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ABSTRACT 

 

While public transit network design has a wide literature, the study of line planning and route 

generation under uncertainty is not so well covered. Such uncertainty is present in planning for 

emerging transit technologies or operating models in which demand data is largely unavailable to 

make predictions on. In such circumstances, we propose a sequential route generation process in 

which an operator periodically expands the route set and receives ridership feedback. Using this 

sensor loop, we propose a reinforcement learning-based route generation methodology to support 

line planning for emerging technologies. The method makes use of contextual bandit problems to 

explore different routes to invest in while optimizing the operating cost or demand served. Two 

experiments are conducted. They (1) prove that the algorithm is better than random choice; and 

(2) show good performance with a gap of 3.7% relative to a heuristic solution to an oracle policy.  

 
Keywords: Transit network design, line planning problem, reinforcement learning, route generation, 

contextual bandit problem  
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1 INTRODUCTION 

 

Public transit network design (see [1, 2]) involves five general steps: route design, frequency 

setting, timetabling, vehicle scheduling, and crew scheduling. The collective problem is generally 

regarded as intractable and algorithms developed over the years addressed subgroups, such as the 

line planning problem (LPP) [3] to combine route design and frequency setting. Algorithms have 

advanced far (e.g. [4]) since the earliest efforts in line planning [5, 6], but fundamental challenges 

remain. One challenge that continues to be actively studied is the route set construction problem 

[7]. Others include transfer optimization [8], the NP-hardness of the problem [9], and the 

complexity of user route choice involving hyperpaths and varying congestion effects [10].  

 The underlying component of LPPs is the generation of the route set (e.g. [7]) which assumes 

a deterministic demand setting, i.e. the origin-destination (OD) demand are known in advance as 

constants or functions of system performance. However, uncertainty in demand is a very 

significant problem. Inaccuracies in transit project demand forecasts are well-known [11] with rail 

investments on average overpredicting demand by 40% [12]. With the high capital and operating 

costs of transit, designing routes under this uncertainty can be very costly. Even the cost of 

reducing this uncertainty through surveys can be an expensive undertaking. For example, Chicago 

Metropolitan Agency for Planning budgeted $2.7 million for their household travel survey, asking 

12,000 households out of more than 3 million households within their region for 9 months, ending 

up sampling only 0.4% of the total population [13, 14]. The degree of uncertainty is further 

pronounced for emerging transit technologies; new types of services like microtransit [15] that can 

use crowdsourced data or shared autonomous vehicle fleets [16] have little to no data to begin 

with, and each new city deployment requires starting from scratch.  

 Costly information collection is an important problem. When data is limited, even knowledge 

of the distributions of the demand is limited. A bus company choosing to deploy a route over one 

of two regions would be able to not only serve that region but also learn important details about 

the demand in that region that they could have otherwise learned about the other region. Optimal 

information collection in a network setting is an emergent topic (e.g. [17, 18]) that involves 

deploying resources to proactively learn the system state/parameters to maximize cumulative 

rewards. Methods in this class of problems fall under reinforcement learning [19], with one 

popular concept being the “multi-armed bandit” problem [20].  

 We propose a new algorithm for the sequential route design problem. For the sake of better 

comparison of algorithms, we restrict the decision variables only to route design within the LPP 

and ignore frequency setting or timetables (although the method can work with those 

considerations as well). The objective of such an algorithm is to strategically sequence the 

operation of routes in a network over time such that earlier routes formed would act as sensors to 

learn the characteristics of the demand so that the cumulative reward over a finite horizon is 

optimized. This is the first such study to consider sequential route design under uncertainty, and 

the first to incorporate reinforcement learning theory to generate transit routes that can both serve 

passengers and learn about them at the same time. Applications of such work extend beyond transit 

line planning to general network design, mobile sensor location, emerging technology deployment, 

and towards self-organizing transit fleet growth for shared autonomous vehicles [16]. To be clear, 

this work targets two practical contributions: 

 

1) In existing transit planning, agencies already adjust their routes (e.g. bus network redesigns, 

of which there have been numerous instances) and schedules every few months. In some cities 
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with private transit operations (e.g. minibuses in Hong Kong, or the Ford Chariot with its 

crowdsourcing of routes prior to shutting down), routes might be changed even more 

regularly. This work argues in favor of building in an optimal learning consideration to help 

agencies learn about their users much more efficiently (in the case of a new service or new 

nearby developments, for example).  

2) With the many deployments of Shared Autonomous Vehicle fleets currently (see EasyMile, 

Optimus Ride, and Navya, for example), there is very little information on local user demand 

for such modes. Our work would provide AI to these autonomous systems to grow more 

organically as they learn and adapt to their markets. 

 

This study consists of the following remaining parts. First, we review related literature and 

previous works that investigated feasible route design problems or transit demand learning. 

Second, we summarize approaches and concepts of use to this study. Third, the research 

methodology and proposed algorithm are presented. Fourth, we bring sample cases to verify the 

proposed algorithm and evaluate the performance by benchmark comparison. Finally, the 

conclusion, introduction of future works, and expected applications are delivered. 

 

 

2 LITERATURE REVIEW 

 

The survey consists of two main areas – route design problems and reinforcement learning. 

 

2.1 Route design problems 

A feasible route is a route satisfying prerequisites regarding geometrical or operational attributes 

such as total length or mandatory visit to certain nodes. It is a crucial element of LPPs. Schöbel 

[3] classified LPPs into 4 types of models: cost-oriented models minimizing operational cost, 

passenger-oriented models maximizing direct travelers or minimizing traveling and riding cost, 

game-theoretic models dealing with delay and operators’ profit, and location-based models 

concerning the access distance or network coverage.  

