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Abstract—Speech recognition and machine translation have
made major progress over the past decades, providing practical
systems to map one language sequence to another. Although
multiple modalities such as sound and video are becoming
increasingly available, the state-of-the-art systems are inherently
unimodal, in the sense that they take a single modality —
either speech or text — as input. Evidence from human learning
suggests that additional modalities can provide disambiguating
signals crucial for many language tasks. Here, we describe the
How2 dataset, a large, open-domain collection of videos with
transcriptions and their translations. We then show how this
single dataset can be used to develop systems for a variety
of language tasks and present a number of models meant
as starting points. Across tasks, we find that building multi-
modal architectures that perform better than their unimodal
counterpart remains a challenge. This leaves plenty of room for
the exploration of more advanced solutions that fully exploit
the multi-modal nature of the How2 dataset, and the general
direction of multimodal learning with other datasets as well.

Index Terms—Multimodal machine learning, grounding,
speech recognition, machine translation, summarization, repre-
sentation learning

I. INTRODUCTION

Multimodal machine learning covers topics at the intersec-
tion of natural language processing, speech recognition, and
computer vision [1]. Research in this area is motivated by
recent advances in representation learning and the reported
benefits of multi-sensory inputs: e.g. visual and tactile inter-
action increases infant sensitivity to colour differences over
purely visual inputs [2], and psycholinguistic studies show
the benefits of multiple modalities in concept representation
[3]. Significant progress has been made in the last decade
on major problems, including image captioning [4], visual
question answering [5], image—sentence retrieval [6], and
video captioning [7]. A common aspect of these problems is
that they typically involve bi-modal learning, e.g. images and
sentences in image captioning, due to the nature of the freely
available datasets.
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In recent years, there has been a collective effort in multi-
lingual and multimodal representation learning, and models of
visually grounded speech. In multimodal machine translation,
researchers have focused on methods for integrating visual
information into sequence-to-sequence models [8]-[10], and in
multilingual image—sentence retrieval, it has been shown that
cross-lingual sentence—sentence objectives improve retrieval
performance [11], and that these findings extend to working
with multiple languages [12]. In multimodal speech recogni-
tion, the image modality has been used to adapt the acoustic
model [13], the language model [14] and, more recently, end-
to-end systems [15], [16]. In spite of these recent successes,
researchers have worked with bi- or multilingual datasets [17]
that are much smaller than the datasets typically used for
machine translation and speech recognition research.

This paper introduces the large-scale tri-modal How?2
dataset, which consists of 2,000 hours of instructional videos
with audio signals and two types of English text: closed
captions of the speech and a self-written summary of the
video, and crowdsourced Portuguese translations of a subset
of the human annotated transcripts (Section II). The How2
dataset affords a wide variety of bi-, tri- and multi-modal
experiments; here, we focus on multimodal speech recognition
(Section III), multimodal machine translation (Section IV),
abstractive video summarization (Section V), and multiview
learning from speech, video, and multi-lingual transcripts
(Section VI). The main findings from these experiments is that
learning multimodal representations almost always results in
better task-specific performance, and that there are numerous
opportunities for future research on effective feature integra-
tion in multimodal learning.

II. THE How2 DATASET

In the How2 dataset, we collect 79,114 English instructional
videos from YouTube with English subtitles. The dataset con-
sists of a total of 2,000 hours of video. Videos have an average
length of 90 seconds [18] and manual Portuguese translations.
This collection of videos and translations constitutes a large-
scale resource for testing a substantial part of multimodal
language processing methods in a real-world scenario.!

An alignment process is needed to use the audio, the English
subtitles, the Portuguese translations, and the video modality
together. To this end, we first re-segment the English subtitles
into sentences using NLTK [19]. Then, we force-align the
speech signal at the word level with an HMM-GMM pre-
trained on the Wall Street Journal dataset. Finally, using the

'The tools to download and construct the corpus are freely available at
https://github.com/srvk/how?2-dataset.



TABLE I: Statistics of How2 dataset.

Videos Hours  Clips/Sentences

300h train 13,168 298.2 184,949
val 150 3.2 2,022

test 175 3.7 2,305

held 169 3.0 2,021

2000h  train 73,993  1,766.6 -
val 2,965 71.3 -

test 2,156 51.7 -

timings provided by the word alignment, we create video clips
aligned to the initial segmented sentences. This process splits
a video into a sequence of clips, aligned with the speech
signal and the segmented sentences. Table I presents summary
statistics of the 2000h set and 300h subset: the val and fest sets
can be used for early-stopping, model selection and evaluation;
the held set is reserved for future evaluations or challenges.
The total set (i.e. 2000h) contains around 22.5M words. The
tokenized training set of 300h subset contains around 3.8M
(43K unique) and 3.6M (60K unique) words for English and
Portuguese respectively. Videos are broken down into clips, as
described above, with an average length of 5.8 seconds, or 20
words of spoken language.

We collected Portuguese translations using the Figure Eight
crowdsourcing platform, where we could reliably find Por-
tuguese speaking crowdworkers. In order to speed-up the
annotation process, we framed the translation task as a
post-editing task. We first selected the best online machine
translation service among three state-of-the-art services based
on Figure Eight’s workers preferences. Then, we used the
translations generated by this system as a proxy and paid the
crowd workers to post-edit the translation. We attempted to
ensure that the workers were in fact post-editing the proxies
by replacing content words of the proxy with a random
Portuguese word. If the substituted word remains in the post-
edit, we removed the worker from the pool and re-collected
the post-edit. Each of the 200 workers used in this project have
a limit of post-editing 5,000 sentences. None of them reached
this threshold.

We estimated the quality of this process by comparing
the performance of a translation model trained on either
the post-edited translations or the machine-generated proxy-
translations. The model trained on the proxy-translations per-
formed 1 BLEU point worse on predicting the post-edited
translations than the model trained on the post-edited trans-
lations, which suggests that our data collection method indeed
resulted in different human-edited translation data.

To estimate the topic diversity in How2 dataset, we ran
a Latent Dirichlet Allocation (LDA) [20] over the English
subtitles. Then, we defined 22 clusters by analyzing empirical
distances between videos and centroids. Finally, we applied a
topic label to each cluster by analyzing the top words.
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Fig. 1: An example from How2 dataset where visual semantics
can be helpful when transcribing ukulele.

