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Fractional calculus provides a rigorous mathematical
framework to describe anomalous stochastic processes by
generalizing the notion of classical differential equations to
their fractional-order counterparts. By introducing the frac-
tional orders as uncertain variables, we develop an operator-
based uncertainty quantification framework in the context
of stochastic fractional partial differential equations (SF-
PDEs), subject to additive random noise. We characterize
different sources of uncertainty and then, propagate their as-
sociated randomness to the system response by employing a
probabilistic collocation method (PCM). We develop a fast,
stable, and convergent Petrov-Galerkin spectral method in
the physical domain in order to formulate the forward solver
in simulating each realization of random variables in the
sampling procedure.

1 Introduction
Fractional models construct a tractable mathematical

framework to describe and predict the behavior of multi-
scales multi-physics complex phenomena. Particularly, frac-
tional differential equations, as a well-structured generaliza-
tion of their integer order counterparts, provide a rigorous
mathematical tool to develop models that describe anoma-
lous behavior in complex physical systems [1–9], where the
anomaly manifest itself in heavy tail, sharp peaks, intermit-
tency and asymmetry in the distribution of corresponding un-
derlying stochastic processes. Significant approximations as
inherent part of assumptions upon which the model is built,
lack of information about true values of parameters (incom-
plete data), and random nature of quantities being modeled
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pervade uncertainty in the corresponding mathematical for-
mulations [10, 11]. In this work, we develop an uncertainty
quantification (UQ) framework in the context of stochastic
fractional partial differential equations (SFPDEs), in which
we characterize different sources of uncertainties and further
propagate the associated randomness to the system response
quantity of interest (QoI). The intention of this work is not to
introduce new mathematical theories or methods for UQ, but
rather to bring forward practical solutions using existing the-
ories in an attempt to overcome the computational challenges
of UQ in fractional models.

Types and Sources of Uncertainty. The model uncertain-
ties are in general being classified as aleatory and epistemic
according to their fundamental essence. It is important to
retain the separation between these two sources in order to
assess the predictive efficiency of model [12, 13]. Aleatory
uncertainty impacts output of interest due to natural varia-
tion of inputs and parameters; it is irreducible and commonly
treated with probability theory. Epistemic uncertainty, how-
ever, results from lack of knowledge about the system of in-
terest and can be reduced by obtaining additional informa-
tion. The epistemic uncertainties are broadly characterized
as i) model uncertainties, occurring in model inputs, numeri-
cal approximation errors, and model form uncertainty; and ii)
data uncertainties due to measurement inaccuracy and sparse
or imprecise data. The model uncertainty encompasses all
model parameters coming from geometry, constitutive laws,
and fields equation, while also pertaining surrounding inter-
actions, such as boundary conditions and random forcing
sources (noise). Numerical approximations, which are an
essence of differential equations since they generally do not



lend themselves to analytical solutions, introduce uncertainty
by imposing different sources of discretization error, iterative
convergence error, and round off error. In this work, we only
consider the epistemic uncertainty in our fractional model
and thus, introduce the fractional derivative orders as new
set of model parameters in addition to model coefficients.
We note that the values of these new parameters are strongly
tied to the distribution of underlying stochastic process and
their statistics are estimated from experimental observations
in practice, see e.g. [14, 15].

Uncertainty Framework. Conventional approaches in para-
metric UQ of differential equations is based around Monte
Carlo sampling (MCS) [16], which performs ensemble of
forward calculations to map the uncertain input space to the
uncertain output space. This method enjoys from being em-
barrassingly parallelizable and can be implement quite read-
ily on high dimensional random spaces. However, the key
issue is the slow rate of convergence ∼ 1/

√
N with N num-

ber of realization, which consequently imposes exhaustively
so many operations of forward solver and makes the method
not practical for expensive simulations. Other methods such
as sequential MCS [17] and multilevel sequential MSC [18]
are also developed and recently used in [19] to improve the
parametric uncertainty assessment in elliptic nonlocal equa-
tions. An alternative to expensive MCS is to build surro-
gate models. An extensive comparison of two widely used
ones, namely polynomial chaos and Gaussian process, are
provided in a recent work [20]. Polynomial chaos, in which
the output of stochastic model is represented as a series ex-
pansion of input parameters was initially applied in [21]
and later extended and used in [22–26]. It is also gener-
alized and used in constructing stochastic Galerkin meth-
ods [27–30] for problems with higher-dimensional random
spaces. Other non-sampling numerical methods, including
but not limited to perturbation method [31–34] and moment
equation method [35, 36] are also developed, however their
applications are restricted to stochastic systems with rela-
tively low-dimensional random space. These so-called “in-
trusive” approaches typically do not treat the forward solver
as a black-box, rather require some knowledge and reformu-
lation of the governing equations and thus, may not be prac-
tical in many problems with complex codes.

A wide range of “non-intrusive” techniques mostly
stretch over sampling, quadrature, and regression, see [20]
and references therein. More recently, high-order probabilis-
tic collocation methods (PCM), employing the idea of in-
terpolation/collocation in the random spaces, are developed
in [37–39]; They are also known as Stochastic Collocation.
These methods limit the sample points to an efficient sub-
set of random space, while adequately sampling the neces-
sary range. The excellence in use of PCM is twofold; it has
the benefit of easily sampling at nodal points that naturally
leads to independent realizations of the problem as in MCS,
and the advantage of fast convergence rate. The challeng-
ing post processing of solution statistics, which can essen-
tially be described as a high-dimensional integration prob-
lem, can also be resolved by adopting sparse grid genera-

tors, such as Smolyak algorithm [39, 40]. The use of sparse
grids, as opposed to full tensor product construction from
one-dimensional quadrature rules, will effectively reduce the
number of sampling, while preserving a fast convergence rate
to high level of accuracy.