This study falls under the passenger-oriented models as the objective involves maximizing 

ridership or providing more benefits to passengers. Passenger-oriented models employ several 

methodologies for route set construction: a heuristic route construction algorithm recommending 

feasible routes focused on serving demand directly between origins and destinations [21], genetic 

algorithm [22], column-generation algorithm [9], ant colony optimization [23], robust 

optimization [24], two-phase stochastic program [25], mobile phone trajectory process [26], 

adaptive neighborhood search metaheuristic [4], or particle swarm optimization [27]. These 

methods all assume OD demand is revealed and derivable. 

As an example, the heuristic devised by Ceder and Wilson [21] is implemented on the small 

network in Figure 1. It requires the shortest path time and the passenger demand among nodes to 

verify whether enumerated routes are feasible or not. To make decisions, it uses several criteria 

including: 1) total route length should lie between an upper and lower bound designated by the 

policy, and 2) travel time between nodes cannot exceed a maximum allowable travel time for each 

OD pair. According to this heuristic, there are 470 feasible routes with 100 minutes of the 

maximum round trip time among all 644 physically available routes (235 of 322 after removing 

symmetric ones). The problem size increases to 2,580,785 candidate routes when the grid network 

simply increases from 3×3 to 5×5. 
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The latest studies have devised methodologies to avoid the route enumeration as it can 

consume much computational effort. On the other hand, our learning approach makes use of 

candidate routes so it makes sense to consider at least some degree of route enumeration. 

 

2.2 Reinforcement learning 

Line planning under uncertainty is not well studied. A few studies tackle line planning with two-

stage stochastic programs [25, 28] or robust optimization [24]. One strategy to mitigating 

uncertainty over a time horizon is to consider the buildout over multiple stages and to adapt 

subsequent stages to prior outcomes [29]. Staged development is a natural approach to transit 

networks, resulting in observable evolutions over time (see [30-33]). This notion of flexibility 

leads to a sequential network design problem under uncertainty [34], a more complex category of 

general Markov decision processes (see [35]) where decisions are made dynamically over multiple 

periods with information revealed over time. Approximate dynamic programming algorithms are 

typically used to optimize such problems, although no literature exists for sequential LPP under 

uncertainty.  

Algorithms in reinforcement learning (and machine learning in general) have a wide literature; 

we restrict this to a more focused review on multi-armed bandit (MAB) algorithms as such. 

Ayyadevara [36] provides a good overview of different machine learning techniques, including 

linear and logistic regression, decision tree, random forest, gradient boosting machine, artificial 

neural network, convolutional neural network, recurrent neural network, clustering, and principal 

component analysis.  

MAB problems are sequential decision processes that consider selection of one among 

multiple alternatives over multiple trials. Each alternative represents an “arm” whose selection 

provides a reward to the user. The decision-maker starts out not knowing the distribution of the 

rewards of each alternative; they are learned through exploration of the arms over multiple trials, 

where the reward each trial is a random outcome. This algorithm is widely employed in computer 

science and operations research including cognitive radio networks [37], design of clinical trial 

[38], web-based recommendation, advertising [39], and transportation [40]. 

MAB algorithms aim to minimize regret 𝑅𝑛, the discrepancy between a maximally achievable 

reward and the acquired reward as shown in Eq. (1). For 𝐾 ≥ 2 arms, the rewards regarding each 

arm 𝑖 at time step 𝑡, 𝑋𝑖,𝑡, follow unknown distribution. When a user chooses an arm 𝐼𝑡, the reward 

is 𝑋𝐼𝑡,𝑡 [41].   

 

𝑅𝑛 = max
𝑖=1,⋯,𝐾

∑ 𝑋𝑖,𝑡

𝑛

𝑡=1

− ∑ 𝑋𝐼𝑡,𝑡

𝑛

𝑡=1

 (1) 

 

A MAB algorithm consists of 𝑇 time steps of which an initialization period 𝜏 and a learning 

period (𝑇 − 𝜏). While an algorithm focuses on collecting information about rewards from arms 

during 𝜏, it uses that information for the remaining 𝑇 − 𝜏 time steps to maximize the cumulative 

reward by choosing the best arm evaluated by the acquired knowledge. If optimally predicted,  𝑅𝑛 

can be 0, meaning that the user always chooses the best option. In general, true values of regret 

cannot be obtained because distributions of rewards are not known a priori. Instead, observable 

measures are used as proxies. For instance, “click-through ratio” (CTR) is popular in the area of 
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online content providers and advertisers, a binary indicator which becomes 1 when a link gets a 

click and 0 otherwise. 

Some studies examined different MAB algorithms and found that the differences in algorithms 

primarily deal with how to choose sets of arms to learn the prevailing environment (e.g. [41, 42]). 

A variant of the MAB is the contextual bandit problem, which associates the arms with feature 

vectors, and stochastic rewards are determined by the model of which parameters are obtained and 

estimated from previous choices. Li et al. [39] introduced a generalized linear contextual bandit 

algorithm which is compatible with such generalized linear models (GLMs) as logistic regression. 

Eq. (2) describes how the relationship between the feature of the chosen arm, 𝑋 , and the 

corresponding reward, 𝑌, can be explained by the link function 𝜇 with the parameter 𝜃∗. 𝑋′ is the 

transpose of 𝑋. 

