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Abstract—The use of personal identification numbers (PINs)
for authentication is ubiquitous due to their simplicity and
flexibility. In this work, we present virtual step PIN pad, a novel
and practical PIN entry scheme that allows a user to enter a PIN
through foot tapping on the ground. The virtual step PIN pad
utilizes geophones to collect structural vibration signals caused
by foot tapping. When a user generates the activation signals
by performing a predetermined sequence of foot taps within the
target area, the virtual step PIN pad will be launched, and takes
the foot tapping input by the user. The system then demodulates
the corresponding structural vibration signals into a PIN. We
have developed a prototype of the virtual step PIN pad and
conduct a suite of experiments to evaluate its practicality and
security. Experimental results show that the virtual step PIN
pad can achieve an average success rate of 96.5% for inputting
a human-chosen 4-digit PIN. Meanwhile, the success rate for an
adversary at a distance of more than 2.5 meters away from the
PIN pad to infer the target PIN decreases to below 3%.

Index Terms—structural vibration, foot tapping, authentication

I. INTRODUCTION

The personal identification numbers (PINs) are sequences
of digits utilized to authenticate user identity to computer
systems. A great amount of building entrances and payment
terminals apply either traditional physical button based or
touchscreen based PIN pads so that users can type in PINs
with their fingers for getting access to the buildings or finishing
the payment transactions. Finger-input based authentication
systems, however, do not fully satisfy the needs of all the
population. For example,

o Touchscreen based systems usually do not react to a wet
(sweaty) finger while almost 3% of the general population
in the United States experience hyperhidrosis or excessive
sweating of the palms [1].

It is often difficult or even impossible for a user with hand
or finger injuries to temporarily or permanently press a
physical button or operate on a touchscreen. There are
45,000 amputations annually due to traumatic injuries to
the hands and fingers in the United States [2].

Finger-input based authentication systems obviously impose a
practical hurdle for those users.

On the other hand, finger-input based methods may bring
unexpected privacy disclosure risks. To input a PIN, we
normally unconsciously or have to let our finger skin directly
contact with the physical or on-screen PIN pad, and this
process may disclose our fingerprint and thus jeopardize all
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applications using fingerprints. It has been shown that touch-
screen PIN entry systems may suffer from smudge attacks [3]
and also oily residues left by tapping fingers on a touchscreen
enable attackers to reveal fingerprints [4]. The two afore-
mentioned limitations with finger-input based authentication
systems motivate us to develop another scheme that works for
people including who cannot use fingers for typing PINs and
also mitigates privacy disclosure risks.

Besides PINs, there are emerging biometric authentication
systems, which determine the identity of a person by com-
paring a biometric data capture (e.g., fingerprint [5], iris [6],
face [7], voice [8]) to authentic biometric information stored
in a pre-collected database. However, the deployment of such
systems is expensive as it requires both the corresponding
dedicated user interface and a database including biometric
information of all users. Meanwhile, if the system discloses
such sensitive private biometric information, it may cause
serious consequences. [9]-[11] propose to utilize eye gaze
interaction to enter a PIN, i.e., correlate the position of the
user’s gaze on screen to a digit input. However, such methods
usually not only need to pre-deploy an on-screen keyboard
before inputting the PIN, but also require a camera to monitor
the user’s eye movement. If the captured eye movement by the
camera is unclear (e.g., in low light conditions), the accuracy
of the entered PIN would decrease significantly.

Other than traditional input ways such as using finger or
eye gaze, is there another way for humans to input PINs that
is convenient and secure? Intuitively, we consider to utilize
foot for PIN entry as people walk with their feet every day.
Among all foot gestures, we select foot tapping (i.e., raising
and lowering the toes or heel) as the input method since it
requires comparatively low effort and is also inattentive, which
can be mistaken for natural walking [12]. Then the question
becomes how to convert the foot taps on ground into inputted
digits. A geophone [13] is a device that translates ground
movement (i.e., the velocity of a monitored surface) into
voltage, which can be easily read by a microcontroller. Recent
work [14], [15] have shown that the geophone sensor can
be utilized to measure footstep-induced structural vibrations.
In this paper, we then design and implement a foot-input
based authentication scheme leveraging geophones. We refer
to this technique as virtual step PIN pad. Specifically, a user
first initializes the virtual step PIN pad on the ground with
specific activation signals, and then taps his foot on the PIN
pad to enter a PIN. Foot tapping at different locations will



generate different structural vibrations which can be captured
by geophones and then mapped into corresponding digits.

