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STRICT 2-CONVEXITY OF CONVEX SOLUTIONS TO THE

QUADRATIC HESSIAN EQUATION

CONNOR MOONEY

Abstract. We prove that convex viscosity solutions to the quadratic Hessian

inequality
σ2(D2u) ≥ 1

are strictly 2-convex. As a consequence we obtain short proofs of smooth-

ness and interior C2 estimates for convex viscosity solutions to σ2(D2u) = 1,

which were proven using different methods in recent works of Guan-Qiu [GQ],
McGonagle-Song-Yuan [MSY] and Shankar-Yuan [SY2].

1. Introduction

In this note we consider convex viscosity solutions to the quadratic Hessian
inequality

(1) σ2(D2u) ≥ 1.

Our main result is their strict two-convexity. That is:

Theorem 1.1. Let u be a convex viscosity solution to (1) in Ω ⊂ Rn, and let L be
a supporting linear function to u in Ω. Then

dim{u = L} ≤ n− 2.

Theorem 1.1 is sharp in view of the example u = x2
1 + x2

2, with L = 0.
Local smoothness of convex viscosity solutions to

(2) σ2(D2u) = 1

follows from Theorem 1.1, using the classical solvability of the Dirichlet problem
[CNS] and the Pogorelov-type interior C2 estimate from [CW] (see Section 2).
With a compactness argument we can in fact prove a universal modulus of strict
2-convexity (see Proposition 4.1). As a result we obtain:

Theorem 1.2. Let u be a convex viscosity solution of (2) in B1 ⊂ Rn. Then u is
smooth, and

(3) |D2u(0)| ≤ C
(
n, ‖u‖L∞(B1)

)
.

Inequality (3) was recently proven for smooth convex solutions of (2) in [GQ]
and [MSY], and Theorem 1.2 was proven in [SY2]. A subtle issue in passing to the
viscosity case is that smooth approximations of convex viscosity solutions may not
be convex. An advantage of our approach is that it avoids using a priori estimates
for smooth convex solutions, which allows us to bypass this issue. The methods
in the above-mentioned works are quite different from ours, based in [GQ] on the
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Bernstein technique, and in [MSY] and [SY2] on the properties of the equation for
the Legendre-Lewy transform of u.

An interesting question is whether the conclusion of Theorem 1.2 holds without
assuming that u is convex. It is true when n = 2 (in which case solutions are
automatically convex and (2) is the Monge-Ampère equation, [H]) and when n = 3
(in which case (2) is equivalent to the special Lagrangian equation, [WY]). It is
also known to be true if u is slightly non-convex [SY2]. Finally, an interior C2

estimate of the form (3) was recently obtained in [SY1] for smooth solutions to (2)
that satisfy the semi-convexity condition D2u ≥ −KI, with C depending also on
K. The general case in dimension n ≥ 4 remains open.

Remark 1.3. Local smoothness and interior C2 estimates are false for convex vis-
cosity solutions to the k-Hessian equation

σk(D2u) = 1

when k ≥ 3, in view of the well-known Pogorelov example ([P], [U]). The same
example shows that convex viscosity solutions to σk(D2u) ≥ 1 are not always
strictly k-convex when k ≥ 3. In particular, Theorems 1.1 and 1.2 are both special
to the quadratic Hessian equation.

The paper is organized as follows. In Section 2 we recall a few classical results
about the k-Hessian equation, and we use them to show that Theorem 1.1 implies
that convex viscosity solutions of (2) are smooth. In Section 3 we prove Theorem
1.1. Finally, in Section 4 we prove a quantitative version of Theorem 1.1 using a
compactness argument, and we use it to complete the proof of Theorem 1.2.
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2. Preliminaries

In this section we recall a few classical facts about the k-Hessian equation. Below
Ω denotes a bounded domain in Rn, and 1 ≤ k ≤ n.

We first recall some facts about the σk operator. The function σk on Symn×n
denotes the kth symmetric polynomial of the eigenvalues. It is elliptic on the cone

Γk := {M ∈ Symn×n : σl(M) > 0 for each 1 ≤ l ≤ k},
and has convex level sets in Γk. Furthermore, the function σk is uniformly elliptic
on compact subsets of Γk.

Next we recall the notion of viscosity solution. We say that a function u ∈ C2(Ω)
is k-convex if D2u ∈ Γk. Given a nonnegative function f ∈ C(Ω), we say that a
function u ∈ C(Ω) is a viscosity solution of

σk(D2u) ≥ (≤) f

if, whenever a k-convex function ϕ ∈ C2(Ω) touches u from above (below) at a
point x0 ∈ Ω, we have

σk(D2ϕ(x0)) ≥ (≤) f(x0).

We say that u ∈ C(Ω) is a viscosity solution of

σk(D2u) = f
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if it is a viscosity solution of both σk(D2u) ≥ f and σk(D2u) ≤ f . Viscosity
solutions are closed under uniform convergence, and the notions of classical and
viscosity solution coincide on C2 functions that are k-convex.

