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Empirical Validation of Network Learning
with Taxi GPS Data from Wuhan, China

Susan Jia Xu, Qian Xie, Joseph Y. J. Chow, and Xintao Liu

Abstract—In prior research, a statistically cheap method was
developed to monitor transportation network performance by
using only a few groups of agents without having to forecast the
population flows. The current study validates this “multi-agent
inverse optimization” method using taxi GPS trajectories data
from the city of Wuhan, China. Using a controlled 2062-link
network environment and different GPS data processing
algorithms, an online monitoring environment is simulated using
the real data over a 4-hour period. Results show that using only
samples from one OD pair, the multi-agent inverse optimization
method can learn network parameters such that forecasted travel
times have a 0.23 correlation with the observed travel times. By
increasing to monitoring from just two OD pairs, the correlation
improves further to 0.56.

Index  Terms—network inverse
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learning, multi-agent

I. INTRODUCTION

ANY studies have illustrated the importance to

accurately and precisely measure the attributes of an
urban transport system. Due to the rise of Big Data and Internet
of Things, there are numerous machine learning methods to
measure attributes of the transport system. Chow [1] provides
an overview of these techniques including several applications
like Allahviranloo and Recker [2] for activity pattern
prediction; Cai et al. [3] for short-term traffic forecasting;
Luque-Baena et al. [4] for vehicle detection; Lv et al. [5] for
traffic flow prediction; and Ma et al. [6] for network congestion
prediction. However, generic machine learning techniques are
not specifically designed to exploit the unique structure of
urban transport networks.

As a result, in recent years a theory of inverse problems (see
[7]) have emerged to capture network structure, dubbed
“inverse transportation problems” by Xu et al. [8]. If a
conventional model M that transforms a set of parameters 6 to
a set of outputs X as X = M(0), then the inverse model deals
with estimating the parameters @ based on observed outputs x
as § = M~1(x). Many types of inverse transportation problems
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have been proposed in the literature: inverse shortest path [9];
inverse linear programs for an assortment of transportation
problems [10]; link capacities in minimum cost flow problems
[11]; inverse vehicle routing problems [12;13]; general inverse
variational inequalities for equilibrium models [14]; and route
choice [15].

Despite the growing literature, inverse transportation
problems are designed to take a system level model and
estimate parameters of that model from sample data. This is
problematic because congested systems require estimation of
population attributes like flow in order to quantify congestion
effect parameters because the more congested the system the
more of an outlier it becomes. Ma et al. [6] is an example of this
type of effort, using deep Restricted Boltzmann Machines and
Recurrent Neural Networks to estimate population-level flows
based on taxi trajectory sample data. Another challenge is the
lack of consideration of behavioral mechanisms. Many
inference models, particularly those belonging to “network
tomography” (see [16; 17]), explains the state of the system
from the data but do not explain the behavioral mechanisms like
route choice on the flow attributes. The system-level inverse
transportation problems like Giiler and Hamacher [11] result in
NP-hard problems that are not scalable to practical size
networks.

Xu et al. [8] recently proposed a theory based on multi-agent
inverse optimization (MAIO) in which the capacity effects of a
network are inferred using sampling multi-agent inverse
transportation problems instead of solving a single system-level
problem. An agent in this context refers to either an individual,
or collective individuals, that makes travel decisions to interact
with a virtual environment (see [42,43]). This is possible under
the assumption that the agents sampled exhibit behavioral
characteristics like route choice preferences. The model infers
congested links’ capacity dual variables by using sample of
agents’ inverse shortest path problems. This method quantifies
and explains the congestion in the network, i.e. not just how
congested it is, but how much each link’s congestion impacts
the rest of the network (which is more interpretative than
methods like [6], i.e. we are not just predicting travel times in
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Fig. 1. Network monitoring architecture using method from [8].

the network but we are explaining the travel time in a part of
the network due to congestion in another part). A test of the
model using queried data from a highway network in Queens,
NY, demonstrated the methodology in being able to monitor the
network over time and use samples to update the network’s link
capacity effects.

That earlier work developed the theory for the method and
validated it using a controlled data setting with queried routes
across 56 different potential origin-destination (OD) pairs in
Queens, NY. While the time travel times correspond to real
data, (1) the sampling of OD pairs over time is not based on real
demand for information and (2) the realized route choices are
assumed to be the same as Google queries as opposed to
realized choices collected from the field. In practice, this
method would need to serve a system design illustrated in Fig.
1. The success of the system design depends on where the
sample data from end users are coming from (e.g. crowd-
sourced participants like Google Waze or GPS data from
regulated taxis, or both?). If route data collected from the field
only corresponds to certain OD demand, which OD demands
sufficiently monitor the network, and how many samples are
needed?