Forward Solver. A core task in computational forward UQ
is to form an efficient numerical method, which for each
realizations of random variables can accurately solve and
simulate the deterministic counterpart of stochastic model
in the physical domain. Such numerical method is usually
called “forward solver” or “simulator”. In the case of frac-
tional partial differential equations (FPDEs), the excessive
cost of numerical approximations becomes more challeng-
ing as FPDEs usually do not lend themselves to analytical
solutions and more importantly most of uncertainty propa-
gation techniques instruct operations of forward solver many
times. This requires implementation of more efficient numer-
ical schemes. In general, there are two main issues of non-
locality and end-points singularities in numerically solv-
ing FPDEs. The non-local feature of fractional derivatives
causes the local methods such as finite difference method
(FDM) and finite element method (FEM) to lose their ad-
vantage, see [41–48] for some examples on FDM for solv-
ing FPDEs. In contrast, global and high-order schemes like
spectral methods are proper techniques since their main dis-
advantage in treating standard differential equations becomes
an advantage in the case of FPDEs. We refer to [57, 58] for
introduction to several spectral methods for integer order dif-
ferential equation and to [43, 49–56] for FPDEs. The solu-
tion of FPDEs also exhibits end-points singularities as an-
other difficulty in developing high accuracy numerical meth-
ods; An example is the inadequacy of a spectral method that
uses only polynomial basis functions. More recently, Zay-
ernouri et al. [59, 60] developed two new spectral theories
on fractional and tempered fractional Sturm-Liouville prob-
lems, and introduced explicit corresponding eigenfunctions,
namely Jacobi poly-fractonomials of first and second kind.
These eignefunctions are comprised of smooth and fractional
parts, where the latter can be tunned to capture singulari-
ties of true solution. They are successfully employed in con-
structing discrete solution/test function spaces and develop-
ing a series of high-order and efficient Petrov-Galerkin spec-
tral methods, see [61–72].

The main focus of this work is to develop an operator-
based computational forward UQ framework in the context
of stochastic fractional partial differential equation. As-
suming that the mathematical model under consideration
is well-posed and accounts in principle for all features of
underlying phenomena, we identify three main sources of
uncertainty, i) parametric uncertainty, including fractional
indices as new set of random parameters appeared in the
operator, ii) additive noises, which incorporates all intrin-
sic/extrinsic unknown forcing sources as lumped random
inputs, and iii) numerical approximations. Computational
challenges arise when the admissible space of random in-
puts is infinite-dimensional, e.g. problems subject to addi-



tive noise [73], and thus, the framework involves uncertainty
parametrization via a finite number of random space basis.
Unlike the classical approach in modeling random inputs,
which considers idealized uncorrelated processes (white
noises), we model the random inputs as more/fully correlated
random processes (colored noises), and parametrize them
via Karhunen-Loève (KL) expansion by assuming finite-
dimensional noise assumption. This yields the problem in
finite dimensional random space. We then, propagate the
parametric uncertainties into the system response by apply-
ing PCM. We obtain the corresponding deterministic FPDE
for each realization of random variables, using the Smolyak
sparse grid generators for low to moderately high dimen-
sions. In order to formulate the forward solver, we follow
[65] and develop a high-order Petrov-Galerkin (PG) spectral
method to solve for each realization of SFPDE in the phys-
ical domain by employing Jacobi poly-fractonomials in ad-
dition to Legendre polynomials as temporal and spatial ba-
sis/test functions, respectively. The smart choice of coef-
ficients in construction of spatial basis/test functions yields
symmetric properties in the resulting mass/stiffness matrix,
which is then exploited to formulate an efficient fast solver.
We also show that for each realization of random variables,
the deterministic problem is mathematically well-posed and
the proposed forward solver is stable. By adopting sufficient
number of basis in the physical domain, we eliminate the
epistemic uncertainty associated with numerical approxima-
tion and isolate the impact of parametric uncertainty on sys-
tem response QoI.

The organization of the paper is as follows. We re-
call some preliminaries on fractional calculus in section 2.
Then, we formulate the stochastic system in section 3, and
parametrize the random inputs. We also develop the stochas-
tic sampling, namely PCM and MCS for our stochastic prob-
lem. We further construct the deterministic solver in section
4, and provide the numerical results in section 5. We end the
paper with a conclusion and summary.

2 Preliminaries on Fractional Calculus

Let ξ ∈ [−1,1]. The left- and right-sided fractional
derivative of order σ are defined as (see e.g., [74, 75])

(RL
−1D

σ
ξ )u(ξ) =

1
Γ(n−σ)

dn

dξn

∫ ξ

−1

u(s)ds
(ξ− s)σ+1−n , ξ > −1,

(1)

(RL
ξD

σ
1 )u(ξ) =

1
Γ(n−σ)

(−d)n

dξn

∫ 1

ξ

u(s)ds
(s− ξ)σ+1−n , ξ < 1,

(2)

respectively. An alternative approach in defining the frac-
tional derivatives is the left- and right-sided Caputo deriva-

tives of order σ, n−1 < σ ≤ n, n ∈ N, defined, as

( C
−1D

σ
ξ u)(ξ) =

1
Γ(n−σ)

∫ ξ

−1

u(n)(s)ds
(ξ− s)σ+1−n , ξ > −1, (3)

(C
ξD

σ
1 u)(ξ) =

1
Γ(n−σ)

∫ 1

ξ

u(n)(s)ds
(s− ξ)σ+1−n , ξ < 1. (4)

By performing an affine mapping from the standard domain
[−1,1] to the interval t ∈ [a,b], we obtain

RL
aD

σ
t u = (

2
b−a

)σ(RL
−1D

σ
ξ u)(ξ), (5)

C
aD

σ
t u = (

2
b−a

)σ( C
−1D

σ
ξ u)(ξ). (6)

