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Abstract. We study the effect of the slab topology T ×R×R of the Universe on the form of gravitational
potentials and forces created by point-like masses. We obtain two alternative forms of solutions: one is
based on the Fourier series expansion of the delta function using the periodical property along the toroidal
dimension, and another one is derived by direct summation of solutions of the Helmholtz equation for the
source particle and all its images. The latter one takes the form of the sum of Yukawa-type potentials. We
demonstrate that for the present Universe the latter solution is preferable for numerical calculations since
it requires less terms of the series to achieve the necessary precision.

1 Introduction

The question of spatial topology of the Universe belongs to a class of fundamental open questions of cosmology and
theoretical physics. What is the shape of the world we live in? Is the Universe finite or infinite? Is its spatial curvature
positive, negative or exactly zero? What is the role of topology in the very early epoch (on the quantum gravity arena)
as well as for the subsequent large scale structure formation? Since topology is not dictated by general relativity, there
is no theoretical hint of whether space is simply connected (as assumed within the concordance cosmological model)
or multiply connected. In the latter case the Universe volume can be finite even when the spatial curvature is negative
or vanishing [1]. If the Universe volume is much larger than the observable one, the finiteness of the world does not
become apparent in the current data. However, if the volume is not too large, it is reasonable to search for observable
imprints of its shape [2]. In multiply connected space, a photon emitted by a source can travel many times through
the volume resulting in multiple images of the source [3,4]. Typical representatives of multiply connected spaces are
spaces with toroidal topology in one or several (maximum three) spatial directions: a slab T ×R×R, an equal-sided
chimney T × T ×R and a three-torus T × T × T .

The possible imprints (mainly on the CMB data) of the shape of the Universe are carefully studied in literature
[5–9]. In particular, it is tempting to interpret the CMB anomalies observed at large angular scales (such as the
quadrupole moment suppression as well as the quadrupole and octopole alignment) as topological manifestations [10,
11]. In the present paper, we consider the topology of the Universe in the form of a slab. In this case we have one finite
special dimension. It is very interesting whether this direction can be interpreted as a preferred axis of the quadrupole
and octopole alignment, or a so-called “axis of evil” [12] (see also [13] for other indications of its existence).

According to Planck 2013 results [1] regarding the search for conjectural topological signatures in the observational
data on the CMB radiation, the following restriction is imposed on the radius Ri of the largest sphere, which can be
inscribed in the topological domain: in the case of the flat Universe with the slab topology Ri > 0.50χrec. Planck
2015 results [9] make the above-mentioned restriction tougher: Ri > 0.56χrec. Here χrec represents the distance to the
recombination surface, which is of the order of the particle horizon, i.e. ∼ 14 Gpc. Earlier bounds on the Universe
size, based on the thorough analysis of 7-year and 9-year WMAP temperature maps, can be found in [12,14]. A lower
bound on the size of the fundamental topological domain in the case of the flat Universe, based on the 7-year WMAP
data, is d = 2RLSS cos(αmin) ' 27.9Gpc [11], where RLSS is the distance to the last scattering surface (i.e. the
recombination surface).

In the present paper, we study gravitational properties of the Universe with the slab topology T × R × R. More
precisely, we investigate the effect of such topology on the form of the gravitational potential and force. It is well known
that in the Newtonian limit the gravitational potential is defined by the Poisson equation. In the case of cosmology,
the matter density fluctuations are the sources of this potential [15]. For toroidal types of topology, this equation was
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investigated in [16]. It was shown that there is no way to get any physically reasonable and nontrivial solution of this
equation in the case of the slab topology. However, if we take into account relativistic effects and derive the equation
for the gravitational potential from the perturbed Einstein equations, then we find that the resulting equation has the
form of the Helmholtz equation rather than the Poisson one [17–19]. As we show in the present paper, this changes
the situation drastically and for the considered slab topology we obtain the physically reasonable solutions. Moreover,
to achieve it, we do not make any artificial assumptions about the distribution of gravitating masses. We obtain two
alternative forms of the gravitational potentials and forces and demonstrate that the solutions in the form of the sum
of Yukawa potentials are preferable in the present Universe for numerical calculations.