 

𝐸[𝑌|𝑋] = 𝜇(𝑋′𝜃∗) (2) 

 

Applications exist in areas of mobility. Researchers have studied the demand management of 

electric vehicle charging stations by changing charging prices and recommending alternative 

stations when one is congested [43]. Zhou et al. [40] developed a recommender system for 

sequential departure time and path choice with on-time arrival reliability. Huang et al. [44] 

proposed a learning policy to efficiently allocate delivery vehicles in an urban area to minimize 

the expected cumulative operational cost.  

In transit planning, Zolfpour-Arokhlo et al. [45] developed a route planning model using 

multi-agent reinforcement learning in a Malaysian intercity road network to reduce travel time 

between cities. Guo et al. [15] and Li et al. [31] designed optimal timing policies in transportation 

operational planning using real options theory. Khadilkar [46] proposed a reinforcement learning 

algorithm for scheduling railway lines. Tsai et al. [47] proposed a deep neural network approach 

to predict bus passengers. While not a reinforcement learning application, Cats and West [48] 

proposed a day-to-day learning procedure for updating transit passenger demand in dynamic transit 

assignment. MABs, and contextual bandit algorithms in particular, have not yet been applied to 

sequential LPPs.  

 

 

3 METHODOLOGY 

 

The sequential route design framework differs from conventional route design problems in LPPs; 

it is described in Figure 2. In conventional route design problems, the route pool is generated from 

identified information covering the potential network of the region. The constructed line planning 

problem given that route pool is solved by either an analytical model or heuristic algorithm. The 

route set solution would be deployed, leading to the information feedback to the demand estimation 

from collected demand data while operating the system. 

On the contrary, we assume a setting where the demand information in the dashed border is 

incomplete. Thus, operators would generate an initial route pool only relying on other information 

as input to the reinforcement learning-based route planning problem. In this procedure, demand 

learning from the actual environment is implemented to acquire demand information more 

efficiently. A user behavior model is specified and updated over multiple deployments and 

information feedback. Potential passengers react to the system resulting in flows along chosen 
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routes in the network, which is monitored by the system to update the demand information and 

increase the accuracy of the model estimation.  

We address whether (a) solving this sequential route design problem with a MAB-based 

algorithm is more effective than solving it without MAB (or under what conditions), and whether 

(b) that is a more effective transit planning strategy than to deploy with minimally collected data 

at the start with a fully committed design.  

 

3.1 Route planning problem 

A conventional mathematical program for the route planning problem is presented in Eq. (3) – (8). 

The objective function represents a total passenger travel cost to be minimized.  

 

min ∑ ∑ 𝑐𝑟𝑠
𝑘 𝑥𝑟𝑠

𝑘

𝑘∈𝐾𝑟𝑠(𝑟,𝑠)∈𝐷

 (3) 

s.t. 

∑ 𝑥𝑟𝑠
𝑘

𝑘∈𝐾𝑟𝑠

= 𝑑𝑟𝑠,   ∀(𝑟, 𝑠) ∈ 𝐷 (4) 

∑ ∑ 𝑥𝑟𝑠
𝑘

𝑟∈𝑃𝑙
𝑘,𝑠∈𝑄𝑙

𝑘𝑘∈𝐾

≤ 𝑢𝑙,   ∀𝑙 ∈ 𝐴 
(5) 

𝑥𝑟𝑠
𝑘 ≤ 𝑀𝑤𝑘,   ∀𝑘, (𝑟, 𝑠) ∈ 𝐷 (6) 

𝑥𝑟𝑠
𝑘 ≥ 0,   ∀𝑘, (𝑟, 𝑠) ∈ 𝐷 (7) 

𝑤𝑘 ∈ {0,1},   ∀𝑘 (8) 

 

where, 

𝑐𝑟𝑠
𝑘 : travel cost between origin 𝑟 and destination 𝑠 using route 𝑘 

𝑥𝑟𝑠
𝑘 : passenger flow between origin 𝑟 and destination 𝑠 using route 𝑘 

𝐷: OD pair set 

𝐾𝑟𝑠: set of routes providing service between origin 𝑟 and destination 𝑠,  

        where 𝐾 = ⋃ 𝐾𝑟𝑠(𝑟,𝑠)  is the set of all routes 

𝑑𝑟𝑠: demand between origin 𝑟 to destination 𝑠 

𝑃𝑙
𝑘: set of nodes on route 𝑘 located before link 𝑙,  

𝑄𝑙
𝑘: set of nodes on route 𝑘 located after link 𝑙 

𝑢𝑙: capacity of link 𝑙 
𝐴: set of all links 

𝑐𝑙: travel cost of link 𝑙, where 𝑐𝑟𝑠
𝑘 = ∑ 𝑐𝑙𝑙∈𝐿𝑟𝑠

𝑘 ,   ∀𝑘, (𝑟, 𝑠) ∈ 𝐷 

𝐿𝑟𝑠
𝑘 : set of links included in route 𝑘 between origin 𝑟 and destination 𝑠 

𝑤𝑘: 1 if route 𝑘 is used, otherwise 0 
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Eq. (4) is a demand conservation constraint. Eq. (5) describes the link capacity. Eq. (6) is a 

fixed charge constraint allowing flow only if the route is selected, 𝑤𝑘 = 1 . Eq. (7) is the 

nonnegativity condition of 𝑥𝑟𝑠
𝑘 . Eq. (8) is the binary condition of 𝑤𝑘, and the action space is a 

binary vector with a size equivalent to the number of available routes. 

