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ABSTRACT

While public transit network design has a wide literature, the study of line planning and route
generation under uncertainty is not so well covered. Such uncertainty is present in planning for
emerging transit technologies or operating models in which demand data is largely unavailable to
make predictions on. In such circumstances, we propose a sequential route generation process in
which an operator periodically expands the route set and receives ridership feedback. Using this
sensor loop, we propose a reinforcement learning-based route generation methodology to support
line planning for emerging technologies. The method makes use of contextual bandit problems to
explore different routes to invest in while optimizing the operating cost or demand served. Two
experiments are conducted. They (1) prove that the algorithm is better than random choice; and
(2) show good performance with a gap of 3.7% relative to a heuristic solution to an oracle policy.

Keywords: Transit network design, line planning problem, reinforcement learning, route generation,
contextual bandit problem
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1 INTRODUCTION

Public transit network design (see [/, 2]) involves five general steps: route design, frequency
setting, timetabling, vehicle scheduling, and crew scheduling. The collective problem is generally
regarded as intractable and algorithms developed over the years addressed subgroups, such as the
line planning problem (LPP) /3] to combine route design and frequency setting. Algorithms have
advanced far (e.g. [4]) since the earliest efforts in line planning /5, 6/, but fundamental challenges
remain. One challenge that continues to be actively studied is the route set construction problem
[7]. Others include transfer optimization /§/, the NP-hardness of the problem /9/, and the
complexity of user route choice involving hyperpaths and varying congestion effects /10].

The underlying component of LPPs is the generation of the route set (e.g. /7/) which assumes
a deterministic demand setting, i.e. the origin-destination (OD) demand are known in advance as
constants or functions of system performance. However, uncertainty in demand is a very
significant problem. Inaccuracies in transit project demand forecasts are well-known /7] with rail
investments on average overpredicting demand by 40% /12]. With the high capital and operating
costs of transit, designing routes under this uncertainty can be very costly. Even the cost of
reducing this uncertainty through surveys can be an expensive undertaking. For example, Chicago
Metropolitan Agency for Planning budgeted $2.7 million for their household travel survey, asking
12,000 households out of more than 3 million households within their region for 9 months, ending
up sampling only 0.4% of the total population /73, 14]. The degree of uncertainty is further
pronounced for emerging transit technologies; new types of services like microtransit //5/ that can
use crowdsourced data or shared autonomous vehicle fleets /76/ have little to no data to begin
with, and each new city deployment requires starting from scratch.

Costly information collection is an important problem. When data is limited, even knowledge
of the distributions of the demand is limited. A bus company choosing to deploy a route over one
of two regions would be able to not only serve that region but also learn important details about
the demand in that region that they could have otherwise learned about the other region. Optimal
information collection in a network setting is an emergent topic (e.g. /17, 18]) that involves
deploying resources to proactively learn the system state/parameters to maximize cumulative
rewards. Methods in this class of problems fall under reinforcement learning /79/, with one
popular concept being the “multi-armed bandit” problem /20].

We propose a new algorithm for the sequential route design problem. For the sake of better
comparison of algorithms, we restrict the decision variables only to route design within the LPP
and ignore frequency setting or timetables (although the method can work with those
considerations as well). The objective of such an algorithm is to strategically sequence the
operation of routes in a network over time such that earlier routes formed would act as sensors to
learn the characteristics of the demand so that the cumulative reward over a finite horizon is
optimized. This is the first such study to consider sequential route design under uncertainty, and
the first to incorporate reinforcement learning theory to generate transit routes that can both serve
passengers and learn about them at the same time. Applications of such work extend beyond transit
line planning to general network design, mobile sensor location, emerging technology deployment,
and towards self-organizing transit fleet growth for shared autonomous vehicles /76/. To be clear,
this work targets two practical contributions:

1) In existing transit planning, agencies already adjust their routes (e.g. bus network redesigns,
of which there have been numerous instances) and schedules every few months. In some cities
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with private transit operations (e.g. minibuses in Hong Kong, or the Ford Chariot with its
crowdsourcing of routes prior to shutting down), routes might be changed even more
regularly. This work argues in favor of building in an optimal learning consideration to help
agencies learn about their users much more efficiently (in the case of a new service or new
nearby developments, for example).

2) With the many deployments of Shared Autonomous Vehicle fleets currently (see EasyMile,
Optimus Ride, and Navya, for example), there is very little information on local user demand
for such modes. Our work would provide Al to these autonomous systems to grow more
organically as they learn and adapt to their markets.

