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ABSTRACT
We develop a two-stage computational framework for robust and accurate time-
integration of multi-term linear/nonlinear fractional differential equations. In
the first stage, we formulate a self-singularity-capturing scheme, given avail-
able/observable data for diminutive time, experimentally obtained or sampled from
an approximate numerical solution utilizing a fine grid nearby the initial time. The
fractional differential equation provides the necessary knowledge/insight on how the
hidden singularity can bridge between the initial and the subsequent short-time so-
lution data. In the second stage, we utilize the multi-singular behavior of solution in
a variety of numerical methods, without resorting to making any ad-hoc/uneducated
guesses for the solution singularities. Particularly, we employed an implicit finite-
difference method, where the captured singularities, in the first stage, are taken into
account through some Lubich-like correction terms, leading to an accuracy of order
O(∆t3−α). We show that this novel framework can control the error even in the
presence of strong multi-singularities.

KEYWORDS
multi-fractal singularities; random singularities; correction terms; short-time data;
long-time integration; automated algorithms

1. Introduction

Fractional differential equations (FDEs) have been successfully applied in diverse prob-
lems that present the fingerprint of power-laws/heavy-tailed statistics, such as visco-
elastic modeling of bio-tissues [7, 34–37], cell rheology behavior [12], food preserva-
tives [20], complex fluids [21], visco-elasto-plastic modeling for power-law-dependent
stresses/strains [17, 51], earth sciences [62], anomalous diffusion in SephadexTMgels
[28], among others.

The increasing number of works involving fractional modeling in the past two
decades is largely due to the development of efficient numerical schemes for fractional-
order/partial differential equations (FDEs/FPDEs). Starting with Lubich’s early
works [31, 32] on finite-difference schemes, and followed by several developments,
e.g., on discretizing Burgers’ equation [47], fractional Adams methods for nonlinear
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problems [10, 11, 58], and fractional diffusion processes [15, 16, 29, 48]. Also, other
classes of global methods were developed, such as spectral methods for FDEs/FPDEs
[23, 25, 39, 42, 43, 49, 55–57], distributed-order differential equations (DODEs)
[22, 24, 41], fractional subgrid-scale modeling [40] and also mesh-free schemes, such
as the improved singular boundary method (SBM) developed by Chen and Gu [6].
Of particular interest, we highlight a family of fast convolution schemes for time-
fractional integrals/derivatives, initially developed by Lubich [33]. In such schemes,
instead of a direct discretization by splitting the fractional operator in N uniform
time-integration intervals, it is split in exponentially increasing intervals, reducing the
overall computational complexity from O(N2) to ≈ O(N logN). Furthermore, the
power-law kernels are computed through a convolution quadrature using complex in-
tegration contours [18, 27, 33, 45, 54]. The storage requirements are also reduced from
O(N) to ≈ O(logN). Recently, Zeng et al. [59] developed an improved version of
the scheme using a Gauss-Laguerre convolution quadrature, which utilizes real-valued
integration contours. In the same work, the authors also addressed the short mem-
ory principle and applied Lubich’s correction terms [32], leading to a more accurate
and stable fast time-stepping scheme. We also refer readers to other classes of fast
schemes for time-fractional operators that make use of the resulting matrix structures
[5], kernel compression [1], and divide-and-conquer fast finite-difference schemes [14].

There have also been works on ‘tunable accuracy’, spectral collocation methods for
FDEs/FPDEs that utilize singular basis functions [30, 56, 60]. Zayernouri and Karni-
adakis [56] developed an exponentially accurate spectral collocation method utilizing
fractional Lagrange basis functions, given by the product of a singular term with in-
terpolation parameter µ and a smooth part given by Lagrange interpolants. Later,
Zeng et al. [60] generalized the scheme for variable-order FDEs/FPDEs with endpoint
singularities and demonstrated that a proper tuning of the µ parameter enhanced the
accuracy of the numerical solutions. Lischke et al. [30] developed a Laguerre Petrov-
Galerkin method for multi-term FDEs with tunable accuracy and linear computational
complexity. Despite the high precision obtained by fine-tuning the bases in the devel-
oped works, such numerical accuracy is extremely sensitive to the ’single’-singularity
basis parameter µ and no self-capturing scheme was developed to find its correct,
application-specific value.

The accuracy and efficiency of the aforementioned numerical schemes strongly de-
pend on the regularity of the solution. To address such problem, a correction method
was introduced by Lubich [32], which utilizes M correction terms with singular powers
σk, with k = 1, . . . , M , given regularity assumptions for u(t). The corresponding cor-
rection weights are obtained through the solution of a Vandermonde-type linear system
of size M . Given a convenient choice of singular powers, some developed schemes were
able to attain their theoretical accuracy with non-smooth solutions [59, 61]. However,
such works utilize ad-hoc choices of σk, even without prior knowledge of the regularity
of the solution. According to Zeng et al. [59], for such cases, a reasonable choice would
be σk = 0.1k, which could improve the numerical accuracy when strong singularities
are present, and without loss of accuracy when there is enough regularity for u(t).
However, such procedure could still lead to arbitrary choices of σk far from the true
singularities of the solution. There are higher chances of approximating the singular-
ities by increasing the number of correction terms, but using M > 9 terms induces a
large condition number on the Vandermonde system (see Figure 2a), and consequently
large residuals, leading to large errors when computing the correction weights, which
are propagated to the discretized fractional operator [9].

Regarding the numerical solution of FDEs with correction terms, let N be the
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total number of time-steps with size ∆t. For the first M time-steps, prior information
of the numerical solution for u(t) is required see (25). The procedure proposed in
[59] involves the solution of a sub-problem with time domain t ∈ (0, M∆t] using a
time-step size τ = ∆t2 and one correction term to obtain the numerical solution uNn
for n = 1, . . . ,M . However, the choice of smaller step size τ even for a short time
might be too expensive, and the numerical solution for the M initial time-steps might
experience total loss of accuracy in the presence of strong singularities, not captured by
the single guess of correction term. Such deficiencies outline the need for I) Capturing
the multi-singularities of u(t) and II) Efficient and accurate schemes that incorporate
all captured singularities for time-integration of the (most crucial) initial M time-steps.

The main contribution of the present work is to develop a two-stage data-infused
computational framework for accurate time-integration of FDEs. In Stage-I, we for-
mulate a self-singularity-capturing framework where:

• The scheme utilizes available data for initial diminutive time (application-
oriented), and self-captures/determines multi-singular behaviors of the solution
through the knowledge introduced by the FDE and its corresponding fractional
operators. No knowledge of the analytical solution is required a-priori, and some
of the numerical tests throughout this work sample from analytical solution
points only for verification purposes.
• We develop a new (finite-difference based) algorithm for automatic determina-

tion of the underlying power-law singularities nearby the initial data, employing
gradient descent optimization. The singularities are introduced through Lubich’s
correction method [32].
• We introduce the capturing scheme for M correction terms and construct a

hierarchical, self-capturing framework. We test the framework for the particular
case of up to S = 3 singularities and M = 3 correction terms.
• The self-capturing procedure makes use of two stopping criteria for the error

minimization, namely ε (for solution error) and ε1 (for gradient norm error). Here,
numerical convergence with respect to ε1 corresponds to the minimum error for
a fixed number of correction terms. On the other hand, numerical convergence
with tolerance ε defines our error control criterion, and determines if additional
correction terms are needed to capture the true solution singularities.

In Stage-II we utilize the captured multi-singularities for full time-integration of the
FDE in question, where a variety of the aforementioned numerical methods could be,
in general, employed. At this stage, no knowledge of the solution data is required, but
only the usual forcing terms. Our approach is explained as the following:

• To handle the numerical solution of the FDE using multiple correction terms,
we develop an implicit finite-difference method, where we solve a linear system
of size M for the first M time-steps. Therefore, we incorporate the captured
singular behavior up to the desired precision ε, without the need of using a fine
time-grid;
• We numerically demonstrate that the developed methodology is of order
O(∆t3−α);

We perform a set of numerical tests, where we demonstrate that the developed
scheme is able to capture multiple singularities using a few number of time-steps,
which can later be utilized for efficient time-integration of FDEs with relatively large
time-step size ∆t, being much more accurate than ad-hoc choices of singularities when
the regularity of the solution is unknown. The successful capturing of singularities
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motivates the development of kernel- and knowledge-based refinement of time-grids
near t = 0 [46], as well as self-construction of basis function spaces using Müntz
polynomials [13, 19] for spectral element methods for FDEs/FPDEs [23].