The paper is structured as follows. In sect. 2, the basic equations are presented and two alternative forms of
solutions for the gravitational potential are obtained. They are compared from the point of numerical calculations in
sect. 3. The corresponding alternative expressions for the gravitational force are derived in sect. 4. These expressions
are also compared from the point of numerical calculations. A brief summary of the main results is given in concluding
sect. 5.

2 Basic equations and alternative solutions

If we take into account relativistic effects in the framework of the conventional ΛCDM cosmological model, then the
gravitational potential satisfies the following equation [17–19]:

∆Φ0 −
3κρc2

2a
Φ0 =

κc2

2a
(ρ− ρ̄) , (2.1)

where κ ≡ 8πGN/c
4, GN is the Newtonian gravitational constant, c is the speed of light, a is the scale factor and

∆ is the Laplace operator in comoving coordinates. We consider matter in the form of discrete point-like gravitating
masses mn with comoving mass density

ρ =
∑
n

mnδ(r− rn) . (2.2)

The averaged comoving mass density is constant: ρ̄ = const . The subscript 0 for Φ indicates that peculiar velocities
were not taken into account in eq. (2.1) (see also [20]).

It can be easily seen that the shifted gravitational potential

Φ̂0 ≡ Φ0 −
1

3
(2.3)

satisfies the equation

∆Φ̂0 −
a2

λ2
Φ̂0 =

κc2

2a
ρ , (2.4)

where we introduce the screening length [17]

λ ≡
(

3κρc2

2a3

)−1/2

. (2.5)

Eq. (2.4) now allows us to apply the superposition principle to get its solution. First, we can find a solution for a single
particle, let it be a particle m in the center of the Cartesian coordinates, and then we can write a solution for the full
system of particles.

In the case of the slab topology T × R × R, each gravitating mass mn has its counterparts shifted by a distance
multiple of the torus period l (for instance, along the z-axis in the Cartesian coordinates). Thus, for a selected particle
m we should take into account all its counterparts. To this end, and also using the topology of the system, we can
present the delta function δ(z) in the form

δ(z) =
1

l

+∞∑
k=−∞

cos

(
2πk

l
z

)
. (2.6)

Therefore, for a single point-like mass m in the center of the coordinate system we have

∆Φ̂0 −
a2

λ2
Φ̂0 =

κc2

2a

m

l

+∞∑
k=−∞

cos

(
2πk

l
z

)
δ (x) δ (y) . (2.7)
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It is natural to seek for the solution in the following form:

Φ̂0 =
+∞∑

k=−∞

Ck(x, y) cos

(
2πk

l
z

)
. (2.8)

Substitution of this expression into eq. (2.7) gives

+∞∑
k=−∞

[
∂2

∂x2
Ck(x, y) +

∂2

∂y2
Ck(x, y)−

(
4π2k2

l2
+
a2

λ2

)
Ck(x, y)− κc2

2a

m

l
δ (x) δ (y)

]
cos

(
2πk

l
z

)
= 0 . (2.9)

It is convenient to use the polar coordinates:

x = ξ cosφ, y = ξ sinφ . (2.10)

Obviously, due to the symmetry of the model, coefficients Ck depend only on the polar radius ξ, and for ξ > 0 satisfy
the equation

ξ
d2Ck
dξ2

+
dCk
dξ
−
(

4π2k2

l2
+
a2

λ2

)
ξCk(ξ) = 0 . (2.11)

The general solution of this equation is superposition of the modified Bessel functions:

Ck(ξ) = AI0

(√
bξ
)

+BK0

(√
bξ
)
, b ≡ 4π2k2

l2
+
a2

λ2
, (2.12)

where A and B are the constants of integration. Hence, omitting the growing mode I0