This study consists of the following remaining parts. First, we review related literature and
previous works that investigated feasible route design problems or transit demand learning.
Second, we summarize approaches and concepts of use to this study. Third, the research
methodology and proposed algorithm are presented. Fourth, we bring sample cases to verify the
proposed algorithm and evaluate the performance by benchmark comparison. Finally, the
conclusion, introduction of future works, and expected applications are delivered.

2 LITERATURE REVIEW
The survey consists of two main areas — route design problems and reinforcement learning.

2.1 Route design problems

A feasible route is a route satisfying prerequisites regarding geometrical or operational attributes
such as total length or mandatory visit to certain nodes. It is a crucial element of LPPs. Schobel
[3] classified LPPs into 4 types of models: cost-oriented models minimizing operational cost,
passenger-oriented models maximizing direct travelers or minimizing traveling and riding cost,
game-theoretic models dealing with delay and operators’ profit, and location-based models
concerning the access distance or network coverage.

This study falls under the passenger-oriented models as the objective involves maximizing
ridership or providing more benefits to passengers. Passenger-oriented models employ several
methodologies for route set construction: a heuristic route construction algorithm recommending
feasible routes focused on serving demand directly between origins and destinations /21/, genetic
algorithm [22], column-generation algorithm /9], ant colony optimization (23], robust
optimization [24], two-phase stochastic program /25/, mobile phone trajectory process [26],
adaptive neighborhood search metaheuristic /4/, or particle swarm optimization [27]. These
methods all assume OD demand is revealed and derivable.

As an example, the heuristic devised by Ceder and Wilson /2/] is implemented on the small
network in Figure 1. It requires the shortest path time and the passenger demand among nodes to
verify whether enumerated routes are feasible or not. To make decisions, it uses several criteria
including: 1) total route length should lie between an upper and lower bound designated by the
policy, and 2) travel time between nodes cannot exceed a maximum allowable travel time for each
OD pair. According to this heuristic, there are 470 feasible routes with 100 minutes of the
maximum round trip time among all 644 physically available routes (235 of 322 after removing
symmetric ones). The problem size increases to 2,580,785 candidate routes when the grid network
simply increases from 3%3 to 5x5.
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The latest studies have devised methodologies to avoid the route enumeration as it can
consume much computational effort. On the other hand, our learning approach makes use of
candidate routes so it makes sense to consider at least some degree of route enumeration.

2.2 Reinforcement learning

Line planning under uncertainty is not well studied. A few studies tackle line planning with two-
stage stochastic programs /25, 28] or robust optimization [24]/. One strategy to mitigating
uncertainty over a time horizon is to consider the buildout over multiple stages and to adapt
subsequent stages to prior outcomes /29/. Staged development is a natural approach to transit
networks, resulting in observable evolutions over time (see /30-33/). This notion of flexibility
leads to a sequential network design problem under uncertainty /34/, a more complex category of
general Markov decision processes (see /35]) where decisions are made dynamically over multiple
periods with information revealed over time. Approximate dynamic programming algorithms are
typically used to optimize such problems, although no literature exists for sequential LPP under
uncertainty.

Algorithms in reinforcement learning (and machine learning in general) have a wide literature;
we restrict this to a more focused review on multi-armed bandit (MAB) algorithms as such.
Ayyadevara [36] provides a good overview of different machine learning techniques, including
linear and logistic regression, decision tree, random forest, gradient boosting machine, artificial
neural network, convolutional neural network, recurrent neural network, clustering, and principal
component analysis.

MAB problems are sequential decision processes that consider selection of one among
multiple alternatives over multiple trials. Each alternative represents an “arm” whose selection
provides a reward to the user. The decision-maker starts out not knowing the distribution of the
rewards of each alternative; they are learned through exploration of the arms over multiple trials,
where the reward each trial is a random outcome. This algorithm is widely employed in computer
science and operations research including cognitive radio networks /37/, design of clinical trial
[38], web-based recommendation, advertising /39/, and transportation /40].