A. Features

In what follows, we detail the features that we extract for
each modality.

1) Speech Features: For speech, we extract 40-dimensional
filter bank features from /6kHz raw speech signal using a time
window of 25ms and an overlap of /0ms. 3-dimensional pitch
features are then concatenated to form the final 43-dimensional
feature vectors. The speech features of a given video are
further normalized using the mean and variance statistics from
that specific video.

2) Action Features (video-level): We extract action-level
video features from a 3D ResNeXt-101 [21] pretrained on the
Kinetics action recognition dataset [22] which comprises 400
different actions.

3) Object Features (frame-level): A ResNet-152 [23]
trained on ImageNet [24] which consists of 1000 categories
ranging from animals, flowers to devices and foods and so on.

4) Scene Features (frame-level): A ResNet-50 trained on
Places365 [25] for scene recognition with 365 categories
including, but not limited to: garden, valley, studio, theater
and office.

5) Object-level: A ResNet-152 [23] trained on ImageNet
[24] which consists of 1000 categories, ranging from animals
and flowers to devices and foods.

III. MULTIMODAL SPEECH RECOGNITION

Figure 1 shows an illustrative example from How2 where
a purely monomodal ASR is prone to transcribe the utterance
ukulele to an homophonic equivalent eucalylie. Earlier work
in ASR suggests that a correlated auxiliary modality can
be helpful within the context of instructional videos where
videos consistently provide visual cues related to the speech
semantics [13]-[15], [26]. This section discusses multimodal
extensions to automatic speech recognition (ASR) with vision
as supporting modality. We mainly explore two different
multimodal interactions: first, we apply the visual adaptive
training framework [13]-[15] to S2S ASR systems; second, we
propose end-to-end multimodal grounding methods inspired
by previous work in image captioning [27] and multimodal
neural machine translation [28], [29].

A. Training & Features

We conduct all the experiments on the 300h split of How2
dataset (Section II). For textual features, we first lowercase and
remove punctuation from the English transcripts and then train
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Fig. 2: A summary of proposed multimodal ASR approaches.

a SentencePiece model [30] to construct a subword vocabulary
of 5000 tokens. For speech, we use the 43-dimensional fea-
tures (Section II) as they are. Finally for the visual modality,
we explore two more pre-trained CNNs in addition to the
action features described in Section II: a ResNet-152 [23]
trained on ImageNet [24] for object recognition and a ResNet-
50 trained on Places365 [25] for scene recognition. For all
types of features, we obtain an average-pooled (avgpool)
representation from the corresponding CNN. For object and
scene-level features, we also experiment with class probabili-
ties (prob) which are 1000-dimensional and 365-dimensional,
respectively.

We explore two methods to obtain a single feature vector
for each clip of a given video: (1) a per-clip representation
by averaging frame level feature vectors of the clip and (2),
a per-video representation by averaging frame level feature
vectors across the whole video. We train all models with
three randomly initialized instances using nmtpy [31]. For
each instance, the best model is obtained by early-stopping
on validation set word error rate (WER).

B. Baseline Model

All multimodal ASR systems in this section extend the well-
known recurrent, attentive sequence-to-sequence model [32].
In the following, X={zo,...,zp_1} represents an input se-
quence of T speech features and f is the corresponding
visual feature for that utterance. All recurrent, attention and
embedding layers in the network are 320-dimensional.

The speech encoder is composed of 6 bidirectional LSTM
layers [33], each followed by a tanh projection layer. The mid-
dle two LSTM layers apply a temporal subsampling [34] by
skipping every other input, reducing the input sequence length
T to T'/4. The decoder implements the so-called Conditional
GRU architecture [35] where an attention mechanism [32] is
wrapped between two GRU [36] layers. At timestep t=0, the
hidden state of the first GRU is initialized with the mean-
pooled speech encoder state. The second GRU receives the
output of the attention layer.

C. Multimodal ASR Systems

1) Visual Adaptive Training (VAT): This method fine-tunes
a pre-trained ASR model using the visual modality. VAT adds
a new linear layer to the model to project the visual feature

TABLE II: Visual adaptive training results.

Mean WER ()

Granularity  CNN  avgpool  prob
Baseline ASR 19.4
Contrastive restart 19.1

er-cli object 18.3 18.9

PEFCP gcene 182 19.0

object 18.2 18.7

per-video scene 18.1 18.8

action 18.0 -

vector f into the speech feature space. The projected utterance-
specific shift vector is then added to the speech features and
the network is jointly optimized until convergence:

xt:xt—i—(va—&-bv) tE{O,...,T—l} (])

2) Tied Initialization of Recurrent Blocks: Initializing the
encoder and the decoder is an approach previously explored in
multimodal machine translation [28], [29]. In order to prime
the speech encoder with visual context, two non-linear layers
are employed to learn an initial hidden state k% and an initial
cell state ¢k for all the 6 LSTM layers in the encoder:

ht = tanh (Wnf +by) ke {l,...,6} 2)
cf = tanh (Wef + b, 3)

The same idea can also be applied to the first GRU in the
decoder so that its initial hidden state is visually primed:

hg = tanh (Wq f + bg) @)

Finally we explore a third variant where we fuse the two
approaches by sharing the projection parameters in equations 2
and 4. In the following, these three variants will be referred
to as einit, dinit and edinit respectively.

3) Visual Beginning-of-Sentence: Neural decoders receive
a special beginning of sentence vector as input at timestep t=0
in order to begin decoding. This vector can be either constant
or learned during training, the latter being the approach taken
in this work. The disadvantage of both methods is the fact
that during inference, the decoder always receives the same
embedding at =0 regardless of the input modality. Here we
propose to modulate the decoder by using a visually-informed
embedding for a given example ¢:

yo = Wy fi+b, (5)

D. Experimental Results

In what follows, we report single best, mean and ensembled
WER across the three training runs of each model.

1) Visual Adaptive Training: In Table II, we clearly see
that avgpool features consistently outperform class probability
features. Similarly, a per-video representation seems to give a
slight boost compared to per-clip granularity. Overall, avgpool
features reduces the WER by up to 1.4% depending on the
feature type and granularity. The contrastive restart continues



TABLE III: End-to-end results: all features are avgpool and
per-video. Ens stands for ensemble decoding.