Unlike finger-input based methods that may disclose finger-
prints, the foot-input based method does not have such privacy
breach concerns as people usually wear shoes and shoe-prints
are not unique [16]. Also, since there is no actual physical PIN
pad and foot taps are usually regarded as habitual behaviors or
leg workouts, foot-input based PIN entry has better conceal-
ment and is not easy to be destroyed. Nevertheless, multiple
challenges need to be addressed in order to make the proposed
method to work accurately in practice.

First, the deployed system and the target user should agree
on an exact location of the virtual step PIN pad so that the
identified PIN for authentication matches the PIN entered by
the user with foot tapping. We design a customized PIN pad
activation method to determine the PIN pad layout. The system
is then ready to demodulate the following PIN input.

Second, the system needs to distinguish the foot taps in
different areas of the virtual step PIN pad in order to correctly
translate each foot tap into a digit. We extract the structural
vibration signals corresponding to the foot taps for entering
a PIN, and propose an inter-peak interval based method to
correlate each observed vibration signal pattern with a digit.

Third, an important question is about the security of the
proposed scheme, mainly from two aspects. On concern is
whether an adversary can identify PINs used for authentication
by deploying a geophone-based sensing system around. In
general, as the foot tapping induced waves travel outward, the
energy that they contain becomes dissipated. Therefore, the
vibration becomes weaker the further it is from the source. As
a result, an adversary may be unable to capture signals with
enough energy to infer the tapping locations if the distance be-
tween herself and the tapping location exceeds a certain thresh-
old. Another concern is whether the authentication scheme
still works when an advanced attacker obtains the legitimate
user’s PIN (e.g., via secretly videotaping the foot tapping
process). We also propose to utilize the legitimate user’s
vibration characteristics to further refuse access launched by
unauthorized users even when they obtain the correct PINs. We
perform real-world experiments to explore the performance of
the virtual step PIN pad against such attacks.

We point out the virtual step PIN pad does not aim to
replace existing PIN input methods. Same with finger-input
based schemes, the proposed scheme cannot work for all the
population as well. For example, a person who has difficulties
(e.g., paraplegia) in performing foot tapping may not be able
to use the virtual step PIN pad. Instead, the proposed scheme
is positioned as an alternative input way. It can be comple-
mentary to existing finger-input based techniques, and make
the PIN authentication system serve for a greater population.

II. FOOT TAPPING IDENTIFICATION

Geophones are easy to install and can be installed anywhere
on the ground. As they capture the ambient structural vibration
signals, they thus can be utilized to monitor a person’s heart
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Fig. 2. Geophone signal changes when tapping at different locations.
rate and respiratory rate [17], perceive human fall [18], and
detect the physical events within a house [19].

Ground Structure Impact: Different floor materials with
varying vibration absorption ability (i.e., damping capabil-
ity [20]) may bring different impact for geophone observations
induced by foot tapping. Figure 1 gives an example to illustrate
how the foot tapping induced vibration may propagate within
different floor materials. Empirically, we observe that the
damping capability decreases in accordance with ceramic tile,
carpet and wood. Specifically,

o Ceramic tile has high stiffness and is rigidly fastened to
the subfloor. A floor with ceramic tiles shows high damp-
ing capability and would quickly absorb the vibration.
A carpet is a textile floor covering consisting of four lay-
ers from top to bottom, i.e., face yarn, primary backing,
latex adhesive and secondary backing. A foot tap on a
carpet usually brings minute deformation of the face yarn
and the adhesive binder. Meanwhile, the vibration wave
would be absorbed after experiencing a few reflections.
A wood floor normally includes a top layer and a core
board. The reflected vibration wave would gradually
decay over time.

We detailedly explore the impact of floor material on the
performance of the virtual step PIN pad in Section I'V-D.

Signal Sensing: We apply a commercial off-the-shelf geo-
phone, SM-24 [13], with a sensitivity of 28.8V/m/s and a
natural frequency of 10Hz. The geophone voltage output is too
weak to be captured by the built-in Analog to Digital converter
(ADC) of Arduino motherboard. Thus we use a 16-bit ADC
to amplify the geophone output and observe amplified signals.

Figure 2 shows a stream of geophone records when tapping
at two locations that are 30cm apart, each for two times.
We observe that when there is no tapping, the air-wave or
appliance noise induced vibration amplitude is quite small
(less than 4mV), while a foot tap generates a distinguishable
vibration wave with larger amplitudes. Also, it can be clearly
seen that foot taps at the same location generate highly sim-
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ilar vibration waves, while varying tapping locations lead to
different geophone signals. This observation can be exploited
for tapping location inference. The vibration waves propagate
outward in all directions from the tapping location through
the floor material. They may undergo reflection or refraction
at structural boundaries and even dispersion. We refer to
such a phenomenon as multipath effect. Thus a foot tap may
induce multiple vibration signals and a geophone captures the
superposition of them. In Section III-E, we take advantage of
this multipath effect to develop a technique to distinguish foot
taps in different areas on the virtual step PIN pad.