The contribution of this study is an empirical study to
validate these implementation issues: how effectively can we
use the MAIO method from [8] to monitor a 2062-link network
in Wuhan, China, using field data of realized route choices
collected from a controlled number of OD pairs? In [8], an
experiment was conducted using externally queried routes
made periodically in a lab to evaluate the performance of the
algorithm. Because the data source for the monitoring of the
network is from an existing sensor (Google), it only validates
the sensitivity of the algorithm to state changes. It does not
validate the methodology’s effectiveness at both sensing and
inference. This current study uses real trajectories from
sampling rates that reflect actual travel conditions made within

the network by travelers experiencing the congestion. It tests
the effectiveness of using sampled data from two OD pairs in
the network in acting as both sensors and inference
mechanisms. By proving the effectiveness using only two OD
pairs, the study gives credence to larger monitoring systems that
can make use of multiple OD pair trajectories. As Fig. 1 shows,
a monitoring system requires either processing of GPS
trajectory data to map it to a network data structure or a data
collection device that automatically outputs location data in the
network data structure. Since, many data sources are only
provided from GPS data, we also propose mapping algorithms
to match the location data to network data structures.

The remainder of the paper is organized as follows. Section
2 reviews studies using taxi trajectory data, and network
attributes (i.e. travel time) estimation method, including the
methodology from Xu et al. [8]. Section 3 presents the
experiment design, data preparation, and on-line system
simulation set-up steps. The data processing algorithms used in
this experiment are introduced in this section. Section 4
discusses the experiment results. Section 5 concludes.

II. LITERATURE REVIEW

In a real-world setting, one way to obtain traffic data in a
network is from GPS-equipped vehicles. Jenelius and
Koutsopoulos [18] called this kind of data as “floating-car”
data, where vehicles with GPS equipment installed record their
location and speed at fixed time intervals ranging from a few
seconds to minutes. As an important component of the urban
transport system, taxi offers an all-weather, convenient,
comfortable, and personalized travel service for the urban
residents, as well as plays a key role in the urban passenger
mobility development [19]. Taxi GPS trajectories data has been
widely used in transportation research, including travel time
estimation [20; 21] and travel behavior analysis [22 — 25], or
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for inferring travel momentum in a city [26; 27]. Such probe
data is useful for evaluating recurrent and non-recurrent
incidents to mitigate their impacts on traffic. Examples include
[39] — [41], where GPS data may be combined with other
sensors and count data to monitor the effects of incidents over
time.

Based on the taxi GPS traces and data mining technology, we
can obtain the experienced taxi driver’s route choice behavior
in real time and provide guides of shortest path optimal choice
for general public [28]. There are extensive studies of taxi
operations and route choice analysis; however, in this case
study, we do not aim at analyzing taxi driver’s practical travel
behavior or their activity analysis. The taxi trajectory data is
used as sampled heterogeneous agent information to test the
MAIO method with a large network.

There are numerous network congestion inference methods
using different traffic data. Early efforts in network tomography
from Vardi [16] and Tebaldi and West [17] proposed methods
to estimate flow distributions from observed link count data.
Other studies have sought to integrate route choice behavioral
mechanisms in the estimation [29; 30; 31; 32; 33]. Deep
learning models have been proposed for capturing network
congestion [6]. System level inverse transportation problems
have been proposed to estimate path flows of taxis to have
consistent network congestion characteristics [34], who
suggested adding a term in the optimization objective function
penalizing the travel time between the observation and the sum
of link travel times along the path.

The MAIO method from Xu et al. [8] introduces the dual
variables in the objective function. The values of dual indicate
the change of network state (such as congestion effects) in the
form of travel time. While the method does not explicitly model
traffic flow dynamics, it is implicitly capturing them through
the estimation of the effects using a linear optimization model
(see [44, 45]).

Xu et al. [8] defined a network G(N,A) that receives
observations from a sample P of agents seeking to travel from
an origin node r; € N to a destination node s; € N, Vi € P. In
the MAIO method, we assume each agent i € P is rational
traversing a network modeled as a capacitated multicommodity
problem shown in matrix form in Eq. (1) — (4), where c,, a €
A, is the free flow link cost, x,, is the flow of OD pairm € M,
A is the node-link incidence matrix, b,, is +¢,, at the source
node for OD pair m, —q,, at the sink node, and 0 otherwise.
Uy, a € A, is the link capacity. In the case where there are more
factors to choosing a route (e.g. in multimodal networks) a route
choice model can be estimated to determine a generalized cost
function to replace c,.

i T
meZc Xm )

m
Subject to
Ax,, = by, vmeM 2)
Z Xm S U (3)
meM

Xm =0, vme M 4

Solution of this problem can involve a decomposition into a
restricted master problem to determine the dual variables w,
corresponding to link capacities u, . Based on the dual
variables, subproblems for each OD pair can then be solved in
unbundled form as unconstrained shortest path problems shown
in Eq. (5) — (7), where b is a vector of either +1 at the origin, -
1, at the destination, and 0 otherwise. The notation ¢ represents
the shortest path operator, where ¢~ is the inverse operator.
The dualized link costs are cost ¢,, i.e. C; = ¢, + w,. When
there’s no congestion, w, = 0. When there is sufficient
congestion to cause behavioral change in route choice, w, > 0.