WER ()
Feature Best Mean Ens
Baseline - 19.2 194 15.6
dinit action 19.2 194 15.5
einit action 18.8 19.2 15.6
scene 18.8 19.2 15.4
edinit object 18.5 18.9 15.2
action 18.4 18.9 15.0
object 19.0 19.1 15.5
visual-bos scene 18.7 19.0 15.2
action 18.5 18.9 15.1

training the baseline ASR model without visual adaptation, and
shows that the improvements are not a side-effect of training
the model for additional epochs. But interestingly, once the
learned adaptation layer is removed from the network so that
the model falls back to the vanilla speech features x;, the
model still obtains around 18% WER. This seems to indicate
that the effect of adaptation is indirect in the sense that it leads
to a more robust ASR without necessarily relying on the visual
modality.

2) End-to-End Variants: We observe that tied initialization
(edinit) reduces the WER by 0.8% and 0.5% in terms of
single best and mean scores, respectively (Table III). With
ensembling, the edinit variant reaches the best WER (15.0%)
among all the models explored. The visual-bos method per-
forms on par with the edinit. Action features give slightly
better performance for both.

Returning to example in Figure 1, we checked how success-
ful the systems are when transcribing the word ukulele. We
observe that edinit systems with action and object features
could transcribe it once (out of ten occurrences in the test set)
while the baseline system could not. However, this should be
taken with a grain of salt, as the ukulele occurs only three
times in the training set.

E. Discussion

In this section, we first explored visual adaptive training
for S2S ASR models and then experimented with novel
multimodal extensions to S2S ASR. Our experiments showed
that the method is effective for the S2S paradigm too, reaching
up to 1.4% absolute WER improvement with action-level
features. However, we also discovered that the adaptive system
still preserves its performance even when the adaptation layer
is removed during inference. We leave the analysis of this
phenomenon to future work. Although end-to-end models
perform better than the baseline, the difference is smaller
compared to adaptive training. But when ensembling is used,
the end-to-end models obtain the best WER among all models.
With regard to visual representations, we show that average
pooled CNN features perform better than class probabilities
and the action-level features are slightly better than others.
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IV. REGION-SPECIFIC MACHINE TRANSLATION

This section discusses another multimodal sequence to se-
quence task — Multimodal machine translation (MMT). MMT
is a research field that aims to enrich textual context with
additional modalities (images, videos, audio) for machine
translation (MT). The assumption is that context provided by
these modalities can help ground the meaning of the text
and, as a consequence, generate more adequate translations.
This becomes more critical when translating content that is
naturally multimodal, such as picture posts on social media,
audio descriptions or subtitles. MMT is especially useful when
dealing with ambiguous or out-of-vocabulary words, e.g. trans-
lating hat into German (there is a distinction between summer
hat Hut and winter hat Miitze). Even a human translator would
need to see the image to decide which word to use.

Existing work on image-based MMT [37]-[39] , especially
neural network approaches, often incorporates images as con-
text either as a single, global vector representation of the
whole image, or by attending to grid-based representations
of different local subregions of the image. We argue that such
models do not exploit images effectively for MT. A global
image representation provides only a summary of the image
and is expected to apply equally to the whole text, but MT
operates at the word level. For attention-based models, there is
a mismatch between the visual unit (equally divided grid-like
image subregions) and the textual unit (a word) because the
subregions may not correspond to a word or cover multiple
words. This makes it hard to learn the correspondence between
the textual and visual units during decoding due to a lack of
visual consistency, especially when trained on small datasets;
any assumed learned correspondences are also hard to interpret
since the subregions are not well defined.

Our work in this section involves new referential grounding
approaches to MT where the correspondences between the
visual units (object regions) and textual units (source words)
are better defined, and can then be used more effectively
for translation (Figure 3). By object region we mean the
depiction of the entity instance from the image as single,
coherent unit. The object instance can be a concrete entity,
amorphous ‘stuff’ (sky, cloud), or a scene (beach, forest). The
main motivation of using objects as a visual unit is that it may
potentially result in better and more interpretable grounding.
As a motivational example, Figure 4 shows a case where
the ambiguous word player can be translated correctly into a
gender-marked language (female player) if its correspondence
to the correct region in the image is identified.

Our main contributions in this section are:

1) An implicit referential grounding MT approach where
the model jointly learns how to ground the source
language in the object-level image representations, and
to translate, while exploring training regimes with and
without providing the correspondence as supervision;

2) An explicit referential grounding MT approach where
object-level grounding is performed at the source side,
independent of the translation model, and is subse-
quently used to guide MT, where we vary the ways
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Fig. 3: The referential grounding approach uses object bound-
ing boxes as visual units by grounding the boxes to source
language words in the encoder to guide MT.

The player on the right has just hit the ball

Fig. 4: Multimodal correspondences can be used to help
guide translation, for example potentially resolving the gender
ambiguity of the word player such that it can be correctly
translated to its feminine form into a gender-marked language.

in which the visual information is fused to the textual
information.

The results of our experiments show that the proposed ref-
erential grounding models outperform existing MMT models
according to automatic evaluation metrics for general quality
and lexical ambiguity.

A. Dataset and region alignment

Unlike other sections, we build and evaluate our referential
grounding MMT models on Multi30K [17]. This makes the
task simpler to investigate, especially as the content in the
subtitles in How?2 videos are often not depicted in the video.
Each image in Multi30K contains one English (EN) descrip-
tion taken from Flickr30K [40] and human translations into
German (DE), French (FR), and Czech (CS) [37]-[39]. The
dataset contains 29,000 instances in the training set, 1,014 in
the development set, and 1,000 in the 2016 test set, where each
instance comprises an image and its description in four lan-
guages (EN, DE, FR and CS). This setup of Multi30K makes
this dataset a “simpler” version of the real-world multi-lingual
multi-modal data as compared to the How2 dataset which is
inherently a video-based human-targeted instructions corpus.
Multimodal MT on the How2 dataset [41] is explored in a
follow up work.

The referential grounding models are dependent on image
region annotations and their mapping to the text. We consider
bounding box localisations of an object as “region”, for
which we have region annotations derived from Flickr30K
Entities [42]. In the dataset, each entity mention (noun phrase)
in Flickr30K descriptions is annotated with a bounding box of
the instance(s) depicted. Any entity without a bounding box
is labeled as non-visual. Each entity mention is also assigned
at least one of eight high-level categories (person, clothing,
bodyparts, animals, vehicles, instruments, scene and others).

