuracy after each training process
converges within a global iteration budget. For the 2-class
CIFAR10 dataset, FedAT outperforms the best baseline FL
method, FedAvg, by 7.44%, and the worst baseline method,
FedAsync, by 18.78%. Using the same tiering scheme as
TiFL, FedAT achieves consistently higher accuracy than
TiFL for all the experiments. This is because: (1) the lo-
cal constraint forces local models to be closer to the server
model, and (2) FedAT’s new weighted aggregation heuris-
tic can more effectively engage the straggling clients from
the slower tiers, leading to better prediction performance
(we evaluate the effectiveness of our weighted aggregation
method in §6.4). FedAvg has the closest prediction per-
formance as TiFL, because they both follow the same syn-
chronous updating strategy. FedAsync, on the other hand,
performs the worst, as it simply aggregates weights from
one client at a round and has no effective way to deal with

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

0 1000 2000 3000 4000 5000 6000
Time(s)

0.1

0.2

0.3

0.4

0.5

0.6
Te

st
 A

cc
ur

ac
y

FedAT
TiFL
FedAvg
FedAsync

(a) CIFAR10 Non-i.i.d. (4).

0 1000 2000 3000 4000 5000 6000
Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

FedAT
TiFL
FedAvg
FedAsync

(b) CIFAR10 Non-i.i.d. (6).

0 1000 2000 3000 4000 5000 6000
Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

FedAT
TiFL
FedAvg
FedAsync

(c) CIFAR10 Non-i.i.d. (8).

0 1000 2000 3000 4000 5000 6000
Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

FedAT
TiFL
FedAvg
FedAsync

(d) CIFAR10 i.i.d.

Figure 3. Convergence speed comparison on CIFAR10 over different level of Non-i.i.d-ness. The results are average-smoothed for every
40 global rounds.

Table 2. The total amounts of data (MB) transferred between
clients and the server in order to achieve the target accuracy on all
datasets with 2-class Non-i.i.d. case. - means that the FL method
is not able to achieve the accuracy target within the iteration budget.
The best results are highlighted in bold font.

Method CIFAR10 FMNIST Sentiment140
(acc. = 0.50) (acc. = 0.79) (acc. = 0.73)

FedAvg 1828.54 / 1048.25 / 16.71 /
1827.96 1048.56 16.78

TiFL 2140.71 / 1041.98 / 17.20 /
2139.19 1041.53 17.25

FedAsync − / 9895.53 / 82.27 /
− 9898.54 82.24

FedAT 1675.82 / 1041.54 / 16.41 /
1671.43 1041.52 16.39

stragglers. The performance difference can also be clearly
noticed from the convergence timeline graphs shown in
Figure 2. FedAT converges faster towards the optimal so-
lution than all other three compared methods on both the
non-convex and convex objectives.

6.2.1 Impact of Non-i.i.d. Level

The models’ convergence behaviors are sensitive to the de-
gree of Non-i.i.d. of the data distribution across clients.
Table 1 shows that, for the CIFAR10 dataset, the test ac-
curacy increases as the degree of Non-i.i.d. decreases (i.e.,
the number of classes per client increases); accordingly, the
variance of the test accuracy decreases as the degree of Non-
i.i.d. decreases (i.e., the data is more evenly shuffled and
each client covers all the classes). Figure 2(a) (the timeline
charts above) and 3 together show a sensitivity analysis of
the convergence rate as a function of the Non-i.i.d. (from
two classes per client, to 8 classes per client, to the i.i.d.
case), on the CIFAR10 dataset. We observe that FedAT
outperforms all the other three FL methods with higher pre-
diction performance across all different Non-i.i.d. levels.
The most distinct performance gap between FedAT and the
other FL methods can be observed in the 2-class Non-i.i.d.
case, where each individual client holds only 2 classes of
data. Notably, FedAT improves the prediction performance
by as much as 8.04% compared to FedAvg.

