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Experimental demonstration
of dynamic thermal regulation
using vanadium dioxide thin films
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We present an experimental demonstration of passive, dynamic thermal regulation in a solid-state
system with temperature-dependent thermal emissivity switching. We achieve this effect using a
multilayered device, comprised of a vanadium dioxide (VO,) thin film on a silicon substrate with a
gold back reflector. We experimentally characterize the optical properties of the VO, film and use the
results to optimize device design. Using a calibrated, transient calorimetry experiment we directly
measure the temperature fluctuations arising from a time-varying heat load. Under laboratory
conditions, we find that the device regulates temperature better than a constant emissivity sample.
We use the experimental results to validate our thermal model, which can be used to predict device
performance under the conditions of outer space. In this limit, thermal fluctuations are halved with
reference to a constant-emissivity sample.

The use of material design techniques to control the thermal emissive properties of matter has emerged as topic
of great interest in current research of intelligent, radiative thermal control. A variety of microstructures have
been used for this purpose, including multilayer films"?, microparticles®, photonic crystals?, and metamaterials®”’.
These structures have been extensively studied for passive radiative cooling applications, which offer significant
energy savings due to their ability to operate without external power. Beyond cooling, one particularly interest-
ing application of emissive control is the design of materials that self-regulate their temperature®’, a property
we term thermal homeostasis'®!!. Such a capability is likely to be useful for a variety of applications including
satellite thermal control, for which traditional solutions require either electrical power or moving parts'*~">.

The key physical principle required for passive thermal regulation is strong temperature-dependent integrated
emissivity. The phase change material vanadium dioxide (VO,), in particular, exhibits a dramatic change to its
optical properties across a thermally narrow phase transition'®!”. With proper design, VO,-based microstruc-
tures can achieve a sharp increase in thermal emissivity across the phase transition temperature near 68 °C'”1%,
Intuitively, when the material temperature is below the transition temperature, the emissivity is low, and the
object retains heat. When the material temperature exceeds the transition temperature, emissivity increases, and
the object loses heat. This negative feedback regulates the material near the temperature of the phase transition'’.
Recent works have demonstrated experimentally broadband emissivity switching for both planar'® and meta-
reflector designs®. However, no direct measurement of thermal regulation has been performed. In this paper, we
present an experimental method for studying dynamic thermal regulation due to infrared emissive switching.
We therefore demonstrate direct evidence of reduction in thermal fluctuations due to emissive switching at the
VO, phase transition.

Characterization of infrared optical properties of vanadium dioxide

Vanadium dioxide has a phase transition at a critical temperature (T.) of approximately 68 °C?!. The infrared
optical properties of VO, switch between a low- loss, semi-transparent material (referred to in this article as the
insulating state), and a lossy, more reflective material (referred to in this article as the metallic state). Various
works in the literature have measured the optical constants of VO, in the visible and near IR*>-*>. More recent
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Figure 1. Complex dielectric function of metallic (red) and insulating (blue) states of a 98 nm-thick vanadium
oxide film as determined from spectroscopic ellipsometry measurements. Solid lines give the real part (n) and
dashed lines give the imaginary part (k) of the VO, refractive index.

work measured the infrared optical constants of VO, thin films grown using pulsed layer deposition (PLD)'**,
sputtering, and sol-gel?. It was found that the growth technique influences the optical properties due to the
quality of the thin crystalline films?.

We used atomic layer deposition (ALD) to deposit a VO, thin film on a Si substrate. Compared to traditional
growth methods, ALD allows deposition of highly conformal VO, films over large areas®®. The optical constants
at temperatures above and below the VO, phase transition were measured using spectroscopic ellipsometry. The
deposition process and measurement method are described in detail in the Methods section, which also lists the
ellipsometric fitting parameters. Figure 1 shows the real (n, solid lines) and imaginary (k, dashed lines) parts
of the complex refractive index of the insulating (blue line) and metallic (red line) VO, states. We observe that
both n and k change significantly between the two states. The higher value of k in the metallic state indicates an
increase in loss over the entire 2 to 30 pm range.

