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Abstract
We construct convex functions onR3 andR4 that are smooth solutions to the Monge–
Ampère equation

det D2u = 1

away from compact one-dimensional singular sets, which can be Y-shaped or form
the edges of a convex polytope. The examples solve the equation in the Alexandrov
sense away from finitely many points. Our approach is based on solving an obstacle
problem where the graph of the obstacle is a convex polytope

Keywords Monge–Ampere equation · Singular solutions · Global solutions ·
Obstacle problem
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1 Introduction

The problem of constructing singular Monge–Ampère metrics has attracted recent
attention due to its connections with mirror symmetry [4,7–10]. By a singularMonge–
Ampère metric, we mean the Hessian of a convex function u on Rn that is a smooth
solution to the Monge–Ampère equation

det D2u = 1 (1)

away from a small singular set !, where "u blows up. Of particular interest seems to
be the case that ! is a trivalent graph and n = 3.
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The purpose of this paper is to develop a robust method for constructing such
examples. In particular, we show

Theorem 1.1 Let # ⊂ Rn be a compact convex polytope, and let !k denote its k-
skeleton. Assume further that n = 3 or n = 4. Then there exists a convex function
u : Rn → R such that !1 ⊂ {u = 0}, u ∈ C∞(Rn\!1), and

det D2u = 1+
∑

q∈!0

aqδq (2)

in the Alexandrov sense, for some coefficients aq > 0.

By k-skeleton, we mean the collection of faces of dimension at most k. We also
construct examples where the singular set is a Y-shape that may lie in a plane (in
which case it is not contained in a level set of u) or not. In [7] the authors studied
equations of the form (2) in Rn , where the right-hand side is the sum of a constant
with some Dirac masses. They showed when n ≤ 4 that global solutions are smooth
away from the collection of line segments that connect pairs of masses, but it remained
open whether the solutions could in fact be singular on these segments. Theorem 1.1
answers this question positively.

Remark 1.2 Such examples are not possible in dimension n = 2 because in that case,
solutions to det D2u ≥ 1 are strictly convex ([1], see [11] for a proof).

Remark 1.3 The polytope # from Theorem 1.1 is allowed to be degenerate, e.g., the
convex hull of n or fewer points.

Our approach to Theorem 1.1 is based on solving an obstacle problem for the
Monge–Ampère equation, with an obstacle of which graph is a convex polytope. To
obtain the examples, we take the Legendre transform of solutions to the obstacle
problem. By playing with the choice of obstacle, one can in fact construct a variety
of singular examples in R3 and R4 where the singular set is a graph that needs not to
be the set of edges of a convex polytope or a trivalent graph (see the discussion at the
beginning of Sect. 5). In [13] Savin studies an obstacle problem for theMonge–Ampère
equation with a linear obstacle, and the existence and regularity theory developed in
that paper are important in our constructions.

Most of the steps in the proof of Theorem 1.1 work in any dimension.We specialize
to dimension n ≤ 4 to prove a certain qualitative regularity result about solutions to the
obstacle problem (see Lemma 4.2). Provided the analog of that result holds in higher
dimensions, we can generalize Theorem 1.1 to higher dimensions (see Proposition
4.1). We state the generalization here as a conjecture:

Conjecture 1.4 Let # ⊂ Rn be a compact convex polytope, and let !k denote its
k-skeleton. Then there exists a convex function u : Rn → R such that

!⌈ n
2−1⌉ ⊂ {u = 0}, u ∈ C∞

(
Rn\!⌈ n

2−1⌉
)
, and det D2u = 1+

∑

q∈!0

aqδq

for some coefficients aq > 0.
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Here, ⌈t⌉ denotes the smallest integer greater than or equal to t . We can verify Con-
jecture 1.4 when n ≤ 4, and in some simple cases when n ≥ 5. It is not clear whether
it is reasonable to expect that it holds in general (see Remark 4.5).

Remark 1.5 The subgradient maps of the Legendre transforms of the examples from
Theorem 1.1 can be viewed as optimal transport maps for the quadratic cost. They
push forward the uniformmeasure to the uniformmeasure plus a sum of Dirac masses,
and they transport convex sets with nonempty interior to the points where the masses
are centered.

Remark 1.6 At infinity, the solutions from Theorem 1.1 have the asymptotic behavior:

u(x) = const.+ 1
2
|x |2 + O(|x |2−n).

By the results in [3] and [7] about solutions to det D2u = 1 in exterior domains, these
are the unique solutions with this asymptotic behavior. In this paper, we are concerned
with the local behavior of solutions.