Third we recall the classical solvability of the Dirichlet problem for the k-Hessian
equation, proven in [CNS]:

Theorem 2.1. Let g ∈ C∞(∂BR). Then there exists a unique k-convex solution
u ∈ C∞

(
BR

)
to the Dirichlet problem

σk(D2u) = 1 in BR, u|∂BR
= g.

The result in fact holds for smooth bounded k − 1-convex domains.
Finally we recall the Pogorelov-type estimate Theorem 4.1 from [CW]:

Theorem 2.2. Assume that u ∈ C∞
(
Ω
)
is a k-convex solution to

σk(D2u) = 1 in Ω,

and that there exists a k-convex function w ∈ C
(
Ω
)
such that u < w in Ω and

u = w on ∂Ω. Then

(4) sup
Ω

(
(w − u)4|D2u|

)
≤ C

(
n, k, ‖u‖C1(Ω)

)
.

Inequality (4) implies in particular that the equation for u is uniformly elliptic
on compact subdomains of Ω. By the Evans-Krylov theorem (see [CC]), interior
derivative estimates of all higher orders follow.

To conclude the section we show local smoothness of convex viscosity solutions
to (2). We assume u is defined in B1 ⊂ Rn , and it suffices to prove smoothness in a
neighborhood of the origin. After subtracting a supporting linear function we may
assume that u(0) = 0 and that u ≥ 0. By Theorem 1.1 we have after a rotation
that {u = 0} is contained in the subspace spanned by {e3, ..., en}. Let

wδ(x) := δ[2(n− 2)(x2
1 + x2

2)− (x2
3 + ...+ x2

n)],

and notice that wδ is 2-convex for all δ > 0. Furthermore, we can choose δ, η, µ > 0
small (depending on u) such that

u > wδ + η on ∂B1/2 and Bµ ⊂ {u < wδ + η}.
Let {vj} be a sequence of smooth 2-convex (but not necessarily convex) solutions
to (2) that converge uniformly to u in B1/2. (One obtains the functions vj e.g.
by taking smooth approximations to u on ∂B1/2 and applying Theorem 2.1 with
R = 1/2 and k = 2.) Applying Theorem 2.2 to vj with w = wδ + η and k = 2, we
see that the solutions vj enjoy uniform derivative estimates of all orders in Bµ as
j →∞. We conclude that u is smooth in Bµ.

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1.

Proof of Theorem 1.1: Assume by way of contradiction that there exists a sup-
porting linear function L to u such that dim{u = L} ≥ n− 1. After subtracting L,
translating, rotating, and quadratically rescaling, we may assume that u is defined
in B2, that u ≥ 0, and that u = 0 on {xn = 0} ∩ B2. After subtracting another
supporting linear function of the form axn with a ≥ 0, we may also assume that

u(ten) = o(t) as t→ 0+.
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Letting x = (x′, xn), it follows that {u < h} contains a cylinder of the form

Qh := {|x′| < 1} × (0, H),

with h/H → 0 as h→ 0+. For h small, the convex paraboloid

Ph := h|x′|2 + 4
h

H2
(xn −H/2)2

thus satisfies that Ph ≥ h ≥ u on ∂Qh, that Ph(Hen/2) = 0 ≤ u, and that

σ2(D2Ph) = c1(n)h2 + c2(n)
h2

H2
< 1,

which contradicts (1). �

4. Proof of Theorem 1.2

In this section we prove a quantitative version of Theorem 1.1, and we use it to
complete the proof of Theorem 1.2. For a set S ⊂ Rn and r > 0 we let Sr denote
the r-neighborhood of S.

Proposition 4.1. For K > 0, r > 0 and n ≥ 2, there exists δ(n, K, r) > 0 such
that if u is a convex viscosity solution to (1) in B1 ⊂ Rn with ‖u‖L∞(B1) ≤ K and
L is a supporting linear function to u at 0, then

{u < L+ δ} ⊂⊂ Tr
for some n− 2-dimensional subspace T of Rn.

Proof. Assume not. Then there exist convex viscosity solutions uj to (1) on B1 with
‖uj‖L∞(B1) ≤ K and supporting linear functions Lj at 0 such that the conclusion
fails with δ = 1/j. Up to taking a subsequence, the functions uj converge locally
uniformly to a convex viscosity solution v of (1) in B1, and Lj converge to a
supporting linear L to v at 0 such that {v = L} is not compactly contained in Tr
for any n− 2-dimensional subspace T . This contradicts Theorem 1.1. �

Proof of Theorem 1.2: We proved that u is smooth at the end of Section 2. The
proof of the estimate (3) follows the same lines. We call a constant universal if it
depends only on n and ‖u‖L∞(B1). We may assume after subtracting a supporting

linear function with universal C1 norm that u(0) = 0 and that u ≥ 0. Write
x = (y, z) with y ∈ R2 and z ∈ Rn−2. By Proposition 4.1 there exists δ > 0
universal such that, after a rotation, u > δ on {|y| = 1/(2n)} ∩B1. It follows that

u > w := δ

(
2(n− 2)|y|2 − |z|2 +

1

8

)
on the boundary of B3/4 ∩ {|y| < 1/(2n)}. Notice also that w is 2-convex. The
estimate (3) follows by applying Theorem 2.2 in the connected component of the
set {u < w} that contains the origin. �
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