In the sequential setting, as shown in Figure 2, we still have a candidate route set. However, 

we are given up to a route size budget of 𝑇 route investments. Instead of investing in all 𝑇 routes 

right away, we interject a period of time 𝜂 after each route investment to observe the ridership for 

all OD pairs served by all existing routes. The length of 𝜂 can be days, months, or years, depending 

on the type of system and the type of decision-making (tactical versus strategic). For example, 

with 𝑇 = 60 and 𝜂 = 1 month, the operator will take 60 months (assuming each route can start 

instantaneously) to build out 60 routes, taking one month after each investment to learn from the 

data. The objective of this problem is to collect the best accumulated performance over the 60 

months and decision variables will be binary variables that indicate whether the corresponding 

route is chosen or not. 

In practice, the sequential planning of transit routes may be less effective for some agencies 

due to the process of public discussion and approval. These steps may include community public 

hearings, expert meetings, or legislative procedures to successfully initiate a new design. 

Nonetheless, route redesigns occur quite frequently and are even more prevalent in private operator 

systems (new transit business models like crowdsourcing routes with Ford Chariot or new shared 

autonomous vehicle fleet deployments) that can benefit even more from this model framework.  

 

3.2 Upper Confidence Bound-Generalized Linear Model algorithm (UCB-GLM) 

The UCB-GLM [39] is a contextual bandit algorithm where the upper bound of regret has been 

analytically derived, making it a reliable reinforcement learning algorithm. We consider using this 

algorithm together with the route planning problem. However, because the 𝑙2-norms of feature 

vectors are larger than 1 and are not independently distributed, they violate the condition for the 

bound. As a result, our problem cannot guarantee this stochastic upper bound of regret. Although 

the normalization of feature vectors could convert them to fulfill this criterion, feature vectors of 

alternatives in our study are highly intertwined. They are not independent and identically 

distributed (IID) as they are substantially correlated. For example, if Alternative route A and B 

share a huge portion of their route, it can be hardly said that they are independent. Nevertheless, 

the study can borrow the concept of UCB-GLM because it can estimate the parameters of the link 

function 𝜇, the generalized linear function. 

During the learning period 𝜏, the algorithm has opportunities to randomly choose an arm from 

the set of available alternatives [𝐾], and observe a response from the unknown system. 𝑋𝑡, the 

feature vector of the arm chosen at the time step 𝑡, can contain some significant information 

including either quantitative measures (generalized travel cost, fare) or qualitative ones (service 

reliability, quality). In the subsequent time steps prior to reaching 𝑇 , the expected reward is 

estimated by applying updated estimators. A tuning parameter 𝛼 controls the extent of exploration 

after 𝜏. 

After estimating 𝜃𝑡 each trial 𝑡, the algorithm recommends choosing the arm 𝑎𝑡 to maximize 

the corresponding arm value that consists of an estimated reward, the linear combination of feature 

vector and estimated coefficients, and exploration term. This last term is the product of exploration 

factor 𝛼 and the norm vector ‖𝑥‖𝐴 ≔ 𝑥𝐴𝑥′. It also keeps observing responses by selecting the arm 

which predicts the highest return. Note that Eq. (1) regarding the regret of choosing suboptimal 
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routes does not explicitly appear in Algorithm 1 since the regret is unobservable when running 

the model. 

 

Algorithm 1 UCB-GLM [39] 

Input: the total rounds 𝑇, tuning parameter 𝜏 and 𝛼. 

Initialization: randomly choose 𝑎𝑡 ∈ [𝐾] for 𝑡 ∈ [𝜏], set 𝑉𝜏+1 = ∑ 𝑋𝑡𝑋𝑡′𝜏
𝑖=1  

For 𝑡 = 𝜏 + 1, 𝜏 + 2, ⋯ , 𝑇 do 

1. Calculate the maximum-likelihood estimator 𝜃𝑡 by solving the Eq. (9). 

 

∑(𝑌𝑖 − 𝜇(𝑋𝑖
′𝜃))𝑋𝑖

𝑡−1

𝑖=1

= 0 (9) 

 

2. Choose 𝑎𝑡 = argmax𝑎∈[𝐾] (𝑋𝑡,𝑎
′ 𝜃𝑡 + 𝛼‖𝑋𝑡,𝑎‖

𝑉𝑡
−1) 

3. Observe 𝑌𝑡, let 𝑋𝑡 ← 𝑋𝑡,𝑎𝑡
, 𝑉𝑡+1 ← 𝑉𝑡 + 𝑋𝑡𝑋𝑡′ 

End For 

3.3 Logit model for route choice 

The last component is the demand model for a given route design. A multinomial logit model is 

used for route choice. If the vector of parameters of the utility function is 𝜽, the probability 𝑃𝑛(𝑖) 

of choosing Option 𝑖 among 𝐽 set of routes is shown in Eq. (10), where some may not choose any 

if 𝛾 = 1, or choose only among the routes if 𝛾 = 0. In the case of a binary logit model, the utility 

of rejection is set to zero to represent other alternative travel options. 

 
 

𝑃𝑛(𝑖) =
exp(𝜽𝑿𝒊𝒏)

∑ exp(𝜽𝑿𝒋𝒏)𝐽
𝑗=1 + 𝛾

 (10) 

 

This approach does have well-known limitations in terms of route overlaps (see [49-51]). For this 

study we focus on the learning aspect and assume that riders perceive route options as sufficiently 

independent of each other. More sophisticated choice models can also be adopted for 

implementation but is beyond the scope of this work.  