B. Model

1) Implicit grounding: We propose two new attention
mechanisms for MMT, where grounding happens on the
source language and where the process may be supervised
by examples of aligned word-image region pairs.

a) Base model: As a baseline, we experiment with the
standard visual attention approach by Caglayan et al. [29] and
its extension to hierarchical fusion by Libovicky and Helcl [9].
The image features for an image [ are extracted from the
last convolutional layer of a 152-layer ResNet [23] as a
14x14x1024 feature map.

b) Source co-attention: Our first proposed object-level
attention model learns to align source words to object regions
and to translate them jointly.

Let V = vq,--- , v, be the m oracle or detected object-
level regions that have been cropped from the image. The
visual representation for each object region, ¢(v;), is a 2, 048-
dimensional vector generated as a non-linear transform of the
penultimate (pool5) layer of a 152-layer ResNet CNN.

Given these representations, we adapt the co-attention
mechanism of Lu et al. [43] to ground the source words where
the model jointly learns to align these words to the image
regions, and to translate them. This is done by first obtaining
the affinity matrix A:

A = tanh (H'W,V) (6)

where H € R™*? are the encoder hidden states and V €
R™*! are the object-level image representations and W, is
the bilinear parameter matrix. The image and encoder attention
maps are obtained as:

Cs = tanh (WsH + (W, V)AT)

a® = softmax(w/,Cs)

@)

where a® computes the source affinity. Similarly, visual affin-
ity av is computed as:

C, = tanh (W, V + (W H)A)

a¥ = softmax(w,/, Cy)

®)

Hierarchical attention [9] is added on top of co-attention
such that, at decoding time, the model jointly attends to the
source context vector computed using the standard attention
and the sum of the source affinity attention and the visual
affinity attention from Eq 7 and Eq 8.
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c) Supervised source co-attention: Our second proposed
model learns to ground source words to bounding box regions
with explicit correspondence annotations as supervision. We
expand the co-attention approach by adding an auxiliary loss
to the standard cross-entropy loss. The auxiliary loss penalises
cases where the co-attention weights are highest for regions
other than the correct one. Inspired by phrase localisation work
by Rohrbach et al. [44], given a correct region j we define the
grounding loss as:

B
1 .
ﬁgrounding = _E E log(Pr(j|a )) ©)
b=1

where B is the number of phrases per batch and a¥ is from
Eq 8. The loss is only active if the ground truth has an
alignment; otherwise, it is set to zero.

In Figure 5 we show an example of attention weights learned
for image regions (indicated by letters A-D on the grids) for
a source sentence with both the unsupervised and supervised
versions of the source co-attention mechanism. The supervised
version clearly learns to assign the attention weights to the
correct regions for each given content source word.

2) Explicit grounding: While attention is a well-established
approach, for a dataset as small as ours (30K training in-
stances), the models do not observe enough instances of
similar visual representations with the same textual context
for attention to be effective. The exception is supervised
attention, as shown in the previous section, but it requires
region annotations and their alignments to source words for
training.

Here we introduce a different approach: regions and their
correspondences (alignments) to words in the source sentence
are identified beforehand, and then fed to the model as a way
of further specifying the source words.
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Previous work has explored word-level information in neu-
ral MT as morphological features [45] and as topics [46]. In
both cases, every word was specified with a vector containing
the additional information (e.g. POS tags). We follow a similar
approach; however, our setting is more complex in that we
do not have an image region associated to every word in
the sentence. We experiment with different strategies for
words that do not align to a region in the image, including
function words, as we discuss below. As for the content of the
external vector, we experiment with two types of additional
information: (i) object categories, and (ii)) CCA projections.

a) Object categories: The idea is to specify a word with
the category of the object in the image it aligns to. We focus
on nouns, which are more commonly depicted in images.
Instead of using pool5 features, for visual representations
we rely on the category of the objects in the image for which
an alignment exists. Figure 6 shows a motivational example,
where the pool5 visual representation for the two woman
regions would be very different despite belonging to the same
semantic category. To make the representation more flexible,
instead of the category label itself, we use pre-trained word
embeddings for the word representing the category. By doing
s0, visual representations for woman and girl would be closer
than those for woman and dog, for example. We refer to this
representation as Egpj.

b) CCA projections: Since the specification involves
relating words to image representations, we evaluate the utility
of projecting the image representation such that it is highly
correlated with the word representations by using canonical
correlation analysis (CCA) [47]. Formally, given paired
matrices V and E, where each row of V is a visual region
and its corresponding word represented by its embedding E,
we generate a linear projection using CCA. We then use these
projections to obtain transformed representations of V as V¢ca
and use them as visual features. V can contain either category
embeddings or pool5 representations.

For both object categories and CCA projections, for un-
aligned words we specify them with an empty vector or with
the vector containing pre-trained word embeddings of the
word itself. We experiment with specifying every single word
in the phrase for multi-word alignments, or specifying the
head nouns only. We explore two methods to specify visual
information for words: concatenation and projection.

3) Concatenation: The source word embedding is specified
with region-grounded information via concatenation:

¢(si) = [0(si); &(7)] (10)
where, ¢(s;) is the source word embedding and ¢(r) is the
object-level region information (category label embedding or
CCA projection). These are the initial representations of the
words for the encoder bidirectional recurrent units.
4) Projection: Alternatively, we learn a linear projection
W over the region-grounded information:

d(s:) = p(si) + We(r)

C. Experimental results

(In

We build attention-based sequence-to-sequence models [32]
with bidirectional recurrent neural networks with gated re-
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TABLE IV: Comparison of models using oracle object an-
notations and alignments, according to METEOR. Results
are average of three runs with different seeds. The first row
indicates the best system for EN-DE, the only pair tested on
this test set at WMT16 [37].