6.2.2 Robustness to Stragglers

As defined in in Definition 3.1, the robustness of a FL
method against stragglers can be quantified using the vari-
ance on the prediction performance and the convergence
speed. Table 1 shows that FedAT has consistently the low-
est accuracy variance across all experiments. FedAvg ob-
serves significantly higher accuracy variance, which are
1.86-5.07× higher than that of FedAT. This is due to the
compound effect of both synchronous training and stragglers
– synchronous training determines that during each round
only a subset of clients can get involved to contribute to the
global training, while the straggling clients are more likely
to have a less accurate model when they next get selected
(since they receive less training) by the server for training,
thus causing huge accuracy fluctuation of the global model.

The bar charts in Figure 2 presents a comparison of the
training time it takes for each FL method to achieve a target
test accuracy. For example, as shown in Figure 2(a) (bar
chart at bottom), to reach an accuracy of 47% for the CI-
FAR10 CNN model, TiFL and FedAvg spend 5.27× and
5.67× longer time than FedAT. Fashion-MNIST show a sim-
ilar trend. For Sentiment140, FedAvg, TiFL and FedAsync
take 1.3×,4.38× and 6.41× longer time than FedAT, re-
spectively.

6.3 Communication Efficiency
6.3.1 Communication Cost

We next evaluate the network communication cost of FedAT
in terms of the amounts of data transferred via network.
Table 2 shows the amounts of data transferred between the
clients and the server (i.e., counting both model uploading
and downloading) in order to achieve the target accuracy.
FedAsync incurs the highest communication cost – about
9.5× of FedAT, or is not able to reach the target prediction
performance. This confirms that severe communication
bottleneck problem exists in asynchronous FL methods,
where the server simply communicates with all the clients.
FedAvg and TiFL have similar communication cost as they
both use the same synchronous updating mechanism. FedAT
incurs the lowest communication cost with compression
technique and the proposed weighted aggregation on server.

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

107 108 109 1010

Upload bytes

0.1

0.2

0.3

0.4

0.5

0.6
Te

st
 A

cc
ur

ac
y

FedAT
TiFL
FedAvg
FedAsync

(a) CIFAR10.

107 108 109 1010

Upload bytes

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

FedAT
TiFL
FedAvg
FedAsync

(b) Fashion-MNIST.

106 107 108 109

Upload bytes
0.70

0.71

0.72

0.73

0.74

0.75

Te
st

 A
cc

ur
ac

y

FedAT
TiFL
FedAvg
FedAsync

(c) Sentiment140.

Figure 4. Test accuracy as a function of the cumulative amounts of data uploaded from the clients to the server for 2-class Non-i.i.d.
datasets. The performance curves are average-smoothed for every 40 global rounds. The X-axis is in log-scale.

0 2000 4000 6000 8000 10000 12000 14000 16000

Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

T
e
st

 A
cc

u
ra

cy

Precision 3

Precision 4

Precision 5

Precision 6

No Compression

(a) Test accuracy.

107 108 109 1010 1011

Upload bytes

0.1

0.2

0.3

0.4

0.5

0.6

T
e
st

 A
cc

u
ra

cy

Precision 3

Precision 4

Precision 5

Precision 6

No Compression

(b) Uploaded data vs. accuracy.

Figure 5. Impact of FedAT’s compression precision on the predic-
tion performance and the communication cost, for the CIFAR10
Non-i.i.d. 2-class dataset. All results are plotted with the average
of every 40 global rounds.

Figure 4 further compares the uploaded bytes (from clients
to the server) needed to reach a certain test accuracy. To
achieve a relatively higher accuracy, FedAT needs fewer
bytes than all the other three FL methods. More impor-
tantly, to achieve the same prediction performance for the
CIFAR10 2-class Non-i.i.d. dataset, FedAT requires up to
1.28× less data uploaded to the server, again demonstrating
the efficiency and effectiveness of the model compression
method used by FedAT.