This paper is organized as follows: Section 2 introduces the definitions for fractional
operators and the FDE in consideration. In section 3 we develop the two-stage frame-
work for efficient time-integration of FDEs, where we start with the self-singularity-
capturing scheme (Stage-I) in Section 3.1, followed by the finite-difference scheme for
solution of FDEs (Stage-II) in Section 3.2 using the captured singularities. The nu-
merical results with discussions for self-capturing up to three singularities are shown
in Section 4, followed by the conclusions in Section 5.

2. Definitions

We start with some preliminary definitions of fractional calculus [38]. The left-sided
Riemann-Liouville (RL) integral of order α ∈ R, with 0 < α < 1 and t ∈ R, is defined
as

(RLaIαt v)(t) =
1

Γ(α)

∫ t

a

v(s)

(t− s)1−α ds, t > a, (1)

where Γ represents the Euler gamma function and a denotes the lower integration
limit. The corresponding inverse operator, i.e., the left-sided RL fractional derivative
of order α, is then defined based on (1) as

(RLaDαt v)(t) =
d

dt
(RLaI1−α

t v)(t) =
1

Γ(1− α)

d

dt

∫ t

a

v(s)

(t− s)α
ds, t > a. (2)

Furthermore, the corresponding left-sided Caputo derivative of order µ ∈ (0, 1) is
obtained as

(CaDαt v)(t) = (RLaI1−α
t

dv

dx
)(x) =

1

Γ(1− α)

∫ t

a

v′(s)

(t− s)α
ds, t > a. (3)

The definitions of Riemann-Liouville and Caputo derivatives are linked by the following
relationship, which can be derived by a direct calculation:

(RLaDαt v)(t) =
v(a)

Γ(1− α)(t− a)α
+ (CaDαt v)(t), (4)

which denotes that the definitions of the aforementioned derivatives coincide when
dealing with homogeneous Dirichlet initial/boundary conditions.

We now introduce the Cauchy problem to be solved in this work and its correspond-
ing well-posedness (see Theorem 3.25(i) [26] with n = 1). Let C(Ω) be the space of
continuous functions u(t) in Ω = [a, b] with the norm:

||u||C(Ω) = max
t∈Ω
|u(t)| (5)

Also, let 0 < α < 1 and γ ∈ R+, with γ ≤ α. We define Cγ(Ω) to be the following
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weighted space of continuous functions:

Cγ(Ω) = {g(t)
∣∣ (t− a)γg(t) ∈ C(Ω), ||g||Cγ = ||(t− a)γg(t)||C}, (6)

Let G be an open set in R, and let a function f(t, u(t)) : (a, b] × G → R, such that
f(t, u(t)) ∈ Cγ(Ω) and is Lipschitz continuous with respect to any u(t) ∈ G. Let the
fractional Cauchy problem of interest given by:

C
aDαt u(t) = f(t, u(t)), u(a) = u0. (7)

Given the aforementioned conditions, there exists a unique solution for (7) in the
following space of functions:

Cα
γ (Ω) = {u(t) ∈ C(Ω)

∣∣ C
aDαt u(t) ∈ Cγ(Ω)}. (8)

The corresponding solution with respect to u(t) is equivalent to the following Volterra

integral equation of second kind: u(t) = u0 + 1
Γ(α)

∫ t
a
f(s,u(s))
(t−s)1−α ds, with a ≤ t ≤ b. We

remark that for other particular forms of (7), the corresponding Volterra equation of
second kind contains Mittag-Leffler functions Eα(z), which are defined through infinite
sums and thus are not computationally-friendly. Therefore, we choose to work with
form (7), since the developed self-singularity-capturing framework can be extended
for other FDEs in a straightforward way, without resorting to computationally expen-
sive hyper-geometric functions. Furthermore, although the existence and uniqueness
of Cauchy problems has been investigated [8, 10, 26, 44], yet, there is no comprehen-
sive framework to understand the singular behavior of the solution given any general
f(t, u(t)) ∈ Cγ(Ω). The developed formulation in this work is suitable for problems
where a few initial discrete data points are known from u(t) and f(t, u(t)).

Due to the employed finite-difference discretization over the RL derivative in this
work (see Section 3.1.2), we choose to rewrite (7) using (4) to obtain:

RL
aDαt u(t) = f(t, u(t))− u0

Γ(1− α)(t− a)α
. (9)

As will be shown in the next sections, the developed scheme is able to capture sin-
gularities with a minimal number of time-steps, i.e. with restricted data for a short
period of time.

3. Two-Stage Time-Integration Framework

In this section, we develop the two-stage framework for efficient time-integration of
FDEs. We start with Stage-I, where the self-singularity-capturing scheme is presented
for S singularities, computed over a small number of initial data points denoted by Ñ .
Then, after the multi-singular solution behavior is learned, we present the developed
solution for FDEs in Stage-II, where the subsequent full time-integration of the FDE
is carried out over N time steps (see Figure 1).
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Figure 1.: In Stage-I, the scheme captures the singularities for the short time-domain Ω̃,
given the short initial data. In Stage-II, the framework uses the singularities obtained
in Stage-I for full time-integration of the FDE over Ω.

3.1. Stage-I: Self-Singularity-Capturing Stage

We develop the self-singularity-capturing framework, starting with M correction terms
for the initial time-steps Ñ , at which data is available. We then utilize the developed
algorithm in a self-capturing approach, through a hierarchical and iterative fashion.

3.1.1. Minimization Method

Let t ∈ Ω̃, with Ω̃ = [t0, tÑ ], where Ñ denotes the number of initial short data points,

such that Ñ ≥ M , and let σ ∈ RM be the following correction-power (singularity)
vector:

σ = [σ1, σ2, . . . , σM ]T . (10)

We define an error function E : RM → R+, given by:

E(σ) =

Ñ∑
n=1

(
udatan − uNn (σ)

)2
, (11)

where uNn (σ) denotes the σ-dependent numerical solution of u(t) at t = tn, and udatan

represents the known initial short-time data. Figure 1 illustrates the integration do-
main Ω̃ for Stage-I, where the error function (11) is evaluated for a short time. We
apply an iterative gradient descent scheme in order to find σ∗ that minimizes (11). Let
σk be known at the k-th iteration. We compute the updated value σk+1 for iteration
k + 1 in the following fashion [4]:

σk+1 = σk − γk∇E(σk), (12)

where γk denotes the following two-point step size for the k−th iteration, given by [3]:

γk =

(
σk − σk−1

)T [∇E(σk)−∇E(σk−1)
]

||∇E(σk)−∇E(σk−1)||2L2(RM )

. (13)

The gradient ∇E : R+ → RM of the error function is given by ∇E(σ) = [∂E/∂σ1,
∂E/∂σ2, . . . , ∂E/∂σM ]T , where, instead of obtaining a closed form for the derivatives
(which would implicitly involve the differentiation of uNi ), we utilize complex-step
differentiation. Therefore, let ej = [0, 0, . . . , 1, . . . , 0]T be a vector in RM of zeros,
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with a unit value in the j-th entry. Therefore, we have the following:

∇E(σ)j ≈
Im(E(σ + i∆σej))

∆σ
, j = 1, 2, . . . , M, i =

√
(−1), (14)

which only requires the additional evaluation of the error function perturbed by ∆σ,
which can be taken, e.g., as 10−14. Given two numerical tolerances ε and ε1, we iterate
and find a new σk+1 while both criteria E(σk+1) > ε and ||∇E(σk)|| > ε1 are true.
The latter criterion is introduced to minimize our error function, while the former
is used for error control in our self-capturing scheme. As will be shown in the next
sections, the criterion ||∇E(σk)|| < ε1 is satisfied for small ε1 even when M < S, but
the criterion E(σk+1) < ε will only be satisfied when we use enough correction terms
(see Section 3.1.3) to fully capture the S number of power-law singularities.