Hence, we can perform the operations in the standard domain
only once for any given σ and efficiently utilize them on any
arbitrary interval without resorting to repeating the calcula-
tions. Moreover, the corresponding relationship between the
Riemann-Liouville and Caputo fractional derivatives in [a,b]
for any σ ∈ (0,1) is given by

(RL
aD

σ
t u)(t) =

u(a)
Γ(1−σ)(t−a)σ

+ (C
aD

σ
t u)(t). (7)

3 Forward Uncertainty Framework
3.1 Formulation of Stochastic FPDE

Let D = [0,T ]× [a1,b1]× [a2,b2]× · · · × [ad,bd] be the
physical computational domain for some positive integer d
and stochastic function u(t,x;ω) : D×Ω→ R, where ω ∈ Ω

denotes the random input of the system in a properly de-
fined complete probability space (Ω,F ,P). We consider the
following SFPDE, subject to certain homogeneous Dirichlet
initial/boundary conditions and stochastic process as addi-
tional force function, given as

Lq(ω) u(t,x;ω) = F(t,x;ω) (8)
u
t=0 = 0, (9)

u
x=a j

= u
x=b j

= 0, (10)

such that for P-almost everywhere ω ∈Ω the equation holds.
The stochastic fractional operator and force term are given
respectively as:

Lq(ω) = 0D
α(ω)
t −

d∑
j=1

k j

[
a j
D
β j(ω)
x j + x j

D
β j(ω)
b j

]
, (11)

F(t,x;ω) = h(t,x) + f (t;ω), (12)

where the fractional indices α(ω) ∈ (0,1) and β j(ω) ∈
(1,2), j = 1,2, · · ·d are mutually independent random vari-
ables, k j are real positive constant coefficients, and the frac-
tional derivatives are taken in the Riemann-Liouville sense.



We assume that the driving terms h and f are properly posed,
such that Eqns. (8)-(10) is well-posed P-a.e. ω ∈Ω, and also
the solution in physical domainD is smooth enough such that
we can construct a numerical scheme to solve each realiza-
tion of SFPDE. As an extension to future works, the stochas-
tic operator Eqn. (11) can be extended to α(ω) ∈ (1,2) for the
case of wave equations, and thus applied in formulating frac-
tional models to study complex time-varying nonlinear fluid-
solid interaction phenomena [76–78], material damage [79],
and also the effect of damping/stiffness in structural vibra-
tions [80–83].

3.2 Representation of the Noise: Dimension Reduction
We approximate the additional random forcing term by

representing f (t;ω) into its finite dimensional version and
thus, reduce the infinite-dimensional probability space to a
finite-dimensional space. This is achieved via truncating
Karhunen-Loève (KL) expansion with the desired accuracy
[84].

Let (Ω,F ,P) be a complete probability space, where
Ω is the space of events, F ⊂ 2Ω denotes the σ-algebra
of sets in Ω, and P is the probability measure. The ran-
dom field f (t;ω) has the ensemble mean E{ f (t;ω)} = f̄ (t),
finite variance E{[ f (t;ω)− f̄ (t)]2} and covariance C f (t1, t2) =

E{[ f (t1;ω)− f̄ (t1)][ f (t2;ω)− f̄ (t2)]}. The KL expansion of
f (t;ω) takes the form

f (t;ω) = f̄ (t) +

∞∑
k=1

√
λkψk(t) Qk(ω), (13)

where Q(ω) = {Qk(ω)}
∣∣∣k=∞

k=1 is a set of mutually uncorrelated
random variables with zero mean and unit variance, while
ψk(t) and λk are the eigenfunction and eigenvalues of the co-
variance kernel C f (t1, t2). We obtain the covariance kernel
C f and its eigenvalues and eigenfunctions, following [85]
and by solving a stochastic Helmholtz equation

4 f (t;ω)−m2 f (t;ω) = g(t;ω), (14)

where the random forcing g(t;ω) is a white-noise process
with zero mean and unit variance. The eigenvalues and
eigenvectors of Eqn. (14) form a Fourier series, so that the
KL expansion Eqn. (13) is replaced with its sine Fourier se-
ries version

f (t;ω) = f̄ (t;ω) +

∞∑
k=1

ak sin
(

2kπ t
T

)
Qk(ω), (15)

in which the random variables Qk(ω) are chosen to be uni-
formly distributed with probability density function ρk(qk).
T is the length of the process along the t-axis, and the coeffi-
cients

ak =
2
√

T`2

1 +

(
2πk
T`

)2−1

, (16)

where ` = T/A and A is the correlation length of f (t;ω).
To ensure that the random variables Qk(ω) have zero mean
and unit variance, we define them on Qk(ω) ∈ [−

√
3,
√

3].
We note that this process is consistent to the zero-Dirichlet
initial condition given in Eqn. (9). Next, in order to
render Eqn. (15) computable, we truncate the infinite se-
ries with a prescribed (≈ 90%) fraction of the energy of
the process, following the finite-dimensional noise assump-
tion in stochastic computations. To this end, we set T =

1, the correlation length A = T/2, and consider only the
first four terms in the KL expansion. Let fM(t;ω) =
1
µ

∑M
k=1 ak sin

(
2kπ t

T

)
Qk(ω) denote the normalized truncated

expansion, assuming f̄M(t;ω) = 0, where µ = maxt
{
σ fM

}
and

σ fM is the standard deviation of fM(t;ω). Thus, we represent
the random process to be employed in Eqn. (8) as

f (t;ω) = ε fM(t;ω) (17)

where ε is the amplitude of process.
Therefore, the formulation of SFPDE Eqn. (8) can be

posed as follows: Find u(t,x;ω) :D×Ω→R such that ∀t,x ∈
D

0D
α(ω)
t u(t,x;ω)−

d∑
j=1

k j

[
a j
D
β j(ω)
x j + x j

D
β j(ω)
b j

]
u(t,x;ω)

= h(t,x) + f (t; Q1(ω),Q2(ω), · · · ,QM(ω)) (18)

holds P-a.s. for ω ∈ Ω, subject to the homogeneous initial
and boundary conditions.