6.3.2 The Accuracy vs. Communication-Cost Tradeoff
Next, we explore the accuracy vs. communication-cost
tradeoff by varying the precision of FedAT’s compressor.
Precision 3 (i.e., a precision of three decimal places)
leads to the worst prediction performance, as shown in Fig-
ure 5. This is because compressing the model by keeping
only three digits after the decimal loses much information
that is needed to converge the model; as a result, more
training rounds, and more data communication, are needed
in order to achieve a desirable accuracy. Precision 4 is
robust enough to strike a balance between the prediction
performance and communication efficiency. Precision 4

approaches the optimal accuracy achieved when no com-
pression is used (Figure 5(a)), while effectively reducing the
amount of data uploaded by 36.41% and 67.3% (given the
same target accuracy of 50%) compared to Precision 6

and No Compression, respectively (Figure 5(b)). FedAT
achieves a compression ratio (i.e., the ratio of the data size

Cifar10 FMnist Sentiment1400.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

0.591

0.873

0.748

0.568

0.861

0.724

Weighted
Uniform

Figure 6. Comparison of FedAT’s weighted aggregation heuristic
vs. a uniform baseline approach that assign uniform weights when
aggregating the models from different tiers.

after compression and before compression) up to 3.5× over-
all. FedAT is configured to use Precision 4 as the default
compression configuration in all the other experiments.

6.4 Effectiveness of Weighted Aggregation
Finally, we validate the effectiveness of our weighted aggre-
gation heuristic. Weighted aggregation assigns more weight
to the tiers that participate in the global training less fre-
quently to prevent training bias towards the faster tiers. As
shown in Figure 6, the weighted aggregation heuristic im-
proves the best test accuracy by 1.39% to 4.05%, compared
to the baseline case, for the three datasets, demonstrating
the effectiveness of the proposed approach.

7 CONCLUSION
We have presented FedAT, a new FL method that maximizes
the prediction performance and minimizes the communica-
tion cost using a tiered, hybrid synchronous-asynchronous
training model. FedAT cohesively synthesizes the follow-
ing modules: (1) a tiering strategy to handle stragglers;
(2) an asynchronous scheme to update the global model
among tiers for enhanced prediction performance; (3) a
novel, weighted aggregation heuristic that the FL server
uses to balance the model parameters from heterogeneous,
straggling tiers; and (4) a polyline-encoding-based compres-
sion algorithm to minimize the communication cost. We
have provided rigorous theoretical analysis for our proposed
method for two general classes of convex and non-convex

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

losses. We show that FedAT has provable performance guar-
antee. Our empirical evaluation has validated our theoretical
analysis, and demonstrates that FedAT achieves the high-
est prediction performance, converges the fastest, and is
communication-efficient, compared to state-of-the-art FL
methods.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning. In
12th {USENIX} symposium on operating systems design
and implementation ({OSDI} 16), pp. 265–283, 2016.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. signsgd: Compressed optimisation for non-
convex problems. arXiv preprint arXiv:1802.04434,
2018.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. Siam Review,
60(2):223–311, 2018.

Chai, Z., Ali, A., Zawad, S., Truex, S., Anwar, A., Bara-
caldo, N., Zhou, Y., Ludwig, H., Yan, F., and Cheng,
Y. Tifl: A tier-based federated learning system. In
Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing
(HPDC), pp. 125–136, 2020. ISBN 9781450370523.

Chen, M., Mao, B., and Ma, T. Efficient and robust asyn-
chronous federated learning with stragglers. In Submitted
to International Conference on Learning Representations,
2019a.

Chen, Y., Ning, Y., and Rangwala, H. Asynchronous on-
line federated learning for edge devices. arXiv preprint
arXiv:1911.02134, 2019b.

Chen, Y., Sun, X., and Jin, Y. Communication-efficient
federated deep learning with layerwise asynchronous
model update and temporally weighted aggregation. IEEE
Transactions on Neural Networks and Learning Systems,
2019c.