MAB algorithms aim to minimize regret R, the discrepancy between a maximally achievable
reward and the acquired reward as shown in Eq. (1). For K > 2 arms, the rewards regarding each
arm [ at time step t, X; ;, follow unknown distribution. When a user chooses an arm I, the reward
is X, c [41].

n n
Ry = LB}aXKZ Xie = Z it 1
t=1 t=1

A MAB algorithm consists of T time steps of which an initialization period t and a learning
period (T — 7). While an algorithm focuses on collecting information about rewards from arms
during 7, it uses that information for the remaining T — 7 time steps to maximize the cumulative
reward by choosing the best arm evaluated by the acquired knowledge. If optimally predicted, R,
can be 0, meaning that the user always chooses the best option. In general, true values of regret
cannot be obtained because distributions of rewards are not known a priori. Instead, observable
measures are used as proxies. For instance, “click-through ratio” (CTR) is popular in the area of
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online content providers and advertisers, a binary indicator which becomes 1 when a link gets a
click and 0 otherwise.

Some studies examined different MAB algorithms and found that the differences in algorithms
primarily deal with how to choose sets of arms to learn the prevailing environment (e.g. /41, 42]).
A variant of the MAB is the contextual bandit problem, which associates the arms with feature
vectors, and stochastic rewards are determined by the model of which parameters are obtained and
estimated from previous choices. Li et al. /39] introduced a generalized linear contextual bandit
algorithm which is compatible with such generalized linear models (GLMs) as logistic regression.
Eq. (2) describes how the relationship between the feature of the chosen arm, X, and the
corresponding reward, Y, can be explained by the link function u with the parameter 6*. X' is the
transpose of X.

E[Y|X] = u(X'6") (2)

Applications exist in areas of mobility. Researchers have studied the demand management of
electric vehicle charging stations by changing charging prices and recommending alternative
stations when one is congested [43]. Zhou et al. [40] developed a recommender system for
sequential departure time and path choice with on-time arrival reliability. Huang et al. /44]
proposed a learning policy to efficiently allocate delivery vehicles in an urban area to minimize
the expected cumulative operational cost.

In transit planning, Zolfpour-Arokhlo et al. /45]/ developed a route planning model using
multi-agent reinforcement learning in a Malaysian intercity road network to reduce travel time
between cities. Guo et al. //5/ and Li et al. /31] designed optimal timing policies in transportation
operational planning using real options theory. Khadilkar /46] proposed a reinforcement learning
algorithm for scheduling railway lines. Tsai et al. [47] proposed a deep neural network approach
to predict bus passengers. While not a reinforcement learning application, Cats and West /48]
proposed a day-to-day learning procedure for updating transit passenger demand in dynamic transit
assignment. MABs, and contextual bandit algorithms in particular, have not yet been applied to
sequential LPPs.

3 METHODOLOGY

The sequential route design framework differs from conventional route design problems in LPPs;
it is described in Figure 2. In conventional route design problems, the route pool is generated from
identified information covering the potential network of the region. The constructed line planning
problem given that route pool is solved by either an analytical model or heuristic algorithm. The
route set solution would be deployed, leading to the information feedback to the demand estimation
from collected demand data while operating the system.

On the contrary, we assume a setting where the demand information in the dashed border is
incomplete. Thus, operators would generate an initial route pool only relying on other information
as input to the reinforcement learning-based route planning problem. In this procedure, demand
learning from the actual environment is implemented to acquire demand information more
efficiently. A user behavior model is specified and updated over multiple deployments and
information feedback. Potential passengers react to the system resulting in flows along chosen
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routes in the network, which is monitored by the system to update the demand information and
increase the accuracy of the model estimation.

We address whether (a) solving this sequential route design problem with a MAB-based
algorithm is more effective than solving it without MAB (or under what conditions), and whether
(b) that is a more effective transit planning strategy than to deploy with minimally collected data
at the start with a fully committed design.

3.1 Route planning problem
A conventional mathematical program for the route planning problem is presented in Eq. (3) — (8).
The objective function represents a total passenger travel cost to be minimized.

; k ..k
min z Z CrsXrs (3)
(r,S)ED k€EKyg

s.t.
z X,Incs = drs, V(T, S) €D (4)
KEKys

Z Z xk. <u, VIEA (5)

keK rePlk,stek
xk. < Mwy, Vk,(r,s) €D (6)
xk >0, Vk,(r,s) €D (7
wy € {0,1}, Vk (3)

where,

ck.: travel cost between origin 7 and destination s using route k

xX.: passenger flow between origin r and destination s using route k

D: OD pair set

K,s: set of routes providing service between origin r and destination s,
where K = U, 5) K5 1s the set of all routes

d,s: demand between origin r to destination s

Pf: set of nodes on route k located before link [,

QF: set of nodes on route k located after link [

u;: capacity of link [

A: set of all links

c;: travel cost of link [, where cX = Yiek €1, Yk, (r,s) €D

Lk, set of links included in route k between origin 7 and destination s

wy: 1 if route k is used, otherwise 0
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Eq. (4) is a demand conservation constraint. Eq. (5) describes the link capacity. Eq. (6) is a
fixed charge constraint allowing flow only if the route is selected, w, = 1. Eq. (7) is the
nonnegativity condition of x%. Eq. (8) is the binary condition of wy, and the action space is a
binary vector with a size equivalent to the number of available routes.