3.3 Input Parametrization
Let Z : Ω→RN be the set ofN = 1+d + M independent

random parameters, given as

Z =
{
Zi

}N
i=1

=
{
α(ω),β1(ω),β2(ω), · · · ,βd(ω),Q1(ω),Q2(ω), · · · ,QM(ω)

}
with probability density functions ρi : Γi→R, i = 1,2, · · · ,N ,
where their images Γi ≡ Zi(Ω) are bounded intervals in R.
The joint probability density function (PDF)

ρ(ξ) =

N∏
i=1

ρi(Zi), ∀ξ ∈ Γ (19)

with the support Γ =
∏N

i=1 Γi ⊂ R
N constitutes a mapping of

the sample space Ω onto the target space Γ. Therefore, a ran-
dom vector ξ = (ξ1, ξ2, . . . , ξN ) ∈ Γ denote an arbitrary point
in the parametric space.

According to the Doob-Dynkin lemma [86], the solution
u(t,x;ω) can be expressed as u(t,x;ξ), which provides a very
useful tool to work in the target space rather than the abstract



sample space. Thus, the formulation of SFPDE Eqn. (8) can
be posed as: Find u(t,x;ξ) : D×Γ→ R such that ∀t,x ∈ D

0D
α(ξ)
t u(t,x;ξ)−

d∑
j=1

k j

[
a j
D
β j(ξ)
x j + x j

D
β j(ξ)
b j

]
u(t,x;ξ)

= h(t,x) + f (t;ξ) (20)

holds ρ-a.s. for ξ(ω) ∈ Γ and ∀t,x ∈ D, subject to proper
initial and boundary conditions.

3.4 Stochastic Sampling
We expound the two sampling methods, MCS and PCM

to sample from random space and, then propagate the asso-
ciated uncertainties by computing the statistics of stochastic
solutions via post processing.

Monte Carlo Sampling: MCS. The general procedure
in statistical Monte Carlo sampling is the three following
steps.

1. Generating a set of random variables ξi, i = 1,2, · · · ,K
for a prescribed number of realizations K.

2. Solving the deterministic problem Eqn. (20) and obtain-
ing the solution ui = u(t,x;ξi) for each i = 1,2, · · · ,K.

3. Computing the solution statistics, e.g. E[u] = 1
M

∑M
i=1 ui.

We note that step 1 and 3 are pre- and post- processing steps,
respectively. Step 2 requires repetitive simulation of deter-
ministic counterpart of the problem, which we obtain by de-
veloping a Petrov-Galerkin spectral method in the physical
domain. Although MCS is relatively easy to implement once
a deterministic forward solver is developed, it requires too
many samplings for the solution statistics to converge, and
yet the extra numerical cost due to non-locality and memory
effect in fractional operators are still remained. In addition,
the number of required sampling also grows rapidly as the
dimension of problem increases, resulting in an exhaustively
long run time for the statistics to converge.

Probability Collocation Method: PCM. We employ a
high-order stochastic discretization in the random space fol-
lowing [37, 87] in order to construct a probabilistic colloca-
tion method (PCM), which yields a high convergence rate
with much fewer number of sampling. The idea of PCM is
based on polynomial interpolation, however in the random
space. Let ΘN =

{
ξi

}J
i=1 be a set of prescribed sampling

points. By employing the Lagrange interpolation polyno-
mials Li, the polynomial approximation I of the stochastic
solution u in the random space can be expressed as:

û(t,x;ξ) = Iu(t,x;ξ) =

J∑
i=1

u(t,x;ξi)Li(ξ). (21)

Therefore, the collocation procedure of solving Eqn. (20) to
obtain the stochastic solution u is:

R (û(t,x;ξ))
∣∣∣∣
ξi

=
(
Lq(ξ) û(t,x;ξ))−F(t,x;ξ)

) ∣∣∣∣
ξi

= 0, (22)

for i = 1,2, · · · ,J , where Lq is given in Eqn. (11). By using
the property of Lagrange interpolants that satisfy the Kro-
necker delta at the interpolation points, we obtain:

Lq(ξi) u(t,x;ξi)) = F(t,x;ξi), i = 1,2, · · · ,J , (23)

subject to proper initial/boundary conditions. Thus, the prob-
abilistic collocation procedure is equivalent to solving J de-
terministic problems Eqn. (23) with conditions Eqn. (9) and
Eqn. (10). Once the deterministic solutions are obtained at
each sampling point, the numerical stochastic solution is in-
terpolated, using Eqn. (21) to construct a global approximate
û(t,x;ξ). We then obtain the solution statistics as

E[û] =

∫
Γ

û(t,x;ξ)ρ(ξ)dξ, σ[u] =
√
E[û2]−E[û]2. (24)

The above integrals can be computed efficiently by letting
the interpolation/collocation points to be the same as a set
of cubature rules ΘN =

{
ξi

}J
i=1 on the parametric space with

integration weights {wi}
J

i=1, which are employed in comput-
ing the integral. By property of Kronecker delta of Lagrange
interpolant and use of any quadrature rule over the above in-
tegral yields

E[û(t,x : ξ)] ≈
J∑

i=1

wi u(t,x;ξi). (25)

Choice of Collocation/Interpolation Points. A natural
choice of the sampling points is the tensor-product of one-
dimensional sets, which is efficients for low-dimensional
random spaces. However, in high-dimensional multivariate
case, whereN > 6, the tensor-product interpolation operators
are computationally expensive due to the increasing nested
summation loops. In addition, the total number of sampling
points grows rapidly by increase of dimension byJN , where
J is the number of points in each direction.