min¢ = (c +w)T
lin ¢ (c+w)'y (5)
Subject to
Ay =b (6)
ya € {011}1 ae€ A (7)

The MAIO exploits this structure to estimate each agent’s
perception of w,, denoted as w, ;. In the inverse problem, we
observe y; for each agent i € P. If the path chosen is the
shortest path according to free flow conditions, then w,; = 0
on the path chosen. If another path is chosen, the w, ; for the
free flow shorter path needs to be increased. Increasing them
optimally to suit each agent is an inverse shortest path problem
shown in Eq. (8) — (12) as derived as a linear program from
Ahuja and Orlin [10], where v; are the unbounded node
potentials. This problem assumes prior dual variables for each
link capacity constraint are available, w. The objective is to
minimally perturb from the priors to obtain a new dual variable
w; =W —e; + f; for agent { € P based on observing their
chosen route y; (Eq. (8)), subject to weak duality (Eq. (9)),
strong duality (Eq. (10)), capacity dual variable feasibility (Eq.
(11)), and non-negativity constraints (Eq. (12)). w; =
¢ (g, w,y}) is a function of the OD locations of the agent
represented as their graph parameters g;, the prior, and the
chosen path y;".

in ¢’ t=etf; (8)
Subject to

ATy, <c+w—e +f )

bTv,=(c+w—e + f)Ty" (10)

e—fis<w (11)

e, ;=0 (12)

In an online setting, we assume the population P arrives
sequentially over time. In that case, the value of w is obtained
from a previous agent observation { — 1 as w = w;_; and used
to feed a current observation i to update w; . This is
summarized in Algorithm 1. It makes use of inverse shortest
path problems, which can be solved as computationally
efficient as other shortest path algorithms (see [8]), which are
known to be solvable with O(nlogn) efficiency. The
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algorithm therefore uses trajectory data as sensors and the route
decisions to support the inference.

Algorithm 1: online learning algorithm to update system
capacity dual variables

0. Given: a prior (obtained from a system) wy = 0.
1. For each new arrival i,
a. Setw =w_,.
b. Solve an inverse shortest path problem with
augmented link costs, w;' = ¢~1(g;, W, x}).

In [8], the only validation done is on the sensitivity of the
algorithm to state changes in the network, using externally
queried (Google) routes made periodically in a lab. It does not
validate the methodology’s effectiveness at both sensing and
inference, which requires real in-situ data and a carefully
designed experiment that compares that data with inference
sensed using the same data.

No tests have been conducted to validate the correlation
between output dual variables acting as both inference and
sensor from real data. Without this, there is no empirical proof
that the method itself works in that manner, which is necessary
for traffic network managers to consider adopting the
technology.

III. PROPOSED EXPERIMENT DESIGN

We test the multi-agent 10 approach using real taxi data from
Wuhan, China. Having observed travel times of the taxis along
links, can we demonstrate the existence of correlations with the
travel times generated from our monitored link dual variables
and the realized travel times under a simulation of an online
operation? That is the research question that needs to be
addressed by this empirical study. We consider the following
criteria to evaluate:

i. Comparison of the predicted route and the actual route
chosen;
il. Compute the correlation between real travel times and

estimated travel time.

Based on these two criteria, we design an experiment
involving multiple time interval observations and evaluate the
performance of the MAIO method. Our goal is to show that
even with limited OD data, we can see improvement in
accuracy of the monitoring system as we go from one OD pair
sampling to two OD pair sampling, because additional
information will only improve the output.

A. Data preparation: network

The data consists of taxi GPS trajectories from Wuhan, China.

Wuhan is the capital of Hubei province in China, with a
population of 11 million (9*" largest city in China). In the mega-
city level congestion list [36], Wuhan was ranked 10%. As
shown in Fig. 2, Wuhan is composed of thirteen districts
separated by the Yangtze River. Hanyang and Wuchang
districts form part of the urban core of Wuhan, with both served
by metro lines.

An urban transport network from Wuhan, China overlaid on
OpenStreetMap is shown in Fig. 3. The network attributes are

available on GitHub [38]. Sampled data of free flow link travel
times (“FF time”) are presented in Table I. There are 2,833
links and 855 nodes in the extracted urban network. The
network is designed to monitor two origin-destination (OD)
pairs (see red dots in Fig. 3): Zhongjiacun Station (Line 4 and
Line 6, Hanyang District) to Wuchang Rail Station (Line 4 and
Line 7, Wuchang District), and Zhongjiacun Station to
Pangxiejia Station (Line 2 and Line 7, Wuchang District),
which are selected from hot spots of pick-ups and drop-offs in
the city.