III. VIRTUAL STEP PIN PAD DESIGN
A. Adversary Model

Finger-input based authentication schemes often suffer from
shoulder surfing attacks, which acquire the pressed keys by
peeping over the victim’s shoulder. The PIN in the proposed
scheme may also be compromised if an attacker can observe
the foot tapping process. However, as aforementioned, the vir-
tual step PIN pad has good concealment due to inconspicuous
foot tapping gesture and no tangible PIN pad. We assume if the
PIN is solely utilized for authentication, the user can protect
the foot tapping (e.g., setting up barriers to cover the foot
movement) during the PIN entry process from being directly
observed or videotaped by others. Also, when such a barrier
is not available, we utilize pre-registered vibration profiles to
further characterize users. Correspondingly, the two attacks
below are considered to evaluate any PIN authentication
schemes (e.g., [21], [22]), including ours.

Side-channel Attack: The adversary aims to sniff PINs by
deploying hidden geophones (e.g., behind some regular object)
on the floor near the target to capture the structural vibration
signals generated during the PIN entry process.

Knowledgeable Observer Attack: The adversary is able to
stealthily observe the legitimate user’s foot movement through
shoulder surfing or secret video recording and thus infer the
target PIN. The adversary then tries to imitate the behavior of
the legitimate user to bypass the authentication.

B. System Overview

The basic idea underlying the proposed system is to achieve
PIN recognition by analyzing unique location-dependent fea-
tures from the received structural vibration signals caused by
foot tapping. The geophones located on the ground continu-
ously monitor the vibration signals. When a user inputs the
activation signals with foot tapping on the target area, the
PIN pad will be activated and the system prepares to take the
following vibration signals and translate them into PIN input.
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Fig. 4. PIN pad activation. (a) No foot tap is detected; (b) Since | D1—Da| >4,
the activation fails; (c) With D1 > Dyin, D2 > Diin, and | D1 — D3| <4,
the PIN pad is launched.

The system then pre-processes the collected vibration signals
and identifies the specific features for each foot tap. Finally,
each identified feature will be correlated to a respective
location on the PIN pad, i.e., a corresponding digit. The output
would be the entered PIN for authentication. Figure 3 shows
the flowchart of the virtual step PIN pad system.

C. Activation

Unlike traditional finger-input based PIN pads, whose layout
is known to the user, the proposed scheme does not have a
physical PIN pad. Instead, we design a virtual PIN pad that
enables the user to utilize foot tapping for PIN entry, and such
a PIN pad can be deployed anywhere on the ground as long
as the structural vibration signals caused by foot tapping can
be captured by the geophones. First of all, in order to enter a
PIN, a user need to activate the virtual step PIN pad.

The activation signal should not only let the system prepare
to demodulate the following foot taps into a PIN, but also
confirm the PIN pad location for both the user and the system.
Correspondingly, the activation signal should not be an activity
that a user exhibits in daily walking (e.g., a single foot
tap), otherwise the PIN pad may be frequently and falsely
activated. Meanwhile, the location of the PIN pad should
enable the user to perform foot tapping without spending too
many efforts (e.g., turning around). To achieve both goals, we
enable the user to first tap once at three spots in a line, and
the interval distances between two successive spots are D
and Ds. Initially, the system is in standby mode: monitoring
received signals and waiting for the virtual step PIN pad
activation signals, as shown in Figure 4(a).

We design the criteria of a successful activation as: (1) the
time period between two successive taps does not exceed P,
which is used to help clean invalid activation signals (we set
P =2 seconds); (2) D; > D (i € {1,2}) and | D1—D5| < 6,
where D,,;, denotes the designed minimum interval distance
and ¢ is a pre-determined threshold that can be adjusted based
on the PIN pad size and user preference. D,,;, is usually
larger than the foot length as it can help the user to easily
distinguish the locations on different rows or columns. As
shown in Figure 4(b), the system will be still in standby
mode with a failed activation, while a successful activation
will launch the virtual step PIN pad, as shown in Figure 4(c).

After the PIN pad is activated, the system enters the ready
phase: it collects the following structural vibration signals and
inputs them into the next module.



D. Data Preprocessing

Like pressing digit buttons on a physical PIN pad with a
finger, a user performs a sequence of foot taps with a leg on
the virtual step PIN pad for PIN entry. We assume that the
user taps once for each digit with a normal speed (1~2 sec
per tap). Data preprocessing phase removes the noise from
the structural vibration signals observed by geophones and
segments the time series of the structural vibration signals into
individual samples, each corresponding to a foot tap.