The paper is organized as follows. In Sect. 2, we prove some preliminary results. In
particular, we solve an obstacle problem for theMonge–Ampère equationwith general
convex obstacle, construct a family of barriers, prove a result about propagation of
singularities, and state versions of a few regularity results from [13]. In Sect. 3, we
construct, in any dimension, global solutions to an obstacle problemwhere the graph of
the obstacle is a convex polytope. In Sect. 4, we prove that if the global solutions to the
obstacle problem satisfy a certain qualitative regularity condition, then their Legendre
transforms settle Conjecture 1.4. We then prove that this condition is satisfied when
n ≤ 4 to obtain Theorem 1.1. Finally, in Sect. 5, we explain how to modify the
approach to construct examples where the singular set is a Y-shape.

2 Preliminaries

In this section, we recall the notion of Monge–Ampère measure, solve an obstacle
problem for the Monge–Ampère equation, build a family of barriers, prove a result
about the propagation of singularities, and recall some regularity results from [13].

2.1 Monge–Ampère Measure

To any convex function v on a domain # ⊂ Rn , we associate a Borel measure Mv on
#, called the Monge–Ampère measure of v, that satisfies

Mv(E) = |∂v(E)|

for anyBorel set E ⊂ #. Here, ∂v denotes the subgradient of v.When v ∈ C2, we have
Mv = det D2v dx . Given a Borel measure µ on #, we say that v is an Alexandrov
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solution to the Monge–Ampère equation:

det D2v = µ

if

Mv = µ.

Alexandrov solutions are closed under uniform convergence: if convex functions vk
converge locally uniformly in# tov, then theMonge–AmpèremeasuresMvk converge
weakly to Mv. For proofs of these results see [6].

2.2 Obstacle Problem

Let # ⊂ Rn be a bounded strictly convex domain, ψ a convex function fromRn to R,
µ a finite Borel measure on #, and ϕ ∈ C(∂#) with ϕ > ψ on ∂#. We define

F :=
{
v : v ∈ C

(
#

)
convex, v ≥ ψ in #, v|∂# = ϕ, Mv ≤ µ

}
.

We note that the convex envelope ( of ϕ is in F and has vanishing Monge–Ampère
measure (see [6]).

The main result of this subsection is the solvability of an obstacle problem:

Proposition 2.1 The function

u := inf
F

v

is in F , and

Mu = µ in {u > ψ} ∩ #.

The proof of Proposition 2.1 follows the same lines as that of Proposition 1.1 in [13],
where the special case ψ = 0 and ϕ = const. is considered. The key points are the
equicontinuity of F (a consequence of the Alexandrov maximum principle and the
continuity of ( up to the boundary), the closedness of F under taking the convex
envelope of the minimum of two functions in F (see [13]), the closedness of F under
uniform convergence (a consequence of the weak convergence of Monge–Ampère
measures), and the solvability of the Dirichlet problem for Alexandrov solutions in
strictly convex domains (see [6]).

Remark 2.2 We can also write u as the infimum of functions in

F̃ :=
{
ṽ : ṽ ∈ C

(
#

)
convex, ṽ ≥ ψ in #, ṽ|∂# ≥ ϕ, M ṽ ≤ µ

}
.

Indeed, for any function ṽ ∈ F̃ , there is a function v ∈ F such that v ≤ ṽ, given by
the convex envelope of min{(, ṽ}.
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2.3 Barriers

We denote points in Rn by (x, y) with x ∈ Rn−k and y ∈ Rk . For n ≥ 3 and
1 ≤ k < n

2 , we let

γ := 2
n − k
n − 2k

, r := |x |, t := |y|, and s := r−γ t .

Then the function wn, k defined on Rn by

(γ

2

)1− k
n
(γ − 1)

1
n wn, k(x, y) :=

{
1
2 (r

γ + r−γ t2), t ≤ rγ

t, t > rγ
(3)

satisfies

det D2wn, k = (1 − s2)n−kχ{t<rγ }

in the Alexandrov sense. We omit the calculation, which is straightforward using
coordinates that are polar in x and y. In particular,

det D2wn, k ≤ 1. (4)

We also note that wn, k(0) = 0 and that

wn, k(x, y) ≥ c(n, k)|y|, (5)

so wn, k has a Lipschitz singularity at the origin.