TABLEI
SAMPLE OF LINK ATTRIBUTES FOR THE STUDY NETWORK
Link ID Start Node ID End Node ID Free Flow Time_sec
(a) (0) (D) (c)
9 12 1500 16.04
10 12 588 9.34
13 20 1516 7.03
14 20 1504 37.43
15 20 28 5.06
16 22 237 17.09
17 22 1298 14.14
18 22 17 2.66
19 28 20 5.20

The four-hour taxi trajectory data on May 6%, 2014, from
5AM to 9AM, is used for the test. This period is the peak of the
day as shown in the time of day trip times in Fig. 4. The period
analyzed represents non-stationary trip volumes so if the
method works for this it is trivial to extend this to other time
periods as well.
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Fig. 2. Wuhan districts (source: [37]).
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Algorithms for path reconstruction using GPS coordinates
are summarized in Algorithm 2 — Algorithm 5. The processed
path data, along with the network information and network
learning code, are all located in the GitHub [38] site.

Fig. 3. Study urban traﬁsport network in Wuhan, China.
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Fig. 4. Average trip time in minutes (left axis) and distance in km (right axis)
by time of day.

B. Data preparation: simulation setup

The network is initiated under free flow condition. The multi-
agent 1O approach keeps updating the travel cost for the whole
network every time new path information is obtained (e.g. from
the taxi GPS records). When a new path is obtained, we update
the effect that the link capacities have on the path using
Algorithm 1 such that the observed path is perceived by the
agent to be optimal. We monitor and update the system over 4
hours in this case.

The following steps are taken for the experiment.
1. Initiate with values of dual variables equal to zero for all
links in the urban transport network in Wuhan, China.
2. Starting at 5:00AM, and every 5 minutes thereafter until
9:00AM,

a. For all the trajectories that arrived in that period,
identify origin and destination (OD) pairs.

b. Run the path reconstruction algorithms (see
Algorithm 2 — Algorithm 5) to get real-time
travelers’ choices for each of the OD pairs (in this
step, the traveler’s choice is assumed as the
shortest path).

c. Compare the predicted route and the actual route
chosen.

d. Run Algorithm 1 to update the link dual variables
based on the reconstructed path.

e. Compute the correlation between real travel times
and estimated travel time.

As congestion occurs in the network, the effects of the
capacity on shifting routes (see Fig. 5 for an illustration of these
changes over different time intervals) should be recognized by
the network learning algorithm. The dual variables should
reflect links that become more congested with binding capacity
effects that result in route diversions. The magnitudes of the
dual variables should give a relative measure of the insufficient
capacity in the link with respect to other links.
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Fig. 5. Sample of route diversions for one OD (from Zhongjiacun Station to
Wuchang Rail Station).

C. Data preparation: taxi trajectories

There are about 8,200 taxis operating over 16 hours a day in
the city. The dataset used in this test, referred to as the “City of
Wuhan Taxi” (COWT) data, contains GPS trajectories of all
registered taxis in Wuhan, China. Each GPS entry has
information including taxi id, longitude/latitude, time stamp,
instantaneous velocity and heading, the operation and
occupancy status, as shown in Table II. The minimum interval
between two data points is around 15 seconds, and the
maximum one is 2 minutes.

TABLE II
SAMPLE DATA OF COWT

ID'  Timestamp® Longitude Latitude Angle’ Speed® Operation Status®

10287 5/4/2014 114.300472  30.557818 64 20 Operate 0
23:59

12448 5/4/2014 114.137636  30.600324 55 15 Operate 0
23:59

4864 5/4/2014 114.214882  30.571331 94 51 Operate 1
23:59

8695 5/4/2014 114.320283  30.636952 0 0 Operate 0
23:59

8538 5/4/2014 114298862  30.602568 0 0 Operate 1
23:59

2034 5/4/2014 114.197638  30.558353 0 0 Operate 0
23:59

6700 5/4/2014 114.323372  30.521492 0 1 Operate 0
23:59

5620 5/4/2014 114.415055  30.478973 184 54 Operate 0
23:59

10179 5/4/2014 114.282767  30.612157 190 25 Operate 0
23:59

1-ID: Taxi ID; 2-Timestamp: sampling time; 3-Angle: North (0) and South
(180); 4-Speed: kilometer per hour; 5-Status: occupied (1) and vacant (0)
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The occupancy status associated with each GPS record,
which indicates whether there is a passenger in the taxi, is the
input to trip segmentation (e.g. the process if dividing taxis
trajectories into occupied and vacant trips). A simple rule-based
filter can identify unrealistic short occupied trips and fix sudden
flips in occupancy status. The processing of taxi trajectories
includes the following tasks:

1. GPS points are mapped to the road network based on
their coordinates using QGIS

2. Outliers in the trajectory are filtered based on a simple
rule, i.e., the speed associated with each GPS points
cannot be greater than 120 km/h. Due to the data loss,
some taxis have longer time interval between two
consecutive GPS points.

3. Trajectories are split into sequences using a time gap
threshold of 300 seconds (5-min).

D. Data preparation: hotspot identification

Trajectories are split into occupied and vacant trips primarily
based on the observed occupancy status. The distribution of trip
origins and destinations on the day of May 6% 2014, is
reviewed, and it is expected that pick-ups and drop-offs are
more likely to occur in hot spot areas. Hence, heatmaps of taxi
pick-ups and drop-offs are created in QGIS 3.4 as shown in Fig.
6(a). The heatmaps show where there is a high concentration of
pick-ups and drop-offs, respectively. The hotspots are identified
as clusters in Fig. 6(b) using the Hotspot Analysis Plugin in
QGIS, which are extracted from the heatmaps. In this case, we
select the metro station — Zhongjiacun as the origin, and another
two metro stations: Wuchang Rail Station and Pengxiejia as two
destinations to have a controlled setting for this experiment.