Another choice that provides an alternative to the more
costly full tensor product rule is the isotropic Smolyak sparse
grid operator A(w,N) [39, 40] with two input parameters di-
mension size N and the level of grid w. The Smolyak al-
gorithm significantly reduces the total number of sampling
points; see Fig. 1 for comparison of A(2,2), A(4,2), and
A(6,2) with full tensor product rule for a two-dimensional
random spaces. The total number of sampling points for
each case is also listed in Tab.1. More research has also been
devoted to the analysis and construction of Smolyak sparse
grids [37, 88–90].
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Fig. 1: Illustration of sampling nodal points in two-dimensional random space, using Smolyak sparse grid generator (a)
A(2,2), (b) A(4,2) ,(c) A(6,2); and (d) full tensor product rule with 50 points in each direction. The total number of points
in each case is, 25, 161, 837, and 2500, respectively.

Space dimensionality Full tensor product Smolyak sparse grid generator A(w,N)

N w = 2 w = 4 w = 6 w = 8 w = 10

2 102 25 161 837 4105 19469

5 105 131 3376 45458 440953 3542465

15 1015 1066 197176 15480304

25 1025 2901 1445975

55 1055 87780

Table 1: The total number of nodal points in random space sampling, using Smolyak sparse grid generator and full tensor
product with 10 points in each direction.

4 Forward Solver
For each realization of random variables in the em-

ployed sampling methods, the stochastic model yields a de-
terministic FPDE, left to be solved in the physical domain.
We recall that for every ξi, i = 1,2, · · · in SFPDE Eqn. (20),
the deterministic problem is recast as:

0D
α
t u(t,x)−

d∑
j=1

k j

[
a j
D
β j
x j + x j

D
β j
b j

]
u(t,x) = h(t,x) + f (t),

(26)

subject to the same initial/boundary conditions as Eqn. (9)
and Eqn. (10). In the sequel, we develop a Petrov-Galerkin
spectral method to numerically solve the deterministic prob-
lem in the physical domain. We also show the wellposedness
of deterministic problem in a weak sense and further investi-
gate the stability of proposed numerical scheme.

4.1 Mathematical Framework
The comprehensive development of mathematical

framework and stability analysis of numerical method are
given in Appendix A. Here, we only discuss the essential
requirement for the rest of the paper.

We denote the fractional Sobolev space on R by
Hσ(R), σ ≥ 0, which is endowed with some proper norms.

Let I = [0,T ], Λ1 = (a1,b1), Λ j = (a j,b j) ×Λ j−1 for j =

2, · · · ,d. We define X1 = H
β1
2

0 (Λ1), and accordingly, X j, j =

2, · · · ,d as

X2 = H
β2
2

0

(
(a2,b2); L2(Λ1)

)
∩L2((a2,b2);X1), (27)

...

Xd = H
βd
2

0

(
(ad,bd); L2(Λd−1)

)
∩L2((ad,bd);Xd−1), (28)

and thus, define the “solution space” U and “test space” V as

U = l
0H

α
2
(
I; L2(Λd)

)
∩L2(I;Xd),

V = r
0H

α
2
(
I; L2(Λd)

)
∩L2(I;Xd), (29)

respectively, where

l
0H

α
2
(
I; L2(Λd)

)
={

u
∣∣∣‖u(t, ·)‖L2(Λd) ∈ H

α
2 (I),u|t=0 = u|x=a j = u|x=b j = 0

}
,

r
0H

α
2
(
I; L2(Λd)

)
={

v
∣∣∣‖v(t, ·)‖L2(Λd) ∈ H

α
2 (I),v|t=T = v|x=a j = v|x=b j = 0

}
.



For any realization of Eqn. (20), we obtain the weak sys-
tem, i.e. the variational form of the deterministic counterpart
of the problem, subject to the given initial/boundary condi-
tions, by multiplying the equation with proper test functions
and integrating over the whole computational domain D. By
using Lemmas A.3-A.5, the bilinear form can be written as

a(u,v) =(0D
α
2
t u, tD

α
2
T v)D (30)

−

d∑
j=1

k j
[
(a j
D

β j
2

x j u, x j
D

β j
2

b j
v)D+ (x j

D

β j
2

b j
u, a j
D

β j
2

x j v)D
]
,

and thus, by letting U and V be the proper solution/test
spaces, the problem reads as: find u ∈ U such that

a(u,v) = (f,v)D, ∀v ∈ V, (31)

where f = h(t,x) + f (t).

4.2 Petrov-Galerkin Spectral Method
We define the following finite dimensional solution and

test spaces. We first denote the Jacobi polynomials of order
n with parameters A, B by PA,B

n (x), where A = B = 0 gives
the Legendre polynomial Pn(x) of order n. We also denote
the Jacobi poly-fractonomial of first kind with parameter τ by
(1)P τ

n (x) = (1+ x)τP−τ,τn−1 (x). Thus, we employ Legendre poly-
nomials φm j (ξ), j = 1,2, · · · ,d, and Jacobi poly-fractonomial
of first kind ψτn(η) [59,60], as the spatial and temporal bases,
respectively, given in their corresponding standard domain as

φm j
(ξ) = σm j

(
Pm j+1(ξ)−Pm j−1(ξ)

)
, (32)

ψτn(η) = σn
(1)P τ

n (η) = σn(1 +η)τP−τ,τn−1 (η), (33)

in which ξ ∈ [−1,1], m j = 1,2, · · · , σm j = 2 + (−1)m j , η ∈
[−1,1], n = 1,2, · · · , and σn = 2 + (−1)n. Therefore, by per-
forming affine mappings η = 2 t

T −1 and ξ = 2 x−a j
b j−a j

−1 from
the computational domain to the standard domain, we con-
struct the solution space UN as

UN = span
{ (
ψτn ◦η

)
(t)

d∏
j=1

(
φm j
◦ ξ

)
(x j) (34)

: n = 1,2, · · · ,N , m j = 1,2, · · · ,M j
}
.