Remark 2.3 The functions wn, k resemble the Legendre transforms of the Pogorelov
example |x ′|2− 2

n (1 + x2n ) in the case k = 1 (here (x ′, xn) ∈ Rn) and its generaliza-
tions [2], which are nonnegative and have Monge–Ampère measure bounded between
positive constants near the origin but vanish on convex sets of dimension k.

We extend the definition of wn, k to n ≥ 1 and k = 0 by taking

wn, 0(x) :=
1
2
|x |2.

Finally, for n ≥ 1, we let

Wn(x) :=
∫ |x |

0

(
sn − 1

) 1
n
+ ds, (6)

which vanishes in B1 and solves

det D2Wn = χ{|x |>1} (7)
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in the Alexandrov sense. It also satisfies

Wn(x) − 1
2
|x |2 =

⎧
⎪⎨

⎪⎩

O(|x |), n = 1
O(| log |x ||), n = 2
c(n)+ O(|x |2−n), n ≥ 3

(8)

for some constants c(n) < 0.

2.4 A Propagation Result

In this subsection, we prove a propagation result that complements the family of
barriers {wn, k}. Again we denote points in Rn by (x, y) with x ∈ Rn−k and y ∈ Rk .

Proposition 2.4 Assume det D2u ≤ + < ∞ in B1 ⊂ Rn. If k ≥ (n/2), u(0) = 0 and
u ≥ |y|, then {u = 0} has no extremal points in {y = 0} ∩ B1.

The case n = 2, k = 1 is a classical result of Alexandrov ([1], see also [12]). Propo-
sition 2.4 can be viewed as a generalization of this result to higher dimensions. The
proof relies on the following volume estimate (see, e.g., Lemma 2.5 from [11]):

Lemma 2.5 Assume that det D2u ≤ 1 on a bounded convex domain# and that u|∂# =
0. Then

|#| ≥ c(n)
∣∣∣∣min

#
u
∣∣∣∣

n
2

.

We proceed with the proof of the propagation result. Below, a Lipschitz rescaling
refers to a rescaling of the form u → λ−1u(λ·) with λ > 0.

Proof of Proposition 2.4 Assume by way of contradiction that {u = 0} has an extremal
point in {y = 0} ∩ B1. Then after an affine transformation in x and a Lipschitz
rescaling, we may assume that the domain of definition for u is still B1, that + = 1,
that u(0) = 0, that

{u = 0} ⊂ {y = 0} ∩ {x1 ≤ 0},

and that

{u = 0} ∩ {x1 ≥ −δ0} ⊂⊂ B1

for some δ0 > 0. Fix δ < δ0 and let

lh := h (x1 + δ).

Then for h small, we have that {u < lh} ⊂⊂ B1 and furthermore that

{u < lh} ⊂ {|x1| < δ} ∩ {|y| < lh}.
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It follows that

|{u − lh < 0}| ≤ C(n) δ (δh)k .

Applying Lemma 2.5 to the function u − lh and using that |(u − lh)(0)| = δh, we
conclude that

(δh)
n
2 ≤ C(n) δ(δh)k,

which is not possible when k ≥ (n/2) and δ is chosen small. ⊓-
For our purposes, the following corollary of Proposition 2.4 will be useful:

Corollary 2.6 Assume that det D2u ≤ 1 on Rn, and that det D2u is not identically
zero. Then dim(∂u(p)) < (n/2) for all p ∈ Rn.

Proof Assume by way of contradiction that ∂u(0) has dimension k ≥ (n/2), and let
(x, y) ∈ Rn with x ∈ Rn−k and y ∈ Rk . After subtracting a linear function, rotating,
and multiplying by a constant, we may assume that det D2u ≤ + < ∞ and that
B1 ∩ {x = 0} ⊂ ∂u(0). Then u ≥ u(0)+ |y|. By Proposition 2.4, the set {u = u(0)}
contains a line. By convexity, u is invariant under translations along this line; hence,
det D2u ≡ 0. ⊓-

2.5 Regularity Results

To conclude the section, we state some regularity results for solutions to the obstacle
problem with linear obstacle. These can be viewed as localized versions of results
from [13]. The first result is a consequence of Lemma 3.3 from [13]:

Proposition 2.7 Assume that det D2u = χ{u>0} in a bounded convex domain# ⊂ Rn,
and that u ≥ 0. Let S be a supporting hyperplane to {u = 0} at a point in #. Then
S ∩ {u = 0} is either a single point, or it has no extremal points in #.