1) Noise Reduction: It is observed that the variations of
geophone observations caused by foot tapping lie at the low
end of the spectrum. To preserve valuable signal components
and mitigate the noise introduced by environmental vibrations
or hardware imperfection, we employ the Fast Fourier Trans-
form (FFT) filter [23]. In particular, we first perform FFT
on geophone observations to detect the dominant frequency
range corresponding to foot tapping, and then set amplitudes
of other parts as zero, and finally use Inverse FFT (IFFT) to
the remaining frequency data to recover the denoised signal.

2) Two-threshold Based Segmentation: The segmentation
phase separates the structural vibration signals for individual
foot tap. The vibration amplitudes during tapping periods
usually show a much larger variance than those happening
during non-tapping periods. Motivated by this, we then focus
on identifying the segments with the variance which is larger
than a predetermined variance threshold. Meanwhile, some
other actions such as dropping an object, may also lead the
system to observe a vibration amplitude that exceeds the
threshold. To separate foot tapping with other inferences,
we further utilize cross-correlation method, which is widely
employed to quantify the similarity of two waveforms [24].

Cross-correlation: Let s1, s, denote two signal waveforms,
each of which is represented with an n-point discrete time
series. The cross-correlation 7, 5, (l) can be calculated by a
function of the lag [ € [0, n—1] applied to ss, i.e., ZiT;(Jl s1(4)-
sa(i — 1), where s9(i) = 0 if ¢ < 0. To accommodate for
different amplitudes of the two series, the cross-correlation can

; 51,89 (1) .

be normalized as 7 _ (1) = ——:2@ T quantif
o . 5185() /Tsl.sl(o)'T§2,52(0) . q y
the similarity between two structural vibration signals, we

derive the largest absolute value of cross-correlation, i.e.,
mlaa:(\r’slss(lﬂ), which lies in the range of [0,1], with 1
indicating perfect correlation, and 0 showing uncorrelation.
With multiple foot tapping induced signals during an em-
pirical profile, we calculate the cross-correlation between each
pair of the signals, and select the minimum value as the
similarity threshold to help detect legitimate foot tapping
induced signals during the authentication phase. Specifically,
we first search over the data for the segments with the variance
under the variance threshold. Each of such a segment denotes
an inter-vibration interval. Everything between two successive
inter-vibration intervals will be regarded as a potential vibra-
tion signal induced by a single foot tap. Next, we compute
the cross-correlation between each of such signals with a pre-
obtained foot tapping induced signal. If the obtained cross-
correlation is above the similarity threshold, we believe that

this structural vibration signal is caused by foot tapping,
otherwise, it would be discarded as an interference signal.

E. Digit Demodulation

Digit demodulation converts foot taps to corresponding dig-
its. We observe when we tap our foot at different locations, the
time interval between the first two local maximum amplitudes
in the observed wave signal varies. We refer to such a feature
as inter-peak interval, and use it to distinguish foot tapping at
different locations on the PIN pad. We divide the virtual step
PIN pad into 3x3 subareas (i.e., keys). Neighboring subareas
are connected with a (horizontal or vertical) gap area.

In modern keyboards, the key gap design can impact the
typing performance [25]. Similarly, we also design a gap area
between adjacent subareas to improve the accuracy of the
input via foot tapping. The gap area serves two functions.
First, it can help decrease authentication errors. If neighboring
subareas are together without a gap in between, when a foot
tapping is performed very close to the edge next to other keys,
such an input may be easily misidentified as the other keys.
This is because for foot tapping at locations approaching the
edges connecting neighboring subareas, the induced vibration
signals would be quite similar. Second, a gap area with a
moderate width (i.e., distance between edges of subareas)
enables the user to better distinguish different keys. If there
is no key gap or the key gap is too small, it may increase the
probability that a user accidentally taps an adjacent key at the
same time as the target key. On the other hand, the gap should
not be too wide as well, otherwise the user may frequently tap
at the gap area, which generates invalid input.

Each subarea is associated with a characteristic inter-peak
interval vector t; = [L;1,%2,83] (@ € {1,2,---,9}), where
ti; ( € {1,2,3}) denotes the standard inter-peak interval
obtained by the j-th geophone when the source of structural
vibration lies in the i-th subarea. Meanwhile, the maximum
variation of the observed inter-peak interval compared with
its standard value (i.e., t;;) can be denoted with §;;. Let the
vector A; _  denote [0;1, 02, i3]

After the virtual step PIN pad is activated, the digit that
each subarea represents is determined. Let D, represent the
inputted digit when foot tapping happens in the i-th subarea.
Then when the user enters a digit with foot tapping, each
of the three geophones observes a vibration wave. Next, the
system performs the following steps to translate it into a digit.
Initially, the index ¢ of the subarea is 1.