Design of optimized devices for homeostasis
Using the measured optical constants of VO, shown in Fig. 1, we use numerical electromagnetic simulations to
optimize our homeostasis device. The figure of merit AP,,, is defined as the difference in normalized thermal
radiation power between the metallic and insulator states of the device. This quantity is calculated using a full-
wave electromagnetic solver, as described in the Methods.

Figure 2 shows that for an isolated VO, thin film, AP, is positive for thicknesses less than ~ 6 um. For
experimental convenience, we add a silicon handle layer with a thickness of 200 um (red line in Fig. 2). AP,,4
is again positive for thickness below ~ 3 um, with a peak value of 0.22 at a thickness of 800 nm. Adding a gold
back reflector to the VO,/Si stack enhances the peak value to 0.3 at a smaller VO, thickness of 75 nm. Smaller
thicknesses are highly desirable for ALD fabrication.

The use of a gold back reflector also prevents any background thermal radiation from being transmitted
through the device, a useful property for thermal homeostasis. Figure 3 shows a comparison between the VO,/
Si (Fig. 3a) and VO,/Si/Au (Fig. 3b) systems. Smoothed lines are superimposed as a guide to the eye. Both struc-
tures have higher broadband emissivity in the metallic state of VO, than in the insulating state (Fig. 3¢,d), owing
to the increase in optical losses in this state (Fig. 1). A key difference between the two structures, however, is
their transmissivity. The VO,/Si/Au structure has zero transmissivity in both the metallic and insulating states.
When it is used to cover an external body (e.g. experimental sample holder, or object whose temperature we
wish to regulate) the total thermal emission depends only on the emissivity of the VO,/Si/Au stack, not that of
the external body. We thus use a gold back reflector in experiments.

Measurement of infrared device properties

We fabricated a VO,/Si/Au device with a VO, thickness of 62 nm, close to the optimal value calculated in Fig. 2.
We measured the infrared absorptivity as a function of wavelength for both the insulating and metallic states
using FTIR. Figure 4 compares the experimental measurement to smoothed simulation results (see “Methods”
section for details). Simulations and FTIR measurements in Fig. 4a,b show similar broadband emissivity switch-
ing: the emissivity is higher in the metallic state than the insulating state. The integrated difference in radiation
power AP,,; calculated from the spectra is equal to 0.29 (simulated spectra) and 0.22 (experimental spectra)
(Fig. 4c). The results suggest that the fabricated sample should emit significantly more heat in the hot (metallic)
state, a necessary feature for thermal homeostasis.
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Figure 2. Calculated difference in integrated thermal radiation power for an isolated VO, thin film, VO, thin
film with a handle layer of Si, and VO,/Si/Au multilayer stack. Corresponding schematics and layer thicknesses
are shown in the inset.
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Figure 3. (a) Schematic of VO,/ Si, and (b) schematic of VO,/Si/Au layered structures with respective
simulated (c,d) emissivity and (e,f) transmissivity corresponding to VO, insulating and metallic states.

Simulations capture most of the measured FTIR spectral features. An offset between the simulated and
measured spectra in the insulating state of Fig. 4a is observed at wavelengths below 15 pum. This is largely due
to a difference between the optical constants of silicon in experiment and simulation. We verified this directly
by taking FTIR measurements of a witness sample (Si/Au), which showed a prominent peak at 9 um due to
oxygen impurities” and an increased emissivity over the entire wavelength range, relative to simulations based
on literature constants (taken from Ref.>).

