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Abstract—Speech recognition and machine translation have
made major progress over the past decades, providing practical
systems to map one language sequence to another. Although
multiple modalities such as sound and video are becoming
increasingly available, the state-of-the-art systems are inherently
unimodal, in the sense that they take a single modality —
either speech or text — as input. Evidence from human learning
suggests that additional modalities can provide disambiguating
signals crucial for many language tasks. Here, we describe the
How2 dataset , a large, open-domain collection of videos with
transcriptions and their translations. We then show how this
single dataset can be used to develop systems for a variety
of language tasks and present a number of models meant
as starting points. Across tasks, we find that building multi-
modal architectures that perform better than their unimodal
counterpart remains a challenge. This leaves plenty of room for
the exploration of more advanced solutions that fully exploit
the multi-modal nature of the How2 dataset , and the general
direction of multimodal learning with other datasets as well.

Index Terms—Multimodal machine learning, grounding,
speech recognition, machine translation, summarization, repre-
sentation learning

I. INTRODUCTION

Multimodal machine learning covers topics at the intersec-

tion of natural language processing, speech recognition, and

computer vision [1]. Research in this area is motivated by

recent advances in representation learning and the reported

benefits of multi-sensory inputs: e.g. visual and tactile inter-

action increases infant sensitivity to colour differences over

purely visual inputs [2], and psycholinguistic studies show

the benefits of multiple modalities in concept representation

[3]. Significant progress has been made in the last decade

on major problems, including image captioning [4], visual

question answering [5], image–sentence retrieval [6], and

video captioning [7]. A common aspect of these problems is

that they typically involve bi-modal learning, e.g. images and

sentences in image captioning, due to the nature of the freely

available datasets.
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In recent years, there has been a collective effort in multi-

lingual and multimodal representation learning, and models of

visually grounded speech. In multimodal machine translation,

researchers have focused on methods for integrating visual

information into sequence-to-sequence models [8]–[10], and in

multilingual image–sentence retrieval, it has been shown that

cross-lingual sentence–sentence objectives improve retrieval

performance [11], and that these findings extend to working

with multiple languages [12]. In multimodal speech recogni-

tion, the image modality has been used to adapt the acoustic

model [13], the language model [14] and, more recently, end-

to-end systems [15], [16]. In spite of these recent successes,

researchers have worked with bi- or multilingual datasets [17]

that are much smaller than the datasets typically used for

machine translation and speech recognition research.

This paper introduces the large-scale tri-modal How2

dataset , which consists of 2,000 hours of instructional videos

with audio signals and two types of English text: closed

captions of the speech and a self-written summary of the

video, and crowdsourced Portuguese translations of a subset

of the human annotated transcripts (Section II). The How2

dataset affords a wide variety of bi-, tri- and multi-modal

experiments; here, we focus on multimodal speech recognition

(Section III), multimodal machine translation (Section IV),

abstractive video summarization (Section V), and multiview

learning from speech, video, and multi-lingual transcripts

(Section VI). The main findings from these experiments is that

learning multimodal representations almost always results in

better task-specific performance, and that there are numerous

opportunities for future research on effective feature integra-

tion in multimodal learning.

II. THE HOW2 DATASET

In the How2 dataset, we collect 79,114 English instructional

videos from YouTube with English subtitles. The dataset con-

sists of a total of 2,000 hours of video. Videos have an average

length of 90 seconds [18] and manual Portuguese translations.

This collection of videos and translations constitutes a large-

scale resource for testing a substantial part of multimodal

language processing methods in a real-world scenario.1

An alignment process is needed to use the audio, the English

subtitles, the Portuguese translations, and the video modality

together. To this end, we first re-segment the English subtitles

into sentences using NLTK [19]. Then, we force-align the

speech signal at the word level with an HMM-GMM pre-

trained on the Wall Street Journal dataset. Finally, using the

1The tools to download and construct the corpus are freely available at
https://github.com/srvk/how2-dataset.
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TABLE III: End-to-end results: all features are avgpool and

per-video. Ens stands for ensemble decoding.

WER (↓)
Feature Best Mean Ens

Baseline - 19.2 19.4 15.6

dinit action 19.2 19.4 15.5
einit action 18.8 19.2 15.6

edinit
scene 18.8 19.2 15.4
object 18.5 18.9 15.2
action 18.4 18.9 15.0

visual-bos
object 19.0 19.1 15.5
scene 18.7 19.0 15.2
action 18.5 18.9 15.1

training the baseline ASR model without visual adaptation, and

shows that the improvements are not a side-effect of training

the model for additional epochs. But interestingly, once the

learned adaptation layer is removed from the network so that

the model falls back to the vanilla speech features xt, the

model still obtains around 18% WER. This seems to indicate

that the effect of adaptation is indirect in the sense that it leads

to a more robust ASR without necessarily relying on the visual

modality.