(a) For the collected signal by the j-th geophone, we search
the first two largest peaks and calculate the inter-peak
interval ¢;;. We thus obtain t; = [t;1, li2, ti3].

(b) If i < 10, we calculate A = |t; —t;| and compare it with
A, .. otherwise return with invalid input.

(c) If all elements of the vector A; . —A are positive, this
foot tap will be converted into the digit D;; otherwise,
enable i =441 and jump to step (b).

The proposed inter-peak interval based method will apply
to each foot tap. As a result, an N-digit PIN is entered for
authentication with N foot taps. Note that the characteristic



inter-peak interval vector t; and the corresponding maximum
variation vector A; _  can be obtained through an empirical
profile. Specifically, we divide each subarea into smaller sub-
subareas. We then let the user tap her foot at each sub-subarea,
and collect the structural vibration signals through the three
geophones. With each geophone’s data, we calculate the inter-
peak interval for each foot tap and utilize the average value
of all inter-peak intervals to denote the characteristic value
observed with this geophone. After that, the maximum varia-
tion of the inter-peak interval compared with the characteristic
value can be calculated. Normally, with more sub-subareas,
we can have more fine-grained reference signals, and may
generate more accurate results.

Digit ‘0’ Input and Identification: We propose to input
the digit ‘0’ via a non-tapping way. Specifically, after the
activation phase, the system maintains a timer for each foot
tap. The maximum timer interval is set to be 2 seconds, which
empirically provides a user with enough time to tap once. If
a foot tap is detected before the timer runs out, the system
immediately resets the timer for detecting the next input. While
if there is no foot tap detected within the maximum timer
interval, we regard this silent period as the input of digit ‘0’.
The system then resets the timer for detecting the next one.

F. Dealing With Knowledgeable Observer Attacks

A concern is that whether the virtual step PIN pad still
works when the attacker is able to directly observe the
legitimate user’s foot movement via peeping or videotaping.
Apparently, it is no longer enough for distinguishing different
users only by PINs. Instead, after the virtual step PIN pad
detects that the inputted PIN is correct, the system would then
take advantage of the pre-built user-specific feature extracted
from the structural vibration signals to determine whether the
foot tapping is performed by the registered PIN owner.

Specifically, during the training phase, the system takes the
observed structural vibration signals as input when the user
enters PINs via foot tapping, then runs the supervised learning
algorithm SVM (Support Vector Machine) by LIBSVM li-
brary [26] to classify the features. Different user’s foot tapping
preference varies due to different personal characteristics in-
cluding personal weight, foot size, leg length and foot tapping
habit. Such preference difference will be represented by the
distribution of the typed PIN by the regression analysis of
SVM training process. The SVM classification results show
the personal features unique to each user, and will be used in
the testing phase to determine whether a PIN input is initiated
by the owner of the PIN or somebody else. It is highly difficult
for an adversary to generate a feature that matches with the
legitimate user’s as the feature integrates both PIN and the
user’s behavior and physical characteristics.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Setup

We build a prototype of the virtual step PIN pad on top
of three SM-24 geophones [13] to demonstrate its perfor-
mance. The system has two controllers, referred to as A
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and B. As shown in Figure 5, Controller A includes two
geophones (G1 and G2), and both connect with one same
ADS1115 module, i.e., a 16-bit analog-to-digital converter
(ADC) with a programmable-gain amplifier, on an Arduino
MEGA 2560 [27], which is connected to a computer for
data processing. As it cannot distinguish foot taps coming
from both sides of the line between two geophones based
on the signals only collected from Controller A, Controller
B is utilized to help determine the direction of each foot tap.
Figure 6 shows Controller B, consisting of the third geophone
(G3), whose output is fed into ADS1115 on an Arduino
UNO [28]. In order to synchronize data on both Controllers,
we equip each with a 2.4G wireless transceiver module —
NRF24L01 [29], considering that wired connection between
Controllers may bring inference for the geophones’ output.

The position of three geophones relative to the virtual step
PIN pad layout is as shown in Figure 7. The PIN pad follows
the typical design of a door lock or payment terminal PIN pad,
and consists of a number pad with the digits from 1 to 9. For
inputting digit ‘0’, we propose a method without tapping, as
described in Section III-E. We enable G1 and G2 at the centers
of respective key areas on the second row and set the key pitch
(i.e., center-to-center distance between keys) of D4 = 40cm.
We design a gap area with a width g = 4cm empirically, which
can help the user effectively perceive two neighboring key
areas. The distance between G3 and the line of G1 and G2 is
represented with Dp. In order to help distinguish foot tapping
at different rows, we then let G3 lie at the mid-perpendicular
of the line of G1 and G2, and meanwhile put G3 at exactly
above the first row of the PIN pad for the best performance.
Thus, we have D = (3/4) - (D4 —2g) + g.

