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Abstract—The use of personal identification numbers (PINs)
for authentication is ubiquitous due to their simplicity and
flexibility. In this work, we present virtual step PIN pad, a novel
and practical PIN entry scheme that allows a user to enter a PIN
through foot tapping on the ground. The virtual step PIN pad
utilizes geophones to collect structural vibration signals caused
by foot tapping. When a user generates the activation signals
by performing a predetermined sequence of foot taps within the
target area, the virtual step PIN pad will be launched, and takes
the foot tapping input by the user. The system then demodulates
the corresponding structural vibration signals into a PIN. We
have developed a prototype of the virtual step PIN pad and
conduct a suite of experiments to evaluate its practicality and
security. Experimental results show that the virtual step PIN
pad can achieve an average success rate of 96.5% for inputting
a human-chosen 4-digit PIN. Meanwhile, the success rate for an
adversary at a distance of more than 2.5 meters away from the
PIN pad to infer the target PIN decreases to below 3%.

Index Terms—structural vibration, foot tapping, authentication

I. INTRODUCTION

The personal identification numbers (PINs) are sequences

of digits utilized to authenticate user identity to computer

systems. A great amount of building entrances and payment

terminals apply either traditional physical button based or

touchscreen based PIN pads so that users can type in PINs

with their fingers for getting access to the buildings or finishing

the payment transactions. Finger-input based authentication

systems, however, do not fully satisfy the needs of all the

population. For example,

• Touchscreen based systems usually do not react to a wet

(sweaty) finger while almost 3% of the general population

in the United States experience hyperhidrosis or excessive

sweating of the palms [1].

• It is often difficult or even impossible for a user with hand

or finger injuries to temporarily or permanently press a

physical button or operate on a touchscreen. There are

45,000 amputations annually due to traumatic injuries to

the hands and fingers in the United States [2].

Finger-input based authentication systems obviously impose a

practical hurdle for those users.

On the other hand, finger-input based methods may bring

unexpected privacy disclosure risks. To input a PIN, we

normally unconsciously or have to let our finger skin directly

contact with the physical or on-screen PIN pad, and this

process may disclose our fingerprint and thus jeopardize all

applications using fingerprints. It has been shown that touch-

screen PIN entry systems may suffer from smudge attacks [3]

and also oily residues left by tapping fingers on a touchscreen

enable attackers to reveal fingerprints [4]. The two afore-

mentioned limitations with finger-input based authentication

systems motivate us to develop another scheme that works for

people including who cannot use fingers for typing PINs and

also mitigates privacy disclosure risks.

Besides PINs, there are emerging biometric authentication

systems, which determine the identity of a person by com-

paring a biometric data capture (e.g., fingerprint [5], iris [6],

face [7], voice [8]) to authentic biometric information stored

in a pre-collected database. However, the deployment of such

systems is expensive as it requires both the corresponding

dedicated user interface and a database including biometric

information of all users. Meanwhile, if the system discloses

such sensitive private biometric information, it may cause

serious consequences. [9]–[11] propose to utilize eye gaze

interaction to enter a PIN, i.e., correlate the position of the

user’s gaze on screen to a digit input. However, such methods

usually not only need to pre-deploy an on-screen keyboard

before inputting the PIN, but also require a camera to monitor

the user’s eye movement. If the captured eye movement by the

camera is unclear (e.g., in low light conditions), the accuracy

of the entered PIN would decrease significantly.

Other than traditional input ways such as using finger or

eye gaze, is there another way for humans to input PINs that

is convenient and secure? Intuitively, we consider to utilize

foot for PIN entry as people walk with their feet every day.

Among all foot gestures, we select foot tapping (i.e., raising

and lowering the toes or heel) as the input method since it

requires comparatively low effort and is also inattentive, which

can be mistaken for natural walking [12]. Then the question

becomes how to convert the foot taps on ground into inputted

digits. A geophone [13] is a device that translates ground

movement (i.e., the velocity of a monitored surface) into

voltage, which can be easily read by a microcontroller. Recent

work [14], [15] have shown that the geophone sensor can

be utilized to measure footstep-induced structural vibrations.

In this paper, we then design and implement a foot-input

based authentication scheme leveraging geophones. We refer

to this technique as virtual step PIN pad. Specifically, a user

first initializes the virtual step PIN pad on the ground with

specific activation signals, and then taps his foot on the PIN

pad to enter a PIN. Foot tapping at different locations will
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generate different structural vibrations which can be captured

by geophones and then mapped into corresponding digits.