2) End-to-End Variants: We observe that tied initialization

(edinit) reduces the WER by 0.8% and 0.5% in terms of

single best and mean scores, respectively (Table III). With

ensembling, the edinit variant reaches the best WER (15.0%)

among all the models explored. The visual-bos method per-

forms on par with the edinit. Action features give slightly

better performance for both.

Returning to example in Figure 1, we checked how success-

ful the systems are when transcribing the word ukulele. We

observe that edinit systems with action and object features

could transcribe it once (out of ten occurrences in the test set)

while the baseline system could not. However, this should be

taken with a grain of salt, as the ukulele occurs only three

times in the training set.

E. Discussion

In this section, we first explored visual adaptive training

for S2S ASR models and then experimented with novel

multimodal extensions to S2S ASR. Our experiments showed

that the method is effective for the S2S paradigm too, reaching

up to 1.4% absolute WER improvement with action-level

features. However, we also discovered that the adaptive system

still preserves its performance even when the adaptation layer

is removed during inference. We leave the analysis of this

phenomenon to future work. Although end-to-end models

perform better than the baseline, the difference is smaller

compared to adaptive training. But when ensembling is used,

the end-to-end models obtain the best WER among all models.

With regard to visual representations, we show that average

pooled CNN features perform better than class probabilities

and the action-level features are slightly better than others.

IV. REGION-SPECIFIC MACHINE TRANSLATION

This section discusses another multimodal sequence to se-

quence task – Multimodal machine translation (MMT). MMT

is a research field that aims to enrich textual context with

additional modalities (images, videos, audio) for machine

translation (MT). The assumption is that context provided by

these modalities can help ground the meaning of the text

and, as a consequence, generate more adequate translations.

This becomes more critical when translating content that is

naturally multimodal, such as picture posts on social media,

audio descriptions or subtitles. MMT is especially useful when

dealing with ambiguous or out-of-vocabulary words, e.g. trans-

lating hat into German (there is a distinction between summer

hat Hut and winter hat Mütze). Even a human translator would

need to see the image to decide which word to use.

Existing work on image-based MMT [37]–[39] , especially

neural network approaches, often incorporates images as con-

text either as a single, global vector representation of the

whole image, or by attending to grid-based representations

of different local subregions of the image. We argue that such

models do not exploit images effectively for MT. A global

image representation provides only a summary of the image

and is expected to apply equally to the whole text, but MT

operates at the word level. For attention-based models, there is

a mismatch between the visual unit (equally divided grid-like

image subregions) and the textual unit (a word) because the

subregions may not correspond to a word or cover multiple

words. This makes it hard to learn the correspondence between

the textual and visual units during decoding due to a lack of

visual consistency, especially when trained on small datasets;

any assumed learned correspondences are also hard to interpret

since the subregions are not well defined.

Our work in this section involves new referential grounding

approaches to MT where the correspondences between the

visual units (object regions) and textual units (source words)

are better defined, and can then be used more effectively

for translation (Figure 3). By object region we mean the

depiction of the entity instance from the image as single,

coherent unit. The object instance can be a concrete entity,

amorphous ‘stuff’ (sky, cloud), or a scene (beach, forest). The

main motivation of using objects as a visual unit is that it may

potentially result in better and more interpretable grounding.

As a motivational example, Figure 4 shows a case where

the ambiguous word player can be translated correctly into a

gender-marked language (female player) if its correspondence

to the correct region in the image is identified.

Our main contributions in this section are:

1) An implicit referential grounding MT approach where

the model jointly learns how to ground the source

language in the object-level image representations, and

to translate, while exploring training regimes with and

without providing the correspondence as supervision;

2) An explicit referential grounding MT approach where

object-level grounding is performed at the source side,

independent of the translation model, and is subse-

quently used to guide MT, where we vary the ways
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the man in the yellowpants is raising his arms .

der in der gelben hebt seine arme .mann

<s>

?

source text
encoder

target text
decoder

image
encoder

Fig. 3: The referential grounding approach uses object bound-

ing boxes as visual units by grounding the boxes to source

language words in the encoder to guide MT.

Fig. 4: Multimodal correspondences can be used to help

guide translation, for example potentially resolving the gender

ambiguity of the word player such that it can be correctly

translated to its feminine form into a gender-marked language.

in which the visual information is fused to the textual

information.