Intuitively, the accuracy of the proposed scheme may be af-
fected by the setting of PIN length, deployment of geophones,



TABLE I

CONFUSION MATRIX FOR SINGLE DIGIT INPUT.
1.0

1 JORe[f 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.00

0.01 0.00 0.00 0.00 0.00

0.01 0.01 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.01 0.00

Digit Inputted

0.00 0.03 0.00 0.00 0.02

710.00 0.00 0.00 0.04 0.00 0.00

8/0.00 0.00 0.00 0.00 0.01 0.00

9/0.00 0.00 0.00 0.00 0.00 0.01 0.00

1 2 3 4 5 6 7 8 9
Digit Detected
and floor material. Next, we explore how these factors can
impact the performance of the virtual step PIN pad.

B. Verification Accuracy

We recruited 15 volunteers (6 of them are female) to test
the performance of the virtual step PIN pad deployed on
a wood floor, as wood flooring is durable and one of the
popular floor coverings. In Section IV-D, we will explore
the impact of the floor material on the performance of the
proposed system. We define the digit success rate as the rate
of successfully recognizing a single digit. We employ this
metric to ascertain the digit verification accuracy of the virtual
step PIN pad. To demonstrate the complete digit sequence
verification accuracy, we compare the obtained digit sequence
by the system with the one inputted by the user to determine
whether the digit sequence identification is successful, and
calculate the sequence success rate, which equals to the ratio
between the number of successful digit sequence identification
times and the total number of digit sequence entry trials.

1) Digit Success Rate: We let each participant input each
digit 100 times via foot tapping. Table I shows the confusion
matrix for digits from 1 to 9. It demonstrates that the mean
digit success rate of all digits is 96.3%, and the lowest digit
success rate is 94%. Meanwhile, we observe that though digit
‘5’ borders the most other digits, its digit success rate is the
highest (i.e., 99%). Digit ‘5’ lies in the middle of geophones
G1 and G2, which have similar observations when inputting
digit ‘5’, enabling the system to determine the candidates:
digits ‘2°, ‘5’ and ‘8’. Meanwhile, the geophone G3 can
easily distinguish these three digits as their distances to G3
are different. Thus, the system can further shrink the search
space from three digits into one, i.e., digit ‘5’ is correctly
verified. Besides, for inputting digit ‘0’ with our customized
method, a digit success rate of 100% is always achieved. This
accuracy demonstrates the virtual step PIN pad’s ability to
utilize structural vibration signals to extract inputted digits.

2) Sequence Success Rate: Since no real-life dataset of
PINs has ever been publicly available, we utilize the dataset
of 4-digit sequences, extracted from 32 million Rockyou pass-
words [30]. Such 4-digit PINs can be utilized to approximate
user choices of PINs [31]. We randomly select 100 4-digit
PINs from the dataset and let each user input them through the
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virtual step PIN pad one by one. Meanwhile, the PIN length
usually varies from 4 to 6 for achieving the balance of security
and usability according to ISO 9564 standard [32]. Thus, to
explore the relationship between the sequence success rate and
the length of the inputted digit sequence, we also randomly
generate 5- and 6-digit PINs for 100 times, respectively, and
then input each to the virtual step PIN pad via foot tapping.

Figure 8 shows the sequence success rate when each of
the fifteen users inputs digit sequences with different lengths.
We observe that the proposed virtual step PIN pad authenti-
cation scheme can retain high accuracy (i.e., 93.0% or above)
across different users, and meanwhile with the length of digit
sequence increasing from 4 to 6, the sequence success rate
slightly decreases. Specifically, for inputting a 4-digit PIN,
the authentication system can achieve an average sequence
success rate of 96.5%, while for inputting a sequence of 5
or 6 digits, the corresponding average sequence success rate
becomes 96.0% or 95.2%, respectively.

C. Impact of Inter-Geophone Distance

Different people may have different step length, and thus
tap at different distances with one foot away from the opposite
foot. The virtual step PIN pad may adjust to such variations.
Specifically, when the distance D 4 between G1 and G2 (i.e.,
the key pitch) changes, the PIN pad size changes correspond-
ingly. We then change D4 from 40cm to 30cm and 50cm.
Meanwhile, Dp is also changed with D 4. The gap width stays
the same. We repeat the above experiments calculating the
digit success rate and sequence success rate when D4 varies.