E. Data preparation: trip extraction

We define a trip as a journey made by a taxi from picking up
passengers to dropping off passengers. Since COWT data
provides us with the “status” information, we regard a taxi is
picking up passengers if the “status” changes from 0 to 1 and
dropping off passengers if the “status” changes from 1 to 0. The
phrase trip trajectory refers to the GPS records generated
during part of a trip, which means the status is always 1 in a trip
trajectory. Once the OD pair for each experiment is determined,
we select those trip trajectories with a starting point close to
(within a specific threshold a, say 500 meters) the origin and
an ending point close to the destination, as shown in Algorithm
2. The following notations used in the algorithms are listed
below.

Notation:

0: Origin

D: Destination

E: Set of all directed edges representing real-world roads

G : Directed graph output by Road Network Abstraction
algorithm

N: Set of nodes (centroids)

A: Set of arcs (links)

a, 3, v: Proximity thresholds for searching GPS points close to
OD, neighboring nodes, and candidate links, respectively

M: One-to-many mapping between node id and node GPS

T: A trip trajectory between the origin and the destination

-
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Fig. 6. (a) Heatmaps of taxi pick-ups and drop-offs on May 6th, 2014 in Wuhan,
China; (b) Hot spots of taxi pick-ups and drop-offs on May 6th, 2014, and the
OD studied in the test

B: A “best-fit path” including a sequence of links that best fits
a GPS trip trajectory
h: Equidistant point (hole) on a road (of a link)

Algorithm 2 Trip Extraction

Data: Dataframe df contains GPS traces of a taxi, an origin and a destination
Result: All trip trajectories between origin and destination, allowing deviations
within the threshold a
curCarld = -1
forall row in df do
carld = row['Car Id']
if carld '= curCarld then
inBetween = False # True if the point belongs to the sub-trajectory
between OD
pickPassenger = False # True if the car picks up a passenger
havePassenger = False # True if the car is serving
dropPassenger = False # True if the car drops off a passenger
end
p=(row['lot'], row['lat']) # a point with longitude and latitude information
if distance(p, origin) < a then
inBetween = True
if row["status"] == 1 and not havePassenger then
pickPassenger = True
end
end
if distance(p, destination) < a then
inBetween = False
if row["status"] == 1 and havePassenger then
dropPassenger = True
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end

end

if dropPassenger then
finish reconstructing route
record the route information

end

if inBetween and pickPassenger then
havePassenger = True
start reconstructing route
pickPassenger = False
continue

end

if havePassenger then
continue reconstructing route

end

end

F. Data preparation: road network abstraction

The OpenStreetMap shapefile consists of several features
and each represents a real-world road fraction with a list of GPS
points. We obtain a directed graph by drawing a directed edge
from the first GPS point to the last one for each feature. If a
feature has a "oneway" attribute B, the corresponding road is
bidirectional. Hence, we add an additional directed edge in the
opposite direction for such features. Denote the set of all

directed edges as E. Each edge has two endpoints and a weight

length

equal to free-flow time calculated as where the

maxspeed ’
length is measured from the feature and the maxspeed is an
attribute of the feature denoting the speed limit of the road. The
missing values of "maxspeed" are filled according to the
attribute "fclass" (tags for identifying the kind of road).
Considering there are many roads with a short length,
especially at the crossroads and roundabouts, we remove such
roads (edges) by merging the endpoints close to each other,
replacing them with a centroid (see Algorithm 3). We define
"close" by a threshold £, say 50 meters. The output of
Algorithm 3 is a directed graph G = (N, A), where N is the set
of the centroids (nodes) and A is the set of arcs.

The main idea of the grid method (see geometric hashing [35])
used to speed up in Algorithm 3 is to first find the boundary of
the road network and divide the network into grids of the same
size according to the side length of the boundary, then search
for the nearest node in the adjacent grids (with Manhattan
Distance not exceeding length along one grid). In the specific
implementation, each node has a copy in its 8 adjacent grids.
Now the nearest node can be searched in one grid, which greatly
reduces the search time (brute-force approach must traverse all
nodes to calculate distances between them).