Experimental setup and calibration

We designed an experiment to directly test the temperature regulation capabilities of our device. A photograph
and a schematic of the experiment are shown in Fig. 5a,b, respectively. Device samples are mounted on either
side of a ceramic heater, containing an embedded thermocouple. The entire structure is suspended in a vacuum
chamber, which has an interior black surface to minimize infrared reflection. The chamber is submerged in an
ice bath at an ambient temperature of T,=0.5 °C. The heat load on the sample is varied by changing the input
power to the heater, and the resulting temperature is recorded using the thermocouple embedded in the heater.
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Figure 4. Measured and simulated (absorptivity) emissivity spectra of insulating (a) and metallic (b) state of
VO,/Si/Au stack. (c) Calculated integrated radiation power normalized to blackbody spectrum.
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Figure 5. Overview of experimental setup. (a) Photograph and (b) schematic of vacuum chamber used to
perform thermal measurements. (c) Measured temperature rise as a function of applied heat load for mirror-
gold (low emissivity) and diffuse black (high-emissivity) samples, with respect to an ambient temperature of
0.5 °C. (d) Measured parasitic heat loss (sum of radiation losses from perimeter and conduction losses to wire),
as a function of temperature, extracted from mirror gold data in (c).

As shown in the bottom portion of Fig. 5b, the system loses heat through two mechanisms: (1) radiation
from the sample, which is the quantity of interest, and (2) parasitic losses that include both radiation from the
perimeter of the sample and conduction to the wire leads. To calibrate the parasitic loss, we use gold mirrors with
low, constant emissivity (¢ = 0.05) and measure the temperature rise as a function of applied heat load (yellow
circles in Fig. 5¢). The experiment is conducted by using a complete heating and cooling cycle while recording
temperature at each steady state. The temperature is first increased in discrete steps, and then decreased again. At
each temperature increment, we allow 45 min for the system to reach steady state. The temperature-dependent
parasitic heat loss function Q,(T) is determined from a linear fit to this characteristic (see Fig. 5d). For each
value of applied heat load Q, we subtracted the calculated, net radiative loss of gold to obtain Q,,.(T), plotted in
Fig. 5d (see “Methods” section).

To probe the dynamic range of our measurement system, we also measure a diffuse-black sample with a high
total emissivity. Results are shown in Fig. 5¢c. The data curve for the diffuse-black sample is well separated from
the curve for the mirror-gold sample. These two measurements, at the extremes of high and low emissivity, define
an operational window for our subsequent, variable-emissivity measurements.
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Figure 6. (a) Measured temperature rise relative to ambient (horizontal axis) as a function of the applied heat
load (vertical axis) for a complete heating and cooling cycle. The inset shows the derivative applied heat load
with respect to temperature for two runs (complete heating/cooling cycles). (b) Calculated radiative heat flux
from the VO, surface as a function of temperature. Constant emissivity curves are plotted in grey. The inset
shows the effective emissivity of the measured sample as function of temperature.

Measurement of device emissivity
Next, we measure the temperature rise as a function of applied heat load for our VO, devices. The results are
shown in Fig. 6a. The heating and cooling curves trace a hysteresis window around the VO, phase transition.
Inside this window, for constant applied heat load, there is a temperature difference as large as ~ 5 °C between the
heating and cooling curves. The convergence of the heating and cooling curves above and below the hysteresis
window suggests that there is negligible temperature drift in the experimental setup. The location of the phase
transition can be more readily observed by plotting the derivative of the heat load-temperature curve (Fig. 6a,
inset). During heating, the response dQ/dT peaks in the red, shaded region, indicating the transition from
insulator to metal at ~ 80 °C. Upon cooling, dQ/dT peaks at a lower temperature ~ 60 °C, indicating transition
back to the insulating state. We ran this measurement over multiple complete heating/cooling cycles (circles and
diamonds) to ensure that there was minimal run-to-run variation in thermal response.

We can use the data from Fig. 6a along with the calibration curve in Fig. 5d to determine the radiative heat
flux emitted by the VO, sample, Q" ;(T). In steady state, the net heat input to the system is equal to the output:

Q+e(ToATy = QLy(T)A + Qioss(T), (1)
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Figure 7. Dynamic thermal response. (a) Square wave time-varying input heat power. (b) measured and
calculated response to the input power in for VO,/Si/Au (62 nm/200 pm/60 nm) structure and Al,O5/Si/Au
(480 nm/200 pm/60 nm).

where the second term on the left-hand side represents the absorptive heat flux at the sample surface due to
ambient radiation. This equation can be solved to yield