We note that the choice of temporal and spatial basis func-
tions naturally satisfy the initial and boundary conditions, re-
spectively. The parameter τ in the temporal basis functions
plays a role of fine tunning parameter, which can be chosen
properly to capture the singularity of exact solution.

Moreover, we employ Legendre polynomials Φr j (ξ), j =

1,2, · · · ,d, and Jacobi poly-fractonomial of second kind
Ψτ

k(η), as the spatial and temporal test functions, respectively,

given in their corresponding standard domain as

Φr j (ξ) = σ̃r j

(
Pr j+1(ξ)−Pr j−1(ξ)

)
, (35)

Ψτ
k(η) = σ̃k

(2)P τ
k (η) = σ̃k(1−η)τ Pτ,−τk−1 (η), (36)

where ξ ∈ [−1,1], r j = 1,2, · · · , σ̃r j = 2(−1)r j + 1, η ∈ [−1,1],
k = 1,2, · · · , and σ̃k = 2(−1)k +1. Therefore, by similar affine
mapping we construct the test space VN as

VN = span
{ (

Ψτ
k ◦η

)
(t)

d∏
j=1

(
Φr j
◦ ξ j

)
(x j) (37)

: k = 1,2, · · · ,N , r j = 1,2, · · · ,M j
}
.

Thus, since UN ⊂U and VN ⊂ V , the problems Eqn. (31) read
as: find uN ∈ UN such that

ah(uN ,vN) = l(vN), ∀vN ∈ VN , (38)

where l(vN) = (f,vN). The discrete bilinear form ah(uN ,vN)
can be written as

ah(uN ,vN) = (0D
α
2
t uN , tD

α
2
T vN)D (39)

−

d∑
j=1

k j
[
(a j
D

β j
2

x j uN , x j
D

β j
2

b j
vN)D+ (x j

D

β j
2

b j
uN , a j

D

β j
2

x j vN)D
]
.

We expand the approximate solution uN ∈ UN , satisfying the
discrete bilinear form Eqn. (39), in the following form

uN(t,x) = (40)
N∑

n=1

M1∑
m1=1

· · ·

Md∑
md=1

ûn,m1,··· ,md

[(
ψτn ◦η

)
(t)

d∏
j=1

(
φm j
◦ ξ

)
(x j)

]
,

and obtain the corresponding Lyapunov system by substitut-
ing Eqn. (40) into Eqn. (39) by choosing

vN(t,x) =(
Ψτ

k ◦η
)
(t)

d∏
j=1

(
Φr j
◦ ξ j

)
(x j), k = 1,2, . . . ,N , r j = 1,2, . . . ,M j.

Therefore,

[
S T ⊗M1⊗M2 · · · ⊗Md (41)

+

d∑
j=1

MT ⊗M1⊗ · · ·⊗M j−1⊗S j⊗M j+1 · · · ⊗Md
]
U = F,



in which ⊗ represents the Kronecker product, F denotes the
multi-dimensional load matrix whose entries are given as

Fk,r1,··· ,rd =

∫
D

f(t,x)
(
Ψτ

k ◦η
)
(t)

d∏
j=1

(
Φr j
◦ ξ j

)
(x j)dD, (42)

and U is the matrix of unknown coefficients. The matrices
S T and MT denote the temporal stiffness and mass matri-
ces, respectively; and the matrices S j and M j denote the spa-
tial stiffness and mass matrices, respectively. We obtain the
entries of spatial mass matrix M j analytically and employ
proper quadrature rules to accurately compute the entries of
other matrices S T , MT and S j.

We note that the choices of basis/test functions, em-
ployed in developing the PG scheme leads to symmetric
mass and stiffness matrices, providing useful properties to
further develop a fast solver. The following Theorem 4.1
provides a unified fast solver, developed in terms of the gen-
eralized eigensolutions in order to obtain a closed-form so-
lution to the Lyapunov system Eqn. (41).

Theorem 4.1 (Unified Fast FPDE Solver [65]). Let
{~em j ,λm j

}
M j
m j=1 be the set of general eigen-solutions of the

spatial stiffness matrix S j with respect to the mass matrix
M j. Moreover, let {~e τn ,λ

τ
n }
N
n=1 be the set of general eigen-

solutions of the temporal mass matrix MT with respect to the
stiffness matrix S T . Then, the matrix of unknown coefficients
U is explicitly obtained as

U =

N∑
n=1

M1∑
m1=1

· · ·

Md∑
md=1

κn,m1,··· ,md ~e
τ
n ⊗ ~em1

⊗ · · ·⊗ ~emd
, (43)

where κn,m1,··· ,md is given by

κn,m1,··· ,md =
(~e τn ~em1

· · · ~emd
)F[

(~e τT
n S T ~e τn )

∏d
j=1(~eT

m j M j~em j )
]
Λn,m1,··· ,md

,(44)

in which the numerator represents the standard multi-
dimensional inner product, and Λn,m1,··· ,md is obtained in
terms of the eigenvalues of all mass matrices as

Λn,m1,··· ,md =
[
1 +λτn

∑d
j=1(λm j

)
]
.

5 Numerical Results
We investigate the performance of developed numeri-

cal methods by considering couple of numerical simulations.
We compare MCS and PCM in random space discretization
while using PG method in physical domain. We note that
by several numerical examples, we make sure that the de-
veloped PG method is stable and accurate in solving each
deterministic problem; the results are not provided here.
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Fig. 2: L2-norm convergence rate of MCM and PCM for
stochastic fractional IVP Eqn. (45).