In the sequential setting, as shown in Figure 2, we still have a candidate route set. However,
we are given up to a route size budget of T route investments. Instead of investing in all T routes
right away, we interject a period of time 7 after each route investment to observe the ridership for
all OD pairs served by all existing routes. The length of 1 can be days, months, or years, depending
on the type of system and the type of decision-making (tactical versus strategic). For example,
with T = 60 and n = 1 month, the operator will take 60 months (assuming each route can start
instantaneously) to build out 60 routes, taking one month after each investment to learn from the
data. The objective of this problem is to collect the best accumulated performance over the 60
months and decision variables will be binary variables that indicate whether the corresponding
route is chosen or not.

In practice, the sequential planning of transit routes may be less effective for some agencies
due to the process of public discussion and approval. These steps may include community public
hearings, expert meetings, or legislative procedures to successfully initiate a new design.
Nonetheless, route redesigns occur quite frequently and are even more prevalent in private operator
systems (new transit business models like crowdsourcing routes with Ford Chariot or new shared
autonomous vehicle fleet deployments) that can benefit even more from this model framework.

3.2 Upper Confidence Bound-Generalized Linear Model algorithm (UCB-GLM)

The UCB-GLM /39] is a contextual bandit algorithm where the upper bound of regret has been
analytically derived, making it a reliable reinforcement learning algorithm. We consider using this
algorithm together with the route planning problem. However, because the [,-norms of feature
vectors are larger than 1 and are not independently distributed, they violate the condition for the
bound. As a result, our problem cannot guarantee this stochastic upper bound of regret. Although
the normalization of feature vectors could convert them to fulfill this criterion, feature vectors of
alternatives in our study are highly intertwined. They are not independent and identically
distributed (IID) as they are substantially correlated. For example, if Alternative route A and B
share a huge portion of their route, it can be hardly said that they are independent. Nevertheless,
the study can borrow the concept of UCB-GLM because it can estimate the parameters of the link
function p, the generalized linear function.

During the learning period 7, the algorithm has opportunities to randomly choose an arm from
the set of available alternatives [K], and observe a response from the unknown system. X;, the
feature vector of the arm chosen at the time step t, can contain some significant information
including either quantitative measures (generalized travel cost, fare) or qualitative ones (service
reliability, quality). In the subsequent time steps prior to reaching T, the expected reward is
estimated by applying updated estimators. A tuning parameter a controls the extent of exploration
after 7.

After estimating 8, each trial t, the algorithm recommends choosing the arm a, to maximize
the corresponding arm value that consists of an estimated reward, the linear combination of feature
vector and estimated coefficients, and exploration term. This last term is the product of exploration
factor a and the norm vector ||x||, == xAx’. It also keeps observing responses by selecting the arm
which predicts the highest return. Note that Eq. (1) regarding the regret of choosing suboptimal
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routes does not explicitly appear in Algorithm 1 since the regret is unobservable when running
the model.

Algorithm 1 UCB-GLM /39]

Input: the total rounds T, tuning parameter 7 and «a.

Initialization: randomly choose a; € [K] for t € [7], set V;41 = 2io; X X'
Fort=7+1,7+2,---,T do

1. Calculate the maximum-likelihood estimator 8, by solving the Eq. (9).

t—1
D (% —uXio))X; = 0 ©)
i=1

2. Choose a; = argmaxge(k] (Xé,aét + a”Xt,a”Vt—l)

3.Observe Yy, let X; « Xp g, Verr < Ve + XX,
End For

3.3 Logit model for route choice

The last component is the demand model for a given route design. A multinomial logit model is
used for route choice. If the vector of parameters of the utility function is @, the probability P,, (i)
of choosing Option i among J set of routes is shown in Eq. (10), where some may not choose any
if y = 1, or choose only among the routes if y = 0. In the case of a binary logit model, the utility
of rejection is set to zero to represent other alternative travel options.

exp(0Xin)
Z;:1 eXp(BX]n) + 14

F() = (10)

This approach does have well-known limitations in terms of route overlaps (see [49-51]). For this
study we focus on the learning aspect and assume that riders perceive route options as sufficiently
independent of each other. More sophisticated choice models can also be adopted for
implementation but is beyond the scope of this work.