_ Q — Quoss(T)
“D= A -1y @)
assuming that
QL(T) =e(T)o T 3)

The radiative heat flux is shown in Fig. 6b. The graph shows that along the heating curve, the radiative heat
flux increases sharply near the upper edge of the hysteresis loop. This corresponds to an increase in emissivity.
Along the cooling curve, the radiative flux drops at the lower edge of the loop, corresponding to a decrease in
emissivity. The inset of Fig. 6b replots the data to show emissivity as a function of temperature. It can be seen
that ¢,,=0.22 in the insulator phase, and ¢,,.,=0.46 in the metallic phase. These values are consistent with those
measured using FTIR microscopy (&;,,=0.22 and ¢, =0.44).

Dynamic thermal regulation

To demonstrate dynamic thermal regulation, we apply a time-varying heat load and measure the resulting
temperature as a function of time. The input power is plotted in Fig. 7a and has the form of a square wave with
power levels of 0.22 and 0.59 W.

For reference, we first measure a near temperature-independent emissivity structure with an alumina top
layer. (Al,O5/Si/Au with the corresponding thicknesses of 480 nm/200 um/60 nm). The experimental, time-
dependent temperature data is shown by the red, dotted line in Fig. 7b. In response to an increase in input power,
the measured temperature rises and then plateaus. When the input power is decreased, the temperature drops
again and stabilizes at a lower value. The total range of temperature fluctuation measured is 56 °C (red arrows).
The measured results can be accurately reproduced using a numerical heat transfer model given by

dI(t) _ Q— Qus(T)
Cdr A

pCL oe(T)(T* - Tp), (4)
where p is the effective material density (kg/m?), C is the effective heat capacitance (J /K- kg), L is the charac-
teristic length scale of the system (m), and T = 273.6 K is the ambient temperature. The numerical solution to
Eq. (4) is shown by the red, solid line in Fig. 7b. Physically, the response time of the device is determined by the
effective heat capacity, material density, diffusion length and the emissivity of the system. The simulation shows
an excellent match to experiment for a fitted value of pCL.= 5,500 J/(m?>-K).

We then measure the performance of our variable-emissivity VO, device. The experimental data is shown
by the blue, dotted line in Fig. 7b. In comparison to the constant-emissivity Al,O; device, the total temperature
fluctuations are reduced to a value of 50 °C. The data can again be well modeled by Eq. (4) as shown in Fig. 7.
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Figure 8. Thermal homeostasis in space. (a) Square wave time-varying input heat power. (b) calculated
response to the input power in for VO,/Si/Au (62 nm/200 pm/60 nm) structure and Al,O,/Si/Au
(480 nm/200 pm/60 nm).

Physically, the strong change in emissivity at the phase transition decreases the total temperature fluctuation
resulting from a given heat load. This result illustrates the principle of thermal homeostasis.

Discussion

In space applications, under ideal conditions, radiative loss is the only heat dissipation mechanism; parasitic
losses vanish. We can use our thermal model to predict the performance of our VO, device under these condi-
tions. In the absence of parasitic losses, thermal self-regulation of the device is far more effective than under
laboratory conditions. We choose input powers of 0.037 W and 0.146 W to ensure that the radiative heat loss
from the sample is the same. In this case, the temperature fluctuations in the VO, device are again around 50 °C,
as in the experiment of Fig. 7. However, the fluctuations for the constant-emissivity Al,O; sample are now 108 °C.
This increase is due to the absence of the parasitic loss pathway. The VO, sample can therefore self-regulate its
own temperature far better than the constant-emissivity sample.

In fact, the magnitude of fluctuations in the VO, device can be predicted directly from Fig. 6b. For a device
area of 3.3 cm?, the power levels in Fig. 8 correspond to 112 W/m? and 442 W/m?, respectively. In the absence of
parasitic loss, the steady state radiative heat flux is equal to the input power per unit area. From Fig. 6b, a value
of 112 W/m? corresponds to a temperature of ~ 39 °C, while a value of 442 W/m? corresponds to a temperature
of ~89 °C. These values correspond well with those obtained in the simulation of Fig. 8b. For the constant emis-
sivity sample, the temperature fluctuations are much higher. Approximating the Al,O; sample with a constant
emissivity of 0.35, the lower power level corresponds to a temperature of 6 °C, whereas the upper power level
corresponds to a temperature of 114 °C, lying well outside the edges of Fig. 6b. This corresponds to the larger
fluctuation of 108 °C seen in Fig. 8b.