Unlike finger-input based methods that may disclose finger-

prints, the foot-input based method does not have such privacy

breach concerns as people usually wear shoes and shoe-prints

are not unique [16]. Also, since there is no actual physical PIN

pad and foot taps are usually regarded as habitual behaviors or

leg workouts, foot-input based PIN entry has better conceal-

ment and is not easy to be destroyed. Nevertheless, multiple

challenges need to be addressed in order to make the proposed

method to work accurately in practice.

First, the deployed system and the target user should agree

on an exact location of the virtual step PIN pad so that the

identified PIN for authentication matches the PIN entered by

the user with foot tapping. We design a customized PIN pad

activation method to determine the PIN pad layout. The system

is then ready to demodulate the following PIN input.

Second, the system needs to distinguish the foot taps in

different areas of the virtual step PIN pad in order to correctly

translate each foot tap into a digit. We extract the structural

vibration signals corresponding to the foot taps for entering

a PIN, and propose an inter-peak interval based method to

correlate each observed vibration signal pattern with a digit.

Third, an important question is about the security of the

proposed scheme, mainly from two aspects. On concern is

whether an adversary can identify PINs used for authentication

by deploying a geophone-based sensing system around. In

general, as the foot tapping induced waves travel outward, the

energy that they contain becomes dissipated. Therefore, the

vibration becomes weaker the further it is from the source. As

a result, an adversary may be unable to capture signals with

enough energy to infer the tapping locations if the distance be-

tween herself and the tapping location exceeds a certain thresh-

old. Another concern is whether the authentication scheme

still works when an advanced attacker obtains the legitimate

user’s PIN (e.g., via secretly videotaping the foot tapping

process). We also propose to utilize the legitimate user’s

vibration characteristics to further refuse access launched by

unauthorized users even when they obtain the correct PINs. We

perform real-world experiments to explore the performance of

the virtual step PIN pad against such attacks.

We point out the virtual step PIN pad does not aim to

replace existing PIN input methods. Same with finger-input

based schemes, the proposed scheme cannot work for all the

population as well. For example, a person who has difficulties

(e.g., paraplegia) in performing foot tapping may not be able

to use the virtual step PIN pad. Instead, the proposed scheme

is positioned as an alternative input way. It can be comple-

mentary to existing finger-input based techniques, and make

the PIN authentication system serve for a greater population.

II. FOOT TAPPING IDENTIFICATION

Geophones are easy to install and can be installed anywhere

on the ground. As they capture the ambient structural vibration

signals, they thus can be utilized to monitor a person’s heart

Fig. 1. A foot tapping on different materials.
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Fig. 2. Geophone signal changes when tapping at different locations.

rate and respiratory rate [17], perceive human fall [18], and

detect the physical events within a house [19].

Ground Structure Impact: Different floor materials with

varying vibration absorption ability (i.e., damping capabil-

ity [20]) may bring different impact for geophone observations

induced by foot tapping. Figure 1 gives an example to illustrate

how the foot tapping induced vibration may propagate within

different floor materials. Empirically, we observe that the

damping capability decreases in accordance with ceramic tile,

carpet and wood. Specifically,

• Ceramic tile has high stiffness and is rigidly fastened to

the subfloor. A floor with ceramic tiles shows high damp-

ing capability and would quickly absorb the vibration.

• A carpet is a textile floor covering consisting of four lay-

ers from top to bottom, i.e., face yarn, primary backing,

latex adhesive and secondary backing. A foot tap on a

carpet usually brings minute deformation of the face yarn

and the adhesive binder. Meanwhile, the vibration wave

would be absorbed after experiencing a few reflections.

• A wood floor normally includes a top layer and a core

board. The reflected vibration wave would gradually

decay over time.

We detailedly explore the impact of floor material on the

performance of the virtual step PIN pad in Section IV-D.

Signal Sensing: We apply a commercial off-the-shelf geo-

phone, SM-24 [13], with a sensitivity of 28.8V/m/s and a

natural frequency of 10Hz. The geophone voltage output is too

weak to be captured by the built-in Analog to Digital converter

(ADC) of Arduino motherboard. Thus we use a 16-bit ADC

to amplify the geophone output and observe amplified signals.

Figure 2 shows a stream of geophone records when tapping

at two locations that are 30cm apart, each for two times.

We observe that when there is no tapping, the air-wave or

appliance noise induced vibration amplitude is quite small

(less than 4mV), while a foot tap generates a distinguishable

vibration wave with larger amplitudes. Also, it can be clearly

seen that foot taps at the same location generate highly sim-
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Fig. 3. Virtual step PIN pad schematic.

ilar vibration waves, while varying tapping locations lead to

different geophone signals. This observation can be exploited

for tapping location inference. The vibration waves propagate

outward in all directions from the tapping location through

the floor material. They may undergo reflection or refraction

at structural boundaries and even dispersion. We refer to

such a phenomenon as multipath effect. Thus a foot tap may

induce multiple vibration signals and a geophone captures the

superposition of them. In Section III-E, we take advantage of

this multipath effect to develop a technique to distinguish foot

taps in different areas on the virtual step PIN pad.