 

 

4 ALGORITHM DESIGN 

 

Having introduced the three components of the system, we now propose Algorithm 2 to solve the 

sequential route generation problem.  

 
ALGORITHM 2. To solve the sequential route generation problem with UCB-GLM-route planning 

1) Formulate the route planning problem under appropriate assumptions.  

2) Initialize. 𝑡 = 0, and 𝑥𝑟𝑠
𝑘0, 𝑤𝑘

0, 𝐾𝑟𝑠 = 𝜙. 

3) Randomly choose Route 𝑘𝑡 and 𝑤𝑘𝑡

𝑡 = 1 (𝐾𝑟𝑠 = {𝑘𝑡}, ∀𝑡 ∈ [1, 𝜏]). 

4) Observe 𝑧𝑡 = 𝑥𝑟𝑠
𝑘𝑡 ≤ 𝑑𝑟𝑠

𝑡  potential passengers and collect information including attributes of Route 𝑘𝑡, 

𝑋𝑡, the reward, 𝑌𝑧𝑡,𝑡 and 𝑉𝑧𝑡,𝑡+1 = ∑ 𝑧𝑡𝑋𝑡𝑋𝑡′𝑡
𝑖=1 . 
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5) Repeat Step 3) and 4) until 𝑡 = 𝜏, tuning parameter. 

6) Calculate maximum-likelihood estimator 𝜃𝑡  and choose a route which is expected to achieve the 

highest arm value. 

7) Move the chosen route from the enumerated route set to the chosen route set and observe 𝑧𝑡 =
∑ 𝑥𝑟𝑠

𝑘𝑡
𝑘∈𝐾𝑟𝑠

≤ ∑ 𝑑𝑟𝑠
𝑡

(𝑟,𝑠)  ∀(𝑟, 𝑠) ∈ 𝐷 passengers and collect information as the same as Step 4). 

8) If stopping criterion is satisfied, stop. Otherwise, go to Step 6) and repeat until 𝑡 = 𝑇. 

 

The problem formulated in Step 1 is the same as Eq. (3) – (8). The travel demand between 

each node pair 𝑟 and 𝑠 is fixed for the observation period 𝜂, but may change from trial to trial. In 

the case where demand is elastic, we would change the objective to maximizing total demand 

served. An example of this is covered later in the experiments. 

Before beginning the algorithm, the time step should be 0, and other variables should have no 

values assigned. For Step 3, during the learning period when 𝑡 ≤ 𝜏, the algorithm chooses a route 

randomly from an enumerated set of routes which satisfies a prerequisite such as total length. 

When route 𝑘𝑡 is chosen during Step 3, 𝑤𝑘𝑡

𝑡  becomes 1 automatically and 𝐾𝑟𝑠 is a singleton whose 

element is 𝑘𝑡.  

In Step 4, as Route 𝑘 connects Node 𝑟 and 𝑠, at most 𝑑𝑟𝑠
𝑡  passengers will access the route and 

decide to take or skip a ride until the capacity of the route is filled or all potential passengers 

conclude their actions. Although there is only one observation during a time step in the original 

UCB-GLM, the operator can observe 𝑧𝑡 potential passengers. The actual probability of choosing 

an arm (𝑃𝑛(𝑖) in Eq. (10)) is not explicitly in the algorithm. We do make use of it in the simulation 

experiment in Section 5, however, to simulate choice behaviors of users. The users behave 

according to a binary choice model where the true parameters are known to the simulator but 

hidden from the algorithm to evaluate the efficiency of learning them. 

Step 6 is borrowed from the UCB-GLM algorithm, especially the calculation after time step 

𝜏 to choose the most popular route. Once a route is chosen, it should be excluded to avoid the 

duplication of route. Step 7 is also borrowed from UCB-GLM algorithm, especially the calculation 

after time step 𝜏 to choose the most popular route. Several different stopping criteria are applicable 

to Step 8. For example, the algorithm can terminate when the difference of objective function 

between previous and current iteration is within a certain tolerance (|𝑍𝑡 − 𝑍𝑡−1| ≤ 𝛿 ), when the 

action space 𝑤𝑘
𝑡  is stable without any update for several consecutive iterations (𝑤𝑘

𝑡 = 𝑤𝑘
𝑡−1 = ⋯ =

𝑤𝑘
𝑡−𝑎), or when the number of experiments after 𝜏 reaches a budget 𝐵 (𝑡 − 𝜏 = 𝐵). The last one is 

the criterion that we considered in the experiments. 

 

 

5 NUMERICAL EXPERIMENTS 

 

Two example networks are formed to test the proposed algorithm and evaluate the performance. 

Due to the difference between both networks in terms of complexity and structure, basic 

assumptions to analyze the system are modified to reflect prevailing conditions. 

 

5.1 Single OD pair with 𝒏 routes consisted of single link 

The first network involves a pair of nodes of origin and destination, and 50 links connecting both, 

providing 50 different routes to passengers. It is assumed that they only take one-way trips and do 

not come back to the origin as described in Figure 3. Each route has three attributes: travel time, 

capacity, and attractiveness. While the travel time 𝑐𝑘 is given as a continuous value in minutes, the 



Yoon and Chow  

11 
 

capacity is an integer variable between 5 and 10. The attractiveness 𝑆𝑘 is also a discrete variable 

with a 3-point scale parameter of 0, 1, and 2. Their attributes are indicated in Table 1. 