Go, A., Bhayani, R., and Huang, L. Twitter sentiment
classification using distant supervision. CS224N project
report, Stanford, 1(12):2009, 2009.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and
Bengio, Y. An empirical investigation of catastrophic for-
getting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., and Kim, S.-
L. Communication-efficient on-device machine learning:

Federated distillation and augmentation under non-iid
private data. arXiv preprint arXiv:1811.11479, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Koloskova, A., Stich, S. U., and Jaggi, M. De-
centralized stochastic optimization and gossip algo-
rithms with compressed communication. arXiv preprint
arXiv:1902.00340, 2019.

Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P.,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. arXiv preprint arXiv:1812.06127, 2018.

Li, T., Sanjabi, M., Beirami, A., and Smith, V. Fair re-
source allocation in federated learning. In International
Conference on Learning Representations, 2019a.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future directions.
IEEE Signal Processing Magazine, 37(3):50–60, 2020.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On the
convergence of fedavg on non-iid data. In International
Conference on Learning Representations, 2019b.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282, 2017.

Mills, J., Hu, J., and Min, G. Communication-efficient
federated learning for wireless edge intelligence in iot.
IEEE Internet of Things Journal, 2019.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer Science & Business
Media, 2013.

Nishio, T. and Yonetani, R. Client selection for federated
learning with heterogeneous resources in mobile edge.
In ICC 2019-2019 IEEE International Conference on
Communications (ICC), pp. 1–7. IEEE, 2019.

O’herrin, J. K., Fost, N., and Kudsk, K. A. Health insurance
portability accountability act (hipaa) regulations: effect
on medical record research. Annals of surgery, 239(6):
772, 2004.

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

Reisizadeh, A., Mokhtari, A., Hassani, H., and Pedarsani,
R. An exact quantized decentralized gradient descent
algorithm. IEEE Transactions on Signal Processing, 67
(19):4934–4947, 2019.

Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A.,
and Pedarsani, R. Fedpaq: A communication-efficient
federated learning method with periodic averaging and
quantization. In International Conference on Artificial
Intelligence and Statistics, pp. 2021–2031, 2020.

Sattler, F., Wiedemann, S., Müller, K.-R., and Samek, W.
Robust and communication-efficient federated learning
from non-iid data. IEEE transactions on neural networks
and learning systems, 2019a.

Sattler, F., Wiedemann, S., Müller, K.-R., and Samek, W.
Sparse binary compression: Towards distributed deep
learning with minimal communication. In 2019 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp.
1–8. IEEE, 2019b.

Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S.
Federated multi-task learning. In Advances in Neural
Information Processing Systems, pp. 4424–4434, 2017.

Tankard, C. What the gdpr means for businesses. Network
Security, 2016(6):5–8, 2016.

Wang, J. and Joshi, G. Cooperative sgd: A
unified framework for the design and analysis of
communication-efficient sgd algorithms. arXiv preprint
arXiv:1808.07576, 2018.

Wang, J., Sahu, A. K., Yang, Z., Joshi, G., and Kar, S.
Matcha: Speeding up decentralized sgd via matching de-
composition sampling. arXiv preprint arXiv:1905.09435,
2019.

Woodworth, B. E., Wang, J., Smith, A., McMahan, B., and
Srebro, N. Graph oracle models, lower bounds, and gaps
for parallel stochastic optimization. In Advances in neural
information processing systems, pp. 8496–8506, 2018.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xie, C., Koyejo, S., and Gupta, I. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934, 2019.

Yu, H., Yang, S., and Zhu, S. Parallel restarted sgd for non-
convex optimization with faster convergence and less
communication. arXiv preprint arXiv:1807.06629, 2(4):
7, 2018.

Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., and
Liu, Y. Batchcrypt: Efficient homomorphic en-
cryption for cross-silo federated learning. In 2020

USENIX Annual Technical Conference (USENIX
ATC 20), pp. 493–506. USENIX Association,
July 2020. ISBN 978-1-939133-14-4. URL
https://www.usenix.org/conference/
atc20/presentation/zhang-chengliang.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

https://www.usenix.org/conference/atc20/presentation/zhang-chengliang
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

A THEORETICAL ANALYSIS OF FEDAT
We analyze FedAT in the setting of both convex and non-convex situations in this section.