III. VIRTUAL STEP PIN PAD DESIGN

A. Adversary Model

Finger-input based authentication schemes often suffer from

shoulder surfing attacks, which acquire the pressed keys by

peeping over the victim’s shoulder. The PIN in the proposed

scheme may also be compromised if an attacker can observe

the foot tapping process. However, as aforementioned, the vir-

tual step PIN pad has good concealment due to inconspicuous

foot tapping gesture and no tangible PIN pad. We assume if the

PIN is solely utilized for authentication, the user can protect

the foot tapping (e.g., setting up barriers to cover the foot

movement) during the PIN entry process from being directly

observed or videotaped by others. Also, when such a barrier

is not available, we utilize pre-registered vibration profiles to

further characterize users. Correspondingly, the two attacks

below are considered to evaluate any PIN authentication

schemes (e.g., [21], [22]), including ours.

Side-channel Attack: The adversary aims to sniff PINs by

deploying hidden geophones (e.g., behind some regular object)

on the floor near the target to capture the structural vibration

signals generated during the PIN entry process.

Knowledgeable Observer Attack: The adversary is able to

stealthily observe the legitimate user’s foot movement through

shoulder surfing or secret video recording and thus infer the

target PIN. The adversary then tries to imitate the behavior of

the legitimate user to bypass the authentication.

B. System Overview

The basic idea underlying the proposed system is to achieve

PIN recognition by analyzing unique location-dependent fea-

tures from the received structural vibration signals caused by

foot tapping. The geophones located on the ground continu-

ously monitor the vibration signals. When a user inputs the

activation signals with foot tapping on the target area, the

PIN pad will be activated and the system prepares to take the

following vibration signals and translate them into PIN input.

Fig. 4. PIN pad activation. (a) No foot tap is detected; (b) Since |D1−D2|>δ,
the activation fails; (c) With D1>Dmin, D2>Dmin, and |D1−D2|≤δ,
the PIN pad is launched.

The system then pre-processes the collected vibration signals

and identifies the specific features for each foot tap. Finally,

each identified feature will be correlated to a respective

location on the PIN pad, i.e., a corresponding digit. The output

would be the entered PIN for authentication. Figure 3 shows

the flowchart of the virtual step PIN pad system.

C. Activation

Unlike traditional finger-input based PIN pads, whose layout

is known to the user, the proposed scheme does not have a

physical PIN pad. Instead, we design a virtual PIN pad that

enables the user to utilize foot tapping for PIN entry, and such

a PIN pad can be deployed anywhere on the ground as long

as the structural vibration signals caused by foot tapping can

be captured by the geophones. First of all, in order to enter a

PIN, a user need to activate the virtual step PIN pad.

The activation signal should not only let the system prepare

to demodulate the following foot taps into a PIN, but also

confirm the PIN pad location for both the user and the system.

Correspondingly, the activation signal should not be an activity

that a user exhibits in daily walking (e.g., a single foot

tap), otherwise the PIN pad may be frequently and falsely

activated. Meanwhile, the location of the PIN pad should

enable the user to perform foot tapping without spending too

many efforts (e.g., turning around). To achieve both goals, we

enable the user to first tap once at three spots in a line, and

the interval distances between two successive spots are D1

and D2. Initially, the system is in standby mode: monitoring

received signals and waiting for the virtual step PIN pad

activation signals, as shown in Figure 4(a).

We design the criteria of a successful activation as: (1) the

time period between two successive taps does not exceed P ,

which is used to help clean invalid activation signals (we set

P =2 seconds); (2) Di>Dmin (i ∈ {1, 2}) and |D1−D2| ≤ δ,

where Dmin denotes the designed minimum interval distance

and δ is a pre-determined threshold that can be adjusted based

on the PIN pad size and user preference. Dmin is usually

larger than the foot length as it can help the user to easily

distinguish the locations on different rows or columns. As

shown in Figure 4(b), the system will be still in standby

mode with a failed activation, while a successful activation

will launch the virtual step PIN pad, as shown in Figure 4(c).

After the PIN pad is activated, the system enters the ready
phase: it collects the following structural vibration signals and

inputs them into the next module.
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D. Data Preprocessing

Like pressing digit buttons on a physical PIN pad with a

finger, a user performs a sequence of foot taps with a leg on

the virtual step PIN pad for PIN entry. We assume that the

user taps once for each digit with a normal speed (1∼2 sec

per tap). Data preprocessing phase removes the noise from

the structural vibration signals observed by geophones and

segments the time series of the structural vibration signals into

individual samples, each corresponding to a foot tap.