3.1.2. Numerical Scheme for Short-Time Integration

In the singularity-capturing scheme, given σ, in order to compute the error in (11) and
the gradient (due to the error perturbation) (14), we need to compute the numerical
solution uNn for n = 1, . . . , Ñ initial data points over time-intervals ∆t. For this
purpose, we employ the finite-difference discretization with corrections presented in
[32] for the fractional RL derivative. Including correction terms, the discretization of
the left-sided RL fractional derivative of order α, evaluated at time t = tn, with initial
time a = 0, has the following form:

RL
0Dαt u(t)

∣∣
t=tn
≈ RL

0D
(α,M)
t uN (t)

∣∣
t=tn

. (15)

The above approximation is augmented by the so-called Lubich’s correction terms,
which is given by:

RL
0D

(α,M)
t uN (t)

∣∣
t=tn

= RL
0Dαt uN (t)

∣∣
t=tn

+

M∑
j=1

Wj,n(σ)
(
uNj − u0

)
, (16)

with n = 1, . . . , Ñ . The term RL
0Dαt uN (t)

∣∣
t=tn

is usually denoted in the convolution

quadrature form ∆t−α
∑n

j=0wn−ju
N
j with weights wn−j . However we keep the former

notation in this work to be consistent with the adopted discretization for fractional
RL derivatives [59] presented later in this section. The term Wj,n(σ) denotes the
correction weights, which depend on the correction powers σ ∈ RM . We assume a
power-law solution singularity about t = 0, driven by the power-law kernel of the RL
fractional derivative, i.e., u

∣∣
nearby
t=0

≈
∑M

k=1 ckt
σk . If σ = {σk}Mk=1 are known, the RL

fractional derivative of each singular term, tσk , can be obtained by:

RL
0Dαt (tσk)

∣∣
t=tn

+

M∑
j=1

Wj,nt
σk
j =

Γ(1 + σk)

Γ(1 + σk − α)
tσk−αn , k = 1, . . . ,M, (17)

where the first term on the left-hand side of (17) denotes the discretized RL fractional
derivative of tσk , while the right-hand side represents the exact fractional derivative
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of tσk , evaluated at t = tn. Equation (17) can be written as:

M∑
j=1

Vk,jWj,n =
Γ(1 + σk)

Γ(1 + σk − α)∆tα
nσk−α − 1

∆tσk
RL

0Dαt (tσk)
∣∣
t=tn

, (18)

with k = 1, . . . ,M , where Vk,j = jσk denotes a Vandermonde matrix with size M×M .
Therefore, to obtain the starting weights Wj,n, the above linear system has to be solved

for all n = 1, . . . , Ñ .
Substituting (16) into (9), we obtain the following discrete form for the FDE:

RL
0Dαt uN (t)

∣∣
t=tn

+

M∑
j=1

Wj,n(σ)
(
uNj − u0

)
+

u0

Γ(1− α)tαn
= fdatan , n = 1, . . . , Ñ , (19)

where fdatan denotes the known short-time right-hand-side at time tn associated with
udata, which can be obtained experimentally or sampled through a fine solution grid
nearby t = 0.

In order to discretize RL
0Dαt uN (t), we follow the difference scheme developed in [59],

which is based on a second-order interpolation of u(t) for the fractional RL integral
(1), similar to the L1-2 scheme for fractional Caputo derivatives developed in [15].
Therefore, when evaluating (1) at t = tn, we split it into local L and history H parts
as follows:

RL
0Iαt uN (t)

∣∣
t=tn

=

∫ tn

tn−1

k(tn − s)uN (s) ds︸ ︷︷ ︸
L(u, tn)

+

n−2∑
k=0

∫ tk+1

tk

k(tn − s)uN (s) ds︸ ︷︷ ︸
H(u, tn)

, (20)

with the kernel k(t) = tα−1/Γ(α). The function uN (t) is approximated in an implicit

fashion using Lagrange interpolants l
(p)
j of order p:

uN (tn) ≈ I(p)uNn =

p∑
j=0

l
(p)
j uNn+j−p. (21)

Substituting (21) into (20), and evaluating the convolution integrals, we obtain the
following approximations for the local and history parts, respectively, as

L(n,α)uN =

p∑
j=0

d
(p)
j uNn+j−p, (22)

H(n,α)uN =

n−p∑
j=0

(
b
(1)
n−1−ju

N
j + b

(2)
n−1−ju

N
j+1 + b

(3)
n−1−ju

N
j+2

)
, (23)

where the corresponding α- and ∆t- dependent coefficients d
(p)
j and b

(1)
j , b

(2)
j , b

(3)
j are

presented in Appendix A. In our computations, we make use of p = 1 (piece-wise linear
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approximation) for the local part L(1,α)u, when n = 1 (first time-step), and p = 2 for
n > 1 (subsequent time-steps). The fractional RL derivative can be obtained from the
above discretization by setting −1 < α < 0. Therefore:

RL
0DαuN (t)

∣∣
t=tn
≈ L(n,−α)uN +H(n,−α)uN , (24)

which has accuracy of O(∆t3−α) when p = 2. Finally, substituting (24) into (19), and
recalling (22), we obtain the discretized form for our FDE:

p∑
j=0

d
(p)
j uNn+j−p +H(n,−α)uN +

M∑
j=1

Wj,n(σ)
(
uNj − u0

)
+

u0

Γ(1− α)tαn
= fdatan , (25)

with n = 1, . . . , Ñ .

Remark 1. Among a variety of available schemes, adopted the discretization of frac-
tional operators introduced in [59] using Lubich’s correction terms. However, in [59],
the authors did not perform a fully implicit computation of the second term on the left-
hand-side of (19) when M > 1. Instead, they obtained the solutions for n = 1, . . . , M
using a fine, uniform time-grid with time-step size τ = ∆t2 and M = 1 correction
term. We observe that using such a fine initial time-grid might be computationally
expensive and ineffective when strong singularities are present (e.g. u(t) = tσ

∗
, with

0 < σ∗ < 1 − α). In our developed scheme, we treat such term in a fully implicit
fashion, where we solve a small linear system with M unknowns to obtain uNn for
n = 1, . . . , M . This ensures a proper inclusion of all M singularities in all time-steps
near t = 0.

We present here the developed finite-difference scheme to solve the discretized FDE
(25) for the particular case of M = 3. Here, we solve a small linear system for the
fully-implicit computation at the first 3 time-steps, that is, t = {∆t, 2∆t, 3∆t}, which
is obtained by expanding (25) for each of the time-steps, where we use p = 1 for the
first one, with H(1,−α)uN = 0, and p = 2 for the subsequent ones. The expansions are
presented as follows:
First time-step t = ∆t:(

d
(1)
1 +W1,1

)
︸ ︷︷ ︸

A11

uN1 + (W2,1)︸ ︷︷ ︸
A12

uN2 + (W3,1)︸ ︷︷ ︸
A13

uN3 = fdata1 − r1u0, (26)

with,

r1 = d
(1)
0 −

(
W1,1 +W2,1 +W3,1+

∆t−α

Γ(1− α)

)
. (27)

Second time-step t = 2∆t:(
d

(2)
1 + b

(2)
0 +W1,2

)
︸ ︷︷ ︸

A21

uN1 +
(
d

(2)
2 + b

(3)
0 +W2,2

)
︸ ︷︷ ︸

A22

uN2 + (W3,2)︸ ︷︷ ︸
A23

uN3 = fdata2 − r2u0, (28)
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with,

r2 = d
(2)
0 + b

(1)
0 −

(
W1,2 +W2,2 +W3,2+

(2∆t)−α

Γ(1− α)

)
. (29)

Third time-step t = 3∆t:(
d

(2)
0 + b

(1)
0 + b

(2)
1 +W1,3

)
︸ ︷︷ ︸

A31

uN1 +
(
d

(2)
1 + b

(2)
0 + b

(3)
1 +W2,3

)
︸ ︷︷ ︸

A32

uN2

+
(
d

(2)
2 + b

(3)
0 +W3,3

)
︸ ︷︷ ︸

A33

uN3 = fdata3 − r3u0, (30)

with,

r3 = b
(1)
1 −

(
W1,3 +W2,3 +W3,3+

(3∆t)−α

Γ(1− α)

)
. (31)

Therefore, from (26)-(31), we solve the following linear system for n ≤ 3:A11 A12 A13

A21 A22 A23

A31 A32 A33


u

N
1

uN2
uN3

 =

f
data
1

fdata2

fdata3

−
r1

r2

r3

u0, if n ≤ 3. (32)

Remark 2. To obtain the solutions for M = 2, we only need to remove the third
row/column of the coefficient matrix A, and set W1,3 = W3,1 = W2,3 = W3,2 = 0 in
(26)-(31). Also, we observe that the correction terms lead to a full matrix of coefficients,
which is reduced to a lower-triangular form for the uncorrected case.