In particular, if x ∈ ∂{u = 0} ∩ #, then there are two possibilities: either every
supporting hyperplane to {u = 0} at x intersects {u = 0} only at x , or else x lies in the
interior of a segment in ∂{u = 0} with an endpoint on ∂#. By combining this result
with the proof of Proposition 2.8 from [13], we obtain

Proposition 2.8 Let u be as in Proposition 2.7. Then ∂u(p) = {0} at every extremal
point of p of {u = 0} in #.

Remark 2.9 These regularity results still hold when we replace the right-hand side by
f χ{u>0}, for any function f that is bounded above and below by positive constants.

3 Global Obstacle Problem

In this section, we let # ⊂ Rn be a compact convex polytope of dimension d, and
we denote by !k its k-skeleton (that is, the union of its faces of dimension at most k).
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With the convention that !k = ∅ when k < 0, we let

Sk := !k\!k−1

be the union of the interiors of its k-dimensional faces. Finally, we assume that the
d-dimensional interior of # contains the origin, and when we write Rn = Rn−d ×Rd

that # ⊂ {0} × Rd .
We define the convex function P on Rn by

P(x) :=
{
0, x ∈ #

+∞, x ∈ Rn\#,
(9)

and we denote by P∗ its Legendre transform

P∗(x) := sup
y∈Rn

(y · x − P(y)) = sup
y∈#

(y · x). (10)

The function P∗ is one-homogeneous, nonnegative, and convex, and the set

#∗ := {P∗ ≤ 1}

is the convex dual of #. We note that #∗ = Rn−d × #̃∗, where #̃∗ (the d-dimensional
convex dual of #) is a compact convex polytope with the origin in its interior.

We let !∗
j denote the j-skeleton of #∗ (note that !∗

j = ∅ when j < n − d), and we
let S∗

j = !∗
j \!∗

j−1 denote the union of the interiors of the j-dimensional faces of #∗.
Finally, we let -l = ∅ for l < n − d, and we let

-l :=
{
Rn−d × {0}, l = n − d,
{t x : t > 0 and x ∈ S∗

l−1}, n − d < l ≤ n

be the cone over S∗
l−1 in Rn . We observe for l ≥ n − d that dim(-l) = l, and that P∗

is linear when restricted to any connected component of -l .

Example 3.1 If # = {0}, then P∗ = 0 and -n = Rn .

Example 3.2 When # is the line segment-connecting ±en , we have

P∗ = |xn|, -n = {xn > 0} ∪ {xn < 0}, and -n−1 = {xn = 0}.

Example 3.3 When # is a regular tetrahedron in R3 centered at the origin, so is #∗.
In this case, -1 consists of the four open rays over the vertices of #∗, -2 consists of
the six open planar sectors over the edges of #∗, and finally -3 consists of the four
open solid sectors over the faces of #∗.

In this section we construct global solutions to an obstacle problem with P∗ as the
obstacle. We first define what it means to be a global solution to the obstacle problem.
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Fig. 1 In the case that
P∗ = |xn | and n ≥ 3, the
contact set K = {u∗ = P∗}
extends to {xn = 0}

Definition 3.4 We say that a convex function u∗ : Rn → R is a global solution to
the obstacle problem with obstacle P∗ if u∗ ≥ P∗, det D2u∗ ≤ 1 in the Alexandrov
sense, and det D2u∗ = 1 in {u∗ > P∗}. We let

K := {u∗ = P∗}

denote the contact set.

Example 3.5 The functionWn definedby (6) is a global solution to the obstacle problem
with P∗ = 0 and K = B1.

Below we say that K has nonempty interior in a set S if S contains interior points of
K . Our main result of this section is

Proposition 3.6 There exists a global solution u∗ to the obstacle problemwith obstacle
P∗ such that K is compact, has nonempty interior in each connected component of
-k for k > (n/2), and -k ⊂ Rn\K for all k ≤ (n/2).

Example 3.7 When # is the line segment-connecting ±en , the contact set K is the
union of two compact convex sets with nonempty interior, one in {xn ≥ 0} and the
other in {xn ≤ 0}. When n ≤ 2, these sets are disjoint and do not meet {xn = 0},
but when n ≥ 3, these sets meet along a convex set in {xn = 0} that contains interior
points of K (see Fig. 1).

Example 3.8 When # is a regular tetrahedron inR3 centered at the origin, the set K is
the union of four compact convex sets with nonempty interior, each intersecting one
connected component of -3. Each of these sets meets all three of the others along
two-dimensional convex sets in the planar sectors that comprise -2, but they do not
intersect the origin or the rays that comprise -1 (see Fig. 2).