The results of our experiments show that the proposed ref-

erential grounding models outperform existing MMT models

according to automatic evaluation metrics for general quality

and lexical ambiguity.

A. Dataset and region alignment

Unlike other sections, we build and evaluate our referential

grounding MMT models on Multi30K [17]. This makes the

task simpler to investigate, especially as the content in the

subtitles in How2 videos are often not depicted in the video.

Each image in Multi30K contains one English (EN) descrip-

tion taken from Flickr30K [40] and human translations into

German (DE), French (FR), and Czech (CS) [37]–[39]. The

dataset contains 29,000 instances in the training set, 1,014 in

the development set, and 1,000 in the 2016 test set, where each

instance comprises an image and its description in four lan-

guages (EN, DE, FR and CS). This setup of Multi30K makes

this dataset a “simpler” version of the real-world multi-lingual

multi-modal data as compared to the How2 dataset which is

inherently a video-based human-targeted instructions corpus.

Multimodal MT on the How2 dataset [41] is explored in a

follow up work.

The referential grounding models are dependent on image

region annotations and their mapping to the text. We consider

bounding box localisations of an object as “region”, for

which we have region annotations derived from Flickr30K

Entities [42]. In the dataset, each entity mention (noun phrase)

in Flickr30K descriptions is annotated with a bounding box of

the instance(s) depicted. Any entity without a bounding box

is labeled as non-visual. Each entity mention is also assigned

at least one of eight high-level categories (person, clothing,

bodyparts, animals, vehicles, instruments, scene and others).

B. Model

1) Implicit grounding: We propose two new attention

mechanisms for MMT, where grounding happens on the

source language and where the process may be supervised

by examples of aligned word-image region pairs.

a) Base model: As a baseline, we experiment with the

standard visual attention approach by Caglayan et al. [29] and

its extension to hierarchical fusion by Libovický and Helcl [9].

The image features for an image I are extracted from the

last convolutional layer of a 152-layer ResNet [23] as a

14×14×1024 feature map.

b) Source co-attention: Our first proposed object-level

attention model learns to align source words to object regions

and to translate them jointly.

Let V = v1, · · · , vm be the m oracle or detected object-

level regions that have been cropped from the image. The

visual representation for each object region, φ(vi), is a 2, 048-

dimensional vector generated as a non-linear transform of the

penultimate (pool5) layer of a 152-layer ResNet CNN.

Given these representations, we adapt the co-attention

mechanism of Lu et al. [43] to ground the source words where

the model jointly learns to align these words to the image

regions, and to translate them. This is done by first obtaining

the affinity matrix A:

A = tanh (H>WaV) (6)

where H ∈ Rn×d are the encoder hidden states and V ∈
Rm×l are the object-level image representations and Wa is

the bilinear parameter matrix. The image and encoder attention

maps are obtained as:

Cs = tanh (WcsH+ (WcvV)A>)

a
s = softmax(w>

csCs)
(7)

where a
s computes the source affinity. Similarly, visual affin-

ity a
v is computed as:

Cv = tanh (WcvV + (WcsH)A)

a
v = softmax(w>

cvCv)
(8)

Hierarchical attention [9] is added on top of co-attention

such that, at decoding time, the model jointly attends to the

source context vector computed using the standard attention

and the sum of the source affinity attention and the visual

affinity attention from Eq 7 and Eq 8.
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Fig. 5: Distribution of attention weights for unsupervised and

supervised co-attention mechanism.

Fig. 6: Specification via category embedding or visual features.

c) Supervised source co-attention: Our second proposed

model learns to ground source words to bounding box regions

with explicit correspondence annotations as supervision. We

expand the co-attention approach by adding an auxiliary loss

to the standard cross-entropy loss. The auxiliary loss penalises

cases where the co-attention weights are highest for regions

other than the correct one. Inspired by phrase localisation work

by Rohrbach et al. [44], given a correct region j we define the

grounding loss as:

Lgrounding = −
1

B

B∑

b=1

log(Pr(j|av)) (9)

where B is the number of phrases per batch and a
v is from

Eq 8. The loss is only active if the ground truth has an

alignment; otherwise, it is set to zero.

In Figure 5 we show an example of attention weights learned

for image regions (indicated by letters A-D on the grids) for

a source sentence with both the unsupervised and supervised

versions of the source co-attention mechanism. The supervised

version clearly learns to assign the attention weights to the

correct regions for each given content source word.

2) Explicit grounding: While attention is a well-established

approach, for a dataset as small as ours (30K training in-

stances), the models do not observe enough instances of

similar visual representations with the same textual context

for attention to be effective. The exception is supervised

attention, as shown in the previous section, but it requires

region annotations and their alignments to source words for

training.