For the remaining time-steps (n > 3), uN1 , u
N
2 , u

N
3 are known and we solve for uNn

in the usual (but still implicit) time-stepping fashion, as follows:

uNn =

fdatan −
1∑
j=0

d
(2)
j uNn−2+j −H(n,−α)uN −

M∑
j=1

Wj,n(uNj − u0)− u0t
−α
n

Γ(1− α)

 /d
(2)
2 ,

(33)
with if 3 < n ≤ Ñ .

Remark 3. The current formulation can be extended for a larger number of correction
terms; however, using M > 9 will incur in an ill-conditioned system for (17). This
fact was first analyzed by Diethelm et al. [9] and later numerically shown by Zeng
et al. [61], which would incur in significant errors when computing the weights Wn,j

and consequently propagate the errors to the operator discretization. In that sense, we
choose M = 3 to capture the most critical singularities while keeping a small condition
number and small residual for the linear system (17).

10



Algorithm I-1 Stage-I Self-Singularity-Capturing Scheme for FDEs.

1: Known data about udata, fdata for Ñ time-steps of size ∆t.
2: Set M = 1, initial guess σ(0) = 0 and numerical tolerances ε, ε1.
3: while M ≤ 3 do

4: Estimate σ
(k)
i , i = 1, . . . ,M using Algorithm I-1 and obtain the error E(σ(k)).

5: if E(σ(k)) < ε then
6: The singularities were captured within the specified tolerance ε.
7: break
8: else
9: Additional correction terms needed: Set M = M + 1.

10: if M == 2 then
11: Set initial guess σ(0) = [0, σ

(k)
1 ]T .

12: else if M == 3 then
13: Set initial guess σ(0) = [σ

(k)
1 , σ

(k)
2 , (σ

(k)
1 + σ

(k)
2 )/2]T .

14: end if
15: end if
16: end while
17: return M , σ, E(σ).

Algorithm I-2 Stage-I Singularity Capturing Algorithm (with M correction terms).

1: Initial guess σ0, γ0, compute Wn,j using (17) and E(σ0) using (11), (32), (33).
2: while E(σk) > ε and ||∇E(σk)|| > ε1 do
3: Compute the perturbation σk + i∆σej for j = 1, 2, . . . , M .
4: Compute ∇E(σk) using (14), (17), (11), (32), (33).
5: Compute γk using (13) and update σk+1 = σk − γk∇E(σk).
6: end while
7: return σ, E(σ).

3.1.3. Stage-I Algorithm

The Stage-I framework is described in Algorithm I-1, which learns about the singu-
larities of the solution using small Ñ . The M captured singularities σ are utilized to
initialize an FDE solver in Stage-II (see Section 3.2).

Algorithm I-2 summarizes the main steps for the numerical scheme to capture the
singularities of udata, fdata for diminutive times at fixed M .

3.1.4. Computational Complexity of Stage-I

We recall that in the presented scheme, the error function (11) is evaluated Nit times,
which is the number of iterations until convergence of the minimization scheme. The
complexity of this error function is dominated by the time-integration of the numerical
solution uN over Ñ time-steps. For the first M time-steps, we use (32) and solve the
corresponding linear system, which costs O(M3). For the remaining Ñ−M time-steps
we use (33), where the dominant cost is due to the direct numerical evaluation of the
fractional derivatives, that is, O((Ñ −M)2). Therefore, the computational complexity
of the entire scheme is O((M3 + (Ñ −M)2)Nit). However, here we use M ≤ 3, and
therefore the asymptotic complexity becomes O(Ñ2Nit). Furthermore, Ñ is assumed
to be small due to the short-time data, and we show in Section 4 that we are able to
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capture singularities with Ñ = O(M), which makes the presented scheme numerically
efficient, as long as a large number of iterations for convergence is not required.

Remark 4. We observe that since Ñ is small, there is no need to use fast time-stepping
schemes in Stage-I, since the break-even point between fast and direct schemes usually
lies in a range of moderate number of time-steps (e.g. about O(104) for the fast scheme
in [59]). Therefore, for small Ñ , fast schemes would decrease the performance of Stage-
I, and would only be beneficial for Stage-II.

3.2. Stage-II: Integration of FDEs with the Captured Singularities

Once the multi-singular behavior of the solution is captured through the framework
presented in Section 3.1.3 and Algorithm I-1, a variety of numerical methods for FDEs
can be implemented (e.g. other finite-difference and fast convolution schemes), incor-
porating the captured singularities. Here, to solve the FDE (9), we use the developed
implicit finite-difference scheme presented in Section 3.1.2, and given by expressions
(32) and (33) for t ∈ Ω = [t0, tN ], using N time-steps of size ∆t (not necessarily the
same time-step size as Stage-I). The solution procedure is described in Algorithm II.

The computational complexity of Stage-II depends exclusively on the employed
numerical discretization for the FDE. We utilize the same time-integration scheme as
in Stage-I, for N time-steps. Therefore, recalling (32) and (33), we have a complexity
of O(M3 + (N − M)2). However, since M << N , the asymptotic computational
complexity of Stage-II becomes O(N2).

4. Numerical Results

We start with Stage-I with a computational analysis of the correction weights (see
Section 4.1), followed by the capturing scheme for the particular case of a single time-
step and correction term (see Section 4.2). Then, we test the singularity-capturing
Algorithm I-2 for M = 1, 2 and the self-capturing Algorithm I-1 for M = 3 (see Section
4.3). We also utilize the two-stage framework with random singularities and compare
the accuracy of the entire time-integration framework with the captured singularities
against ad-hoc choices through a comparison between the obtained error functions
E(σ) (see Section 4.4.1). In all aforementioned tests, if not stated otherwise, we use
the method of fabricated solutions, that is, we take udata = uext and fdata = f ext,
where we assume the following solution:

uext(t) =

S∑
j=1

tσ
∗
j , σ∗j ∈ R+, (34)

with homogeneous initial condition uext(0) = 0. The term S denotes the number sin-
gularities/terms in uext(t), and σ∗j represents prescribed singularities to be captured.
From the defined analytical solution, we obtain the forcing term using a direct calcu-
lation, given by [38]:

f ext(t) =

S∑
j=1

Γ(1 + σ∗j )

Γ(1 + σ∗j − α)
tσ

∗
j−α. (35)
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Algorithm II Complete solution framework for FDEs.

1: Stage-I: Self-Singularity-Capturing
2: Given data for udata, fdata for Ñ time-steps, capture σ using Algorithm I-1.
3: Stage-II: Numerical solution of the FDE
4: Let N be the total number of time-steps. Compute Wn,j using (18).
5: Solve uNn for n = 1, . . . ,M using (32).
6: for n = 4 until N do
7: Solve for uNn using (33).
8: end for

The numerical examples in this work are presented for verification of the developed
framework, where uext and f ext represent synthetic data for the Cauchy problem. In
practice, only Stage-I of the framework utilizes experimental data for diminutive time
to capture the multi-singularities, and Stage-II utilizes the captured singularities for
the full time-integration of the FDE.

Furthermore, we test Stage-I of the framework for a multi-term FDE (see Section
4.4.2) and the two-stage framework for a one-term FDE with a singular-oscillatory
solution (see Section 4.5). Finally, we test the developed framework against a nonlinear
FDE and demonstrate its effectiveness when the solution data is sampled from a fine
time-grid nearby the initial time (see Section 4.6). The developed algorithms were
implemented in MATLAB R2018b, and were run in a laptop with Intel Core i7-8650U
CPU with 1.90 GHz, 16 GB RAM and Windows 10 operating system.