To conclude the section, we prove the proposition.

Proof of Proposition 3.6 It suffices to prove Proposition 3.6 with the obstacle δP∗ for
any fixed δ > 0, since then δ−2u∗(δx) is a global solution to the obstacle problem
with obstacle P∗ and satisfies the remaining conditions.
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Fig. 2 A connected component
of K ∩ -3, in the case that #
and #∗ are tetrahedra in R3

Let

ϕ := Wn − 1 on Rn .

For ϵ > 0 to be chosen, we can take δ small so that

Wn + ϵ > δP∗ on Rn .

Here and below, we assume that R >> 1, and we denote by u∗
R the solution to the

obstacle problem in BR with obstacle δP∗, boundary data ϕ, and measure µ = dx .
Since det D2Wn ≤ 1, we have (see Remark 2.2) that

u∗
R ≤ Wn + ϵ in BR .

Since ϕ < 0 ≤ δP∗ ≤ u∗
R in B1 and det D2ϕ = 1 outside of B1, we have by the

maximum principle that

ϕ ≤ u∗
R in BR .

Up to taking a subsequence, the functions u∗
R , thus, converge locally uniformly as

R → ∞ to a global solution u∗ to the obstacle problem with obstacle δP∗, which
satisfies

ϕ ≤ u∗ ≤ Wn + ϵ on Rn . (11)

In particular,

0 ≤ δP∗ ≤ u∗ ≤ ϵ in B1. (12)

We now examine K = {u∗ = δP∗}. There exists r0 ∈ (0, 1/2) depending only on
#∗ such that, for all j ≥ 1, each (nonempty) connected component of - j contains a
point p ∈ ∂B1/2 such that Br0(p) does not intersect any other connected component
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of - j . Fix n − k ≥ 1 and pick any such point p ∈ -n−k . Then by the inequality (12),
the functions

Q(x) := r−2
0 δP∗(p + r0 x), v(x) := r−2

0 u∗(p + r0 x)

satisfy

0 ≤ Q ≤ v ≤ r−2
0 ϵ in B1.

Furthermore, we may choose coordinates x = (z, y)with z ∈ Rn−k and y ∈ Rk , such
that

Q(x) = L(z)+ M(y) in B1,

where L is affine and M(0) = 0. Assume now that k < (n/2), and let

w(x) := L(z)+ wn, k(x).

Since wn, k(x) ≥ c(n, k)|y| (we take the right side to be 0 when k = 0), we have for
ϵ sufficiently small that

w ≥ Q in B1.

Furthermore, since

wn, k > c(n, k) > 0 on ∂B1,

we have for ϵ sufficiently small that

w > ϵr−2
0 ≥ v on ∂B1.

We conclude that if v(0) > Q(0) = w(0), then for some h > 0, the function w + h
touches v from above somewhere in {v > Q}∩B1, which by (4) violates themaximum
principle. By translating the origin a little and applying a similar argument, e.g., in
B1/2, we see that in fact, v = Q in a neighborhood of the origin; hence, u∗ = δP∗

in a neighborhood of p. This shows that K has nonempty interior on each connected
component of -n−k when k < n

2 .
Finally, assume by way of contradiction that K contains a point p ∈ -n−k with

k ≥ n
2 . Then

dim(∂u∗(p)) ≥ dim(∂P∗(p)) = k ≥ n
2
,

so by Corollary 2.6, det D2u∗ ≡ 0. This contradicts the inequality (11), which implies
in particular that u∗ has a bounded sub-level set, inwhich it must have positiveMonge–
Ampère mass by the Alexandrov maximum principle. The first inequality in (11) also
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implies that K is compact, since ϕ > δP∗ outside a large ball, and this completes the
proof. ⊓-

4 Proof of Theorem 1.1

In this section, we let u∗ be a global solution to the obstacle problem with obstacle
P∗, as obtained in Proposition 3.6. We will show in dimensions n = 3 and 4 that the
Legendre transform of u∗ satisfies the conditions of Theorem 1.1. We first prove a
more general result that holds in any dimension:

Proposition 4.1 If ∂u∗ = ∂P∗ on K , then the Legendre transform u of u∗ satisfies the
conditions of Conjecture 1.4.