Recall that wt is the model parameters of the server maintained at the t-th round. Let ḡt(wt) =
∑c
k=1

nk

Nc
∇hk(wt), in

which, Nc is the total number of data samples across all c clients at tier m. Therefore, wt+1 = wt −
Ttier(M+1−m)

T ηḡt(w
t).

A.1 Proof of Lemma 5.1

To prove Theorem 5.1, we first introduce two Lemmas.

Proof. Using the notion of γ-inexactness for each local objective. We have

∇hk(wt) = Fk(wt) + λ(wt − w0) (13)

||∇hk(wt)|| ≤ γ||∇Fk(wt)|| (14)

With ḡt(wt) =
∑c
k=1

nk

Nc
∇hk(wt), we can get

||ḡt(wt)||2 =
1

N2
c

||n1∇h1(wt) + n2∇h2(wt)+, ...,+nc∇hc(wt)||2

≤ 1

N2
c

·N2
c ||∇h1(wt) +∇h2(wt)+, ...,+∇hc(wt)||2

≤ m2||∇hk∗(wt)||2 (k∗ = arg max
k
∇hk(wt))

≤ m2γ2||∇Fk∗(wt)||2 (with Eq.(14))

(15)

Take expectation of both sides and with Assumption 5.2, we have

E||ḡt(wt)||2 ≤ m2γ2E||∇Fk∗(wt)||2

≤ γ2G2c2
(16)

A.2 Proof of Lemma 5.2

Proof. f(w) is µ-strongly convex, we can get:

f(w′)− f(wt) ≥ 〈∇f(wt), w′ − wt〉+
µ

2
||w′ − wt||2, (17)

Let us define Γ(w′) such that:

Γ(w′) = f(wt) + 〈∇f(wt), w′ − wt〉+
µ

2
||w′ − wt||2, (18)

Γ(w′) is a quadratic function of w′, then it has minimal value when ∇Γ(w′) = ∇f(wt) + µ(w′ − wt) = 0. Then the
minimal value of Γ(w′) is obtained when w′ = wt − ∇f(w

t)
µ , which is:

Γmin = f(wt)− ||∇f(wt)||2

2µ
, (19)

For f(w) is µ-strongly convex, we can complete the proof:

f(w∗) ≥ Γ(w∗) ≥ Γmin = f(wt)− ||∇f(wt)||2

2µ
, (20)

2µ(f(wt)− f(w∗)) ≤ ||∇f(wt)||2. (21)

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

A.3 Proof of Theorem 5.1

Proof. Now we start to prove the convergence of Theorem 5.1. With Definition 5.1 we can get:

f(wt+1)− f(wt)

≤ 〈∇f(wt), wt+1 − wt〉+
L

2
||wt+1 − wt||2 (f(·) is L-smooth)

= −∇f(wt)>
Ttier(M+1−m)

T
ηḡt(w

t) +
Lη2

2

T 2
tier(M+1−m)

T 2
||ḡt(wt)||2 (wt+1 = wt −

Ttier(M+1−m)

T
ηḡt(w

t))

(22)

Let B =
Ttier(M+1−m)

T . Then with Lemma 5.1, we can update Equation 22 as

E[f(wt+1)]− f(wt)

≤ −∇f(wt)>BηE[ḡt(w
t)] +

L

2
η2B2E||ḡt(wt)||2

≤ −∇f(wt)>BηE[ḡt(w
t)] +

L

2
η2γ2B2G2c2

(23)

Then from Assumption 5.3, we have

E[f(wt+1)]− f(wt)

≤ −Bησ||∇f(wt)||2 +
L

2
η2γ2B2G2c2

(24)

Then with Lemma 5.2, Equation (24) can be updated as

E[f(wt+1)]− f(wt)

≤ −2µBησ(f(wt)− f(w∗)) +
L

2
η2γ2B2G2c2

(25)