1) Noise Reduction: It is observed that the variations of

geophone observations caused by foot tapping lie at the low

end of the spectrum. To preserve valuable signal components

and mitigate the noise introduced by environmental vibrations

or hardware imperfection, we employ the Fast Fourier Trans-

form (FFT) filter [23]. In particular, we first perform FFT

on geophone observations to detect the dominant frequency

range corresponding to foot tapping, and then set amplitudes

of other parts as zero, and finally use Inverse FFT (IFFT) to

the remaining frequency data to recover the denoised signal.

2) Two-threshold Based Segmentation: The segmentation

phase separates the structural vibration signals for individual

foot tap. The vibration amplitudes during tapping periods

usually show a much larger variance than those happening

during non-tapping periods. Motivated by this, we then focus

on identifying the segments with the variance which is larger

than a predetermined variance threshold. Meanwhile, some

other actions such as dropping an object, may also lead the

system to observe a vibration amplitude that exceeds the

threshold. To separate foot tapping with other inferences,

we further utilize cross-correlation method, which is widely

employed to quantify the similarity of two waveforms [24].

Cross-correlation: Let s1, s2 denote two signal waveforms,

each of which is represented with an n-point discrete time

series. The cross-correlation rs1,s2(l) can be calculated by a

function of the lag l∈ [0, n−1] applied to s2, i.e.,
∑T−1

i=0 s1(i)·
s2(i − l), where s2(i) = 0 if i ≤ 0. To accommodate for

different amplitudes of the two series, the cross-correlation can

be normalized as r′s1ss(l) =
rs1,s2 (l)√

rs1,s1 (0)·rs2,s2 (0)
. To quantify

the similarity between two structural vibration signals, we

derive the largest absolute value of cross-correlation, i.e.,

max
l

(|r′s1ss(l)|), which lies in the range of [0, 1], with 1

indicating perfect correlation, and 0 showing uncorrelation.

With multiple foot tapping induced signals during an em-

pirical profile, we calculate the cross-correlation between each

pair of the signals, and select the minimum value as the

similarity threshold to help detect legitimate foot tapping

induced signals during the authentication phase. Specifically,

we first search over the data for the segments with the variance

under the variance threshold. Each of such a segment denotes

an inter-vibration interval. Everything between two successive

inter-vibration intervals will be regarded as a potential vibra-

tion signal induced by a single foot tap. Next, we compute

the cross-correlation between each of such signals with a pre-

obtained foot tapping induced signal. If the obtained cross-

correlation is above the similarity threshold, we believe that

this structural vibration signal is caused by foot tapping,

otherwise, it would be discarded as an interference signal.

E. Digit Demodulation

Digit demodulation converts foot taps to corresponding dig-

its. We observe when we tap our foot at different locations, the

time interval between the first two local maximum amplitudes

in the observed wave signal varies. We refer to such a feature

as inter-peak interval, and use it to distinguish foot tapping at

different locations on the PIN pad. We divide the virtual step

PIN pad into 3×3 subareas (i.e., keys). Neighboring subareas

are connected with a (horizontal or vertical) gap area.

In modern keyboards, the key gap design can impact the

typing performance [25]. Similarly, we also design a gap area

between adjacent subareas to improve the accuracy of the

input via foot tapping. The gap area serves two functions.

First, it can help decrease authentication errors. If neighboring

subareas are together without a gap in between, when a foot

tapping is performed very close to the edge next to other keys,

such an input may be easily misidentified as the other keys.

This is because for foot tapping at locations approaching the

edges connecting neighboring subareas, the induced vibration

signals would be quite similar. Second, a gap area with a

moderate width (i.e., distance between edges of subareas)

enables the user to better distinguish different keys. If there

is no key gap or the key gap is too small, it may increase the

probability that a user accidentally taps an adjacent key at the

same time as the target key. On the other hand, the gap should

not be too wide as well, otherwise the user may frequently tap

at the gap area, which generates invalid input.

Each subarea is associated with a characteristic inter-peak

interval vector t̄i = [t̄i1, t̄i2, t̄i3] (i ∈ {1, 2, · · · , 9}), where

t̄ij (j ∈ {1, 2, 3}) denotes the standard inter-peak interval

obtained by the j-th geophone when the source of structural

vibration lies in the i-th subarea. Meanwhile, the maximum

variation of the observed inter-peak interval compared with

its standard value (i.e., t̄ij) can be denoted with δij . Let the

vector Δimax
denote [δi1, δi2, δi3].

After the virtual step PIN pad is activated, the digit that

each subarea represents is determined. Let Di represent the

inputted digit when foot tapping happens in the i-th subarea.