(√
bξ
)

, we get

Ck(ξ) = BK0

(√
4π2k2

l2
+
a2

λ2
ξ

)
. (2.13)

To define the constant B, we take into account that at small ξ this function should satisfy the two-dimensional
Poisson equation with a source proportional to δ(x)δ(y). When ξ → 0, we have Ck(ξ)→ −B ln ξ. On the other hand,
4(ln ξ) = 2πδ(x)δ(y). So,

−2πB =
κc2

2a

m

l
, B = − κc

2

4πa

m

l
. (2.14)

Hence,

Ck(ξ) = − κc
2

4πa

m

l
K0

(√
4π2k2

l2
+
a2

λ2
ξ

)
(2.15)

and

Φ̂0 = − κc
2

4πa

m

l

+∞∑
k=−∞

K0

(√
4π2k2

l2
+
a2

λ2
ξ

)
cos

(
2πk

l
z

)
. (2.16)

Obviously, for a system of gravitating masses with arbitrary positions we have

Φ0 =
1

3
− κc2

4πa

1

l

∑
n

mn

{
+∞∑

k=−∞

K0

(√
4π2k2

l2
+
a2

λ2
|ξ − ξn|

)
cos

[
2πk

l
(z − zn)

]}
. (2.17)

It is not difficult to demonstrate that the formula (2.16) has the correct Newtonian limit in the vicinity of the
considered gravitating mass. At such small distances all directions should be considered on an equal footing and
summation is replaced by integration:

Φ̂0 → −
κc2m

4πa

+∞∫
−∞

K0

(√
4π2k̃2 +

a2

λ2
ξ

)
cos
(

2πk̃z
)
dk̃ , k̃ =

k

l
, dk̃ =

dk

l
. (2.18)
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We proceed with changing again the integration variable: k̃ = k̃ξ/ξ, dk̃ = dk̃ξ/ξ. Then, with the help of the formula
2.16.14(1) from [21], we obtain

Φ̂0 → −
κc2m

4πa

1

ξ

+∞∫
−∞

K0

(√
4π2k̃2

ξ +
a2

λ2
ξ2

)
cos

(
2πk̃ξ

z

ξ

)
dk̃ξ

→ −κc
2m

2πa

1

ξ

+∞∫
0

K0

(
2πk̃ξ

)
cos

(
2πk̃ξ

z

ξ

)
dk̃ξ = −κc

2m

2πa

1

ξ

1

4
√

1 + z2/ξ2
= −GNm

c2
1√

Ξ2 + Z2
, (2.19)

where Ξ = aξ and Z = az are the physical coordinates. This formula is exactly the Newtonian expression.
Now we want to demonstrate another important property of the gravitational potential Φ0. Since Φ0 is the linear

fluctuation of the metric coefficients, its averaged value should be equal to zero [17] (see also argumentation in [22]).
Let us prove it. First, we rewrite Eq. (2.16) as

Φ̂0 = − κc
2

4πa

m

l
K0

(√
3κρc2

2a
ξ

)
− κc2

2πa

m

l

+∞∑
k=1

K0

(√
4π2k2

l2
+
a2

λ2
ξ

)
cos

(
2πk

l
z

)
. (2.20)

Therefore,

+∞∫
−∞

dx

+∞∫
−∞

dy

l∫
0

dzΦ̂0 = − κc
2

4πa
m

+∞∫
−∞

dx

+∞∫
−∞

dyK0

(√
3κρc2

2a
(x2 + y2)

)

= − κc
2

4πa
m · 2π

+∞∫
0

ξdξK0

(√
3κρc2

2a
ξ

)
= −κc

2

2a
m

(
3κρc2

2a

)−1

= −1

3

m

ρ
, (2.21)

where we have used the table integral 2.16.2(2) from [21]. Then, taking into account the relation (2.3), for the averaged
value of the total gravitational potential Φ0 we have