If we use applied power levels that result in a full transition of the VO, between metal and insulating states
(i.€. Py < 130 W/m? and Py, > 400 W/m?), the temperature fluctuations are at least as wide as the hysteresis loop
(Fig. 6). For our experimental device, this is close to 20 °C. Further improvement in material quality can bring
this number down substantially, as observed in literature®'-*. Another route to performance improvement is to
incorporate microstructured designs®'®!! to increase the total difference in radiated power between metal and
insulator states. In this case, for fixed value of temperature fluctuation, the device is expected to accommodate
a larger variation in input heat load. The experimental and thermal modeling methods form a general platform
for further investigation of dynamic thermal regulation in variable-emissivity systems.

Conclusion

We have directly demonstrated dynamic, passive thermal regulation via experiments on a VO, phase-change
device. Our device is designed to optimize the increase in radiated power at the phase transition. This trend
allows the sample to “self-regulate” its temperature in response to a time-varying, input heat load. Under labo-
ratory conditions, the VO, device shows a reduction in thermal fluctuations relative to a constant-emissivity
device. Using a thermal model, we can extrapolate the device performance to conditions typical of outer space,
where radiation is the only heat loss pathway and parasitic losses vanish. Our results demonstrate that emissivity
switching can reduce the thermal fluctuations by up to a factor of 2.
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Recent investigations®*** have shown flexibility in tuning the phase-transition temperature of VO, from 28
to 63 °C through doping, addition of dopant atoms, or alloying films. This suggests that various devices could
be designed to regulate temperature around fixed values in this range. In terms of ultimate applications, the
work presented here provides a key step toward understanding a larger trade space, one that incorporates not
only material selection, but also system-level concerns such as payload target temperature and solar heat load.

Methods

Simulations. The thermal emissivity spectrum (4, T) is calculated using the ISU-TMM package®**’, an
implementation of the plane-wave-based transfer matrix method. The simulation calculates absorptivity at nor-
mal incidence, where absorptivity is equal to emissivity by Kirchoff’s law. The wavelength range shown is chosen
to be 2-30 pm; outside this range, the blackbody radiance at room temperature is negligible. The normalized
thermal radiation power was calculated as

[IMma)  Igp(A T) - £(4 T)

2um
Praa(T) =
Lo Igp(3, T)

(5)

where Igp(4, T) is the blackbody radiance, and (4, T) is the emissivity spectrum.

Matlab Savitzky-Golay filter with an order of 3 and a frame length of 41 was used to smooth the simulated
spectra in Figs. 3c—e and 4a,b. The optical constants for VO, are taken from the experimental data of Fig. 1; the
constants for Si and Au are taken from the literature®.

Fabrication. Amorphous VO, films (60-120 nm) were deposited on 12.5 mm x 12.5 mm double-side pol-
ished, 200 um thick Si wafers by atomic layer deposition (ALD) in a Veeco Savannah 200 reactor at 150 °C using
tetrakis(ethylmethyl)amido vanadium and ozone precursors with optimized pulse/purge times of 0.03 s/30 s
and 0.075 s/30 s, respectively. Under these conditions, the saturated growth rate was 1 A/cycle. All samples
of a particular thickness were deposited simultaneously to avoid any run-to-run variation. The thickness was
determined using spectroscopic ellipsometry and a general oscillator model previously calibrated with TEM.
As-deposited amorphous ALD films underwent an ex-situ anneal at 475 °C in 6 x 10~ Torr of oxygen for 3-4 h
depending on thickness of the film to facilitate the crystallinity required to achieve sharp metal-to-insulator
transitions. Raman spectra were collected at room temperature to verify the presence of crystalline, monoclinic
VO, films for all samples after annealing.