Systems EN-CS EN-DE EN-FR
Best WMT16 - 53.20 -
Text-only 28.90 57.35 74.09
SubrAttention 28.84 55.45 73.31
CoAttention 30.37 57.15 75.85
SupCoAttention  30.34 56.48 75.10
ExplicitProj 30.63 57.05 75.02
ExplicitConc 30.61 57.26 75.17
ExplicitCCA 30.52 57.12 75.34

current units [48] as the encoder and decoder. We use the
nmtpytorch tool [31] with the following settings: early
stop by Meteor (max 100 epochs), selection of best model
according to Meteor, beam size = 6, batch size = 64, Adam
as optimizer, word embedding dimensionality = 256, and no
sub-word units (they do not improve performance in our case).

For category embeddings and CCA representations we
use fasttext 300-dimensional pre-trained word embed-
dings [49]. In the results reported for explicit alignments we
specify only head nouns for which an alignment exists to a
region in the image, and use the pre-trained embeddings of
the words themselves for the remaining words.

1) MMT results: Table IV summarises the results for the
following models, using BLEU [50] and Meteor [51], where
the latter is the official metric used for this task (following the
MMT shared tasks):

o Text-only: NMT baseline without visual information.

« SubrAttention: Visual attention over image subregions at
decoding time (Section IV-Bla) with hierarchical fusion.

o CoAttention: Co-attention over image regions (pool5
features for objects) and source words (Section IV-B1b).

o SupCoAttention: Supervised co-attention over (pool5
image region features for objects) and source words
(Section IV-Blc).

« ExplicitProj: Projection of category embedding informa-
tion Eqpj (Section IV-B2b).

« ExplicitConc: Concatenation of category embedding
Eobj and learned word embeddings (Section IV-B3).

o ExplicitCCA: Concatenation of Vi cq (pool5 object
features) and learned word embeddings (Section IV-B3).

The results in Table IV show that the proposed multimodal
models outperform text-only counterparts as well as the stan-
dard multimodal approach SubrAttention for EN-CS and EN-
FR.As it has been shown in the WMT shared tasks on MMT
[38], [39], automatic metrics often fail to capture nuances
in translation quality such as the ones we expect the visual
modality to help with, which — according to human perception
— lead to better translations. This may be particularly the case
for EN-DE, where rich morphology and compounding may
result in better translations, even though these do not match
the reference sentences.

TABLE V: Comparison of models using oracle object anno-
tations and alignments, according to LTA.

Model EN-CS EN-DE EN-FR
Text-only 10.44 37.00 53.62
SubrAttention 10.84 37.82 53.62
CoAttention 12.45 38.06 55.16
SupCoAttention 13.25 37.47 55.16
ExplicitProj 13.65 38.41 54.08
ExplicitConc 12.85 38.06 53.78
ExplicitCCA 14.06 38.17 54.08

2) Lexical ambiguity evaluation: To deal with the weak-
nesses of the automatic metrics above, we also evaluate sys-
tems using Lexical Translation Accuracy (LTA) [52] following
the methodology used at the WMTI18 shared task on MMT
[39]. LTA measures how accurately a system translates a
subset of ambiguous words found in the Multi30K corpus. A
word is said to be ambiguous in the source language if it has
multiple translations (as given in the Multi30K training corpus)
with different meanings. A lexical translation is considered
correct if it matches exactly the (lemmatised) word aligned
to it on the reference test set. The test set of 1,000 sentences
contains 1,708 such words for EN-DE, 1,298 for EN-FR, and
249 for EN-CS. Table V shows that all multimodal models are
better than their text-only counterpart.

3) Oracle versus predicted regions: Thus far we showed
results where the oracle bounding boxes and object-word
alignments are used. In the implicit grounding models this
is not a major issue given that the alignments are only needed
at training time. For the explicit grounding models, however,
this information is also needed at test-time. Therefore, we
also investigate using predicted objects and object-word align-
ments [53].2 The results indicate that there are no significant
differences in performance.

D. Discussion

We proposed referential grounding approaches for MMT
that use clearly defined correspondences between a source
word and an object in the image to guide translation. We
showed that MMT models using such groundings at object-
level can better exploit image information, leading to better
performance, especially when translating challenging cases
such as ambiguous words.

V. SUMMARIZATION

All videos in the How2 dataset are accompanied by a
manually written summary that should attract the attention of
viewers and increase the chance of the video being found in
a keyword search. The goal of the summarization task on this
dataset is to generate this type of video summary. An example
video summary is shown in Figure 7.

A. Characteristics of the summaries

In order to get a reliable estimate of the summarization
quality, we use a different split than for ASR and MT.

2We use the w2v-max and union model described in their paper.
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Video

today we are going to show you how to make spanish omelet . i 'm going to
dice a little bit of peppers here . i 'm not going to use a lot , i 'm going to use
very very little . a little bit more then this maybe . you can use red peppers if
you like to get a little bit color in your omelet . some people do and some
people do n't .... t is the way they make there spanish omelets that is what she
says . i loved it , it actually tasted really good . you are going to take the onion
also and dice it really small . you do n't want big chunks of onion in there
cause it is just pops out of the omelet . so we are going to dice the up also very
very small . so we have small pieces of onions and peppers ready to go .

Summary

cooking video .

how to cut peppers to make a spanish omelette; get expert tips and advice on making cuban breakfast recipes in this free

Fig. 7: How?2 dataset example with different modalities. “Cuban breakfast” and “free cooking video” are not mentioned in the

transcript and must be derived from other sources.

The standard splits contain enough text for sentence-level
evaluation; however, there is only one summary per video. We
use 73,993 videos for training, 2,965 for validation and 2,156
for testing. The average length of transcripts is 291 words and
and the average length of summaries is 33 words.

B. Baseline methods

a) Language input: For text-based input, we use the
transcripts of the videos. We leverage the speech modality
by using the outputs from a pre-trained speech recognizer
trained with other data, as inputs to a text summarization
model. We use state-of-the-art models for distant-microphone
conversational speech recognition, ASpIRE [54] and EESEN
[55], [56]. The word error rate of these models on the
How?2 test data is 35.4%. This high error mostly stems from
normalization issues in the data. For example, recognizing and
labeling “20” as “twenty” etc. We accept these as-is for this
task. Also, note that this is the WER on the larger 2000-hour
corpus rather than 300-hour subcorpus.

b) Visual input: We represent videos by a sequence of
2048-dimensional action feature vectors (see Section II).