Here we introduce a different approach: regions and their

correspondences (alignments) to words in the source sentence

are identified beforehand, and then fed to the model as a way

of further specifying the source words.

Previous work has explored word-level information in neu-

ral MT as morphological features [45] and as topics [46]. In

both cases, every word was specified with a vector containing

the additional information (e.g. POS tags). We follow a similar

approach; however, our setting is more complex in that we

do not have an image region associated to every word in

the sentence. We experiment with different strategies for

words that do not align to a region in the image, including

function words, as we discuss below. As for the content of the

external vector, we experiment with two types of additional

information: (i) object categories, and (ii) CCA projections.
a) Object categories: The idea is to specify a word with

the category of the object in the image it aligns to. We focus

on nouns, which are more commonly depicted in images.

Instead of using pool5 features, for visual representations

we rely on the category of the objects in the image for which

an alignment exists. Figure 6 shows a motivational example,

where the pool5 visual representation for the two woman

regions would be very different despite belonging to the same

semantic category. To make the representation more flexible,

instead of the category label itself, we use pre-trained word

embeddings for the word representing the category. By doing

so, visual representations for woman and girl would be closer

than those for woman and dog, for example. We refer to this

representation as Eobj.
b) CCA projections: Since the specification involves

relating words to image representations, we evaluate the utility

of projecting the image representation such that it is highly

correlated with the word representations by using canonical

correlation analysis (CCA) [47]. Formally, given paired

matrices V and E, where each row of V is a visual region

and its corresponding word represented by its embedding E,

we generate a linear projection using CCA. We then use these

projections to obtain transformed representations of V as Vcca

and use them as visual features. V can contain either category

embeddings or pool5 representations.

For both object categories and CCA projections, for un-

aligned words we specify them with an empty vector or with

the vector containing pre-trained word embeddings of the

word itself. We experiment with specifying every single word

in the phrase for multi-word alignments, or specifying the

head nouns only. We explore two methods to specify visual

information for words: concatenation and projection.
3) Concatenation: The source word embedding is specified

with region-grounded information via concatenation:

φ̃(si) = [φ(si);φ(r)] (10)

where, φ(si) is the source word embedding and φ(r) is the

object-level region information (category label embedding or

CCA projection). These are the initial representations of the

words for the encoder bidirectional recurrent units.
4) Projection: Alternatively, we learn a linear projection

W over the region-grounded information:

φ̃(si) = φ(si) +Wφ(r) (11)

C. Experimental results

We build attention-based sequence-to-sequence models [32]

with bidirectional recurrent neural networks with gated re-
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TABLE IV: Comparison of models using oracle object an-

notations and alignments, according to METEOR. Results

are average of three runs with different seeds. The first row

indicates the best system for EN-DE, the only pair tested on

this test set at WMT16 [37].

Systems EN-CS EN-DE EN-FR

Best WMT16 – 53.20 –

Text-only 28.90 57.35 74.09
SubrAttention 28.84 55.45 73.31
CoAttention 30.37 57.15 75.85
SupCoAttention 30.34 56.48 75.10
ExplicitProj 30.63 57.05 75.02
ExplicitConc 30.61 57.26 75.17
ExplicitCCA 30.52 57.12 75.34

current units [48] as the encoder and decoder. We use the

nmtpytorch tool [31] with the following settings: early

stop by Meteor (max 100 epochs), selection of best model

according to Meteor, beam size = 6, batch size = 64, Adam

as optimizer, word embedding dimensionality = 256, and no

sub-word units (they do not improve performance in our case).

For category embeddings and CCA representations we

use fasttext 300-dimensional pre-trained word embed-

dings [49]. In the results reported for explicit alignments we

specify only head nouns for which an alignment exists to a

region in the image, and use the pre-trained embeddings of

the words themselves for the remaining words.

1) MMT results: Table IV summarises the results for the

following models, using BLEU [50] and Meteor [51], where

the latter is the official metric used for this task (following the

MMT shared tasks):

• Text-only: NMT baseline without visual information.

• SubrAttention: Visual attention over image subregions at

decoding time (Section IV-B1a) with hierarchical fusion.

• CoAttention: Co-attention over image regions (pool5

features for objects) and source words (Section IV-B1b).

• SupCoAttention: Supervised co-attention over (pool5

image region features for objects) and source words

(Section IV-B1c).

• ExplicitProj: Projection of category embedding informa-

tion Eobj (Section IV-B2b).

• ExplicitConc: Concatenation of category embedding

Eobj and learned word embeddings (Section IV-B3).