Proof We first claim that u∗ is smooth on Rn\K . If not, then by the results in [5], u∗

is affine along a line segment in Rn\K that has an endpoint in K . At this endpoint,
this contradicts that ∂u∗ = ∂P∗. In particular, ∇u∗ is a smooth measure-preserving
diffeomorphism between Rn\K and Rn\∂u∗(K ). Since

∂u∗(K ) = ∂P∗(K ) = !⌈ n
2−1⌉,

we conclude that ∇u is a smooth measure-preserving diffeomorphism between
Rn\!⌈ n

2−1⌉ and Rn\K . We also have on ∂u∗(K ) = ∂P∗(K ) = !⌈ n
2−1⌉ that

u = u∗∗ = P∗∗ = P = 0.

It only remains to show that det D2u = 1 in the Alexandrov sense away from !0,
where it has Dirac masses. To see this, we note for k < (n/2) that ∂u(Sk) is contained
in a finite union of codimension k planes; hence, it has measure zero for k ≥ 1. Thus,
for any Borel set A ⊂ Rn , we have

|∂u(A)| =
∣∣∣∂u

(
A ∩ !⌈ n

2−1⌉
)∣∣∣ +

∣∣∣∇u
(
A\!⌈ n

2−1⌉
)∣∣∣

= |∂u(A ∩ !0)| +
∣∣∣A\!⌈ n

2−1⌉
∣∣∣

= |∂P(A ∩ !0) ∩ K | + |A|,

and the first term is positive if and only if A ∩ !0 is nonempty. ⊓-

We now specialize to dimension n ≤ 4:

Lemma 4.2 Let u∗ be a global solution to the obstacle problem as obtained in Propo-
sition 3.6, and assume n ≤ 4. Then ∂u∗ = ∂P∗ on K .

Proof When n ≤ 2 each connected component K0 of K is compactly contained in
a connected component of -n , where P∗ is linear. The result, thus, reduces to the
case P∗ = 0, treated in [13]. (Or, apply Proposition 2.7 to conclude that K0 is strictly
convex, then apply Proposition 2.8).
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So assume that n = 3 or n = 4. Then are just two cases to consider: points
in ∂K ∩ -n , and in ∂K ∩ -n−1. Consider first a point y ∈ ∂K ∩ -n−1. After a
translation, we may assume that y = 0, and after rotating, adding an affine function,
and quadratically rescaling, we may assume that u∗(0) = 0, that

u∗ ≥ (axn)+ = P∗ in B1

for some a > 0, and that the interior of K intersects B1 ∩ {xn = 0}. We need to show
that ∂u∗(0) is the segment [0, aen] connecting the origin and aen . It is clear that

[0, aen] ⊂ ∂u∗(0).

Recall that by the first inequality in (11), u∗ has quadratic growth. It follows from
Corollary 2.6 and the fact that n ≤ 4 that ∂u∗(0) is contained in the xn-axis. Finally,
∂u∗(0) cannot contain a point of the form ben with b > a or b < 0, otherwise
u∗ > P∗ in one of {xn > 0} or {xn < 0}, contradicting that K contains a ball centered
on B1 ∩ {xn = 0}. Thus, ∂u∗(0) = [0, aen].

It only remains to consider a point y ∈ ∂K ∩ -n . Let K0 denote the intersection
of K with the connected component of -n containing y. After subtracting a linear
function, we may assume that u∗ = 0 on K0. If y is an extremal point of K0, then the
conclusion follows from Proposition 2.8. By Proposition 2.7, the alternative is that y
is in the interior of a segment in ∂K0 that has an endpoint in -n−1. Normalize the
picture as in the first case so that the endpoint of this segment which lies in -n−1 is
the origin, u∗ is tangent from above to P∗ at the origin and P∗ = (axn)+ for some
a > 0 in a neighborhood of the origin, and y ∈ {xn < 0}. Since y is in the interior of
the segment, we have

∂u∗(y) ⊂ ∂u∗(0) = [0, aen].

If ben ∈ ∂u∗(y) with b > 0, it follows that u∗(0) > 0, a contradiction. We conclude
that

∂u∗(y) = {0}

is a single point, as desired. ⊓-

Theorem 1.1 (in fact, Conjecture 1.4 in dimensions n ≤ 4) follows.