C. Models

We study various summarization models. First, we use
a Sequence-to-Sequence (S2S) model [57] consisting of an
encoder RNN to encode (text or video features) with the
attention mechanism [32] and a decoder RNN to generate
summaries. Our second model is a Pointer-Generator (PG)
model [58], [59] that has shown strong performance for
abstractive summarization [60], [61]. As our third model, we
use hierarchical attention approach [9] originally proposed for
multimodal machine translation to combine textual and visual
modalities to generate text. This model first computes the
context vector independently for each of the input modalities
(text and video). In the next step, the context vectors are
treated as states of another encoder, and a new vector is
computed. When using a sequence of action features instead of
a single averaged vector, the RNN layer helps capture context.
In Figure 8, we present the building block of our models.

video frames

;Dﬁ[l D .. ResNeXt features

w/ RNN: 7, 9; w/o RNN: 6, 9)

!

S
attention hier. attn.
> (8,9 e

RNN over transcript - ¢ 9 RNN decoder

attention

Fig. 8: Building blocks of the sequence-to-sequence models,
gray numbers in brackets indicate which components are
utilized in which experiments.

D. Evaluation

To evaluate the generated summaries we use ROUGE-L
[62], a standard metric for abstractive summarization that
measures the longest common sequence between the reference
and the generated summary. Additionally, we introduce a new
metric Content FI that fits the template-like structure of the
summaries observed in our dataset.

a) Content F1: We compute the F1 score of the content
words in the summaries based over a monolingual alignment
obtained using METEOR toolkit [63]. Then, we remove func-
tion words and task-specific stop words that appear in most of
the summaries from the reference and the hypothesis. These
stop words (how, learn, tips, free, etc.) are very frequent in
the reference summaries making it easy for the decoder to
predict these and thus increase the ROUGE score. We treat the
remaining words from the reference and the hypothesis as two
bags of words and compute the F1 score over the alignment.
Note that the score ignores the fluency of output in line with
recently proposed metrics such as HighRes [64].

b) Human Evaluation: In addition to automatic evalua-
tion, we also evaluated system summaries by eliciting human
judgments. Following the abstractive summarization human
annotation work of Grusky et al. [65], we ask our annotators
to label the generated output on a scale of 1-5 on metrics
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TABLE VI: ROUGE-L and Content F1 for different sum-
marization models: random baseline (1), rule-based extracted
summary (2a), nearest neighbor summary (2b), different text-
only (3,4,5a), pointer-generator (5b), ASR output transcript
(5¢), video-only (6-7) and text-and-video models (8-9).

Method ROUGE-L  Content F1
Naive baselines

1 Language Model sampling 27.5 8.3
2a  Rule-based Extractive summary 16.4 18.8
2b  Next-neighbor Summary 31.8 17.9
Text-only models

3 S2S on 2a only 46.4 36.0
4 S2S on 200 tokens of Transcript 40.3 27.5
S5a  S2S on Transcript 53.9 47.4
5b PG on Transcript 50.2 42.0
Sc S2S on ASR 46.1 34.7
Video-only models

6  AF only 38.5 24.8
7 RNN over AF 46.3 349
Multimodal models

8  Transcript + AF w/ Hier. Attn 54.9 48.9
9  ASR + AF w/ Hier. Attn. 46.3 34.7

of informativeness, relevance, coherence, and fluency. We
perform this on randomly sampled 500 videos from the test
set. We evaluate three models: two unimodal (text-only, Sa;
video-only 7) and one multimodal (text-and-video, 8). Three
workers annotated each video on Amazon Mechanical Turk.

E. Output Examples from Different Models

Table VII shows the example outputs from our different text-
only and text-and-video models. The text-only model produces
a fluent output which is close to the reference. The action
features with the RNN model, which sees no text in the input,
produces an in-domain (“fly tying”” and “fishing”) abstractive
summary that involves more details like “equipment” which is
missing from the text-based models but is relevant. The next
neighbor model is related to “knot tying” but not related to
“fishing”. The scores for each of these models reflect their
respective properties. Observing other outputs of the model,
we noticed that although predictions were usually fluent and
thus getting high ROUGE scores, there is a large room for
improvement by predicting all details from the ground truth
summary, like the subtle selling point phrases, or by using the
visual features in a different adaptation model.

In Table VIII, we report human evaluation scores of the best
text-only, video-only, and multimodal models. We observe that
text-only summaries dominate on relevance but multimodal
models are the most informative, coherent and fluent, indi-
cating that these models can fuse complementary information
from multiple modalities to generate relevant summaries. The
example presented in Table VII shows how the generated
summaries vary with different models and features.

Our parallel work [66], [67] demonstrates the use of our
summarization models trained in this work for a transfer
learning-based summarization task on the Charades dataset
[68], which has audio, video, and text (summary, caption, and
question-answer pairs) modalities just like the How2 dataset.

Pre-training and transfer learning with the How?2 dataset
led to significant improvements in unimodal and multimodal
adaptation tasks on the Charades dataset.

VI. CORRELATION-BASED UNSUPERVISED LEARNING

All machine learning involves learning representations on
top of the input features [69]. In deep learning, representation
is learned implicitly, as a result of finding a local minimum of a
loss function. In contrast to this implicit representation learn-
ing stand several explicit representation learning paradigms
[70]-[72]. How to best exploit multiple views is an open
problem, especially when there is a latent alignment between
views, such as between an image and its spoken caption [73].
We treat the How2 datasetas a 4-way parallel corpus, and
explore an advanced, correlation-based representation learning
objective.

A. Deep Generalized Canonical Correlation Analysis

It has been shown that the availability of a second view
in addition to a primary input can help with any task. For
instance, the video stream of a speaker’s face, in addition to
the audio recording, helps perform speech recognition [74].
This qualitative result is still true when the second view is
reconstructed from the primary input by a trained predictor.
However, in some cases, it may be difficult to learn such a
predictor, as in the speech recognition example above. Instead
of reconstructing the secondary view, it is simpler to learn a
representation for each view that is maximally reconstructive
of the representations learned for the other views [72], [75].
This intuition was first formalized as Canonical Correlation
Analysis (CCA) [47], extended to pairs of views [76] and
arbitrary feature extractors [77]. We use the formulation of
[78], [79] which we describe next.