• ExplicitCCA: Concatenation of Vcca (pool5 object

features) and learned word embeddings (Section IV-B3).

The results in Table IV show that the proposed multimodal

models outperform text-only counterparts as well as the stan-

dard multimodal approach SubrAttention for EN-CS and EN-

FR.As it has been shown in the WMT shared tasks on MMT

[38], [39], automatic metrics often fail to capture nuances

in translation quality such as the ones we expect the visual

modality to help with, which – according to human perception

– lead to better translations. This may be particularly the case

for EN-DE, where rich morphology and compounding may

result in better translations, even though these do not match

the reference sentences.

TABLE V: Comparison of models using oracle object anno-

tations and alignments, according to LTA.

Model EN-CS EN-DE EN-FR

Text-only 10.44 37.00 53.62
SubrAttention 10.84 37.82 53.62
CoAttention 12.45 38.06 55.16
SupCoAttention 13.25 37.47 55.16
ExplicitProj 13.65 38.41 54.08
ExplicitConc 12.85 38.06 53.78
ExplicitCCA 14.06 38.17 54.08

2) Lexical ambiguity evaluation: To deal with the weak-

nesses of the automatic metrics above, we also evaluate sys-

tems using Lexical Translation Accuracy (LTA) [52] following

the methodology used at the WMT18 shared task on MMT

[39]. LTA measures how accurately a system translates a

subset of ambiguous words found in the Multi30K corpus. A

word is said to be ambiguous in the source language if it has

multiple translations (as given in the Multi30K training corpus)

with different meanings. A lexical translation is considered

correct if it matches exactly the (lemmatised) word aligned

to it on the reference test set. The test set of 1,000 sentences

contains 1,708 such words for EN-DE, 1,298 for EN-FR, and

249 for EN-CS. Table V shows that all multimodal models are

better than their text-only counterpart.

3) Oracle versus predicted regions: Thus far we showed

results where the oracle bounding boxes and object-word

alignments are used. In the implicit grounding models this

is not a major issue given that the alignments are only needed

at training time. For the explicit grounding models, however,

this information is also needed at test-time. Therefore, we

also investigate using predicted objects and object-word align-

ments [53].2 The results indicate that there are no significant

differences in performance.

D. Discussion

We proposed referential grounding approaches for MMT

that use clearly defined correspondences between a source

word and an object in the image to guide translation. We

showed that MMT models using such groundings at object-

level can better exploit image information, leading to better

performance, especially when translating challenging cases

such as ambiguous words.

V. SUMMARIZATION

All videos in the How2 dataset are accompanied by a

manually written summary that should attract the attention of

viewers and increase the chance of the video being found in

a keyword search. The goal of the summarization task on this

dataset is to generate this type of video summary. An example

video summary is shown in Figure 7.

A. Characteristics of the summaries

In order to get a reliable estimate of the summarization

quality, we use a different split than for ASR and MT.

2We use the w2v-max and union model described in their paper.





SPECIA et al.: GROUNDED SEQUENCE-TO-SEQUENCE TRANSDUCTION 9

TABLE VI: ROUGE-L and Content F1 for different sum-

marization models: random baseline (1), rule-based extracted

summary (2a), nearest neighbor summary (2b), different text-

only (3,4,5a), pointer-generator (5b), ASR output transcript

(5c), video-only (6-7) and text-and-video models (8-9).

Method ROUGE-L Content F1

Naive baselines

1 Language Model sampling 27.5 8.3
2a Rule-based Extractive summary 16.4 18.8
2b Next-neighbor Summary 31.8 17.9

Text-only models

3 S2S on 2a only 46.4 36.0
4 S2S on 200 tokens of Transcript 40.3 27.5
5a S2S on Transcript 53.9 47.4
5b PG on Transcript 50.2 42.0
5c S2S on ASR 46.1 34.7

Video-only models

6 AF only 38.5 24.8
7 RNN over AF 46.3 34.9

Multimodal models

8 Transcript + AF w/ Hier. Attn 54.9 48.9
9 ASR + AF w/ Hier. Attn. 46.3 34.7

of informativeness, relevance, coherence, and fluency. We

perform this on randomly sampled 500 videos from the test

set. We evaluate three models: two unimodal (text-only, 5a;

video-only 7) and one multimodal (text-and-video, 8). Three

workers annotated each video on Amazon Mechanical Turk.