4 ALGORITHM DESIGN

Having introduced the three components of the system, we now propose Algorithm 2 to solve the
sequential route generation problem.

ALGORITHM 2. To solve the sequential route generation problem with UCB-GLM-route planning

1) Formulate the route planning problem under appropriate assumptions.

2) [Initialize. t = 0, and xX0, w?, K,.c = ¢b.

3) Randomly choose Route k; and W,Et =1 (K,s = {k;},Vt € [1,1]).

4) Observe z, = xkt < dL, potential passengers and collect information including attributes of Route k.,
Xy, the reward, Yy, , and V,, ¢ = Nioq 2 X X,
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5) Repeat Step 3) and 4) until £ = 7, tuning parameter.

6) Calculate maximum-likelihood estimator 8, and choose a route which is expected to achieve the
highest arm value.

7) Move the chosen route from the enumerated route set to the chosen route set and observe z, =
Dikek, xkt < Yr.s)drs V(r,s) € D passengers and collect information as the same as Step 4).

8) If stopping criterion is satisfied, stop. Otherwise, go to Step 6) and repeat until t = T.

The problem formulated in Step 1 is the same as Eq. (3) — (8). The travel demand between
each node pair r and s is fixed for the observation period 7, but may change from trial to trial. In
the case where demand is elastic, we would change the objective to maximizing total demand
served. An example of this is covered later in the experiments.

Before beginning the algorithm, the time step should be 0, and other variables should have no
values assigned. For Step 3, during the learning period when t < 7, the algorithm chooses a route
randomly from an enumerated set of routes which satisfies a prerequisite such as total length.
When route k; is chosen during Step 3, w , becomes | automatically and K is a singleton whose

element is k;.

In Step 4, as Route k connects Node 7 and s, at most df, passengers will access the route and
decide to take or skip a ride until the capacity of the route is filled or all potential passengers
conclude their actions. Although there is only one observation during a time step in the original
UCB-GLM, the operator can observe z; potential passengers. The actual probability of choosing
an arm (P, (i) in Eq. (10)) is not explicitly in the algorithm. We do make use of it in the simulation
experiment in Section 5, however, to simulate choice behaviors of users. The users behave
according to a binary choice model where the true parameters are known to the simulator but
hidden from the algorithm to evaluate the efficiency of learning them.

Step 6 is borrowed from the UCB-GLM algorithm, especially the calculation after time step
T to choose the most popular route. Once a route is chosen, it should be excluded to avoid the
duplication of route. Step 7 is also borrowed from UCB-GLM algorithm, especially the calculation
after time step T to choose the most popular route. Several different stopping criteria are applicable
to Step 8. For example, the algorithm can terminate when the difference of objective function
between previous and current iteration is within a certain tolerance (|Z; — Z;_1| < § ), when the
action space wy is stable without any update for several consecutive iterations (Wi = wi™! = --- =
wi~%), or when the number of experiments after T reaches a budget B (t — T = B). The last one is
the criterion that we considered in the experiments.

S NUMERICAL EXPERIMENTS

Two example networks are formed to test the proposed algorithm and evaluate the performance.
Due to the difference between both networks in terms of complexity and structure, basic
assumptions to analyze the system are modified to reflect prevailing conditions.

5.1 Single OD pair with n routes consisted of single link

The first network involves a pair of nodes of origin and destination, and 50 links connecting both,
providing 50 different routes to passengers. It is assumed that they only take one-way trips and do
not come back to the origin as described in Figure 3. Each route has three attributes: travel time,
capacity, and attractiveness. While the travel time c¢;, is given as a continuous value in minutes, the

10
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capacity is an integer variable between 5 and 10. The attractiveness Sy, is also a discrete variable
with a 3-point scale parameter of 0, 1, and 2. Their attributes are indicated in Table 1.