4.1. Numerical Behavior of Correction Weights

We investigate the behavior of the initial correction weights Wn,j and the condition
number for the Vandermonde matrix V presented in (18). Figure 2a illustrates the
condition numbers for VM×M using different choices for σk, namely σk = αk when the
regularity of u(t) is known, and σk = 0.1k when it is unknown. We also illustrate
the behavior of the correction weights using M = 1 with respect to the time-step
size ∆t and fractional order α (corresponding to fractional differentiation/integration)
in Figures 2b and 3. We observe that for α = 0.5 (fractional differentiation), W1,1

increases in magnitude as ∆t decreases. On the other hand, for α = 0.5 (fractional
integration), it starts with W1,1 ≈ 0.2 for ∆t = 1, and decreases with ∆t. For fractional
integration, only positive correction weights are observed, that decrease slower with
respect to n, but with all values decreasing to zero as ∆t decreases.

4.2. Single Time-Step and Correction Term

We present the numerical results for a particular case of Stage-I in Appendix B for
S = 1 singularity and M = 1 correction term, with a closed-form for the correction
weights (see (B6)). Let the time domain Ω̃ = [0,∆t], with fractional-order and time-
step size kept constant, respectively, at α = 0.5 and ∆t = 0.01 in this section. Figure
4 presents the convergence behavior for σ∗1 = 0.5, and Figure 5 illustrates the obtained
results using σ∗1 = 0.1. We observe that in both cases, the scheme captures the power σ∗1
from the analytical solution, with a relatively small number of iterations. Furthermore,
we observe an overshooting in the iterative procedure for initial guess σ(0) = 1.1, but
nevertheless, the scheme still converges within machine precision. Figures 6 and 7

13



(a) Condition number of V vs M . (b) First correction weight W1,1 vs ∆t.

Figure 2.: (a) Condition numbers for different choices of powers σk. We observe that
the choice σk = 0.1k for unknown regularity of u(t) [59] leads to the highest condition
number, where at most M = 9 correction terms can be used with double precision
arithmetic. (b) First correction weight W1,1 with respect to ∆t.

(a) α = 0.5, σk = 0.9. (b) α = −0.5, σk = 0.9.

Figure 3.: Initial weights W1,n for different time-step sizes ∆t, with corrections for
fractional differentiation/integration (a) α = 0.5 (fractional differentiation), where
the initial weights have a larger magnitude that quickly decreases in the first time-
steps, indicating that they are most relevant near t = 0. (b) α = −0.5 (fractional
integral).

show, respectively, the results for S = 2 with σ∗1 = 0.1, σ∗2 = 0.2 and S = 3 with
σ∗1 = 0.1, σ∗2 = 0.3, σ∗3 = 0.5. We observe that the converged values for σ are closer to
σ∗1, which is the most critical singularity for the chosen uext(t).

Since the converged values for σ captured intermediate values between the defined
singularities σ∗1, σ

∗
2, σ
∗
3 for the choice of ∆t = 0.01, we analyze the convergence behavior

of σ with respect to ∆t. We present the obtained results in Figure 8 for two different
sets of singular values, and we observe for the defined range of ∆t, that σ lies between
the singularities σ∗1, σ∗2, σ∗3, and converge to the strongest singularity (in this case σ∗1)
as ∆t→ 0.
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(a) Error vs iteration number. (b) Error vs iterated singularity

Figure 4.: Convergence behavior with σ∗ = 0.5 and initial guesses σ(0) = {0.0001, 1.05}
and time-step size ∆t = 0.01.

(a) Error vs iteration number (b) Error vs iterated singularity

Figure 5.: Convergence behavior with σ∗ = 0.1 and initial guesses σ0 = {0.0001, 1.1}
and time-step size ∆t = 0.01.

(a) Error vs iteration number (b) Error vs iterated singularity

Figure 6.: Convergence behavior with σ∗1 = 0.1, σ∗2 = 0.2, initial guesses σ(0) =
{0.001, 0.5} and time-step size ∆t = 0.01. The converged value for the singularity
σ ≈ 0.1377 is between σ∗1, σ

∗
2.
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(a) Error vs iteration number (b) Error vs iterated singularity

Figure 7.: Convergence behavior with σ∗1 = 0.1, σ∗2 = 0.3, σ∗3 = 0.5, initial guesses
σ(0) = {0.001, 0.5} and time-step size ∆t = 0.01. The converged value for the singu-
larity is σ ≈ 0.1856.

Figure 8.: Converged values for the singularity σ vs time-step size ∆t with two choices
of σ∗ = [σ∗1, σ

∗
2, σ

∗
3]T .

4.3. Singularity Capturing for M Correction Terms

We systematically test the capturing Algorithm I-2 for multiple correction terms
M = 1, 2, 3 and multiple defined singularities S = 1, 2, 3 in uext. The tests are pre-
sented in an incremental fashion for M , where we show the capabilities of Algorithm
I-2 to capturing/approximating the singularities. We then demonstrate how the self-
capturing framework defined in Algorithm I-1 successfully determines the singularities
for S = 3 and M = 3, where we compare the obtained errors with ad-hoc choices for
σ using random strong singularities. Throughout this section, we keep the fractional
order fixed at α = 0.5, as well as short time-domain Ω̃ = [0, 1], and perturbation
∆σ = 10−14 for the complex step differentiation. For all cases, we define a tolerance
ε = 10−15 for E(σ) and unless stated otherwise, ε1 = 10−14 for ||∇E(σ)||. We choose a
smaller tolerance for the norm of the error gradient (since the E(σ) is defined with the
norm ||.||22) to make sure that E(σ) is always minimized before we introduce additional
correction terms in the self-capturing Stage-I. We also use γ0 = 10−3 for initialization
in Algorithm I-2. For cases where M = S, we compute the component-wise relative
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(a) Error vs iteration number (b) σ vs iteration number

Figure 9.: Second-order asymptotic convergence behavior for M = 1 correction term,
S = 1 singularity with value σ∗1 = 0.1. The obtained relative error for the converged
σ1 is Eσ1 = 2.290× 10−8.

error of the converged σk, which we define as:

Eσj =
|σ∗j − σ

(k)
j |

|σ∗j |
, j = 1, . . . ,M, (36)

where k denotes the iteration number when convergence is achieved, i.e., E(σ(k)) < ε.

4.3.1. One Correction Term

We consider M = 1 and Ñ = 100 initial data-points. Figures 9, 10 and 11 present
the obtained results, respectively, for S = 1, 2, 3 singularities, using Algorithm I-2.
We observe that, when S = M , we can capture singularities within machine precision.
When M < S, we are still able to find a minimum for E(σ) with an intermediate
value for σ1, similar to the results obtained for the simplified case in Section 4.2.
Furthermore, when S ≥ 2, or the initial guess σ(0) is far from the true singularity,
the iterative procedure assumes the typical zig-zag behavior of the gradient descent
scheme.

4.3.2. Two Correction Terms

We consider M = 2, where we first analyze the behavior of the error function E(σ)
using S = 2 singularities (see Figure 12). Then, we use Algorithm I-2 to capture the

singularities σ∗ = [0.1, 0.3]T (see Figure 13), where we observe a more pronounced
zig-zag behavior for convergence, compared to M = 1. We also obtain estimates of
σ1, σ2 when dealing with S = 3 singularities, namely σ∗ = [0.1, 0.3, 0.5]T (see Figure
14). Of particular interest, we observe that the obtained singularities lie in the range
of the true singularities, which are useful observations to define initial guesses for cases
with three correction terms and singularities.

4.3.3. Three Correction Terms

We test the case for M = 3, using S = 1, 2, 3. In this analysis, we use Ñ = 3 initial
data points. Figures 15 and 16 illustrate, respectively, the obtained results for S = 1, 2
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(a) Error vs iteration number. (b) σ vs iteration number.

Figure 10.: Convergence behavior for M = 1, S = 2 with σ∗ = [0.1, 0.3]T . With the
plateau in error and σ due to gradient convergence within the tolerance ε1. The scheme
converges to an “intermediate” value σ ≈ 0.153, between the true singularities.

(a) σ vs iteration number. (b) σ vs iteration number.