E. Output Examples from Different Models

Table VII shows the example outputs from our different text-

only and text-and-video models. The text-only model produces

a fluent output which is close to the reference. The action

features with the RNN model, which sees no text in the input,

produces an in-domain (“fly tying”’ and “fishing”) abstractive

summary that involves more details like “equipment” which is

missing from the text-based models but is relevant. The next

neighbor model is related to “knot tying” but not related to

“fishing”. The scores for each of these models reflect their

respective properties. Observing other outputs of the model,

we noticed that although predictions were usually fluent and

thus getting high ROUGE scores, there is a large room for

improvement by predicting all details from the ground truth

summary, like the subtle selling point phrases, or by using the

visual features in a different adaptation model.

In Table VIII, we report human evaluation scores of the best

text-only, video-only, and multimodal models. We observe that

text-only summaries dominate on relevance but multimodal

models are the most informative, coherent and fluent, indi-

cating that these models can fuse complementary information

from multiple modalities to generate relevant summaries. The

example presented in Table VII shows how the generated

summaries vary with different models and features.

Our parallel work [66], [67] demonstrates the use of our

summarization models trained in this work for a transfer

learning-based summarization task on the Charades dataset

[68], which has audio, video, and text (summary, caption, and

question-answer pairs) modalities just like the How2 dataset.

Pre-training and transfer learning with the How2 dataset

led to significant improvements in unimodal and multimodal

adaptation tasks on the Charades dataset.

VI. CORRELATION-BASED UNSUPERVISED LEARNING

All machine learning involves learning representations on

top of the input features [69]. In deep learning, representation

is learned implicitly, as a result of finding a local minimum of a

loss function. In contrast to this implicit representation learn-

ing stand several explicit representation learning paradigms

[70]–[72]. How to best exploit multiple views is an open

problem, especially when there is a latent alignment between

views, such as between an image and its spoken caption [73].

We treat the How2 dataset as a 4-way parallel corpus, and

explore an advanced, correlation-based representation learning

objective.

A. Deep Generalized Canonical Correlation Analysis

It has been shown that the availability of a second view

in addition to a primary input can help with any task. For

instance, the video stream of a speaker’s face, in addition to

the audio recording, helps perform speech recognition [74].

This qualitative result is still true when the second view is

reconstructed from the primary input by a trained predictor.

However, in some cases, it may be difficult to learn such a

predictor, as in the speech recognition example above. Instead

of reconstructing the secondary view, it is simpler to learn a

representation for each view that is maximally reconstructive

of the representations learned for the other views [72], [75].

This intuition was first formalized as Canonical Correlation

Analysis (CCA) [47], extended to pairs of views [76] and

arbitrary feature extractors [77]. We use the formulation of

[78], [79] which we describe next.

For each view j ∈ {1..J}, all N points of the dataset are

stored in a matrix Xj ∈ R
dj×N , where dj is the dimensionality

of the feature vector. We denote fj : R
dj → R

hj the j-th

learned feature extractor — in our case a neural net — and

Uj ∈ R
hj×k a linear transformation matrix. The {fj}j and

{Uj}j are trained jointly to reconstruct an unknown shared

representation, under constraints, resulting in the following

problem:

minimize
J∑

j=1

||G− UT
j fj(Xj)||

2

2
subject to GGT = Ik,

with respect to parameters {G, {fj , Uj}j}. Here, G ∈ R
k×N

can be viewed as the learned representation for the dataset, and

k is the dimensionality of said representation. The constraint

on G prevents trivial solutions. Note that each learned feature

extractor (fj , Uj) tries to reconstruct G from Xj . We refer

to this method as deep generalized CCA (DGCCA). Deep

CCA [77] is equivalent to the case J = 2.

B. Experiments and Results

Within the framework of DGCCA, we use the How2

dataset as a 4-way parallel corpus: video, speech, transcrip-

tion in English, translation in Portuguese. Each data point

in that corpus corresponds to one utterance. For the text
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No. Model R-L C-F1 Output

- Reference - - watch and learn how to tie thread to a hook to help with fly tying as explained by out
expert in this free how - to video on fly tying tips and techniques .

8 Ground-truth text + Ac-
tion Feat.

54.9 48.9 learn from our expert how to attach thread to fly fishing for fly fishing in this free how
- to video on fly tying tips and techniques .

5a Text-only (Ground-truth) 53.9 47.4 learn from our expert how to tie a thread for fly fishing in this free how - to video on fly
tying tips and techniques .

7 Action Features + RNN 46.3 34.9 learn about the equipment needed for fly tying , as well as other fly fishing tips from our
expert in this free how - to video on fly tying tips and techniques .

2b Next Neighbor 31.8 17.9 use a sheep shank knot to shorten a long piece of rope . learn how to tie sheep shank
knots for shortening rope in this free knot tying video from an eagle scout .

TABLE VII: Example outputs of ground-truth text-and-video with hierarchical attention (8), text-only with ground-truth (5a),

action features with RNN (7) and the topic-based next neighbor (2b).