Algorithm 3 Road Network Abstraction

Data: E = {e | e = (point,, point,)} contains all edges data. Each edge contains
two endpoints and each endpoint contains GPS (lat and lot) information.
Result: Output a graph G = (N, A) representing E. Merge those endpoints
whose distances between each other are less than specific threshold 8 (say 30
meters) to a node in 4.}
Let M = {} be a one-to-many mapping between node id and node GPS.
Let N= {}, 4= {} be the set of nodes and arcs.
i=1;
forall e = (pointl, point2) € E do

NearestNode returns the id of nearest node in M

n = NearestNode(point;, M); n; =n

forall p € M [n] do

if distance(p, point;) > [ then

n=ii=i+1,
N=NUny
M =MV {(n,, point)};
break;
end
end
if n; == n then
M=MU {(n;, point))};
end
n = NearestNode(point,, M); n; =n
forall p € M[n] do
if distance(p, point;) > [ then
Li=i+1;
N=NU {}1_7};
M=MU {(ny, point,)};
break;
end
end
if 7, == n then
M= MU {(n, point,)};
end
if (n;,n,) & A then
A=AV {(n, ny)};
end
end

G. Data preparation: best-fit path

The critical step in the simulation is to reconstruct the actual
path of a taxi based on its GPS trip trajectory. However, given
OD pairs on the directed graph, there are multiple candidate
paths starting from the origin and ending with the destination,
even if the nodes and links are not allowed to be accessed
repeatedly. To select an optimal path among the candidate paths,
we give the definition of the "best-fit path" here.

Definition 3.1 Given a directed graph G(N,A) and a trip
trajectory T = [py, P2, -, Pm] of GPS points, where A
consists of links representing real-world roads on the map. Each
p; is an observed GPS point containing longitude and latitude
information. Let t(a) be the tail of link a and h(a) be the head,
and c, is the length of link a. A "best-fit path" B =
{ai, ay, -+, a;} (a; € A) is a minimum length directed path
argming Y,ep Cq {h(ai) =tla;y)Vi=1..k—13j=
1,...k: d(pl-, a]-) <yvi=1,..m-— 1}. Here d(p, a) is the
projection distance between point p and link a, y is a pre-
defined threshold.

Considering 1) the potential GPS errors that bring troubles to
the search of “best-fit path” and 2) relatively large time intervals
between adjacent GPS records that can lead to many possible
paths, we base our path reconstruction algorithms on two
assumptions:

1. GPS errors do not exceed the threshold y.

il. As a rational man, a taxi driver often locally chooses

the shortest path (between the moments when adjacent
GPSs are collected)

H. Data preparation: path reconstruction

There are some difficulties with path reconstruction. First,
the GPS points have certain inaccuracies. It's hard to tell which
road a taxi is on, simply return the nearest link may not always
be correct. Consider the following three cases: 1) the taxi is on
a bidirectional road, the brute-force approach returns the link
with opposite direction to the correct one; 2) there is a highway
right above a road, the brute-force approach returns the
highway when the taxi is actually on the road or the other way
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around; 3) the taxi is close to the intersection of two roads, the
brute-force approach returns the link intersected with the
correct one. Second, even if we can decide the road information
of two consecutive GPS points, the two roads may be disjoint
because the interval between the two data points may be long
enough to pass multiple roads (it may take only 20 seconds to
pass a block). We need to do data imputation. For example,
when a taxi is crossing the Wuhan Yangtze River Tunnel, there
is no GPS record due to the bad signal. However, we can use
the last GPS record before entering the tunnel and the first one
after exiting the tunnel to inference the missing roads (tunnel).
Last, we have to select the best-fit path from several possible
paths for a GPS trajectory.

Considering the first difficulty, we find several link (arc)
candidates for each point on a trip trajectory (see Algorithm 3).
As for the second difficulty, each time we obtain link candidate
sets X and Y of adjacent GPS, for each head x in X and for each
tail y in Y, we find the shortest path from x to y using
Dijkstra's algorithm (see Algorithm 4). PunchLine returns a
mapping M’ between link id and hole GPS. A hole is one of the
equidistant points (including endpoints) on the road represented
by a link. NearestHole returns the link id and hole GPS of the
nearest hole in M". GetallLinks returns all links if there exists a
hole of the link such that the distance between the hole and p is
less than the threshold y . The brute-force approach to
implement GetallLinks runs in O(TE) time, so we use the grid
method to speedup.

Since the maximum time interval is just 2 minutes, we
consider the shortest path algorithm is reliable to fill in only a
few missing toads. Now with several possible paths for a GPS
trajectory, we choose the shortest one as the best-fit path (see
Algorithm 5). Shortest(n;, n, B) is a function that gets the
shortest path B, from »; to n with the knowledge B.

Two steps can be time-consuming. The first is to find
candidate links. The brute-force approach searches for real-
world roads corresponding to all arcs in the directed graph and
calculates the projection distance between each GPS point and
each road. The second is that we need to traverse not only all
candidate link sets, but also all candidate links in each set, and
repeatedly call Dijkstra's algorithm for each combination of
candidate links. For the former, we consider drilling equidistant
holes for each road and then searching for the road where the
nearest hole is located. In this way, we no longer need to
calculate the projection distance between a point and a curve
(road), but the Euclidean distance between a point and a point
instead. Here we also use the grid method mentioned above to
speed-up. The only difference is that if nothing returns after
searching the grid and the 8 adjacent grids, we continue
searching the grids in outer layers until we reach a threshold.
For the latter, we also apply some speed-up methods: 1) using
tree data structures and dynamic programming; 2) merging
duplicate segments of candidate paths.