Initially, it is assumed that there are 100 trips that require this service, and the utility function
of route k is Uz’,‘ = 3.5 — 0.3¢, + 0.15Sj.. Each route is ordered to observe passengers with the

same amount as the route capacity. The initialization period 7 is shorter than the total experiment
period T = 100 time steps and randomly generated to obtain a relation to the objective function
value.

Two different policies are applied. “Risk aversion after random Choice (RC)” only chooses
the route set out of explored routes without taking any risk of choosing undiscovered routes, while
“Learning Demand (LD)” is the proposed Algorithm 2.

For each policy, more than 10,000 simulation are conducted, and Figure 4a is the distribution
of total passenger costs regardless of their length of 7. During the simulation, the ts are randomly
designated to an integer between 13 and 50. The histograms show the significant difference in
shapes as well as the mean, 989.49 for RC and 716.60 for LD.

The trend of the average total passenger cost by 7 is plotted in Figure 4b. As T increases, total
cost obtained in RC decreases and approaches gradually to the curve of LD which indicate almost
a simple line parallel to the x-axis. This implies that demand learning is the more efficient process
to minimize the total cost with a tighter optimality gap.

5.2 Multiple OD pairs with the single origin on 3x3 grid

The second network is a typical grid consisting of 9 nodes and 24 links. Node 5 is considered as
the only origin in the network and the other 8 nodes are destinations. Each link has own capacity
and travel time, and those of both directions are the same. This may represent a central business
district (CBD) with suburbs surrounding it.

The maximum number of travelers from Node 5 to others is assumed fixed. As such, travel
demands can change for every time step but cannot exceed that value. If a provided route set is
attractive enough, the system can attract more demand. Therefore, the objective function of the
route planning problem for this experiment is the maximization of total induced demand. Link and
node properties and route information are indicated in Figure 5 and Table 2.

All available routes that start from Node 5 are enumerated, and each route never passes a node
already visited. 60 routes are constructed as arms which the algorithm can choose. The budget for
routes, the maximum number of routes, is assumed and fixed to 10.

We make the following assumptions to minimize interventions from other system elements to
concentrate more on the route planning performance of the methodology. Firstly, potential users
perceive routes independent from one another despite the correlation among them that exists due
to overlapping sections. They are also not allowed to transfer between routes, i.e. transfer costs are
high. Moreover, travel time between ODs is the only feature of concern while other travel
disutilities like expected wait time, access/egress cost, and operational delays are negligible.

One of the largest differences from Numerical Experiment 1 is the objective function of the
problem, Eq. (11), maximizing total ridership instead of minimizing the passenger cost. Eq. (13)
— (18) correspond to Eq. (4) — (8). Except for Eq. (15), the only difference between two constraint
groups is the existence of time step indicators. In addition, two constraints, Egs. (12) and (13), are
related to the demand level between nodes 7 and s at time step t, df. It changes for every time
step as the provided route set differs, but there is an upper limit, the maximum demand, d,.. These
come from the assumption that the system has no obligation to transport all demand. Namely, Eq.

11
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(12) is newly introduced to set up maximum demand for the OD pairs. Actual demand conservation
is defined in Eq. (13).

max Z z x,lf_f (11)
(r,S)ED kEKyg

s.t.
dt, <d,s Vt, (r,s) €D (12)
Z Xrl-(_g = df-s, Vt, (T',S) €D (13)
kEKys

keK repf,seQf

leLk,
xkt < Mw}, Vk,t, (r,s) €D (16)
xkt >0, Vk,t, (r,s) €D (17)
w,’é € {0,1}, Vk,t (18)

where,

xkt: passenger flow between origin r and destination s using route k at time t

D: OD pair set

K, set of routes providing service between origin r and destination s,
where K = U 5) Krs 1s the set of all routes

d,s: maximum demand between origin r to destination s

dt,: demand between origin r to destination s at time t

P/ set of nodes on route k located before link

QF: set of nodes on route k located after link [

u;: capacity of link [

A: set of all links

c;: travel cost of link [

Lk, set of links included in route k between origin 7 and destination s

wi: 1 if route k is used, otherwise 0 at time t

Although the routes are not capacitated, routes cannot accommodate more passengers than
capacities of links. It is assumed that potential travelers to different nodes do not impose any
congestion effects on each other. They might accept different routes as independent ones. For
example, if both Route 5-2-1 and 5-2-3 are provided, people who depart to Node 2 consider both

12
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routes as 2 distinguishable alternatives. It raises the probability of an accepting system by
increasing the total utility of the provided route set.