Figure 11.: Convergence behavior for M = 1, S = 3 with σ∗ = [0.1, 0.3, 0.5]T . In
for both initial guesses, the scheme converges to an “intermediate” value σ ≈ 0.184,
which is closer to the strongest true singularity σ∗1 = 0.1.

using Algorithm I-2. We observe a quadratic convergence rate for S = 1, similar to
Fig.9, but with a few more iterations. Furthermore, for M = 2, we observed a small
change in the final value of σ3, but nevertheless, capturing the two singularities σ∗1, σ∗2
is sufficient to minimize E(σ) when S = 2.

The numerical convergence of Algorithm I-2 towards the correct singularities σ∗

becomes much more difficult when using S = M = 3. Therefore, we make use of the
self-capturing approach summarized in Algorithm I-1, which incrementally solves the
minimization problem using M = 1, 2, 3 and use the respective output singularities as
initial guesses for the subsequent number of correction terms M = M + 1. We present
the obtained results in Fig.17. We observe that the scheme converges to the true sin-
gularities with errors for σ up to 0.024, but nevertheless, they yield an approximation
error for uN of 10−15.

We also test the influence of the number of initial data points Ñ in Stage-I over the
number of iterations Nit and number of corrections terms M . For this purpose, we set
S = 3 singularities with values σ∗ = [0.1, 0.3, 0.5]T and we fix ∆t = 0.1 [s], α = 0.5,
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(a) Linear error-axis. (b) Logarithmic error-axis.

Figure 12.: Error function E(σ) for M = 2, S = 2, with σ∗1 = 0.1, σ∗2 = 0.3. Two

minima occur at σ∗ = [0.1, 0.3]T = [0.3, 0.1]T , corresponding to the true singularities.
We set σ1 6= σ2 to avoid a singular matrix in linear system (17).

(a) Error vs iteration number. (b) σ vs iteration number.

Figure 13.: Two correction terms M = 2 and two singularities S = 2, with σ∗ =
[0.1, 0.3]T . The obtained converged values are σ = [0.299974, 0.099990]T , which cor-

respond to component-wise relative errors Eσ = [8.61, 9.94]T × 10−5.

ε = 10−13, ε1 = 10−10. We then vary Ñ in Algorithm I-1 and analyze the convergence
behavior and computational time, which are presented in Table 1. We observe that the
variation of Ñ did not affect the number of captured singularities M , but the choice
Ñ = 37 significantly increased the number of iterations. We also observe that despite
the similar number of iterations Nit obtained for 31 ≤ Ñ ≤ 36, the computational
time increases with Ñ due to the computational complexity of Stage-I. Therefore, we
consider Ñ = O(M) an appropriate choice, as the singularities σ∗ are captured with
less computational cost, which is suitable when diminutive initial data is available.
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(a) Error vs iteration number. (b) σ vs iteration number.

Figure 14.: Two correction terms M = 2 and three singularities S = 3, with σ∗ =
[0.1, 0.3]T and ε1 = 10−11. The converged values are σ = [0.112635, 0.420495]T ,
which are closer to the stronger singularities σ1 = 0.1 and σ3 = 0.5. The approximate
singularities still lead to an approximation error of 1.47× 10−11.

(a) Error vs iteration number. (b) σ vs iteration number

Figure 15.: Results for M = 3, S = 1. The obtained relative error for σ1 is Eσ1 =
4.869× 10−8. The components σ1, σ2 remained practically constant.

Table 1.: Influence of Ñ in Stage-I of the developed framework.

Ñ M Nit Computation Time [s] E(σ)

31 3 74 0.217 9.863015× 10−14

32 3 44 0.293 2.101287× 10−14

33 3 51 0.617 9.433562× 10−14

34 3 62 2.251 9.037342× 10−14

35 3 98 11.346 9.101754× 10−14

36 3 52 180.719 1.550662× 10−14

37 3 445 1275.168 8.823108× 10−14
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(a) Error vs iteration number. (b) σ vs iteration number.

Figure 16.: Results for M = 3, S = 2. The obtained converged values are σ =
[0.099997, 0.299995, 0.939015]T , where σ1, σ2 captured the singularities, respectively
with errors Eσ1 = 3.07× 10−5 and Eσ2 = 1.65× 10−5.

(a) Error vs iteration number. (b) σ vs iteration number.

Figure 17.: Results for M = 3, S = 3 using ε = 10−15. The converged values are
σ = [0.099, 0.498, 0.293]T , which correspond to component-wise relative errors Eσ =

[0.014, 0.005, 0.024]T .

4.4. Random Singularities

We perform two numerical tests involving random power-law singularities, where we
define three strong singularities σ∗1, σ∗2, σ∗3 randomly sampled from a uniform distri-
bution U(0, 1/2). We employ the self-singularity-capturing procedure in the context
of single- and multi- term FDEs.

4.4.1. FDEs with Random Singularities

We test the two-stage framework for efficient time-integration of (9). We then compute
uext(t) and f ext(t), respectively using (34) and (35), and use the self-capturing frame-
work presented in Algorithm I-1. We then compare the approximation error E(σ) with
the choice σk = 0.1k defined in [59] when the singularities are unknown. Although our
framework has no explicit information about the generated random singularities, we
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Figure 18.: Comparison of error vs time for long time-integration between the captured
singularities and σk = 0.1k for different values of time-step size ∆t.

present them for verification purposes, which are given by:

σ∗ = [0.0172230402514543, 0.219372179828199, 0.190779228546504]T . (37)

We set Ñ = 3 with ∆t = 1/3, and therefore, Ω̃ = [0, 1], ε = 10−15, and ε1 = 10−13

to Algorithm II. Stage-I of the framework (Algorithm I-1) converges with E(σ(k)) =
2.96× 10−16 with M = 2 correction terms, with obtained values:

σ = [0.0187990387914248, 0.206944449676742]T , (38)

with elapsed computational time of 0.169 [s]. After capturing the singularities within
the desired precision ε, we enter Stage-II and compute the numerical solution uN (t)
using the captured σ for multiple, longer time-integration domains Ω. We remark that
when using an ad-hoc choice of fixed σk = 0.1k with 4 correction terms, that is,

σ = [0.1, 0.2, 0.3, 0.4]T , (39)

we obtain an approximation error E(σ) = 5.25× 10−5 over N = 4 time-steps. We use
the captured powers (38) and the predefined ones (39) for longer time-integration. The
obtained results are presented in Figure 18, where we observe how using 3 time-steps
to capture the singularities leads to precise long time-integration with a large time-
step size ∆t = 1/3 (solid black curve). On the other hand, the errors for σk = 0.1k
are much larger, and also do not improve with smaller ∆t due to the presence of very
strong singularities.

4.4.2. Multi-Term FDEs with Random Singularities

In this section we show how the scheme in Stage-I can be applied for multi-term
fractional differential equations. Let the following multi-term FDE:

Nα∑
l=1

RL
0Dαlt u(t) = f(t, u(t)), u(0) = u0, 0 < αl < 1. (40)
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where αl denotes the Nα multi-fractional orders with l = 1, . . . Nα. Using the ap-
proximation (16), and assuming the same powers σ for the correction weights for all
fractional derivatives, we obtain:

Nα∑
l=1

RL
0D

αl
t u

N (t)
∣∣
t=tn

+

M∑
j=1

(
Nα∑
l=1

W
(αl)
j,n (σ)

)(
uNj − u0

)
= f δn, (41)

where we use the superscript (αl) in W
(αl)
j,n to denote the distinct sets of correction

weights due to the fractional order αl through (18). The entire minimization scheme
is identical, since it depends on the solution data for u(t). In order to solve (41) with
the developed scheme in Stage-I, due to the linearity of (40), we only need to replace
the initial correction weights Wn,j , and α-dependent coefficients dj , bj in (32) and (33)
with the following summations:

W̃n,j =

Nα∑
l=1

W
(αl)
n,j , d̃

(p)
j =

Nα∑
l=1

d
(p,αl)
j , b̃

(k)
j =

Nα∑
l=1

b
(k,αl)
j , k = 1, 2, 3. (42)

We utilize the fabricated solution (34) in (40), which yields the following force term:

f ext(t) =

Nα∑
αl

S∑
j=1

Γ(1 + σ∗j )

Γ(1 + σ∗j − αl)
tσ

∗
j−αl . (43)

We set Nα = 3 fractional orders {α1, α2, α3} = {0.3, 0.5, 0.7}, and identically to
Section 4.4.1, we sample the following random singularities from U(0, 1/2):

σ∗ = [0.13924910943352420, 0.2734407596024919, 0.4787534177171488]T . (44)

Also, we set Ñ = 3 with ∆t = 1/3 and Ω̃ = [0, 1], ε = 5 × 10−15, and ε1 = 10−14,
with γ0 = 10−3 to Algorithm I-1, where the scheme converges with the following
approximate singularities:

σ = [0.1469249923105880, 0.4869203803691072, 0.3066386453671829]T . (45)

Figure 19 presents the obtained results for each M in the self-capturing procedure,
where we observe that the scheme does not fully capture the true singularities, but pro-
vides sufficiently good approximations to obtain errors as low as E(σ) = 2.31×10−15.
The elapsed computational time is 10.65 [s], due to the larger number of iterations Nit

required for convergence of Stage-I.