Initially, it is assumed that there are 100 trips that require this service, and the utility function 

of route 𝑘 is 𝑈𝑝
𝑘 = 3.5 − 0.3𝑐𝑘 + 0.15𝑆𝑘. Each route is ordered to observe passengers with the 

same amount as the route capacity. The initialization period 𝜏 is shorter than the total experiment 

period 𝑇 = 100 time steps and randomly generated to obtain a relation to the objective function 

value.  

Two different policies are applied. “Risk aversion after random Choice (RC)” only chooses 

the route set out of explored routes without taking any risk of choosing undiscovered routes, while 

“Learning Demand (LD)” is the proposed Algorithm 2.  

For each policy, more than 10,000 simulation are conducted, and Figure 4a is the distribution 

of total passenger costs regardless of their length of 𝜏. During the simulation, the 𝜏s are randomly 

designated to an integer between 13 and 50. The histograms show the significant difference in 

shapes as well as the mean, 989.49 for RC and 716.60 for LD. 

The trend of the average total passenger cost by 𝜏 is plotted in Figure 4b. As 𝜏 increases, total 

cost obtained in RC decreases and approaches gradually to the curve of LD which indicate almost 

a simple line parallel to the x-axis. This implies that demand learning is the more efficient process 

to minimize the total cost with a tighter optimality gap. 

 

5.2 Multiple OD pairs with the single origin on 3×3 grid 

The second network is a typical grid consisting of 9 nodes and 24 links. Node 5 is considered as 

the only origin in the network and the other 8 nodes are destinations. Each link has own capacity 

and travel time, and those of both directions are the same. This may represent a central business 

district (CBD) with suburbs surrounding it. 

The maximum number of travelers from Node 5 to others is assumed fixed. As such, travel 

demands can change for every time step but cannot exceed that value. If a provided route set is 

attractive enough, the system can attract more demand. Therefore, the objective function of the 

route planning problem for this experiment is the maximization of total induced demand. Link and 

node properties and route information are indicated in Figure 5 and Table 2.  

All available routes that start from Node 5 are enumerated, and each route never passes a node 

already visited. 60 routes are constructed as arms which the algorithm can choose. The budget for 

routes, the maximum number of routes, is assumed and fixed to 10.  

We make the following assumptions to minimize interventions from other system elements to 

concentrate more on the route planning performance of the methodology. Firstly, potential users 

perceive routes independent from one another despite the correlation among them that exists due 

to overlapping sections. They are also not allowed to transfer between routes, i.e. transfer costs are 

high. Moreover, travel time between ODs is the only feature of concern while other travel 

disutilities like expected wait time, access/egress cost, and operational delays are negligible. 

One of the largest differences from Numerical Experiment 1 is the objective function of the 

problem, Eq. (11), maximizing total ridership instead of minimizing the passenger cost. Eq. (13) 

– (18) correspond to Eq. (4) – (8). Except for Eq. (15), the only difference between two constraint 

groups is the existence of time step indicators. In addition, two constraints, Eqs. (12) and (13), are 

related to the demand level between nodes 𝑟 and 𝑠 at time step 𝑡, 𝑑𝑟𝑠
𝑡 . It changes for every time 

step as the provided route set differs, but there is an upper limit, the maximum demand, 𝑑̅𝑟𝑠. These 

come from the assumption that the system has no obligation to transport all demand. Namely, Eq. 



Yoon and Chow  

12 
 

(12) is newly introduced to set up maximum demand for the OD pairs. Actual demand conservation 

is defined in Eq. (13). 

 

max ∑ ∑ 𝑥𝑟𝑠
𝑘𝑡

𝑘∈𝐾𝑟𝑠(𝑟,𝑠)∈𝐷

 (11) 

s.t. 

𝑑𝑟𝑠
𝑡 ≤ 𝑑̅𝑟𝑠,   ∀𝑡,   (𝑟, 𝑠) ∈ 𝐷 (12) 

∑ 𝑥𝑟𝑠
𝑘𝑡

𝑘∈𝐾𝑟𝑠

= 𝑑𝑟𝑠
𝑡 ,   ∀𝑡,   (𝑟, 𝑠) ∈ 𝐷 (13) 

∑ ∑ 𝑥𝑟𝑠
𝑘𝑡

𝑟∈𝑃𝑙
𝑘,𝑠∈𝑄𝑙

𝑘𝑘∈𝐾

≤ 𝑢𝑙 ,   ∀𝑡,   𝑙 ∈ 𝐴 
(14) 

𝑐𝑟𝑠
𝑘 = ∑ 𝑐𝑙

𝑙∈𝐿𝑟𝑠
𝑘

,   ∀𝑘,   (𝑟, 𝑠) ∈ 𝐷 (15) 

𝑥𝑟𝑠
𝑘𝑡 ≤ 𝑀𝑤𝑘

𝑡 ,   ∀𝑘, 𝑡,   (𝑟, 𝑠) ∈ 𝐷 (16) 

𝑥𝑟𝑠
𝑘𝑡 ≥ 0,   ∀𝑘, 𝑡,   (𝑟, 𝑠) ∈ 𝐷 (17) 

𝑤𝑘
𝑡 ∈ {0,1},   ∀𝑘, 𝑡 (18) 

 

where, 

𝑥𝑟𝑠
𝑘𝑡: passenger flow between origin 𝑟 and destination 𝑠 using route 𝑘 at time 𝑡 