The experiment parameters are summarized in Table III. A
plot of the observed path travel time/free flow travel time ratio
over the 180 samples is shown in Fig. 7.

The next section provides the results of monitoring with the
MAIO method and comparison of estimated trip travel times
using the inferred capacity dual variables w;" to the observed
travel times.
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TABLE III
SUMMARY OF EXPERIMENT PARAMETERS
Number of nodes 855
Number of links 2833
Observation period from 5AM to 9AM on May
6™, 2014
Average time between observations 5 minutes
Number of time intervals 48
Number of samples observed for OD 1 132
Number of samples observed for OD 2 48
Number of difference path taken for OD 1 53
Number of difference path taken forOD 2 | 29
Average observed path travel time/free | 2.72
flow travel time ratio
IV. RESULTS

A. Simulation of online monitoring

We start with a single OD pair (OD 1: Zhongjiacun Station
to Wuchang Rail Station). The MAIO method is implemented
in MATLAB R2017a calling the IBM ILOG CPLEX
Optimization Studio v12.8 to solve the inverse shortest path
problem in Eq. (8) — (12). Each run to update the dual variables
takes less than a second to process.

Observed path travel time/free flow travel time ratio

Fig. 7. The observed path travel time/free flow travel time ratio over 180
observed routes from 2 OD pairs.

Algorithm 4 Get Link Candidates

Data: M is a one-to-many mapping between node id and node GPS. G = (N, 4)
contains nodes and arcs of the whole graph. T'=[p,, p>, ..., p.] is a trip trajectory
(series of GPS points) of a vehicle. Each p; contains longitude and latitude
information.
Result: Output a sequence of candidate link sets S=[C}, C5, ..., C,,]. Each C;is
a set of candidate link where each link has GPS p;. Link a has p; if p; is close to
a (within threshold y).
Let S =[] be the sequence result.
'=PunchLine(M, G)
for allp € T'do
(a, h) = NearestHole(p, M ");
if distance(h, p) <y then
C = GetallLinks(p, M, y);
end
else
C={a};
end
Append Cto S;
end

Algorithm 5 Get Best-fit Path

Data: G = (N, 4) contains nodes and arcs of the whole graph, S=[C}, C>, ...,
C,,] is the sequence of candidate link sets, where C; = {a;;, a2, ...} is the
candidate link set of GPS p;.

Result: Output best-fit path B = (n,, no, ..., nx+1) passing 7 where each n; € N
is a node.
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fori €[1, m] do
Let C'={ n|n € A[a), a € C;} be the set of endpoints (nodes) of all links in
G
end
Let S = {} be the set of all possible paths
forall n € C'; do
B=(n);
Sp=SzU {B}
end
i=2;

while i < m do
's=1{} #S'sis the new possible path
forall n € C'; do
forall B € Sz do
B, = Shortest(n;, n, B);
record new B'=B || B, # get the shortest path B’ ending with n
end
Ss=8%UB’
end
Sp =S’ # the set of all possible paths that end with points in C
i=it1
end

return the shortest path in Sp

Fig. 8(a) shows the trajectory of the link dual variables (the
ones that became binding) as they evolve from one new
observation update to the next. The figure illustrates the
sensitivity of the method to changes in the network parameters
over time, based on the 132 observed individual route choices.
There are 409 links traversed by taxis from Zhongjiacun Station
to Wuchang Rail Station in the morning from 5:00 AM to 9:00
AM, and dual variables are positive on 25 links. Those links are
highlighted in red in the map, and ones with higher dual
variables are labeled.

al pe

Link capacity d

(b)

Fig. 8. (a) Trajectories of link dual variables as estimated using Algorithm 2.1
for study network over a 4-hour period; (b) Updated dual variables from new
observations as new OD added in the network.

If this result was true, it suggests that link 1708 (road segment
near the transport corridor) has the highest dual variable (i.e.

446 sec) before 6:35AM, which means that the link 1708 was
the most congested before the congestion was eliminated
between 6:35AM and 7:25AM. Then there is a light delay at
110 seconds, and it is not back to 0 again until 7:55AM. This
suggests there was an incident in the earlier spike as it was not
sustained. On the other hand, link 1733 has a sustained
congestion throughout the whole period, suggesting heavy
usage under recurrent congestion effect. These results confirm
the method from Xu et al. [8] in being able to estimate dual
variables (or congestion effects) in real-word urban network
that can provide interpretable insights to a decision-maker.

What happens if we sampled from multiple OD paths
instead of just one (changing our sampling frame)? We add
one more OD pair to observations (OD 2: 48) and re-run the
experiment to see how the network state changes. The
temporal profile of link dual variables looks quite different.
The observed links are mapped on the left in Fig. 8(b), while
the link dual variables are updated as shown in the profile on
the right of Fig. 8(b). The dual variable for link 1708 drops
significantly as compared to the one from monitoring a single
OD only. This demonstrates that the effectiveness of the
MAIO method depends on effective sampling across different
OD pairs to provide more comprehensive coverage over the
network. Focusing only on data from a limited set of OD pairs
can limit the correctness of the magnitude. As more route
observations over different parts of the network are
considered, they provide more information about the dual
variables, which changes the magnitudes of the other paths
that overlap. Ideally, every OD pair should be sampled, but
this may not always be possible.