Φ0 =
1

3
− 1

3

m

ρ
· N

LxLyl
=

1

3
− 1

3
= 0,

mN

LxLyl
= ρ , (2.22)

where for simplicity we consider the case when all N particles in the volume V = LxLyl have the same mass m.
Above we have presented one of the possible ways to solve eq. (2.4). However, since this is the Helmholtz equation,

we can also solve it by direct summation over all counterpart contributions which have the form of Yukawa potentials:

Φ̂0 = − κc
2

8πa

m

l

+∞∑
k=−∞

l√
ξ2 + (z − kl)2

exp

(
−
a
√
ξ2 + (z − kl)2

λ

)
. (2.23)

As we already mentioned, eq. (2.4) with the corresponding solutions (2.16) and (2.23) does not take into account
the peculiar velocities of gravitating masses. However, in [23], the authors argued the importance of such account. It
was demonstrated that the peculiar velocities can be included back into consideration effectively in eq. (2.4) by the
replacement of the screening length λ with an effective screening length λeff (defined by the formula (41) in [23]):

4Φ̂− a2

λ2
eff

Φ̂ =
κc2

2a
ρ . (2.24)

In particular, at the matter-dominated stage λeff =
√

3/5λ. Hence, instead of (2.16), (2.17) we have, respectively,

Φ̂ = − κc
2

4πa

m

l

+∞∑
k=−∞

K0

(√
4π2k2

l2
+

a2

λ2
eff

ξ

)
cos

(
2πk

l
z

)
, (2.25)

Φ =
1

3

(
λeff

λ

)2

− κc2

4πa

1

l

∑
n

mn

{
+∞∑

k=−∞

K0

(√
4π2k2

l2
+

a2

λ2
eff

|ξ − ξn|

)
cos

[
2πk

l
(z − zn)

]}
. (2.26)

The average value Φ still equals 0.
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In the case of the solution in the form of (2.23), we should simply replace λ with λeff . To distinguish among the
derived expressions for the gravitational potential, we introduce the following notation:

Φ̃cos ≡
(
− κc

2

8πa

m

l

)−1

Φ̂cos = 2
+∞∑

k=−∞

K0

(√
4π2k2 +

1

λ̃2
eff

ξ̃

)
cos (2πkz̃) (2.27)

and

Φ̃exp ≡
(
− κc

2

8πa

m

l

)−1

Φ̂exp =
+∞∑

k=−∞

1√
ξ̃2 + (z̃ − k)2

exp

−
√
ξ̃2 + (z̃ − k)2

λ̃eff

 , (2.28)

where the rescaled quantities are:

z = z̃l, ξ = ξ̃l, λeff = λ̃effal . (2.29)

In what follows, we will explore the benefits of one formula over another from the point of view of numerical analysis.

3 Gravitational potentials

The functions (2.27) and (2.28) represent the contribution to the gravitational potential (scalar perturbation), produced
by a point-like mass m located at z = 0, ξ = 0, and its images located at z = ±l,±2l, . . ., ξ = 0, where l is the
(comoving) period of the torus, z is the coordinate along the toroidal dimension, and ξ is the distance from the z-axis.

For numerical calculations, we have to cut off the infinite series (2.27) and (2.28) at some number n. This number
of terms depends on the precision with which we want to calculate these expressions. Obviously, the fewer the number
of terms needed for this, the better the corresponding formula is suitable for computation. We want to compare the
formulas (2.27) and (2.28) from this point of view. The first conclusion, which follows from eq. (2.27), is that this
expression for any n does not work for points with ξ = 0, since the modified Bessel function K0 diverges at zero value
of the argument. On the other hand, there is no such limitation for eq. (2.28).