Ellipsometer. A VASE JA Woollam spectroscopic ellipsometer was used to characterize the atomic layer
deposited VO, thin films. Ellipsometry measures the complex reflectance ratio of p and s polarization compo-
nents, respectively, which may be parametrized by the amplitude component ¥ and the phase difference A. ¥
and A values for 10 different angles were collected between 55° and 75°. The optical constants were fitted using a
series of Lorentzian oscillators in the insulating state with an addition of a Drude oscillator in the metallic state
to account for free-electrons in this state, using IR-VASE software.

Fourier transform infra-red (FTIR) spectroscopy. A Fourier Transform Infrared (FTIR) Spectrometer
was used to characterize the reflectance and transmittance of the 62 nm VO2/Si/Au multilayer device. We used a
Bruker (Hyperion 3000) FTIR attached to Vertex 70 microscope. A 0.5 cm™ resolution and an integration time
of 1 s were used. Each measurement was averaged over 5 scans. A ceramic heater (THORLABS HT19R) was used
to heat the sample, and the temperature was incrementally varied between 25 and 85 °C. For each temperature,
the sample was allowed to thermally equilibrate and the interferogram signal was maximized before a measure-
ment was collected.

Thermal experiment. We use a vacuum chamber with black-painted interior walls submerged in an ice
water bath to establish a cold, dark, and low pressure ambient environment (see Fig. 5a,b). A ceramic resistive
heater (Watlow Ultramic, 11.5x11.5x3 mm?, resistance 12 Q) containing an embedded k-type thermocouple
is suspended in the center of the chamber. Two nominally-identical samples (each with a surface area of ~1.65
cm?) are affixed with vacuum grease to either side of the heater to ensure robust thermal contact. The stiff
bundle of wires connected to the heater are coiled to suspend the heater in the center of the vacuum chamber.
This configuration thermally isolates the heater from the vacuum chamber to minimize parasitic heat losses
and promotes isothermal conditions between the heater and the sample. Vacuum is pulled and the chamber
is submerged in an ice water bath until interior temperature reaches a stable Ty=0.5 °C, which is maintained
throughout the duration of the experiment.

Once the system is at low vacuum and in thermal equilibrium, we apply incremental changes in heater power
and record the steady state temperature at each heat load (see Fig. 5¢). Each experiment includes a complete
heating and cooling cycle that steps up from zero power to maximum power (corresponding to a temperature
of 100 °C), and then back down to zero power. This generates a power-temperature characteristic as shown
in Fig. 5c. There is a high sample-to-ambient thermal resistance due to the deliberate thermal isolation of the
sample. The high resistance leads to a long thermal time constant, and each data point is collected after 45 min
when a steady temperature is reached.

The primary parasitic loss in the experiment is due to conduction into the wire bundle that connects the heater
to the chamber feedthrough. The rate of heat loss Q,, is independent of the sample being tested and is only a
function of the heater temperature T. We measure the temperature-dependent heat loss characteristic Q)o.,(T)
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for the experimental setup by measuring the relationship between heat dissipation and temperature rise for a
set of gold mirror samples with a constant, low emissivity. By letting Q,.q4 . be defined by the Stefan-Boltzmann
equation for a gray body of known emissivity € in a vacuum at temperature Ty, Eq. 1 can be rewritten as

Qioss(T) =1V — 0eA(T* — Ty), (6)

where A is the total sample surface area (A =3.3 cm? in this work), Q=1Ix V is the applied Joule heat load, I is the
driving current, and V is the voltage drop across the resistive heating element.

To calibrate Qj,,, We use a low-emissivity sample made using polished silicon with evaporated gold (e =
0.05). We generate the temperature response T as a function of Q, as shown in Fig. 5¢, across a complete heating
and cooling cycle. We then calculate Q,(T) from Eq. (6) and fit the calibration to a linear function, since the
range of temperatures is relatively small (less than 100 °C). The calibration curves and extracted loss function
are shown in Fig. 5d.
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