Then when the user enters a digit with foot tapping, each

of the three geophones observes a vibration wave. Next, the

system performs the following steps to translate it into a digit.

Initially, the index i of the subarea is 1.

(a) For the collected signal by the j-th geophone, we search

the first two largest peaks and calculate the inter-peak

interval tij . We thus obtain ti = [ti1, ti2, ti3].
(b) If i < 10, we calculate Δ = |ti− t̄i| and compare it with

Δimax ; otherwise return with invalid input.

(c) If all elements of the vector Δimax−Δ are positive, this

foot tap will be converted into the digit Di; otherwise,

enable i= i+1 and jump to step (b).

The proposed inter-peak interval based method will apply

to each foot tap. As a result, an N -digit PIN is entered for

authentication with N foot taps. Note that the characteristic
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inter-peak interval vector t̄i and the corresponding maximum

variation vector Δimax can be obtained through an empirical

profile. Specifically, we divide each subarea into smaller sub-

subareas. We then let the user tap her foot at each sub-subarea,

and collect the structural vibration signals through the three

geophones. With each geophone’s data, we calculate the inter-

peak interval for each foot tap and utilize the average value

of all inter-peak intervals to denote the characteristic value

observed with this geophone. After that, the maximum varia-

tion of the inter-peak interval compared with the characteristic

value can be calculated. Normally, with more sub-subareas,

we can have more fine-grained reference signals, and may

generate more accurate results.

Digit ‘0’ Input and Identification: We propose to input

the digit ‘0’ via a non-tapping way. Specifically, after the

activation phase, the system maintains a timer for each foot

tap. The maximum timer interval is set to be 2 seconds, which

empirically provides a user with enough time to tap once. If

a foot tap is detected before the timer runs out, the system

immediately resets the timer for detecting the next input. While

if there is no foot tap detected within the maximum timer

interval, we regard this silent period as the input of digit ‘0’.

The system then resets the timer for detecting the next one.

F. Dealing With Knowledgeable Observer Attacks

A concern is that whether the virtual step PIN pad still

works when the attacker is able to directly observe the

legitimate user’s foot movement via peeping or videotaping.

Apparently, it is no longer enough for distinguishing different

users only by PINs. Instead, after the virtual step PIN pad

detects that the inputted PIN is correct, the system would then

take advantage of the pre-built user-specific feature extracted

from the structural vibration signals to determine whether the

foot tapping is performed by the registered PIN owner.

Specifically, during the training phase, the system takes the

observed structural vibration signals as input when the user

enters PINs via foot tapping, then runs the supervised learning

algorithm SVM (Support Vector Machine) by LIBSVM li-

brary [26] to classify the features. Different user’s foot tapping

preference varies due to different personal characteristics in-

cluding personal weight, foot size, leg length and foot tapping

habit. Such preference difference will be represented by the

distribution of the typed PIN by the regression analysis of

SVM training process. The SVM classification results show

the personal features unique to each user, and will be used in

the testing phase to determine whether a PIN input is initiated

by the owner of the PIN or somebody else. It is highly difficult

for an adversary to generate a feature that matches with the

legitimate user’s as the feature integrates both PIN and the

user’s behavior and physical characteristics.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Setup

We build a prototype of the virtual step PIN pad on top

of three SM-24 geophones [13] to demonstrate its perfor-

mance. The system has two controllers, referred to as A

Fig. 5. Controller A. Fig. 6. Controller B.

Fig. 7. Deployment of geophones.

and B. As shown in Figure 5, Controller A includes two

geophones (G1 and G2), and both connect with one same

ADS1115 module, i.e., a 16-bit analog-to-digital converter

(ADC) with a programmable-gain amplifier, on an Arduino

MEGA 2560 [27], which is connected to a computer for

data processing. As it cannot distinguish foot taps coming

from both sides of the line between two geophones based

on the signals only collected from Controller A, Controller

B is utilized to help determine the direction of each foot tap.

Figure 6 shows Controller B, consisting of the third geophone

(G3), whose output is fed into ADS1115 on an Arduino

UNO [28]. In order to synchronize data on both Controllers,

we equip each with a 2.4G wireless transceiver module –

NRF24L01 [29], considering that wired connection between

Controllers may bring inference for the geophones’ output.

The position of three geophones relative to the virtual step

PIN pad layout is as shown in Figure 7. The PIN pad follows

the typical design of a door lock or payment terminal PIN pad,

and consists of a number pad with the digits from 1 to 9. For

inputting digit ‘0’, we propose a method without tapping, as

described in Section III-E. We enable G1 and G2 at the centers

of respective key areas on the second row and set the key pitch

(i.e., center-to-center distance between keys) of DA = 40cm.