For each view j € {1..J}, all N points of the dataset are
stored in a matrix X; € R%*¥ where d; is the dimensionality
of the feature vector. We denote f; : R% — R" the j-th
learned feature extractor — in our case a neural net — and
U; € R"** a linear transformation matrix. The {f;}; and
{U;}; are trained jointly to reconstruct an unknown shared
representation, under constraints, resulting in the following
problem:

J
minimize 3 |G~ UT f;(X;)|3 subject to GGT = Iy,
j=1

with respect to parameters {G,{f;,U;};}. Here, G € R**V
can be viewed as the learned representation for the dataset, and
k is the dimensionality of said representation. The constraint
on G prevents trivial solutions. Note that each learned feature
extractor (f;,U;) tries to reconstruct G from X;. We refer
to this method as deep generalized CCA (DGCCA). Deep
CCA [77] is equivalent to the case J = 2.

B. Experiments and Results

Within the framework of DGCCA, we use the How?2
datasetas a 4-way parallel corpus: video, speech, transcrip-
tion in English, translation in Portuguese. Each data point
in that corpus corresponds to one utterance. For the text
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No.  Model R-L C-FI  Output
- Reference - - watch and learn how to tie thread to a hook to help with fly tying as explained by out
expert in this free how - to video on fly tying tips and techniques .
8 Ground-truth text + Ac- 549 489 learn from our expert how to attach thread to fly fishing for fly fishing in this free how
tion Feat. - to video on fly tying tips and techniques .
S5a  Text-only (Ground-truth) 539 474  learn from our expert how to tie a thread for fly fishing in this free how - to video on fly
tying tips and techniques .
7 Action Features + RNN 46.3 349 learn about the equipment needed for fly tying , as well as other fly fishing tips from our
expert in this free how - to video on fly tying tips and techniques .
2b  Next Neighbor 31.8 179 use a sheep shank knot to shorten a long piece of rope . learn how to tie sheep shank

knots for shortening rope in this free knot tying video from an eagle scout .

TABLE VII: Example outputs of ground-truth text-and-video with hierarchical attention (8), text-only with ground-truth (5a),
action features with RNN (7) and the topic-based next neighbor (2b).

TABLE VIII: Human evaluation scores on 4 different mea-
sures of Informativeness (INF), Relevance (REL), Coherence
(COH), Fluency (FLU).

Model (No.) INF REL COH FLU
Text-only (5a) 38 378 3.78 3.92
Video-only (7) 358 330 371 3.80
Text-and-Video (8) 3.89 3.74 3.85 3.94

and speech modalities, we use encoder-decoder sequence-
to-sequence models trained on the How2 datasetto extract
the {X,}, features. We average either the encoder-side em-
beddings or the sequence of context vectors to obtain a
single vector for each sequence, following [80]. For the video
modality, we first break up the videos into keyframes, then
average the outputs of a ResNet [23] over the time window
corresponding to a given utterance. We thus obtain a single
vector representing the video modality for each utterance.

1) Retrieval experiments: We start with an intrinsic eval-
uation of our learned representations. We use a retrieval task
to probe the reliability of the learned embedding space. Given
a source point v, we return the 10 closest points within a
reference set {u;};. The source and reference points come
from different views of the dev and test sets of the How2
dataset. This allows us to score the retrieval based on whether
the correct point is within the 10 closest points, and we report
this as Recall@10. Picking the 10 closest points at random
results in a Recall@10 of 0.5% for the dev set and 0.4% for
the test set. Using our DGCCA model, retrieving the 10 closest
points involves projecting the source point and the reference
set into the shared space, computing pairwise distances (we
use mean-centered cosine distance) and taking the 10 closest
points.

To validate the approach, we compare linear and deep CCA
on pairs of modalities. Linear CCA corresponds to f; being set
to the identity mapping for all j. We report retrieval results in
Table IX. With the exception of speech-to-text retrieval, deep
CCA performs systematically better than linear CCA.

We train models on 3 and 4 modalities, and report retrieval
scores in Tables X and XI. In both cases, k = 160. When
adding modalities, we note that retrieval scores decrease,
since the model needs to accommodate additional views.

TABLE IX: Recall@10 for retrieving reference modality given
source modality (”source - reference”). Swapping source and
reference change retrieval scores by less than 1% absolute.

Linear CCA  Deep CCA

dev test  dev test k
text (en) - text (pt) 82.5 81.4 951 946 400
speech - text (en) 983 969 921 90.1 160
video - text (en) 0.9 0.8 2.3 1.6 400
video - speech 0.8 0.6 1.9 1.8 160

Some retrieval scores are higher than others; most likely, the
model trades off higher scores for easier pairs of views (e.g.
Portuguese text and English text) against lower scores for
harder pairs of views (e.g. video and speech). This could be
compensated by adding weights {w, },; for each reconstruction
loss, or by tuning the architectures of the {f;}; separately.
Overall, retrieval scores between language modalities are
high, ranging from 71.0% to 98.4%. There are several reasons
which could explain the lower scores involving the video
modality. First, it is not quite clear how much temporal
coherence the video modality has in the How?2 dataset. For
instance, objects mentioned by the speaker might appear much
later in the video, very briefly, or not at all. Further, ResNet
features might not be able to adequately represent the domain
of the How2 dataset. We experimented with representations
from action networks [21] trained on an action dataset [22],
and obtained similar results. Most likely, given the noisy input
features, our models lack either the expressive power or a suf-
ficient amount of training data to capture the correspondence
between the language modalities and the video [73], [81].

TABLE X: Recall@10 for retrieving column modality given
source row modality, for a DGCCA model trained on 3 views.
Results from the bottom left triangle can be compared to those
in Table IX.

text (en) speech  video
text (en) dev - 92.1 1.7
test - 89.8 1.8
speech dev  92.1 - 1.9
test  89.1 - 1.2
video dev 1.4 1.9 -
test 1.7 1.2 -
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TABLE XI: Recall@10 for retrieving column modality given
source row modality, for a DGCCA model trained on 4 views.
Results from the bottom left triangle can be compared to those
in Table IX.