Proof of Theorem 1.1 Let u be the Legendre transform of the solution u∗ obtained in
Proposition 3.6.When n ≤ 4, the function u satisfies the desired conditions by Lemma
4.2 and Proposition 4.1. ⊓-

Remark 4.3 The simplest nontrivial instance of Theorem 1.1 is the case that # is the
segment-connecting ±en (see Fig. 3).
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Fig. 3 The graph of u when
# = [−en , en ], and n ≥ 3

Remark 4.4 The key point when n ≤ 4 is that ∂u∗(p) is either a point or a line segment
for any p ∈ Rn by the propagation result Corollary 2.6. In contrast, if n ≥ 5, then
∂u∗(p) can be two dimensional, so when one considers points, e.g., in ∂K ∩ -n−1,
then after normalizing as in the proof of Lemma 4.2 so that u∗ is tangent from above
to (axn)+ at the origin, the propagation result does not prevent ∂u∗(0) from having
points off of the xn-axis.

Remark 4.5 Amodel case for Conjecture 1.4 inR5 would be to take coordinates (z, y)
with z ∈ R3 and y ∈ R2, and let # be a regular triangle in the y-plane centered at the
origin. Then it is not hard to show that the function u constructed as above satisfies
that u ≥ 0, and that u is singular on {u = 0} = #. However, it is not obvious to us
whether u is smooth away from #. It remains a possibility, for example, which u is
affine when restricted to other triangles in the y-plane that share an edge with #.

Remark 4.6 By Theorem 1.5 from [7], "u is bounded by inverse distance from the
singular set !1 in our examples from Theorem 1.1. In this remark, we briefly discuss
some model behaviors for the Monge–Ampère metric D2u near !1.

First, we discuss the edges. Since ∂u maps each point in S1 to a convex set of
dimension n−1, the function u has a Lipschitz singularity on each edge. In particular,
"u grows exactly like inverse distance from S1. A cylindrically symmetric model for
such a singularity is the Pogorelov-type example:

E(x) = ρ + ρn/2 f (xn),

where x = (x ′, xn), ρ = |x ′|, and f > 0 is smooth, even and uniformly convex.
(This example has the Monge–Ampère measure bounded between positive constants
near the origin). Near the origin, the metric D2E has the behavior:

D2E ∼ ρ
n
2−2 ∇ρ ⊗ ∇ρ + ρ

n
2 en ⊗ en + ρ−1 (I − ∇ρ ⊗ ∇ρ − en ⊗ en).

We now discuss the vertices, where again u has the Lipschitz singularities. Amodel
for the behavior of u near an isolated vertex (the case # = {0}) is the radial function:

V (x) = r + rn+1,

where r = |x |. For r small, the metric D2V has the behavior:

D2V ∼ rn−1 ∇r ⊗ ∇r + r−1(I − ∇r ⊗ ∇r).
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If the vertex is not isolated, then u is affine along each edge in !1 that meets the vertex,
and we expect that the behavior of the metric D2u transitions from the model D2V to
the model D2E as one moves towards an edge.

5 Y-Shaped Singularities

The approach to constructing singular Monge–Ampère metrics by solving an obstacle
problem is flexible, and by changing the obstacle, one can produce examples similar
to the ones from Sect. 4 that are singular on a variety of graphs (not just the edges
of convex polytopes). For example, if we instead take P∗ to be the maximum of
finitely many affine functions, then the approach produces examples that are affine
when restricted to the line segments that connect pairs of points which are gradients of
P∗ in open regions of Rn that share an n − 1-dimensional face. To produce examples
with singularities that form a Y-shape, we need to refine our choice of obstacle. In this
section, we indicate how to construct such examples, again in dimensions n = 3 and
n = 4. More precisely, we show

Theorem 5.1 Let! be a finite union of line segments inRn that share a common vertex
and point in distinct directions from this vertex. Assume further that n = 3 or n = 4.
Then there exists a convex function u : Rn → R such that u ∈ C∞(Rn\!), u is affine
when restricted to any of the segments in !, and

det D2u = 1+
∑

q∈!0

aqδq ,

where !0 is the set of endpoints of the segments in ! and aq > 0.

In particular, when ! consists of three segments with a common endpoint, we have a
Y-shaped singular set. The singular set ! is not in general contained in a level set of
u (unlike the examples in the previous section), but it is possible to make this happen
when ! has certain symmetries (see Remark 5.3). Since the proof of Theorem 5.1 is
similar to that of Theorem 1.1, we just sketch the main steps.

Proof of Theorem 5.1: After a translation, we may assume that the common vertex is
the origin. By taking quadratic rescalings, we see it suffices to prove Theorem 5.1 with
singular set δ!, for some δ > 0 small to be chosen.