𝐷: OD pair set 

𝐾𝑟𝑠: set of routes providing service between origin 𝑟 and destination 𝑠,  

        where 𝐾 = ⋃ 𝐾𝑟𝑠(𝑟,𝑠)  is the set of all routes 

𝑑̅𝑟𝑠: maximum demand between origin 𝑟 to destination 𝑠 

𝑑𝑟𝑠
𝑡 : demand between origin 𝑟 to destination 𝑠 at time 𝑡 

𝑃𝑙
𝑘: set of nodes on route 𝑘 located before link 𝑙  

𝑄𝑙
𝑘: set of nodes on route 𝑘 located after link 𝑙 

𝑢𝑙: capacity of link 𝑙 
𝐴: set of all links 

𝑐𝑙: travel cost of link 𝑙 
𝐿𝑟𝑠

𝑘 : set of links included in route 𝑘 between origin 𝑟 and destination 𝑠 

𝑤𝑘
𝑡 : 1 if route 𝑘 is used, otherwise 0 at time 𝑡 

 

Although the routes are not capacitated, routes cannot accommodate more passengers than 

capacities of links. It is assumed that potential travelers to different nodes do not impose any 

congestion effects on each other. They might accept different routes as independent ones. For 

example, if both Route 5-2-1 and 5-2-3 are provided, people who depart to Node 2 consider both 



Yoon and Chow  

13 
 

routes as 2 distinguishable alternatives. It raises the probability of an accepting system by 

increasing the total utility of the provided route set.  

Ten trials are given to form a proposed route set after the initial learning. For each trial, the 

route with the maximum demand is chosen. Table 3 describes the example results of a route 

proposal. As the algorithm is set to maximize the demand, routes are stretched as far as possible. 

For reality, route length constraints may be useful to avoid suggesting excessively long routes. 

Among 197 passengers, 93.3725 (standard deviation of 0.5073) are predicted to take the system 

according to the mean of 1,000 simulations.  

We consider an oracle reference scenario with perfect information. We solve the problem with 

a genetic algorithm under default settings in MATLAB which ends up serving 96.8879 demand 

(standard deviation of 0.4889), the mean of 1,000 runs. This means our proposed algorithm 

provided the objective value within a 3.6% gap of the heuristic solution to the oracle policy.  

Table 4 explains how much demand is served by 10 routes. The most well-served node is 

Node 2, being served 74.0% of demand from the origin, Node 5. It is followed by Node 8 (72.7%), 

Node 6 (60.1%), and Node 4 (57.3%). Because vehicles can reach all of the nodes adjacent to 

Node 5 within a relatively short time, potential passengers may feel it is convenient to use the 

system. On the other hand, people heading to Node 1, 3, 7, and 9 find that the transit system based 

on this route set is inconvenient to get their destinations, resulting in less than half the demand 

served. This imbalance may be one of the factors that make the transit system less competitive to 

other modes. 

 

 

6 CONCLUSION 

 

The costly acquisition of demand information prohibits transit operators from providing the best 

service to the public under uncertainty. We propose an alternative planning strategy involving 

sequential route design as well as a solution algorithm based on reinforcement learning to solve it. 

The methodology is a combination of the route planning problem, MAB, and logit model. The 

suggested algorithm exploits the structure of transit route design and estimates parameters of the 

link functions to learn the distributions for route choice and acceptance. Results from numerical 

experiments show that the algorithm can achieve route sets within a reasonable range from the 

optimal value.  

We conclude that the proposed algorithm can assist operators’ decision-making under a 

sequential planning process. Among candidate routes, the algorithm can recommend the route set 

that satisfies the objective function maximizing the ridership or minimizing the average wait time 

based on learning processes. 

The primary computational bottlenecks to the proposed method pertain to those that already 

exist in route generation. A larger candidate route set requires more computing resources not only 

for the set generation but also for the evaluation of alternatives in each time step. 

Although the numerical experiments represent stylistic scenarios, they can be used to analyze 

last-mile services of regional transit users and transportation hubs. Nonetheless, we make 

assumptions like independent routes, transfer availability, and exclusion of expected waiting time 

or other travel disutilities. This study attempted to focus on acquiring the information of prevailing 

demand and thus left those other components out to minimize the noise. However, they should be 

considered in future research.  
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Figure 1. Conventional route design problem. 

 
Figure 2. Frameworks of conventional route design problem and the proposed method. 

 

Figure 3. Configuration of network in Numerical Experiment 1. 

 

Figure 4. (a) Relative histogram of total passenger cost, (b) average total passenger cost change by 

learning period. 

 

Figure 5. Configuration of network in Case study 2. 
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Table 1. Network properties of Case Study 1 

Route 

index 
Capacity 

Travel 

time 

Attractive-

ness 

Route 

index 
Capacity 

Travel 

time 

Attractive-

ness 

1 7 12.78402 2 26 5 6.563081 0 

2 10 19.64027 0 27 10 15.49458 2 

3 9 12.08471 0 28 8 6.294078 0 

4 9 13.17178 1 29 5 9.127546 0 

5 9 8.981365 1 30 8 6.436196 1 

6 9 12.96086 1 31 5 13.08447 2 

7 5 13.47545 0 32 10 17.04014 1 

8 5 16.62467 0 33 10 16.72975 2 

9 7 15.43484 1 34 9 13.88374 0 

10 9 19.20215 0 35 7 13.10808 2 

11 10 19.11368 2 36 9 10.94936 1 

12 7 17.07971 0 37 9 10.57389 1 

13 7 7.931309 0 38 6 8.209589 2 

14 7 14.83193 1 39 5 19.67188 1 

15 8 16.34944 0 40 9 18.93461 1 

16 8 8.71545 1 41 7 9.513882 0 

17 9 7.466427 1 42 8 5.621179 1 

18 5 19.84065 1 43 10 6.426785 0 

19 8 15.00345 1 44 5 10.57066 0 

20 8 17.31445 2 45 7 13.89486 2 

21 5 14.54217 0 46 8 12.00166 2 

22 6 9.616747 2 47 9 7.50225 0 

23 7 14.31186 2 48 5 11.15243 2 

24 10 15.48292 1 49 9 14.98024 1 

25 8 16.52937 0 50 10 5.216627 2 
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Table 2. Link information of network in Case study 2 