5.1 Low-Dimensional Random Inputs
As the first case, we consider a stochastic fractional ini-

tial value problem (IVP) with random fractional index by let-
ting the diffusion coefficient to be zero, and also ignoring the
additional random input and only taking h(t) as the external
forcing term. Therefore, we obtain

0D
α(ξ)
t u(t;ξ) = h(t), (45)

subject to zero initial condition, where u(t, ξ) : (0,T ]×Λ→R.
We let uext(t) = α

2 t3+ α
2 , h(t) = 0D

α(ξ)
t uext(t) for each realiza-

tion of α. In this case, by choosing the tunning parameter
τ in the temporal basis function to be α

2 , we can efficiently
employ PG numerical scheme and also obtain the exact ex-
pectation by rendering the exact solution to be random with
similar distribution as the random fractional index. Fig. 2
shows the L2-norm convergence rate of MCS and PCM in
comparison of solution expectation with Eext[u] = E[uext].
The results confirms converges rate of 0.5 for MCS, while
in PCM, the statistics of solution converges accurately very
fast, using only few numbers of realizations. In this exam-
ple, by ignoring the additional random input to the system,
we take the advantage of having the exact random solution
to be available.

As another example, we also consider Eqn. (45) with
additional random input, expanded by KL expansion with
M = 4, as:

0D
α(ξ)
t u(t;ξ) = h(t) +

M∑
k=1

ak sin
(

2kπ t
T

)
ξk, (46)

with two cases h(t) = t2 and h(t) = sin(πt). Fig. 3 shows
the mean value and variance of solution for 104 sampling
of MCS compared to 625 realizations in PCM.

Moreover, we consider (1+1)-D one-sided SFPDE given
in Eqn. (20), where d = 1 and the diffusion coefficient is kl.
We ignore the additional random input and consider h(t, x) as



Fig. 3: Expectation of solution to Eqn. (46) with uncertainty
(standard deviation) bounds, employing MCS and PCM for
(top) h(t) = t2 and (bottom) h(t) = sin(πt).

the only external forcing term. Therefore, we obtain

0D
α(ξ1)
t u(t, x;ξ)− kl −1D

β(ξ2)
x u(t, x;ξ) = h(t, x), (47)

subject to zero initial/boundary conditions, where u(t, x;ξ) :
(0,T ] × (−1,1) × Λ → R, and the only random variables
are the fractional indices α and β. We let uext(t, x) =

t3+τ
(
(1 + x)3+µ− 1

2 (1 + x)4+µ
)
, and choose τ = α/2 and µ =

β/2. For each realization of α and β, we obtain the force
function h(t, x) by substituting the corresponding uext to
Eqn. (47). Defining Eext[u] = E[uext], Fig. 4 shows the L2-
norm convergence of solution expectation as compared to
the exact expectation. We observe that PCM converges ac-
curately with only few number of realizations.

Considering additional random input, expanded by KL
expansion with M = 4, the problem can be recast as

0D
α(ξ)
t u(t, x;ξ)− kl −1D

β(ξ)
x u(t, x;ξ) (48)

= h(t, x) +

M∑
k=1

ak sin
(

2kπ t
T

)
ξk

subject to zero initial/boundary conditions. Fig. 5 shows the
mean value of solution for MCS and PCM at different times.
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Fig. 4: L2-norm convergence rate of MCM and PCM for SF-
PDE Eqn. (47).

Fig. 5: Expectation of solution to Eqn. (48), employing MCS
and PCM at t = 0.125, 0.625, 1.

Remark 5.1. We note that generally use of the sparse grid
operators in obtaining solution statistics is more effective
when dimension of the random space is higher than 6. Thus,
in the numerical examples for low-dimensional random in-
puts, we employ the easy-to-implement tensor product nodal
sets.

5.2 Moderate- to High-Dimensional Random Inputs
We render the problem with higher number of terms in

KL expansion of random inputs in Eqn. (48) by choosing
M = 10 and M = 20. This yields the dimension of random
space N = 12 and N = 22, respectively. As mentioned in
Remark 5.1, in the case of high-dimensional random space
constructing grid based on tensor product rule results in very
expensive computation of solution statistics due to exhaus-
tive increase of forward solver instruction. Table 1 shows
the comparison between different level of Smolyak algorithm
and tensor product rule. Therefore, to obtain the solution
statistics, we employ the Smolyak sparse grid generator in
the developed PCM. For each cases of KL expansion, we
generate the sparse grid on two levels w = 1 and w = 2, i.e.
A(1,12), A(2,12), A(1,22), and A(2,22), where we let the



higher resolution case be a benchmark value to the solution
statistics, based on which we compute and normalize the er-
ror. We observe that for both cases N = 12 and N = 22, the
normalized error in computing the expectation and standard
deviation of solution are of orders O(10−7) and O(10−3), re-
spectively.

6 Summary and Discussion
We developed a mathematical framework to numerically

quantify the solution uncertainty of a stochastic FPDE, as-
sociated with the randomness of model parameters. The
stochastic FPDE is reformulated by rendering the problem
with random fractional indices, subject to additional random
noise. We used the truncated Karhunen-Loéve expansion to
parametrize the additive noise. Then, by employing a non-
intrusive probabilistic collocation method (PCM), we propa-
gated the associated randomness to the system response, by
using Smolyak sparse grid generator to construct the set of
sample point in the random space. We also formulated a for-
ward solver to simulate the deterministic counterpart of the
stochastic problem for each realization of random variables.
We showed that the deterministic problem is mathematically
well-posed in a weak sense. Furthermore, by employing
Jacobi poly-fractonomials and Legendre polynomials as the
temporal and spatial basis/test functions, respectively, we de-
veloped a Petrove-Galerkin spectral method to solve the de-
terministic problem in the physical domain. We also proved
that the inf-sup condition holds for the proposed numerical
scheme, and thus, it is stable. By considering several numer-
ical examples with low- to high-dimensional random spaces,
we examined the performance of our stochastic discretiza-
tion. We showed that in each case, PCM converges very fast
to a very high level of accuracy with very few number of
sampling.
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A Mathematical Framework of Deterministic Solver
Here, we extensively discuss the mathematical frame-

work of the developed method in details.