Let us introduce the total numbers of terms ncos and nexp which we would like to include in the computation, then
it follows from (2.27) and (2.28) that

Φ̃cos

∣∣∣
ncos

= 2K0

(
ξ̃

λ̃eff

)
+ 4

ncos−1∑
k=1

K0

(√
4π2k2 +

1

λ̃2
eff

ξ̃

)
cos (2πkz̃) (3.1)

and

Φ̃exp

∣∣∣
nexp

=
1√

ξ̃2 + z̃2

exp

−
√
ξ̃2 + z̃2

λ̃eff



+

nexp−1∑
k=1

exp

(
−
√
ξ̃2 + (z̃ + k)2/λ̃eff

)
√
ξ̃2 + (z̃ + k)2

+

exp

(
−
√
ξ̃2 + (z̃ − k)2/λ̃eff

)
√
ξ̃2 + (z̃ − k)2

 , (3.2)

where we singled out the zero modes. The results of calculations with the help of Mathematica [24] are presented in
Tables 1, 2. The values of nexp in these tables describe the number of terms in (3.2), required to achieve the four-digit

accuracy of determining Φ̃ (at the point of interest with some coordinates z, ξ). For all n > nexp the four-digit value

of Φ̃exp

∣∣∣
n

does not change. If eq. (3.1) is used instead at the same point, then ncos defines the number of terms in

this formula to get the value of Φ̃ with the same accuracy. In the column for ncos, the dash means that the result of
calculation is either incorrect (due to the computational difficulties) or indeterminate (because of the divergence of
the function K0). It is clear that the results of calculations depend on the ratio of the effective screening length λeff

and the physical size al of the period of the torus: λ̃eff = λeff/(al). Therefore, in Tables 1, 2 we present the numbers

obtained for both small and large values of λ̃eff : 0.01, 0.1, 1 and 10, respectively.
These tables demonstrate that the formula (3.2) with Yukawa potentials generally requires much less number of

terms (nexp � ncos) when the screening length is less than the period of the torus, i.e. λ̃eff < 1. As we mentioned in
Introduction, the lower limit on the period of the torus following from the observations is of the order of 16 Gpc [9].
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z̃ ξ̃ Φ̃ nexp ncos

A1 0.5 0.5 5.524 × 10−31 2 20

A2 0.5 0.1 2.810 × 10−22 2 —

A3 0.5 0 7.715 × 10−22 2 —

B1 0.1 0.5 1.405 × 10−22 1 10

B2 0.1 0.1 5.101 × 10−6 1 31

B3 0.1 0 4.540 × 10−4 1 —

C1 0 0.5 3.857 × 10−22 1 9

C2 0 0.1 4.540 × 10−4 1 24

z̃ ξ̃ Φ̃ nexp ncos

A1 0.5 0.5 2.402 × 10−3 2 6

A2 0.5 0.1 2.394 × 10−2 2 21

A3 0.5 0 2.695 × 10−2 2 —

B1 0.1 0.5 1.201 × 10−2 2 4
B2 0.1 0.1 1.719 1 15
B3 0.1 0 3.679 1 —

C1 0 0.5 1.350 × 10−2 2 4
C2 0 0.1 3.679 1 15

Table 1. Values of the rescaled gravitational potential Φ̃ and corresponding numbers nexp and ncos of terms of series for some
selected points in the cases λ̃eff = 0.01 and λ̃eff = 0.1 for the left and right tables, respectively.

z̃ ξ̃ Φ̃ nexp ncos

A1 0.5 0.5 1.740 11 3
A2 0.5 0.1 2.741 7 14
A3 0.5 0 2.814 8 —
B1 0.1 0.5 1.941 7 3
B2 0.1 0.1 7.068 7 15
B3 0.1 0 9.986 7 —
C1 0 0.5 1.965 7 3
C2 0 0.1 9.958 8 15

z̃ ξ̃ Φ̃ nexp ncos

A1 0.5 0.5 6.114 64 3
A2 0.5 0.1 7.297 81 15
A3 0.5 0 7.378 62 —
B1 0.1 0.5 6.325 64 3
B2 0.1 0.1 11.69 49 11
B3 0.1 0 14.63 46 —
C1 0 0.5 6.350 61 3
C2 0 0.1 14.59 40 10

Table 2. Values of the rescaled gravitational potential Φ̃ and corresponding numbers nexp and ncos of terms of series for some
selected points in the cases λ̃eff = 1 and λ̃eff = 10 for the left and right tables, respectively.