Ten trials are given to form a proposed route set after the initial learning. For each trial, the
route with the maximum demand is chosen. Table 3 describes the example results of a route
proposal. As the algorithm is set to maximize the demand, routes are stretched as far as possible.
For reality, route length constraints may be useful to avoid suggesting excessively long routes.
Among 197 passengers, 93.3725 (standard deviation of 0.5073) are predicted to take the system
according to the mean of 1,000 simulations.

We consider an oracle reference scenario with perfect information. We solve the problem with
a genetic algorithm under default settings in MATLAB which ends up serving 96.8879 demand
(standard deviation of 0.4889), the mean of 1,000 runs. This means our proposed algorithm
provided the objective value within a 3.6% gap of the heuristic solution to the oracle policy.

Table 4 explains how much demand is served by 10 routes. The most well-served node is
Node 2, being served 74.0% of demand from the origin, Node 5. It is followed by Node 8 (72.7%),
Node 6 (60.1%), and Node 4 (57.3%). Because vehicles can reach all of the nodes adjacent to
Node 5 within a relatively short time, potential passengers may feel it is convenient to use the
system. On the other hand, people heading to Node 1, 3, 7, and 9 find that the transit system based
on this route set is inconvenient to get their destinations, resulting in less than half the demand
served. This imbalance may be one of the factors that make the transit system less competitive to
other modes.

6 CONCLUSION

The costly acquisition of demand information prohibits transit operators from providing the best
service to the public under uncertainty. We propose an alternative planning strategy involving
sequential route design as well as a solution algorithm based on reinforcement learning to solve it.

The methodology is a combination of the route planning problem, MAB, and logit model. The
suggested algorithm exploits the structure of transit route design and estimates parameters of the
link functions to learn the distributions for route choice and acceptance. Results from numerical
experiments show that the algorithm can achieve route sets within a reasonable range from the
optimal value.

We conclude that the proposed algorithm can assist operators’ decision-making under a
sequential planning process. Among candidate routes, the algorithm can recommend the route set
that satisfies the objective function maximizing the ridership or minimizing the average wait time
based on learning processes.

The primary computational bottlenecks to the proposed method pertain to those that already
exist in route generation. A larger candidate route set requires more computing resources not only
for the set generation but also for the evaluation of alternatives in each time step.

Although the numerical experiments represent stylistic scenarios, they can be used to analyze
last-mile services of regional transit users and transportation hubs. Nonetheless, we make
assumptions like independent routes, transfer availability, and exclusion of expected waiting time
or other travel disutilities. This study attempted to focus on acquiring the information of prevailing
demand and thus left those other components out to minimize the noise. However, they should be
considered in future research.
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Table of Figures

Figure 1. Conventional route design problem.
Figure 2. Frameworks of conventional route design problem and the proposed method.
Figure 3. Configuration of network in Numerical Experiment 1.

Figure 4. (a) Relative histogram of total passenger cost, (b) average total passenger cost change by
learning period.

Figure 5. Configuration of network in Case study 2.
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Table 1. Network properties of Case Study 1

Route Capacity Travel Attractive- Route Capacity Travel Attractive-
index time ness index time ness
1 7 12.78402 2 26 5 6.563081 0
2 10 19.64027 0 27 10 15.49458 2
3 9 12.08471 0 28 8 6.294078 0
4 9 13.17178 1 29 5 9.127546 0
5 9 8.981365 1 30 8 6.436196 1
6 9 12.96086 1 31 5 13.08447 2
7 5 13.47545 0 32 10 17.04014 1
8 5 16.62467 0 33 10 16.72975 2
9 7 15.43484 1 34 9 13.88374 0
10 9 19.20215 0 35 7 13.10808 2
11 10 19.11368 2 36 9 10.94936 1
12 7 17.07971 0 37 9 10.57389 1
13 7 7.931309 0 38 6 8.209589 2
14 7 14.83193 1 39 5 19.67188 1
15 8 16.34944 0 40 9 18.93461 1
16 8 8.71545 1 41 7 9.513882 0
17 9 7.466427 1 42 8 5.621179 1
18 5 19.84065 1 43 10 6.426785 0
19 8 15.00345 1 44 5 10.57066 0
20 8 17.31445 2 45 7 13.89486 2
21 5 14.54217 0 46 8 12.00166 2
22 6 9.616747 2 47 9 7.50225 0
23 7 14.31186 2 48 5 11.15243 2
24 10 15.48292 1 49 9 14.98024 1
25 8 16.52937 0 50 10 5.216627 2
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Table 2. Link information of network in Case study 2