Figure 9 shows the average digit success rate for all digits
under different key pitches. We observe that for all pitches,
the proposed scheme can always achieve a high average digit
success rate (over 90%), and the average digit success rate
for each digit has a small fluctuation of 4% or 5%. Besides,
for most digits, when D4 = 40cm, the average digit success
rate is the highest, and the corresponding digit success rate for
D4 = 30cm or D4 = 50cm slightly decreases.

Figure 10 shows the sequence success rates for different
users to input 6-digit PINs across three key pitches. We see
that the sequence success rates for all pitches are always above
90%. Similarly, when the pitch decreases to 30cm or increases
to 50cm from 40cm, the corresponding sequence success rate
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Fig. 12. Foot tapping records at one geophone of the virtual step PIN pad and
adversary geophones at different distances away from the tapping location.

drops slightly. The average 6-digit sequence success rates
across all users when D4 equals to 30cm, 40cm and 50cm
are 93.2%, 94.9%, and 93.0%, respectively. We conclude that
an appropriate PIN pad size would help the proposed scheme
to achieve the best performance. A smaller or bigger PIN
pad, on the contrary, requires the user to tap at a further
or closer location for a same digit, and thus may cause the
user to accidentally tap in a wrong PIN area, which does not
correspond to the digit that the user intends to input.

D. Impact of Floor Material

As mentioned earlier, different floor materials have different
structure and vibration absorption ability. To examine the
impact of floor material on the verification accuracy of the
proposed system, we also perform authentication experiments
on another two popular materials, i.e., ceramic tile and carpet.
Specifically, with 100 6-digit sequences generated in Sec-
tion IV-B2, we let each user input each one via foot tapping.

Figure 11 shows the 6-digit sequence success rates for
different users across three tested floor materials. We can
see that for both carpet and wood, the sequence success rate
is consistently high (in a range of 93% to 99%), while for
ceramic tile, the users obtain relatively lower sequence success
rates, ranging from 78% to 88%. Ceramic tile usually has
a large damping capability, which may cause the geophones
to capture weak vibrations and thus be unable to correctly
distinguish foot tapping at different digit areas. As a result, the
corresponding sequence success rate is decreased. Besides, we
observe that carpet achieves a slightly higher sequence success
rate than wood. This is because the reflected vibration wave
has less effect on the geophone measurements for carpet as
the carpet absorbs vibrations more quickly than wood.

E. Attack Scenarios

We evaluate the robustness of the virtual step PIN pad under
different types of attacks. Specifically, for each round, 1 of 15

655

Pin pad

L
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participants is alternatively taken as the legitimate user and
the rest 14 participants play as attackers.

1) Side-channel attack: An adversary (Eve) may deploy a
well-camouflaged three-geophone-based system on the ground
around the PIN pad and thus infer inputted PINs by analyzing
the captured structural vibration signals. We assume that Eve
cannot be placed within 1m from the center of the PIN pad, as
in this case the exposure risk would be dramatically increased.

We first explore how far a foot tap induced vibration wave
can propagate. Correspondingly, we let the user perform foot
tapping on the PIN pad as usual with uniform force, and
put three adversary geophones at the distances of 1m, 2m,
and 3m from the tapping location, respectively. Figure 12
presents an example of records at different geophones for a
foot tap. We observe that with a longer distance between the
geophone and the tapping location, the geophone obtains a
lower signal amplitude. When the adversary geophone is 3
meters away from the geophone, the structural vibration signal
almost submerges in noisy background.

Next, we measure the sequence success rates for Eve at
varying distances away from the PIN pad to infer the inputted
4- to 6-digit PINs generated in Section IV-B2. As shown in
Figure 13, we draw a circle originating at the center of the
PIN pad and place Eve at a radius ranging outward from 1m to
3.5m, every 0.5m. For each radius, we enable the user to input
each selected PIN. Eve performs PIN inference based on the
captured structural vibration signals. For comparison, we also
calculate the corresponding sequence success rate of the virtual
step PIN pad system. Table II shows the average sequence
success rate of the proposed system and Eve at different
distances away from the target PIN pad. We can see with
the distance or PIN length increasing, the sequence success
rate at the adversary drops. Specifically, when the distance
reaches 3.5m, the sequence success rate at the adversary for
inferring a 4- or 5-digit PIN lowers to 0%, while such a
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SEQUENCE SUCCESS RATES AT THE PROPOSED SYSTEM AND EVE.

PIN length | System Im 15m | 2m | 25m | 3m | 3.5m
4 0.97 0.63 | 0.09 | 0.05 | 0.03 | 0.02 0
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Fig. 14. Result of running SVM on foot taping induced vibration signals.

distance decreases to 3m for a 6-digit PIN. Meanwhile, we
observe that the sequence success rate of the virtual step PIN
pad always maintains a high value of 94% or above.