On the other hand, the effective cosmological screening length at the present time is 2.6 Gpc [23]. Therefore, the

inequality λ̃eff < 1 corresponds to the observable Universe, and here eq. (3.2) is preferable for the numerical analysis.

To conclude this section, we present Figs. 1, 2 of the rescaled gravitational potential Φ̃ which correspond to four
different values of λ̃eff selected for Tables 1, 2. To draw these pictures (with the help of Mathematica [24]), we use the
formula (3.2) where we choose n� nexp.

4 Gravitational forces

Below we present the gravitational forces (per unit mass) corresponding to the potentials considered in the previous
section. More precisely, we calculate the projections of these forces on the z-axis and on the polar radius ξ for the
selected points. Among these points, it is natural to consider only those ones where the corresponding projections are
nonzero. Similarly to the potentials, we calculate these projections up to the fourth digit and find numbers of terms
of the series starting from which we achieve this precision. The less the number of terms, the better the formula for
the numerical analysis. Thus, we compare two alternative expressions following from (2.27) and (2.28) from this point
of view.

4.1 z-component of the gravitational force

First, we consider z-components of the gravitational forces. From the potentials (2.27) and (2.28) we obtain two
alternative formulas for the rescaled z-component of the force:

∂

∂z̃

(
Φ̃cos

)∣∣∣∣
ncos

= −8π

ncos∑
k=1

kK0

(√
4π2k2 +

1

λ̃2
eff

ξ̃

)
sin(2πkz̃) (4.1)
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Fig. 1. Rescaled gravitational potential Φ̃ =
[
−GNm/(c2al)

]−1
Φ̂ in the cases λ̃eff = 0.01 and λ̃eff = 0.1 for the left and right

panels, respectively.

Fig. 2. Rescaled gravitational potential Φ̃ =
[
−GNm/(c2al)

]−1
Φ̂ in the cases λ̃eff = 1 and λ̃eff = 10 for the left and right

panels, respectively.

and

∂

∂z̃

(
Φ̃exp

)∣∣∣∣
nexp

= −

 z̃

λ̃eff

(
ξ̃2 + z̃2

) +
z̃(

ξ̃2 + z̃2
)3/2

 exp

−
√
ξ̃2 + z̃2

λeff



−
nexp−1∑
k=1


 z̃ + k

λ̃eff

(
ξ̃2 + (z̃ + k)2

) +
z̃ + k(

ξ̃2 + (z̃ + k)2
)3/2

 exp

−
√
ξ̃2 + (z̃ + k)2

λ̃eff



+

 z̃ − k

λ̃eff

(
ξ̃2 + (z̃ − k)2

) +
z̃ − k(

ξ̃2 + (z̃ − k)2
)3/2

 exp

−
√
ξ̃2 + (z̃ − k)2

λ̃eff


 . (4.2)

Obviously, these z-components are equal to zero at the points A1, A2, A3, C1 and C2. Therefore, we consider
only the points B1, B2 and B3. The results of our computations with the help of Mathematica [24] are presented in

Tables 3, 4 for four values of λ̃eff : 0.01, 0.1, 1 and 10, respectively. These results demonstrate that, similarly to the
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z̃ ξ̃ Φ̃z nexp ncos

B1 0.1 0.5 −2.810 × 10−21 1 9

B2 0.1 0.1 −3.862 × 10−4 1 32

B3 0.1 0 −4.994 × 10−2 1 —

z̃ ξ̃ Φ̃z nexp ncos

B1 0.1 0.5 −2.781 × 10−2 2 4
B2 0.1 0.1 −20.75 1 17
B3 0.1 0 −73.57 2 —

Table 3. Values of the rescaled z-component of the gravitational force Φ̃z and corresponding numbers nexp and ncos of terms
of series for points B1, B2 and B3 in the cases λ̃eff = 0.01 and λ̃eff = 0.1 for the left and right tables, respectively.