Index | i | j | Capacity Travel cost (min) Index | i | j | Capacity Travel cost (min)
1 112 23 6.496 13 211 19 8.696
2 213 15 9.781 14 312 23 10.474
3 415 22 10.441 15 514 40 5.930
4 516 40 11.951 16 6|5 22 7.320
5 718 30 8.668 17 8|7 18 6.284
6 819 28 8.705 18 918 20 7.799
7 114 30 6.509 19 411 25 11.843
8 4 17 25 5.324 20 714 26 5.085
9 215 28 9.582 21 512 40 8.514
10 518 40 7.530 22 815 15 5.369
11 316 30 8.035 23 613 20 10.450
12 619 17 5.442 24 916 17 6.212
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Table 3 Proposed route set diffence between algorithms

Best solution from Genetic algorithm (MATLAB)

Best example from proposed algorithm

]

[Red route: 5-4-7]
= 5-4-7-8-9-6-3-2-1
* 5-4-7-8-9-6-3-2
* 5-4-7-8-9-6-3

[Red route: 5-4-7]

" 5-4-7-8-9 (shortened)
.5.4-7 (shortened)
. (excluded)

| 4

[Dark blue route: 5-2-1]
= 5-2-1-4-7-8-9-6-3
*5-2-1-4-7-8-9

[Dark blue route: 5-2-1]
* 5-2-1-4-7-8-9-6-3
» 5-2-1-4-7-8-9-6 (extended)

[Green route: 5-8-9]
* 5-8-9-6-3-2-1
» 5-8-9-6-3-2

[Green route: 5-8-9]
* 5-8-9-6-3-2-1-4-7 (extended)
* 5-8-9-6-3-2-1-4 (extended)

[Brown route: 5-6-9]
* 5-6-9-8-7-4-1-2-3
= 5-6-9-8-7-4-1

[Brown route: 5-6-9]
* 5-6-9-8-7-4-1-2-3
* 5-6-9-8-7-4-1-2 (extended)

E =2

[Purple route:5-2-3]
= 5-2-3-6-9-8-7-4

[Purple route:5-2-3]
* 5-2-3-6-9-8-7-4-1 (new)
* 5-2-3-6-9-8-7-4

Served demand

97.2989 /197 =49.4%

95.1816/197 =48.3%

Note: Circles are starting points of routes and arrowheads are ends.
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Table 4 Served demand by routes

.| Served /d;; Served demand by route
/| demand /U 1 2 3 4 5 6 7 8 9 10
2.5982/20
1 2 13.0% 0.0000 | 0.0001 |1.2988 | 0.0000 |0.0002 |1.2988 | 0.0001 |0.0002 | 0.0000 | 0.0002
2 19:'9;32%({/027 0.0000 | 0.0003 |6.6611 | 0.0000 |0.0000 |6.6611 | 0.0003 |0.0000 | 6.6611 | 0.0000
1.1930/21
3 — 579 0.0005 | 0.0177 |0.0000 | 0.0005 |0.0000 |0.0000 | 0.0177 |0.0000 | 1.1565 | 0.0000
4 17:'22722({/030 8.5464 | 0.0000 |0.0526| 8.5464 |0.0013|0.0526 | 0.0000 |0.0013|0.0000 | 0.0019
6 14;4623(1‘;)24 0.0070 | 0.2428 |0.0000 | 0.0070 |4.8922 |0.0000 | 0.2428 |4.8922 | 0.0800 | 4.0639
7 12_'22;)%({/26 6.0448 | 0.0000 |0.0372 | 6.0448 |0.0186 |0.0372 | 0.0000 | 0.0186 | 0.0003 | 0.0185
- . 0
8 17_'4;‘2697({/24 0.2424 | 8.3988 |0.0015| 0.2424 |0.0536 |0.0015 | 8.3988 |0.0536 | 0.0009 | 0.0535
- . 0
9 8853%43/0/25 0.0555 | 1.9233 |0.0003 | 0.0555 |1.3806 |0.0003 | 1.9233 | 1.3806 | 0.0226 | 1.3084
- . 0
X 933?713/0/197 14.8966 | 10.5830 | 8.0516 | 14.8966 | 6.3465 | 8.0516 | 10.5830 | 6.3465 | 7.9214 | 5.4464
- . 0
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