We design a gap area with a width g = 4cm empirically, which

can help the user effectively perceive two neighboring key

areas. The distance between G3 and the line of G1 and G2 is

represented with DB . In order to help distinguish foot tapping

at different rows, we then let G3 lie at the mid-perpendicular

of the line of G1 and G2, and meanwhile put G3 at exactly

above the first row of the PIN pad for the best performance.

Thus, we have DB = (3/4) · (DA − 2g) + g.

Intuitively, the accuracy of the proposed scheme may be af-

fected by the setting of PIN length, deployment of geophones,
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TABLE I
CONFUSION MATRIX FOR SINGLE DIGIT INPUT.
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and floor material. Next, we explore how these factors can

impact the performance of the virtual step PIN pad.

B. Verification Accuracy

We recruited 15 volunteers (6 of them are female) to test

the performance of the virtual step PIN pad deployed on

a wood floor, as wood flooring is durable and one of the

popular floor coverings. In Section IV-D, we will explore

the impact of the floor material on the performance of the

proposed system. We define the digit success rate as the rate

of successfully recognizing a single digit. We employ this

metric to ascertain the digit verification accuracy of the virtual

step PIN pad. To demonstrate the complete digit sequence

verification accuracy, we compare the obtained digit sequence

by the system with the one inputted by the user to determine

whether the digit sequence identification is successful, and

calculate the sequence success rate, which equals to the ratio

between the number of successful digit sequence identification

times and the total number of digit sequence entry trials.
1) Digit Success Rate: We let each participant input each

digit 100 times via foot tapping. Table I shows the confusion

matrix for digits from 1 to 9. It demonstrates that the mean

digit success rate of all digits is 96.3%, and the lowest digit

success rate is 94%. Meanwhile, we observe that though digit

‘5’ borders the most other digits, its digit success rate is the

highest (i.e., 99%). Digit ‘5’ lies in the middle of geophones

G1 and G2, which have similar observations when inputting

digit ‘5’, enabling the system to determine the candidates:

digits ‘2’, ‘5’ and ‘8’. Meanwhile, the geophone G3 can

easily distinguish these three digits as their distances to G3

are different. Thus, the system can further shrink the search

space from three digits into one, i.e., digit ‘5’ is correctly

verified. Besides, for inputting digit ‘0’ with our customized

method, a digit success rate of 100% is always achieved. This

accuracy demonstrates the virtual step PIN pad’s ability to

utilize structural vibration signals to extract inputted digits.
2) Sequence Success Rate: Since no real-life dataset of

PINs has ever been publicly available, we utilize the dataset

of 4-digit sequences, extracted from 32 million Rockyou pass-

words [30]. Such 4-digit PINs can be utilized to approximate

user choices of PINs [31]. We randomly select 100 4-digit

PINs from the dataset and let each user input them through the

Fig. 8. Sequence success rate vs. sequence length.

virtual step PIN pad one by one. Meanwhile, the PIN length

usually varies from 4 to 6 for achieving the balance of security

and usability according to ISO 9564 standard [32]. Thus, to

explore the relationship between the sequence success rate and

the length of the inputted digit sequence, we also randomly

generate 5- and 6-digit PINs for 100 times, respectively, and

then input each to the virtual step PIN pad via foot tapping.

Figure 8 shows the sequence success rate when each of

the fifteen users inputs digit sequences with different lengths.

We observe that the proposed virtual step PIN pad authenti-

cation scheme can retain high accuracy (i.e., 93.0% or above)

across different users, and meanwhile with the length of digit

sequence increasing from 4 to 6, the sequence success rate

slightly decreases. Specifically, for inputting a 4-digit PIN,

the authentication system can achieve an average sequence

success rate of 96.5%, while for inputting a sequence of 5

or 6 digits, the corresponding average sequence success rate

becomes 96.0% or 95.2%, respectively.

C. Impact of Inter-Geophone Distance

Different people may have different step length, and thus

tap at different distances with one foot away from the opposite

foot. The virtual step PIN pad may adjust to such variations.

Specifically, when the distance DA between G1 and G2 (i.e.,

the key pitch) changes, the PIN pad size changes correspond-

ingly. We then change DA from 40cm to 30cm and 50cm.

Meanwhile, DB is also changed with DA. The gap width stays

the same. We repeat the above experiments calculating the

digit success rate and sequence success rate when DA varies.

Figure 9 shows the average digit success rate for all digits

under different key pitches. We observe that for all pitches,

the proposed scheme can always achieve a high average digit

success rate (over 90%), and the average digit success rate

for each digit has a small fluctuation of 4% or 5%. Besides,

for most digits, when DA = 40cm, the average digit success

rate is the highest, and the corresponding digit success rate for

DA = 30cm or DA = 50cm slightly decreases.