4.5. Singular-Oscillatory Solutions

We also test the two-stage framework sampling data points from a fabricated solu-
tion for (9), defined as the following multiplicative coupling between a power-law and
oscillatory parts:

uext(t) = tσ
∗

cos(ωt), (46)
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(a) M = 1 (b) M = 2 (c) M = 3.

Figure 19.: Singularities σ vs iteration number for a multi-term FDE with Nα = 3
in Stage-I for each M in Algorithm I-1. (a) M = 1, with error E(σ) = 1.10 × 10−5,
(b) M = 2, with error E(σ) = 3.83 × 10−13, and (c) M = 3 with convergence
at E(σ) = 2.31 × 10−15. The black horizontal lines correspond to the true random
singularities in the solution.

with homogeneous initial condition uext(0) = 0. The corresponding right-hand-side is
analytically obtained as:

f ext(t) = c1t
σ∗−α

[
pF̃q(a

(1); b(1);−ω2t2/4) + c3ω
2t2pF̃q(a

(2); b(2);−ω2t2/4)
]
, (47)

with c1 = −2α−σ
∗−4πΓ(1 + σ∗), c2 = 8 (α− σ∗ − 1) and c3 = (1 + σ∗)(2 + σ∗). Also,

pF̃q represents the regularized, generalized hypergeometric function given by [53]:

pF̃q(a1, . . . , ap; b1, . . . , bq; z) =
pFq(a1, . . . , ap; b1, . . . , bq; z)

Γ(b1) . . .Γ(bq)
, (48)

where, for the particular case (47), we have:a
(1) = {(1 + σ∗)/2, (2 + σ∗)/2}, b(1) = {1/2, (2− α+ σ∗)/2, (3− α+ σ∗)/2},

a(2) = {(3 + σ∗)/2, (4 + σ∗)/2}, b(2) = {3/2, (4− α+ σ∗)/2, (3− α+ σ∗)/2}.

We fix the fractional order α = 0.5, frequency ω = 10π and randomly sample σ∗

from a uniform distribution U(0, 1/3) and obtain a value σ∗ = 0.2426481954401539.
For Stage-I, we consider Ñ = 3 data points with Ω̃ = [0, 0.01], with ∆t = 3/100 [s].
Furthermore, we set ε = 10−11, ε1 = 10−14 and γ0 = 10−3. Using Algorithm I-1 with

a slight initial guess modification for σ(0) when M = 2 in line 11 to σ(0) = [1, σ
(k)
1 ]T

(since the developed framework is mainly oriented to strong singularities), we capture
the following two singularities:

σ = [0.2427452349772425, 2.220682758797950]T ,

where the first converged singularity is an approximation to the randomly sampled
value for σ∗. To understand the second captured singularity σ2, let the series expansion
of (46) around ωt:

uext(t) = tσ
∗

cos(ωt) = tσ
∗
(

1− ω2

2
t2 +O(t4)

)
= tσ

∗ − ω2

2
t2+σ∗

+O(t4+σ∗
). (49)
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(a) Relative error vs time-step size. (b) Solutions for u(t) vs time.

Figure 20.: (a) Convergence analysis comparing the accuracy of the captured singular-
ities in Stage-I with ad-hoc choices for time-integration with T = 1 [s] in Stage-II. The
term q denotes the convergence rate. The self-captured case uses M = 2 correction
terms, while for σk = 0.1k and σk = αk we use M = 4. (b) Exact and approx-
imate solutions for u(t) using the captured singularities for longer time-integration
over T = 25 [s].

Therefore, the captured σ2 is an approximation of the second term 2+σ∗ of the above
series expansion. Although capturing the third singularity 4+σ∗ is possible, we would
need to set higher values for the initial guesses in the self-capturing algorithm, and
finding the corresponding minimum becomes more difficult, since such higher-order,
weaker singularities have less influence in the accuracy of the solution.

After capturing the singularities in Stage-I, with elapsed computational time of
0.149 [s], we apply them in Stage-II for a convergence test with T = 1 [s], with Ω =
[0, T ], and compare the approximate solution uN (t) with the exact one (49) through
the relative error defined as

EL2 =
||uN − uext||L2(Ω)

||uext||L2(Ω)
. (50)

between the two-stage framework other ad-hoc choices for σ, and also without cor-
rections (see Figure 20a). We observe that capturing M = 2 singularities leads to the
theoretical accuracy O(∆t3−α) of the employed discretization, and also to errors about
2 orders of magnitude lower than the choice σk = 0.1k with M = 4 for the singularities
in the observe range for ∆t. We also compare the exact and approximate solutions
over T = 25 [s] with N = 4096 time-steps of size ∆t ≈ 6.10× 10−3, and observe that
we fully capture the singular and oscillatory behaviors of the solution , with elapsed
computational time of 0.426 [s].

4.6. Nonlinear FDE

Finally, we apply the developed framework for a nonlinear right-hand-side of the FDE
(9), now given by:

C
0Dαt u(t) = C1u(t)2 exp(−C2 t) + 1, u(0) = 0, (51)
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where we set C1 = 1 and C2 = 5. Differently from the previous examples, where the
diminutive data points were sampled from a known solution uext(t), here, we sample
udata(t) from a benchmark solution obtained through a fine-grid nearby t = 0. The
right-hand-side is evaluated explicitly. Our procedure follows:

• I) Set the short time-domain Ω̃ = [0, 0.01] and numerically obtain the approxi-
mate solution of (51) using ∆t = 10−5 [s].
• II) Sample Ñ = 100 benchmark solution data points and utilize the singularity

capturing algorithm (Stage-I) with ∆t = 10−4 and ε1 = 10−14 over Ω̃ to obtain
σ. The value of ε is chosen according to the employed fractional order α.
• III) We utilize the captured singularities and the RHS of (51) evaluated explic-

itly for full time-integration (Stage-II) over Ω = [0, 1], using ∆t = 10−4 [s], and
compare the results with the benchmark solution integrated over Ω.

We perform two tests: In the first, we set α = 0.2, ε = 7.5 × 10−5 in Stage-I, and
capture σ = 7.236455491751606× 10−2. In the second one, we set α = 0.25, ε = 1.1×
10−5 and capture σ = 7.602862102264105 × 10−2. Figure 21 illustrates the obtained
results for full time-integration. We observe that the self-captured solution matches
the benchmark case for the entire time-integration domain, including nearby t = 0,
demonstrating that the developed scheme is effective for nonlinear FDEs with unknown
solutions. The obtained computational times for the self-capturing framework are:
0.07 [s] for fine grid solution and sampling, 0.15 [s] for Stage-I and 0.86 [s] for Stage-II,
yielding a total computational time of 1.08 [s], compared to 48.58 [s] for the benchmark
solution. Therefore, the fine grid sampling at diminutive time had minimal influence
on the computational cost.

(a) α = 0.2. (b) α = 0.25.

Figure 21.: Self-captured and benchmark solutions versus time for full time-integration
of a nonlinear FDE.