Index 𝒊 𝒋 Capacity Travel cost (min) Index 𝒊 𝒋 Capacity Travel cost (min) 

1 1 2 23 6.496 13 2 1 19 8.696 

2 2 3 15 9.781 14 3 2 23 10.474 

3 4 5 22 10.441 15 5 4 40 5.930 

4 5 6 40 11.951 16 6 5 22 7.320 

5 7 8 30 8.668 17 8 7 18 6.284 

6 8 9 28 8.705 18 9 8 20 7.799 

7 1 4 30 6.509 19 4 1 25 11.843 

8 4 7 25 5.324 20 7 4 26 5.085 

9 2 5 28 9.582 21 5 2 40 8.514 

10 5 8 40 7.530 22 8 5 15 5.369 

11 3 6 30 8.035 23 6 3 20 10.450 

12 6 9 17 5.442 24 9 6 17 6.212 
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Table 3 Proposed route set diffence between algorithms 

Best solution from Genetic algorithm (MATLAB) Best example from proposed algorithm 

 

[Red route: 5-4-7] 

 ▪ 5-4-7-8-9-6-3-2-1 

 ▪ 5-4-7-8-9-6-3-2 

 ▪ 5-4-7-8-9-6-3  

[Red route: 5-4-7] 

 ▪ 5-4-7-8-9-6-3-2-1 (shortened) 

 ▪ 5-4-7-8-9-6-3-2  (shortened) 

 ▪ 5-4-7-8-9-6-3 (excluded) 

 

[Dark blue route: 5-2-1] 

 ▪ 5-2-1-4-7-8-9-6-3 

 ▪ 5-2-1-4-7-8-9 
 

[Dark blue route: 5-2-1] 

 ▪ 5-2-1-4-7-8-9-6-3 

 ▪ 5-2-1-4-7-8-9-6 (extended) 

 

[Green route: 5-8-9] 

 ▪ 5-8-9-6-3-2-1 

 ▪ 5-8-9-6-3-2 
 

[Green route: 5-8-9] 

 ▪ 5-8-9-6-3-2-1-4-7 (extended) 

 ▪ 5-8-9-6-3-2-1-4 (extended) 

 

[Brown route: 5-6-9] 

 ▪ 5-6-9-8-7-4-1-2-3 

 ▪ 5-6-9-8-7-4-1 
 

[Brown route: 5-6-9] 

 ▪ 5-6-9-8-7-4-1-2-3 

 ▪ 5-6-9-8-7-4-1-2 (extended) 

 

[Purple route:5-2-3] 

 ▪ 5-2-3-6-9-8-7-4 

 

[Purple route:5-2-3] 

▪ 5-2-3-6-9-8-7-4-1 (new) 

▪ 5-2-3-6-9-8-7-4 

Served demand 97.2989 / 197 = 49.4%  95.1816 / 197 = 48.3% 

Note: Circles are starting points of routes and arrowheads are ends. 
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Table 4 Served demand by routes 

𝒋 
Served 

demand 
/𝒅𝒊𝒋  

 

Served demand by route 

1 2 3 4 5 6 7 8 9 10 

1 
2.5982 / 20 

= 13.0% 
0.0000 0.0001 1.2988 0.0000 0.0002 1.2988 0.0001 0.0002 0.0000 0.0002 

2 
19.9840 / 27 

= 74.0% 
0.0000 0.0003 6.6611 0.0000 0.0000 6.6611 0.0003 0.0000 6.6611 0.0000 

3 
1.1930 / 21 

= 5.7% 
0.0005 0.0177 0.0000 0.0005 0.0000 0.0000 0.0177 0.0000 1.1565 0.0000 

4 
17.2026 / 30 

= 57.3% 
8.5464 0.0000 0.0526 8.5464 0.0013 0.0526 0.0000 0.0013 0.0000 0.0019 

6 
14.4280 / 24 

= 60.1% 
0.0070 0.2428 0.0000 0.0070 4.8922 0.0000 0.2428 4.8922 0.0800 4.0639 

7 
12.2200 / 26 

= 47.0% 
6.0448 0.0000 0.0372 6.0448 0.0186 0.0372 0.0000 0.0186 0.0003 0.0185 

8 
17.4469 / 24 

= 72.7% 
0.2424 8.3988 0.0015 0.2424 0.0536 0.0015 8.3988 0.0536 0.0009 0.0535 

9 
8.0504 / 25 

= 32.3% 
0.0555 1.9233 0.0003 0.0555 1.3806 0.0003 1.9233 1.3806 0.0226 1.3084 

Σ 
93.1231 / 197 

= 47.3% 
14.8966 10.5830 8.0516 14.8966 6.3465 8.0516 10.5830 6.3465 7.9214 5.4464 

 

 