B. Correlation between observed travel times and online
monitoring

Finally, we include a comparison between real travel times
and estimated travel times to show the accuracy improvement
on estimation. We understand that this is data drawn only from
two OD pairs, so we do not expect a complete picture. Rather,
we want to demonstrate that even with only two OD pair
sampling, we can achieve some accuracy in the monitoring for
the whole network and this improves upon the accuracy
achieved with only one OD pair sampling.

Fig. 9 shows similarities between estimated travel times (i.e.
free flow travel time plus estimated dual variables on traveled
links) and real travel times (i.e. the time stamp of last GPS
points minus the first in each trip segment) for all observed
route choices. There are 180 observations in total, of which 48
observations are from the new OD.

We can draw two conclusions. First, graphically estimations
based on the MAIO method using two OD sampling is clearly
more accurate than using only one OD sampling. Second, when
we compute the correlations between the observed and
estimated travel times, we see that the correlation value for the
single OD and two OD pairs are 0.23 and 0.56, respectively.

We conduct a hypothesis test on the correlation [46] between
the n = {132, 180} observations of the estimated travel times
and observed travel times for the single OD and two OD
scenarios. We test Hy: p = 0 against the alternative Hy: p # 0
and obtain the following test statistic.
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The p-values are smaller than the significance level 0.05, we
can conclude that the correlations are statistically significant
using only 2 OD pairs.

This provides validity that using only samples from only two
OD pairs we can get a good picture of the actual network, and
it improves significantly (more than doubling the correlation)
from one OD pair sampling. This suggests that the MAIO
method can provide a good fit to the true observations. This is
a statistically cheap method as it does not require forecasting
population flows. To claborate, the results suggest that a
practitioner can implement a monitoring system that can
observe route choices made along a controlled set of OD pairs
over time, and use those results to explain congestion effects
throughout the network in real time and evaluate intervention
strategies as highlighted in Fig. 1.

Observed Travel Time VS, Estimated Travel Time

Fig. 9. Estimated travel times and real travel times for 180 observed routes
from single and two OD pairs

V. CONCLUSION

The proposed MAIO model in Xu et al. [8] infers capacity
effects throughout a network using only GPS probe samples
without the statistically costly step of forecasting population
flows. However, the earlier study only provided a theoretical
argument and numerical illustration using real data. No
validation of the accuracy of the method in monitoring a system
is provided. We address this research gap by applying the
MAIO method to taxi GPS data in a controlled network setting
to simulate an online environment.

Several conclusions are drawn from this empirical validation
experiment. Network system attributes like link capacity dual
variables can be updated using only samples of individual route
observations (e.g., taxi GPS trajectories), without estimating the
total link or path flows. This demonstrates that the MAIO
method can cheaply monitor a transportation network’s system
performance over time. The dual variable changes show that the
inferences model is indeed sensitive to changes in the system.
As traffic increases from 5:00 AM to 9:00 AM in the study
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period resulting in more spillbacks and incidents impacting link
capacities, the set of dual variables steadily increases on
average, as shown in Fig. 8. The accuracy of the inference is
illustrated by the correlation between observed travel time and
estimated travel times based on the dual variables updated from
the MAIO method. The visual comparison (see Fig. 9) indicates
the similarities and how they improve after sampling from one
OD pair to two. The higher value of correlation for 2 OD pairs
shows that the multi-agent IO method performs well in
estimating dual variables (or congestion effects) in the form of
travel time, and more observations from other OD pairs will
only enhance the model performance.

One of the major difficulties in this paper is data processing,
that is, how to extract and reconstruct the best-fit paths from
raw taxi GPS trajectories. Both GPS errors and the lack of
information caused by the large interval between adjacent GPS
need to be considered. The path reconstruction process is
performed by implementing several algorithms: trip extraction
algorithm obtaining trajectories that meet the requirement of
our experiments, the road network abstraction algorithm
converting the complex map into a directed graph, the candidate
edge algorithm finding candidate edges for each GPS points,
and the best-fit path selection algorithm applying various
pruning techniques and acceleration techniques to efficiently
select the best-fit path from a large number of candidate paths
for each trajectory.

Future work should implement this system described in Fig.
1 in a real-world setting using GIS tools and use the monitoring
with predefined thresholds to set alerts for dual variables in an
online dashboard. Related work can also include monitoring a
network before, during, and after a disaster to quantify the
impact of dual price increases due to capacity degradation.
Since user GPS data may not be freely shared due to privacy
concerns, we may experiment with using a blockchain design
to anonymize GPS data shared by users or setting up a
differential privacy-oriented database [1].
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