2) Knowledgeable observer attack: We utilize the data
obtained from geophones G1 and G2 as two features (referred
to as D, and D,) inputted to SVM. Figure 14 shows the
result for analyzing the features for a total of 200 and 2,000
foot taps performed by two different participants when they
input the same PINs. We can observe that the features for the
users can be separated by a hyperspace. Also, with the amount
of foot taps increasing, we can still distinguish different users
with the SVM hyperspace. In each round, all users are asked
to input a PIN randomly selected by the legitimate user
for 10 times. Figure 15 presents the mean sequence success
rates for the legitimate user and all attackers to bypass the
authentication with different PIN lengths. We can see that the
attackers have a significantly low sequence success rate (e.g.,
less than 0.9% for breaking a 6-digit PIN) while the legitimate
user always maintains a sequence success rate as high as
over 95.0%, convincingly verifying the effectiveness of the
proposed technique against knowledgeable observer attacks.

V. RELATED WORK

In this section, we review two domains of prior works,
closely related to the proposed virtual step PIN pad technique.

A. PIN Authentication Schemes

PIN authentication is employed in a wide variety of appli-
cations, such as automated teller machine (ATM) and point
of sale (POS) transactions, room access and smartphone un-
locking. Nowadays, increasing physical PIN pads are replaced
with touchscreen ones [33], which are user-friendly and also
save space for computer systems. Generally, existing PIN au-
thentication schemes mainly fall into the following categories:

Finger-input based methods: Physical touch or press via
fingers is currently a mainstream way of inputting PINs.
However, such approaches may not be available or cause
inconvenience for the population who have certain disabilities
or illnesses that disable them from using fingers. Meanwhile,
when the finger skin contacts a touchscreen during the PIN
input, the fingerprint may be stolen by an adversary with
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techniques such as smudge attack [3]. [21] develops an authen-
tication system leveraging physical vibration, which enables a
user to give finger input on ubiquitous surfaces and can thus
defend against the smudge attacks. However, the system has
to be reconfigured each time the nearby environment varies.

Eye gaze tracking based methods: It has been long proved
that eye gaze tracking can be used for PIN entry [9]-[11], [34],
[35]. Those techniques, however, may suffer from so called
Midas Touch problem [36], when each fixation on an interface
that a user is looking at may become selected even when the
user has no such intention. Commercial products, such as Tobii
eyes trackers [37], can achieve high accuracy and thus push
the pedal on eye gaze tracking based schemes. For example,
[11] proposes an eye tracking technology with a dedicated
eye tracker hardware that can achieve a high authentication
accuracy of around 95% for a 4-digit PIN. Besides, [35]
implements an eye gaze based typing system which only takes
advantage of common cameras. Nonetheless, the process of
live video frames requires strong computing power and also
the video recording may violate the user privacy.

Vision-based methods: Vision-based perceptual user inter-
faces (e.g., [38]-[40]) can be another way to type, especially
with the development of computer vision. Facial or head
gestures (e.g., month open, brows up) can be utilized to control
on-screen mouse printer or virtual keyboard. However, similar
with eye gaze based methods which leverage cameras, vision-
based methods need to process recorded videos and thus bring
privacy concerns, and also if the user’s head does not happen
in the presence of a camera, the input cannot be detected.

B. Vibration Detection via Geophones

Geophones are sensitive devices and have been widely
applied to detect structural vibration signals induced by micro-
seismic events (i.e., micro-earthquakes that are typically too
small to be felt on the surface [41]), animal behaviors [42],
as well as human activity such as walking [15], fall [18],
breathing [17], and in-bed motions [43]. Geophones can also
detect the displacement of bridge structures by analyzing
vibration signals induced by the live load of the bridge [44].
Our work utilizes geophones not only to detect human activity
(i.e., foot tapping), but also to further identify the tapping
locations, each of which corresponds to a PIN digit input.

VI. CONCLUSION

We propose the virtual step PIN pad technique which
maps each foot tapping location into a digit leveraging the
observed structural vibration signals induced by foot tapping.



A customized PIN pad activation method is utilized to enable
both the proposed system and the user to agree on an identical
PIN pad layout and area on the ground. Also, an inter-peak
interval based approach is applied to correlate the observed
structural vibration signal pattern to the foot tapping location
on the PIN pad. Extensive experimental results demonstrate
that the proposed technique can achieve an average success
rate of 96.5% for inputting a human-chosen 4-digit PIN,
whereas the success rate for an adversary to infer the inputted
PIN lowers to less than 3% when its distance away from the
PIN pad is more than 2.5 meters. Also, by integrating personal
vibration profile, the system still rejects the attacker’s access
with a high probability even when she obtains the correct PIN.
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