Figure 10 shows the sequence success rates for different

users to input 6-digit PINs across three key pitches. We see

that the sequence success rates for all pitches are always above

90%. Similarly, when the pitch decreases to 30cm or increases

to 50cm from 40cm, the corresponding sequence success rate
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Fig. 12. Foot tapping records at one geophone of the virtual step PIN pad and
adversary geophones at different distances away from the tapping location.

drops slightly. The average 6-digit sequence success rates

across all users when DA equals to 30cm, 40cm and 50cm

are 93.2%, 94.9%, and 93.0%, respectively. We conclude that

an appropriate PIN pad size would help the proposed scheme

to achieve the best performance. A smaller or bigger PIN

pad, on the contrary, requires the user to tap at a further

or closer location for a same digit, and thus may cause the

user to accidentally tap in a wrong PIN area, which does not

correspond to the digit that the user intends to input.

D. Impact of Floor Material
As mentioned earlier, different floor materials have different

structure and vibration absorption ability. To examine the

impact of floor material on the verification accuracy of the

proposed system, we also perform authentication experiments

on another two popular materials, i.e., ceramic tile and carpet.

Specifically, with 100 6-digit sequences generated in Sec-

tion IV-B2, we let each user input each one via foot tapping.
Figure 11 shows the 6-digit sequence success rates for

different users across three tested floor materials. We can

see that for both carpet and wood, the sequence success rate

is consistently high (in a range of 93% to 99%), while for

ceramic tile, the users obtain relatively lower sequence success

rates, ranging from 78% to 88%. Ceramic tile usually has

a large damping capability, which may cause the geophones

to capture weak vibrations and thus be unable to correctly

distinguish foot tapping at different digit areas. As a result, the

corresponding sequence success rate is decreased. Besides, we

observe that carpet achieves a slightly higher sequence success

rate than wood. This is because the reflected vibration wave

has less effect on the geophone measurements for carpet as

the carpet absorbs vibrations more quickly than wood.

E. Attack Scenarios
We evaluate the robustness of the virtual step PIN pad under

different types of attacks. Specifically, for each round, 1 of 15

Fig. 13. Adversary (Eve) setup.

participants is alternatively taken as the legitimate user and

the rest 14 participants play as attackers.

1) Side-channel attack: An adversary (Eve) may deploy a

well-camouflaged three-geophone-based system on the ground

around the PIN pad and thus infer inputted PINs by analyzing

the captured structural vibration signals. We assume that Eve

cannot be placed within 1m from the center of the PIN pad, as

in this case the exposure risk would be dramatically increased.

We first explore how far a foot tap induced vibration wave

can propagate. Correspondingly, we let the user perform foot

tapping on the PIN pad as usual with uniform force, and

put three adversary geophones at the distances of 1m, 2m,

and 3m from the tapping location, respectively. Figure 12

presents an example of records at different geophones for a

foot tap. We observe that with a longer distance between the

geophone and the tapping location, the geophone obtains a

lower signal amplitude. When the adversary geophone is 3

meters away from the geophone, the structural vibration signal

almost submerges in noisy background.

Next, we measure the sequence success rates for Eve at

varying distances away from the PIN pad to infer the inputted

4- to 6-digit PINs generated in Section IV-B2. As shown in

Figure 13, we draw a circle originating at the center of the

PIN pad and place Eve at a radius ranging outward from 1m to

3.5m, every 0.5m. For each radius, we enable the user to input

each selected PIN. Eve performs PIN inference based on the

captured structural vibration signals. For comparison, we also

calculate the corresponding sequence success rate of the virtual

step PIN pad system. Table II shows the average sequence

success rate of the proposed system and Eve at different

distances away from the target PIN pad. We can see with

the distance or PIN length increasing, the sequence success

rate at the adversary drops. Specifically, when the distance

reaches 3.5m, the sequence success rate at the adversary for

inferring a 4- or 5-digit PIN lowers to 0%, while such a

655



TABLE II
SEQUENCE SUCCESS RATES AT THE PROPOSED SYSTEM AND EVE.

PIN length System 1m 1.5m 2m 2.5m 3m 3.5m
4 0.97 0.63 0.09 0.05 0.03 0.02 0
5 0.96 0.52 0.06 0.04 0.02 0.01 0
6 0.94 0.47 0.05 0.02 0.01 0 0

Fig. 14. Result of running SVM on foot taping induced vibration signals.

distance decreases to 3m for a 6-digit PIN. Meanwhile, we

observe that the sequence success rate of the virtual step PIN

pad always maintains a high value of 94% or above.