TABLE VIII: Human evaluation scores on 4 different mea-

sures of Informativeness (INF), Relevance (REL), Coherence

(COH), Fluency (FLU).

Model (No.) INF REL COH FLU

Text-only (5a) 3.86 3.78 3.78 3.92
Video-only (7) 3.58 3.30 3.71 3.80
Text-and-Video (8) 3.89 3.74 3.85 3.94

and speech modalities, we use encoder-decoder sequence-

to-sequence models trained on the How2 dataset to extract

the {Xj}j features. We average either the encoder-side em-

beddings or the sequence of context vectors to obtain a

single vector for each sequence, following [80]. For the video

modality, we first break up the videos into keyframes, then

average the outputs of a ResNet [23] over the time window

corresponding to a given utterance. We thus obtain a single

vector representing the video modality for each utterance.

1) Retrieval experiments: We start with an intrinsic eval-

uation of our learned representations. We use a retrieval task

to probe the reliability of the learned embedding space. Given

a source point v, we return the 10 closest points within a

reference set {ui}i. The source and reference points come

from different views of the dev and test sets of the How2

dataset . This allows us to score the retrieval based on whether

the correct point is within the 10 closest points, and we report

this as Recall@10. Picking the 10 closest points at random

results in a Recall@10 of 0.5% for the dev set and 0.4% for

the test set. Using our DGCCA model, retrieving the 10 closest

points involves projecting the source point and the reference

set into the shared space, computing pairwise distances (we

use mean-centered cosine distance) and taking the 10 closest

points.

To validate the approach, we compare linear and deep CCA

on pairs of modalities. Linear CCA corresponds to fj being set

to the identity mapping for all j. We report retrieval results in

Table IX. With the exception of speech-to-text retrieval, deep

CCA performs systematically better than linear CCA.

We train models on 3 and 4 modalities, and report retrieval

scores in Tables X and XI. In both cases, k = 160. When

adding modalities, we note that retrieval scores decrease,

since the model needs to accommodate additional views.

TABLE IX: Recall@10 for retrieving reference modality given

source modality (”source - reference”). Swapping source and

reference change retrieval scores by less than 1% absolute.

Linear CCA Deep CCA

dev test dev test k

text (en) - text (pt) 82.5 81.4 95.1 94.6 400
speech - text (en) 98.3 96.9 92.1 90.1 160
video - text (en) 0.9 0.8 2.3 1.6 400
video - speech 0.8 0.6 1.9 1.8 160

Some retrieval scores are higher than others; most likely, the

model trades off higher scores for easier pairs of views (e.g.

Portuguese text and English text) against lower scores for

harder pairs of views (e.g. video and speech). This could be

compensated by adding weights {wj}j for each reconstruction

loss, or by tuning the architectures of the {fj}j separately.

Overall, retrieval scores between language modalities are

high, ranging from 71.0% to 98.4%. There are several reasons

which could explain the lower scores involving the video

modality. First, it is not quite clear how much temporal

coherence the video modality has in the How2 dataset . For

instance, objects mentioned by the speaker might appear much

later in the video, very briefly, or not at all. Further, ResNet

features might not be able to adequately represent the domain

of the How2 dataset . We experimented with representations

from action networks [21] trained on an action dataset [22],

and obtained similar results. Most likely, given the noisy input

features, our models lack either the expressive power or a suf-

ficient amount of training data to capture the correspondence

between the language modalities and the video [73], [81].

TABLE X: Recall@10 for retrieving column modality given

source row modality, for a DGCCA model trained on 3 views.

Results from the bottom left triangle can be compared to those

in Table IX.
text (en) speech video

text (en) dev - 92.1 1.7
test - 89.8 1.8

speech dev 92.1 - 1.9
test 89.1 - 1.2

video dev 1.4 1.9 -
test 1.7 1.2 -
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B. Region-Specific Multimodal Machine Translation

Table XIII shows qualitative examples for results presented

in Section IV.

C. Correlation-based Multiview Learning

1) Feature Extraction: We use baseline ASR and MT

models from Sections III and IV. For each input sequence,

the encoder produces a corresponding sequence of feature

vectors h1, ..., hT . We use 1

T

∑T

i=1
hi to represent that input

sequence. The decoder with attention produces a sequence of

context vectors c1, ..., cS , and we use 1

S

∑S

i=1
ci to represent

the target sequence. Since we use word-based ASR and MT

systems, each cj and hi roughly represents a word in context.

For the video modality, we first break up the videos into

keyframes, then use a ResNet [23] to map each keyframe to

a multi-class posterior, based on the 1000 ImageNet classes.