Text (pt)  Text (en) Speech  Video

Text (pt)  dev - 98.8 73.5 2.1

test - 98.3 71.0 1.1
Text (en) dev  98.8 - 88.2 1.4

test  98.4 - 854 0.9
Speech dev  73.0 88.1 - 1.1

test  70.7 854 - 1.0
Video dev 2.1 1.1 1.0 -

test 1.1 1.1 0.9 -

2) Scoring top-1 retrieval results: Given our high retrieval
scores between language modalities, we attempt to measure
their performance with conventional ASR, MT and ST metrics
— WER and BLEU scores. For each data point in the test
set, we retrieve the closest point from a reference set, and
use it as the output hypothesis of either an MT, ASR or ST
model, which can then be scored with the relevant metric. If
using the test set as a reference set, given the high retrieval
scores, the WER or BLEU scores would be almost perfect.
We thus report two more challenging settings in Table XII: the
reference set can be either the train set, or the union of the train
set and the test set. As compared to the baseline sequence-to-
sequence neural model, our models perform reasonably well,
and are consistent with our retrieval scores: MT works best,
then ASR, then ST. When the reference set is the train set,
the scores drop considerably, also because the train set does
not necessarily contain adequate sentences. To quantify this,
we pick, for each target sentence from the test set, the closest
sentence from the train set in terms of edit distance, which
yields a BLEU of 10.6 and a WER of 63.0%.

TABLE XII: Scoring top-1 retrieval result from DGCCA
models with ASR, MT and ST metrics. Models used (from
left to right) were trained using speech and text (en); text (en)
and text (pt); speech, text (en), text (pt) and video. Source
sentences for the retrieval are from the test set.

Reference Set WER BLEU (MT) BLEU (ST)
train 134% 5.2 0.2
train + test 27.4%  80.7 19.8
Baseline S2S 243% 573 27.9

C. Discussion

We framed the How2 datasetas a multiview representation
learning problem, and probed the quality of the learned
representations using intrinsic evaluations. While our results
show it is possible to learn high-quality representations on the
language modalities, the video modality remains a major chal-
lenge, possibly calling for specialized architectures or transfer
learning. Further integrating the learned representations into
supervised tasks is left for future work.

VII. CONCLUSION

This paper describes (1) the How2 dataset, a collection of
large-scale open-domain user-generated instructional videos,
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and (2) a detailed study of different multi-modal learning ex-
periments on this dataset or other proxy datasets like Multi30K
for MT. This corpus brings together English audio, English
transcripts, Portuguese transcripts, videos, and summaries,
along with meta-data such as topic of the video. This makes
the How2 dataseta good resource for research at the intersec-
tion of vision, language and speech. By releasing this dataset,
we hope to enable research on multi-lingual, multi-modal,
highly correlated and well-aligned parallel modalities. We
presented numerous uni-, multi- and cross-modal tasks such as
speech recognition, machine translation, summarization, and
multi-view representation learning. With this study, we hope
to shed light on the current state of vision, language and speech
grounding and to help researchers with designing new tasks
in this space.

APPENDIX
A. The HowZ2 Dataset

Figures 9 show the LDA topic distribution and segment
length analysis of the 300h subset of the How2 dataset.
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Fig. 9: LDA topic distributions and segment durations for the
300h subset. The overall 2000h corpus exhibits very similar
characteristics.



B. Region-Specific Multimodal Machine Translation

Table XIII shows qualitative examples for results presented
in Section IV.

C. Correlation-based Multiview Learning

1) Feature Extraction: We use baseline ASR and MT
models from Sections Il and IV. For each input sequence,
the encoder produces a corresponding sequence of feature
vectors hi,...,hp. We use % 23:1 h; to represent that input
sequence. The decoder with attention produces a sequence of
context vectors cy, ..., cg, and we use % Zle c; to represent
the target sequence. Since we use word-based ASR and MT
systems, each c; and h; roughly represents a word in context.
For the video modality, we first break up the videos into
keyframes, then use a ResNet [23] to map each keyframe to
a multi-class posterior, based on the 1000 ImageNet classes.
For each speech utterance, we then compute the average of
the posteriors corresponding to the time window of the speech
utterance. The averaging process is meant to capture the most
persistent predictions and reduce the variability due to noise.
We thus obtain a single vector representing the video modality
for each utterance. As a result, for text, speech and video, the
X features are 320-, 800- and 1000-dimensional, respectively.
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2) Models and Training: The features described above are
kept fixed, while we use feed-forward neural networks with
2 hidden layers and tanh non-linearities for the {f;};. The
first layer has the same dimensionality as the input, and the
second layer the same size as k. To avoid under-defining the
objective, k should be no larger than the smallest of the {h,};.
We set k to half the smallest of the {h;}; involved, as a
heuristic to retain most of the informative components and
discard uninformative ones. For numerical stability, we add
the identity matrix scaled by 10716 to all the view-specific
covariance matrices. We use stochastic gradient descent with
batch size 5500 and Adam optimizer with default parameters.
The analytical expression of the gradient was taken from [78].
In the experiments involving video, we use a weight decay of
1075, After each full pass over the training set, we measure
retrieval scores between all possible pairs of different views
on the dev set, using the highest of these scores to measure
the performance of our model. We use this score to do early

stopping.
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EN-FR

SRC:
NMT :

A man on a tag line going into the water.
Un homme sur une ligne de métro en train de marcher dans 1’eau.

MMT :

SRC:
NMT :

MMT :

(A man on the metro line walking to the water.)
Un homme sur une ligne de sable allant dans I’eau.
(A man on the sand line going into the water.)

A large group of people of various ages and genders sit outside together.

Un grand nombre de personnes de différents dges et des accessoires sont assis ensemble.
(A large number of people of different ages and accessories sit together.)

Un grand nombre de personnes de différentes dges et d’autres sont assis ensemble .

(A large number of people of different ages and others sit together.)

EN-DE

MMT :

SRC:
NMT :

MMT :

SRC: A man in a gray shirt jumps over the top of a sand dune in the desert .

NMT: Ein mann in einem grauen hemd springt iiber das dach einer sanddiine .

(A man in a grey shirt is jumping over the roof of a sand dune.)

Ein mann in einem grauen hemd springt iiber die spitze einer sanddiine in der wiiste.
(A man in a grey shirt is jumping over the peak of a sand dune in the desert.)

A fox terrier leaps after a ball.

Ein metzger springt nach einem ball.
(A butcher jumps for a ball.)

Ein terrier springt nach einem ball.
(A terrier jumps for a ball.)
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