2) Knowledgeable observer attack: We utilize the data

obtained from geophones G1 and G2 as two features (referred

to as Dx and Dy) inputted to SVM. Figure 14 shows the

result for analyzing the features for a total of 200 and 2,000

foot taps performed by two different participants when they

input the same PINs. We can observe that the features for the

users can be separated by a hyperspace. Also, with the amount

of foot taps increasing, we can still distinguish different users

with the SVM hyperspace. In each round, all users are asked

to input a PIN randomly selected by the legitimate user

for 10 times. Figure 15 presents the mean sequence success

rates for the legitimate user and all attackers to bypass the

authentication with different PIN lengths. We can see that the

attackers have a significantly low sequence success rate (e.g.,

less than 0.9% for breaking a 6-digit PIN) while the legitimate

user always maintains a sequence success rate as high as

over 95.0%, convincingly verifying the effectiveness of the

proposed technique against knowledgeable observer attacks.

V. RELATED WORK

In this section, we review two domains of prior works,

closely related to the proposed virtual step PIN pad technique.

A. PIN Authentication Schemes

PIN authentication is employed in a wide variety of appli-

cations, such as automated teller machine (ATM) and point

of sale (POS) transactions, room access and smartphone un-

locking. Nowadays, increasing physical PIN pads are replaced

with touchscreen ones [33], which are user-friendly and also

save space for computer systems. Generally, existing PIN au-

thentication schemes mainly fall into the following categories:

Finger-input based methods: Physical touch or press via

fingers is currently a mainstream way of inputting PINs.

However, such approaches may not be available or cause

inconvenience for the population who have certain disabilities

or illnesses that disable them from using fingers. Meanwhile,

when the finger skin contacts a touchscreen during the PIN

input, the fingerprint may be stolen by an adversary with

Fig. 15. Mean sequence success rates for the legitimate user and the attacker.

techniques such as smudge attack [3]. [21] develops an authen-

tication system leveraging physical vibration, which enables a

user to give finger input on ubiquitous surfaces and can thus

defend against the smudge attacks. However, the system has

to be reconfigured each time the nearby environment varies.

Eye gaze tracking based methods: It has been long proved

that eye gaze tracking can be used for PIN entry [9]–[11], [34],

[35]. Those techniques, however, may suffer from so called

Midas Touch problem [36], when each fixation on an interface

that a user is looking at may become selected even when the

user has no such intention. Commercial products, such as Tobii

eyes trackers [37], can achieve high accuracy and thus push

the pedal on eye gaze tracking based schemes. For example,

[11] proposes an eye tracking technology with a dedicated

eye tracker hardware that can achieve a high authentication

accuracy of around 95% for a 4-digit PIN. Besides, [35]

implements an eye gaze based typing system which only takes

advantage of common cameras. Nonetheless, the process of

live video frames requires strong computing power and also

the video recording may violate the user privacy.

Vision-based methods: Vision-based perceptual user inter-

faces (e.g., [38]–[40]) can be another way to type, especially

with the development of computer vision. Facial or head

gestures (e.g., month open, brows up) can be utilized to control

on-screen mouse printer or virtual keyboard. However, similar

with eye gaze based methods which leverage cameras, vision-

based methods need to process recorded videos and thus bring

privacy concerns, and also if the user’s head does not happen

in the presence of a camera, the input cannot be detected.

B. Vibration Detection via Geophones

Geophones are sensitive devices and have been widely

applied to detect structural vibration signals induced by micro-

seismic events (i.e., micro-earthquakes that are typically too

small to be felt on the surface [41]), animal behaviors [42],

as well as human activity such as walking [15], fall [18],

breathing [17], and in-bed motions [43]. Geophones can also

detect the displacement of bridge structures by analyzing

vibration signals induced by the live load of the bridge [44].

Our work utilizes geophones not only to detect human activity

(i.e., foot tapping), but also to further identify the tapping

locations, each of which corresponds to a PIN digit input.

VI. CONCLUSION

We propose the virtual step PIN pad technique which

maps each foot tapping location into a digit leveraging the

observed structural vibration signals induced by foot tapping.
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A customized PIN pad activation method is utilized to enable

both the proposed system and the user to agree on an identical

PIN pad layout and area on the ground. Also, an inter-peak

interval based approach is applied to correlate the observed

structural vibration signal pattern to the foot tapping location

on the PIN pad. Extensive experimental results demonstrate

that the proposed technique can achieve an average success

rate of 96.5% for inputting a human-chosen 4-digit PIN,

whereas the success rate for an adversary to infer the inputted

PIN lowers to less than 3% when its distance away from the

PIN pad is more than 2.5 meters. Also, by integrating personal

vibration profile, the system still rejects the attacker’s access

with a high probability even when she obtains the correct PIN.
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