By subtracting f(w∗) from both sides and moving f(wt) from left to right, we get

E[f(wt+1)]− f(w∗)

≤ −2µBησ(f(wt)− f(w∗)) + (f(wt)− f(w∗)) +
L

2
η2γ2B2G2c2

= (1− 2µBησ)(f(wt)− f(w∗)) +
L

2
η2γ2B2G2c2

(26)

Taking the whole expectations and rearranging (26), we obtain

E[f(wt+1)− f(w∗)]

≤ (1− 2µBησ)E[(f(wt)− f(w∗))] +
L

2
η2γ2B2G2c2

(27)

subtracting Lηγ2BG2m2

4µσ from both sides, we have

E[f(wt+1)− f(w∗)]−
Lηγ2BG2c2

4µσ

≤ (1− 2µBησ)(E[(f(wt)− f(w∗))]−
Lηγ2BG2c2

4µσ
)

(28)

The left side of (28) is a geometric series with common ratio 1− 2µBησ, when t+ 1 = T , we get Equation (11), then we
complete the proof.

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

A.4 Proof of Theorem 5.2

Proof. Take expectation at both sides of Equation (24), we have

E[f(wt+1)]− E[f(wt)]

≤ −BησE[||∇f(wt)||2] +
L

2
η2γ2B2G2c2

(29)

Then sum Equation (29) at both sides over global iteration T . We have

E[f(wt+1)]− f(w0)

≤
T−1∑
t=0

−BησE[||∇f(wt)||2] +
L

2
T 2η2γ2B2G2c2

(30)

As min f(wt) = f(w∗) ≤ E[f(wt+1)], then we have

f(w∗) ≤ f(w0)−
T−1∑
t=0

BησE[||∇f(wt)||2]

+
L

2
T 2η2γ2B2G2c2

(31)

Rearrange (31) we can get
T−1∑
t=0

BE[||∇f(wt)||2]

≤ f(w0)− f(w∗)

Bησ
+

L

2σ
T 2ηγ2BG2c2

(32)

Then we complete the proof.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 Impact of Client Participation Level

2 5 10 15
Number of clients

0.40

0.45

0.50

0.55

0.60

Te
st

 A
cc

ur
ac

y

FedAT
TiFL
FedAvg

(a) CIFAR10 Non-i.i.d.(2)

2 5 10 15
Number of clients

0.738

0.740

0.742

0.744

0.746

0.748

Te
st

 A
cc

ur
ac

y

FedAT
TiFL
FedAvg

(b) Sentiment140

Figure 7. Prediction accuracy on CIFAR-10 (left) and Sentiment140 (right) as number of client participation increase at each iteration.
The comparison is performed among three federated methods which have the synchronous update component.

Figure 7 shows the prediction performance on CIFAR-10 (left) and Sentiment140 (right) trained with different degrees of
client participation by FedAvg, TiFL and FedAT , respectively. In real-life situation, it is better to have as fewer clients
participate in each global iteration for communication efficiency. However, in Figure 7, we notice that reducing the number
of client participation has negative effects on all three federated methods. Partial participation may reduce the convergence

FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data

speed of FedAT , while with the local constraint term, the optimization is still towarding the optimal solution. In FedAvg, if
a nonrepresentative subset of clients is selected then the optimization process could deviate away from the minimum and
and might even cause catastrophic forgetting (Goodfellow et al., 2013). Although TiFL possesses the same tiering strategy
as FedAT, it has the close performance as FedAvg. As discussed informer sections, TiFL follows the same synchronous
update scheme as FedAvg, tiering will affect the convergence speed but not the final prediction accuracy.

We can observe in Figure 7 that FedAT is robust in the non-i.i.d. situation, where the prediction accuracy slightly decreases
with the number of client participation decreases. FedAT suffers much less from a reduced participation number than
FedAvg and TiFL approaches. Even in the extreme case where only 2 out of 100 clients participate in every round of training,
FedATstill achieves much higher accuracy than FedAvg and TiFL.