z̃ ξ̃ Φ̃z nexp ncos

B1 0.1 0.5 −4.618 × 10−1 8 3
B2 0.1 0.1 −34.63 4 16
B3 0.1 0 −99.11 5 —

z̃ ξ̃ Φ̃z nexp ncos

B1 0.1 0.5 −4.819 × 10−1 39 3
B2 0.1 0.1 −34.88 6 16
B3 0.1 0 −99.51 6 —

Table 4. Values of the rescaled z-component of the gravitational force Φ̃z and corresponding numbers nexp and ncos of terms
of series for points B1, B2 and B3 in the cases λ̃eff = 1 and λ̃eff = 10 for the left and right tables, respectively.

gravitational potential, the formula (4.2), based on the Yukawa potentials, is preferable for the physically relevant

case λ̃eff < 1. In these tables, the values of the rescaled z-component Φ̃z are computed with the help of eq. (4.2) for
n� nexp.

In addition, we present Figs. 3, 4 of the rescaled z-components of the gravitational force Φ̃z which correspond to
four different values of λ̃eff selected for Tables 3, 4. To draw these pictures (with the help of Mathematica [24]), we
use the formula (4.2) where we choose n� nexp.

4.2 ξ-component of the gravitational force

Now we turn to the ξ-component of the gravitational force. In this case, two alternative formulas are:

∂

∂ξ̃

(
Φ̃cos

)∣∣∣∣
ncos

= − 2

λ̃eff

K1

(
ξ̃

λ̃eff

)
− 4

ncos−1∑
k=1

√
4π2k2 +

1

λ̃2
eff

K1

(√
4π2k2 +

1

λ̃2
eff

ξ̃

)
cos (2πkz̃) (4.3)

and

∂

∂ξ̃

(
Φ̃exp

)∣∣∣∣
nexp

= −

 ξ̃

λ̃eff

(
ξ̃2 + z̃2

) +
ξ̃(

ξ̃2 + z̃2
)3/2

 exp

−
√
ξ̃2 + z̃2

λeff



−
nexp−1∑
k=1


 ξ̃

λ̃eff

(
ξ̃2 + (z̃ + k)2

) +
ξ̃(

ξ̃2 + (z̃ + k)2
)3/2

 exp

−
√
ξ̃2 + (z̃ + k)2

λ̃eff



+

 ξ̃

λ̃eff

(
ξ̃2 + (z̃ − k)2

) +
ξ̃(

ξ̃2 + (z̃ − k)2
)3/2

 exp

−
√
ξ̃2 + (z̃ − k)2

λ̃eff


 . (4.4)

Evidently, this component is equal to zero at the points with ξ̃ = 0 and nonzero z̃, for instance, at the points A3

and B3. Therefore, we consider only the points A1, A2, B1, B2, C1 and C2. The results of numerical calculations with
the help of Mathematica [24], based on the formulas (4.3) and (4.4), for four values of λ̃eff are presented in Tables 5, 6.
We calculate the ξ-component up to the fourth digit and find how many terms ncos and nexp of the series in eqs. (4.3)

and (4.4) are required for this purpose. Φ̃ξ denotes the values of the rescaled ξ-component computed with the help of

eq. (4.4) for n� nexp. These tables, similarly to Tables 1-4, demonstrate that in the case λ̃eff < 1, which corresponds
to the observational restrictions, the formula (4.4) is preferable.