Step 1:ObstacleProblemThefirst step is to solve a global obstacle problem. In this
step, the dimension n is arbitrary. For some r0 ∈ (0, 1/4) depending on the directions
of the segments in !, we can find a collection {Li }Mi=1 of affine functions such that
∇Li are the nonzero endpoints of the segments in δ!, and the sets B1 ∩ {Li ≥ 0} are
congruent, pairwise disjoint, and have exterior tangent ball B1−r0 at points pi . Take
ϵ > 0 small so that {Wn ≤ ϵ} ∩ {Li ≥ 0} are also pairwise disjoint, then take δ small
so that {Li ≥ (Wn − ϵ)+} are pairwise disjoint and

max
i≤M

Li < Wn + ϵ̃ on Rn,
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for some ϵ̃ > 0 to be chosen later. Finally, let

ϕ(x) := max{Wn − ϵ, 0, L1, ..., LM }.

We observe that the sets {ϕ = Li } = {Li ≥ (Wn − ϵ)+} are pairwise disjoint.
For R >> 1, let u∗

R be the solution to the obstacle problem in BR with boundary
data and obstacle equal to ϕ, and measure dx . Since Wn + ϵ̃ is a supersolution to the
equation that lies above the obstacle, we have that

ϕ ≤ u∗
R ≤ Wn + ϵ̃ in BR .

Up to taking a subsequence, the functions u∗
R , thus, converge locally uniformly as

R → ∞ to a function u∗ on Rn that satisfies

0 ≤ ϕ ≤ u∗ ≤ Wn + ϵ̃ on Rn, det D2u∗ ≤ 1, det D2u∗ = 1 in {u∗ > ϕ}.

Step 2: The Contact Set The second step is to study the geometry of

K := {u∗ = ϕ},

and to show that to show that ∂ϕ(K ) = δ!. In this step, we assume that n ≥ 3. We
claim that K has nonempty interior in each of the (pairwise disjoint) n−1-dimensional
balls B1 ∩ {Li = 0}, and that K ⊂ {ϕ > Wn − ϵ}. To prove the first claim, we use that
0 ≤ u∗ ≤ ϵ̃ in B1. Provided ϵ̃ is sufficiently small depending on r0, we can use the
barrierwn, 1 in the same way as in the proof of Proposition 3.6 to show that K contains
a neighborhood of each point pi . The second claim follows from the strong maximum
principle. If u∗ = ϕ at a point in {ϕ = Wn − ϵ}, then u∗ + ϵ touchesWn from above at
some point in the open set {Wn > ϵ/2}. However, u∗ + ϵ > Wn in a neighborhood of
{Wn = ϵ/2}. SinceWn smoothly solves det D2Wn = 1 in {Wn > ϵ/2}, this contradicts
the strong maximum principle.

The set K is, thus, the union of M + 1 compact convex sets, one “central” set
(contained in {ϕ = 0}), and M “external” sets (each contained in one of {ϕ = Li }Mi=1),
such that the central set meets each external set along an n − 1-dimensional face and
the external sets are pairwise disjoint (see Fig. 4 for the case M = 3). Furthermore,
since K ⊂ {ϕ > Wn − ϵ}, we see that u∗ is in fact a global solution to the obstacle
problem with obstacle:

P∗ := max{0, L1, ..., LM },

and that

∂ϕ(K ) = ∂P∗(K ) = δ!.

Step 3: Subgradients on the Contact Set The last step is to show when n = 3 or
4 that the Legendre transform of u∗ satisfies the conditions of Theorem 5.1. It suffices
to show that ∂u∗ = ∂P∗ on K , by essentially the same argument as in the proof of
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Fig. 4 The obstacle ϕ, the
solution u∗, and the contact set
K when ! is a Y-shape

Proposition 4.1. (The only difference in this case is that the Legendre transform u is
linear, rather than zero, on each segment in δ!.) Showing that ∂u∗ = ∂P∗ on K when
n = 3 or 4 is the same as in the proof of Lemma 4.2, and this concludes the proof. ⊓-

Remark 5.2 The idea is to slowly lower the boundary data for the obstacle problemwith
obstacle P∗. At first, the solution will stick to the obstacle on only one region where
P∗ is affine. Eventually, it will stick on all such regions and the n − 1-dimensional
faces that join them. The game is to stop somewhere in between.

Remark 5.3 It is possible to construct instances of Theorem 5.1 where ! lies in a set
where u is linear, for example, when n = 3 and ! consists of segments of unit length
that start at the origin and end on the vertices of a regular polygon that does not contain
the origin.
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