For each speech utterance, we then compute the average of

the posteriors corresponding to the time window of the speech

utterance. The averaging process is meant to capture the most

persistent predictions and reduce the variability due to noise.

We thus obtain a single vector representing the video modality

for each utterance. As a result, for text, speech and video, the

Xj features are 320-, 800- and 1000-dimensional, respectively.

2) Models and Training: The features described above are

kept fixed, while we use feed-forward neural networks with

2 hidden layers and tanh non-linearities for the {fj}j . The

first layer has the same dimensionality as the input, and the

second layer the same size as k. To avoid under-defining the

objective, k should be no larger than the smallest of the {hj}j .

We set k to half the smallest of the {hj}j involved, as a

heuristic to retain most of the informative components and

discard uninformative ones. For numerical stability, we add

the identity matrix scaled by 10−16 to all the view-specific

covariance matrices. We use stochastic gradient descent with

batch size 5500 and Adam optimizer with default parameters.

The analytical expression of the gradient was taken from [78].

In the experiments involving video, we use a weight decay of

10−5. After each full pass over the training set, we measure

retrieval scores between all possible pairs of different views

on the dev set, using the highest of these scores to measure

the performance of our model. We use this score to do early

stopping.
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M. Junczys-Dowmunt, S. Läubli, A. V. M. Barone, J. Mokry, and
M. Nadejde, “Nematus: a toolkit for neural machine translation,” in
Software Demonstrations of the 15th Conference of the European

Chapter of the Association for Computational Linguistics. Association
for Computational Linguistics, 2017, pp. 65–68.

[36] J. S. Chung and A. Zisserman, “Lip reading in the wild,” in Asian

Conference on Computer Vision (ACCV). Springer, 2016.

[37] L. Specia, S. Frank, K. Sima’an, and D. Elliott, “A shared task on
multimodal machine translation and crosslingual image description,” in
Proceedings of the First Conference on Machine Translation: Volume 2,

Shared Task Papers. Association for Computational Linguistics, 2016,
pp. 543–553.



14 JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

[38] D. Elliott, S. Frank, L. Barrault, F. Bougares, and L. Specia, “Findings
of the second shared task on multimodal machine translation and multi-
lingual image description,” in 2nd Conference on Machine Translation

(WMT). ACL, 2018.

[39] L. Barrault, F. Bougares, L. Specia, C. Lala, D. Elliott, and S. Frank,
“Findings of the third shared task on multimodal machine translation,” in
Proceedings of the Third Conference on Machine Translation: Shared

Task Papers. Association for Computational Linguistics, 2018, pp.
304–323.

[40] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image
descriptions to visual denotations: New similarity metrics for semantic
inference over event descriptions,” Transactions of the Association for

Computational Linguistics, vol. 2, pp. 67–78, Feb. 2014.

[41] V. Raunak, S. K. Choe, Q. Lu, Y. Xu, and F. Metze, “On leveraging
the visual modality for neural machine translation,” arXiv preprint

arXiv:1910.02754, 2019.

[42] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo, J. Hocken-
maier, and S. Lazebnik, “Flickr30k Entities: Collecting region-to-phrase
correspondences for richer image-to-sentence models,” in Proceedings of

the IEEE International Conference on Computer Vision (ICCV). IEEE,
Dec. 2015, pp. 2641–2649.

[43] J. Lu, J. Yang, D. Batra, and D. Parikh, “Hierarchical question-image
co-attention for visual question answering,” in Proceedings of the 30th

International Conference on Neural Information Processing Systems,
Barcelona, Spain, 2016, pp. 289–297.

[44] A. Rohrbach, M. Rohrbach, R. Hu, T. Darrell, and B. Schiele, “Ground-
ing of textual phrases in images by reconstruction,” in Proceedings

of the European Conference on Computer Vision (ECCV). Springer
International Publishing, 2016, pp. 817–834.

[45] R. Sennrich and B. Haddow, “Linguistic input features improve neural
machine translation,” in Proceedings of the First Conference on Machine

Translation: Volume 1, Research Papers. Association for Computational
Linguistics, 2016, pp. 83–91.

[46] S. Deena, R. W. Ng, P. Madhyashtha, L. Specia, and T. Hain, “Exploring
the use of acoustic embeddings in neural machine translation,” in
Proceedings of IEEE Automatic Speech Recognition and Understanding

Workshop. Okinawa, Japan: IEEE, 2017.

[47] H. Hotelling, “Relations between two sets of variates,” in Breakthroughs

in statistics. Springer, 1992, pp. 162–190.
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