The behavior of the rescaled ξ-component of the gravitational force Φ̃ξ for four chosen values of λ̃eff is depicted
(with the help of Mathematica [24]) in Figs. 5, 6. To this end, we use the formula (4.4) with n � nexp (where the
numbers nexp are given by Tables 5, 6).
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Fig. 3. Rescaled z-component of the gravitational force Φ̃z ≡ ∂Φ̃/∂z in the cases λ̃eff = 0.01 and λ̃eff = 0.1 (left and right
panels, respectively).

Fig. 4. Rescaled z-component of the gravitational force Φ̃z ≡ ∂Φ̃/∂z in the cases λ̃eff = 1 and λ̃eff = 10 (left and right panels,
respectively).

5 Conclusion

In this paper we have studied the effect of the slab topology T ×R×R of the Universe on the form of the gravitational
potential and force. We have found two alternative forms of the solution: one (see eq. (2.27)) is based on the Fourier
series expansion of the delta function using the periodical property along the toroidal dimension, and another one
(see eq. (2.28)) is obtained by direct summation of the solutions of the Helmholtz equation for a source particle and
all its images. The latter solution takes the form of the sum of Yukawa-type potentials. For both of these alternative
presentations, the screening length λ̃eff is an important parameter. The physical meaning of this length can be most
clearly seen from the second formula: it defines the distance (from the source or its image) at which the corresponding

potential undergoes the exponential cutoff. According to the observations, λ̃eff < 1 for the present Universe.

One of the main purposes of the paper was to determine which of the found alternative formulas works better
from the point of numerical calculations. “Better” means which of the formulas requires less terms of the series to
achieve the necessary precision. Our calculations show that for both gravitational potential and force, the formula
with direct summation of Yukawa potentials is preferable in the physically relevant case λ̃eff < 1. Additionally, in
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z̃ ξ̃ Φ̃ξ nexp ncos

A1 0.5 0.5 −3.962 × 10−29 2 20

A2 0.5 0.1 −5.620 × 10−21 2 —

B1 0.1 0.5 −1.405 × 10−20 1 10

B2 0.1 0.1 −3.862 × 10−4 1 32

C1 0 0.5 −3.935 × 10−20 1 11

C2 0 0.1 −4.994 × 10−2 1 25

z̃ ξ̃ Φ̃ξ nexp ncos

A1 0.5 0.5 −1.939 × 10−2 2 5

A2 0.5 0.1 −5.615 × 10−2 2 28

B1 0.1 0.5 −1.406 × 10−1 2 4
B2 0.1 0.1 −20.75 1 17

C1 0 0.5 −1.618 × 10−1 2 4
C2 0 0.1 −73.58 1 21

Table 5. Values of the rescaled ξ-component of the gravitational force Φ̃ξ and corresponding numbers nexp and ncos of terms
of series for points A1, A2, B1, B2, C1 and C2 in the cases λ̃eff = 0.01 and λ̃eff = 0.1 for the left and right tables, respectively.

z̃ ξ̃ Φ̃ξ nexp ncos

A1 0.5 0.5 −2.536 6 4
A2 0.5 0.1 −1.405 4 20
B1 0.1 0.5 −3.993 5 4
B2 0.1 0.1 −35.20 3 17
C1 0 0.5 −4.188 6 4
C2 0 0.1 −99.69 3 19

z̃ ξ̃ Φ̃ξ nexp ncos

A1 0.5 0.5 −3.177 17 4
A2 0.5 0.1 −1.587 12 21
B1 0.1 0.5 −4.686 23 4
B2 0.1 0.1 −35.60 6 16
C1 0 0.5 −4.886 16 4
C2 0 0.1 −100.2 2 14

Table 6. Values of the rescaled ξ-component of the gravitational force Φ̃ξ and corresponding numbers nexp and ncos of terms
of series for points A1, A2, B1, B2, C1 and C2 in the cases λ̃eff = 1 and λ̃eff = 10 for the left and right tables, respectively.

Figs. 1-6, we have presented graphically the gravitational potentials and force projections for four screening lengths
λ̃eff = 0.01, 0.1, 1, 10, respectively.
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