5. Conclusions

We developed a two-stage framework for accurate and efficient solution of FDEs. It
consisted of: I) A self-singularity-capturing scheme, where the inputs were limited data
for diminutive time, and the output was the captured power-law singular values of the
solution. The limited data can be either obtained experimentally or sampled from a
fine time-grid nearby t = 0. We developed an implicit finite-difference algorithm for
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the FDE solution and employed a gradient optimization scheme. II) The captured
singularities were then inputs of an implicit finite-difference scheme for FDEs with
accuracy O(∆t3−α). Based on our numerical tests, we observed that:

• The scheme was able to fully capture S singularities using M ≥ S correction
terms. When S > M , the scheme still obtained approximations of the M singu-
larities, which was useful for error control.
• When M = 1, the most critical singularity was estimated by the scheme, regard-

less of S.
• The developed scheme was used in a self-singularity-capturing framework, which

determined the singularity values up to the desired tolerance ε.
• Once the singularities are captured in the first stage, we can successfully employ

any known numerical scheme for more accurate and efficient solution of the
corresponding FDE, when compared to the ad-hoc singularity choices done in
[59].
• The scheme was able to capture two singularities from a solution using a strong

power-law singularity coupled with an oscillatory smooth part, which allowed
us to obtain the theoretical accuracy O(∆t3−α) of the employed numerical dis-
cretization for the fractional derivative. Furthermore, by solving a nonlinear
FDE, we demonstrate that the developed framework does not require the knowl-
edge of any analytical solution.

The main advantage of the developed scheme over other works on correction meth-
ods [32, 59, 61] is the self-capturing of strong multi-singularities σ of the solution data
in Stage-I instead of ad-hoc choices. This led to smaller solution errors while achiev-
ing the theoretical convergence rate of the employed numerical integration schemes in
Stage-II, with algorithmically minimal correction terms M , and consequently requiring
less computational cost.

The total computational complexity of the two-stage framework is O(Ñ2Nit +N2),
since the number of correction terms M is small. Among a variety of numerical
schemes, Stage-II of the framework could incorporate fast convolution frameworks
[33, 59] or a divide-and-conquer scheme [14]. This would dramatically increase the
efficiency for long time-fractional integration of anomalous materials under complex
loading conditions [2, 50–52] and also further improve the numerical accuracy for
nonlinear problems using fractional multi-step/IMEX schemes [58, 63]. The developed
scheme can also be used to capture the power-law attenuations and creep-ringing [20] in
highly-oscillatory vibration of anomalous systems. Also, discovering the multi-singular
behavior of the solution can give insight on knowledge- and kernel-based grid refine-
ment near t = 0 [46]. Furthermore, the presented scheme can leverage the development
of self-constructing function spaces using Müntz polynomials [13, 19], increasing the
efficiency of spectral element methods [23] applied to anomalous transport.
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Appl., 62(3):918–929.

[14] Fu, H., Ng, M., and Wang, H. (2017). A divide-and-conquer fast finite difference method
for space-time fractional partial differential equation. Comput. Math. Appl., 73:1233–1242.

[15] Gao, G.-h., Sun, Z.-z., and Zhang, H.-w. (2014). A new fractional numerical differentiation
formula to approximate the caputo fractional derivative and its applications. J. Comp.
Phys., 259:33–50.

[16] Gorenflo, R., Mainardi, F., Moretti, D., and Paradisi, P. (2002). Time fractional diffusion:
a discrete random walk approach. Nonlinear Dyn., 29(1-4):129–143.

[17] Hei, X., Chen, W., Pang, G., Xiao, R., and Zhang, C. (2018). A new visco-elasto-plastic
model via time-space derivative. Mech. Time Depend. Mater., 22:129–141.
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Appendix A. Discretization Coefficients for Fractional Derivatives

We present the α- and ∆t- dependent coefficients for the local (22) and history (23)
approximations for the RL fractional derivative, which are given by [59]:

d
(1)
0 = − α∆tα

Γ(2+α) , d
(1)
1 = ∆tα

Γ(2+α) , p = 1,

d
(2)
0 = − α∆tα

2Γ(3+α) , d
(2)
1 = α(3+α)∆tα

Γ(3+α) , d
(2)
2 = (4+α)∆tα

2Γ(3+α) , p = 2.

(A1)

b
(1)
j =

∆tα

2Γ(α)

[
a

(α+2)
j − (2j − 1) a

(α+1)
j + j (j − 1) a

(α)
j

]
, (A2)

b
(2)
j = − ∆tα

Γ(α)

[
a

(α+2)
j − 2ja

(α+1)
j + (j + 1) (j − 1) a

(α)
j

]
, (A3)

b
(3)
j =

∆tα

2Γ(α)

[
a

(α+2)
j − (2j + 1) a

(α+1)
j + j (j + 1) a

(α)
j

]
, (A4)

a
(α)
j =

1

α
[(j + 1)α − jα] . (A5)

Appendix B. Singularity-Capturing Formulation for a Single Correction
Term and Time-Step

Let the time domain Ω̃ = [0,∆t], and let E : R→ R+ be the following quadratic error
function over σ:

E(σ) = ||udata(t)− uN (t;σ)||2
L2(Ω̃)

, (B1)

where we assume udata(t) to be known, and uN (t;σ) represents the numerical ap-
proximation of udata(t), with σ ∈ R to be determined, such that E(σ) is minimized.
Therefore, let the case for M = 1 correction term and for the first time-step t1 = ∆t.
We obtain the following cost function:

E(σ) =
(
udata1 − uN1 (σ)

)2
=
(
∆tσ

∗ − uN1 (σ)
)2
, (B2)

where uN1 (σ) denotes the numerical solution for the FDE (9) at t = ∆t, obtained
through (19) and (35) in the following fashion:

RL
0Dαt uN (t)

∣∣
t=∆t

+W1,1

(
uN1 − u0

)
=

S∑
j=1

Γ(1 + σ∗j )

Γ(1 + σ∗j − α)
∆tσ

∗
j−α. (B3)

Recalling (17), we obtain the initial correction weight W1,1 by the following equation:

RL
0Dαt (tσ1)

∣∣
t=∆t

+W1,1 (tσ1 ) =
Γ(1 + σ1)

Γ(1 + σ1 − α)
tσ1−α
1 , (B4)
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Recalling (22) with p = 1:

d
(1)
1 ∆tσ1 + ∆tσ1W1,1 =

Γ(1 + σ1)

Γ(1 + σ1 − α)
∆tσ1−α, (B5)

therefore, we obtain the closed form for the correction weight:

W1,1 =
Γ(1 + σ1)

Γ(1 + σ1 − α)
∆t−α − d(1)

1 , (B6)

Substituting (B6) into (B3), rewriting the RL derivative in its discretized form at
t = ∆t, and assuming homogeneous initial conditions u0 = 0, we obtain:

d
(1)
1 uN1 +

(
Γ(1 + σ1)

Γ(1 + σ1 − α)
∆t−α − d(1)

1

)
uN1 = fdata1 , (B7)

hence,

uN1 = ∆tα
Γ(1 + σ1 − α)

Γ(1 + σ1)
fdata1 . (B8)

Substituting (B8) into (B2), we obtain, for t = ∆t:

E(σ1) =

(
udata1 −∆tα

Γ(1 + σ1 − α)

Γ(1 + σ1)
fdata1

)2

. (B9)

We assume that the above equation has a root at σ1 = σ∗, that is, E(σ∗) = 0.

Therefore, given an initial guess σ
(0)
1 , we can apply a Newton scheme to iteratively

obtain σk+1
1 in the following fashion:

σk+1
1 = σk1 −

E(σ1)
∂E(σ1)
∂σ1

∣∣
σ1=σk1

, (B10)

where ∂E(σ1)
∂σ1

can be obtained analytically, and is given by:

∂E(σ1)

∂σ1
= −2ψ∗∆tα

Γ(1 + σ1 − α)

Γ(1 + σ1)

(
udata1 −∆tα

Γ(1 + σ1 − α)

Γ(1 + σ1)

)
, (B11)

with ψ∗ = ψ0(1 + σ1−α)−ψ0(1 + σ1), where ψ0(z) denotes the Polygamma function.
We observe that the computational cost of the above procedure per iteration k is
minimal, since there is no history computation when evaluating the corresponding
time-fractional derivatives of uN1 .
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