A.1 Mathematical Framework
We define the useful functional spaces and their asso-

ciated norms [52, 69]. By Hσ(R) =
{
u(t)|u ∈ L2(R); (1 +

|ω|2)
σ
2 F (u)(ω) ∈ L2(R)

}
, σ ≥ 0, we denote the fractional

Sobolev space on R, endowed with norm ‖u‖Hσ
R

= ‖(1 +

|ω|2)
σ
2 F (u)(ω)‖L2(R), where F (u) represents the Fourier

transform of u. Subsequently, we denote by Hσ(Λ) =
{
u ∈

L2(Λ) |∃ ũ ∈Hσ(R) s.t. ũ|Λ = u
}
, σ≥ 0, the fractional Sobolev

space on any finite closed interval, e.g. Λ = (a,b), with norm
‖u‖Hσ(Λ) = inf

ũ∈Hσ
R
, ũ|Λ=u

‖ũ‖Hσ(R). We define the following use-

ful norms as:

‖ · ‖lHσ(Λ) =
(
‖ aD

σ
x (·)‖2L2(Λ) + ‖ · ‖2L2(Λ)

) 1
2 ,

‖ · ‖rHσ(Λ) =
(
‖ xD

σ
b (·)‖2L2(Λ) + ‖ · ‖2L2(Λ)

) 1
2 ,

‖ · ‖cHσ(Λ) =
(
‖ xD

σ
b (·)‖2L2(Λ) + ‖ aD

σ
x (·)‖2L2(Λ) + ‖ · ‖2L2(Λ)

) 1
2 ,

where the equivalence of ‖ · ‖lHσ(Λ) and ‖ · ‖rHσ(Λ) are shown
in [52, 53, 91].

Lemma A.1. Let σ ≥ 0 and σ , n− 1
2 . Then, the norms

‖ · ‖lHσ(Λ) and ‖ · ‖rHσ(Λ) are equivalent to ‖ · ‖cHσ(Λ).

We also define C∞0 (Λ) as the space of smooth func-
tions with compact support in (a,b). We denote by
lHσ

0 (Λ), rHσ
0 (Λ), and cHσ

0 (Λ) as the closure of C∞0 (Λ)
with respect to the norms ‖ · ‖lHσ(Λ), ‖ · ‖rHσ(Λ), and ‖ ·
‖cHσ(Λ). It is shown in [53, 91] that these Sobolev
spaces are equal and their seminorms are also equiva-

lent to | · |∗Hσ(Λ) =
∣∣∣ (aD

σ
x (·), xD

σ
b (·)

) ∣∣∣ 1
2
Λ

. Therefore, we

can prove that
∣∣∣(aD

σ
x u, xD

σ
b v)

Λ

∣∣∣ ≥ β |u|lHσ(Λ) |v|rHσ(Λ) and∣∣∣(xD
σ
b u, aD

σ
x v)

Λ

∣∣∣ ≥ β |u|rHσ(Λ) |v|lHσ(Λ), in which β is a pos-
itive constant.

Moreover, by letting 0C∞(I) and C∞0 (I) be the space
of smooth functions with compact support in (0,T ] and
[0,T ), respectively, we define lHs(I) and rHs(I) as the clo-
sure of 0C∞(I) and C∞0 (I) with respect to the norms ‖ ·
‖lHs(I) and ‖ · ‖rHs(I). Other equivalent useful semi-norms
associated with Hs(I) are also introduced in [52, 91], as
| · |lHs(I) = ‖ 0D

s
t (·)‖L2(I), | · |rHs(I) = ‖ tD

s
T (·)‖L2(I), | · |

∗
Hs(I) =∣∣∣ (0D

s
t (·), tD

s
T (·)

)
I

∣∣∣ 1
2 , where | · |∗Hs(I) ≡ | · |

1
2
lHs(I)

| · |
1
2
rHs(I).

Borrowing definitions from [65], we define the follow-
ing spaces, which we use later in construction of correspond-
ing solution and test spaces of our problem. Thus, by let-
ting Λ1 = (a1,b1), Λ j = (a j,b j)×Λ j−1 for j = 2, · · · ,d, we

define X1 = H
β1
2

0 (Λ1), which is associated with the norm

‖ · ‖
cH

β1
2 (Λ1)

, and accordingly, X j, j = 2, · · · ,d as

X2 = H
β2
2

0

(
(a2,b2); L2(Λ1)

)
∩L2((a2,b2);X1), (49)

...

Xd = H
βd
2

0

(
(ad,bd); L2(Λd−1)

)
∩L2((ad,bd);Xd−1), (50)

associated with norms

‖ · ‖X j =

{
‖ · ‖2

H
β j
2

0

(
(a j,b j);L2(Λ j−1)

) + ‖ · ‖2

L2
(
(a j,b j);X j−1

)} 1
2
,

for j = 2,3, · · · ,d.

Lemma A.2. Let β j ≥ 0 and β j , n − 1
2 . Then, for j =

1,2, · · · ,d

‖ · ‖X j ≡{ j∑
i=1

(
‖ xi
D
βi/2
bi

(·)‖2L2(Λ j)
+ ‖ ai
D
βi/2
xi (·)‖2L2(Λ j)

)
+ ‖ · ‖2L2(Λ j)

} 1
2
.

Solution and Test Spaces
We define the “solution space” U and “test space” V ,

respectively, as

U = l
0H

α
2
(
I; L2(Λd)

)
∩L2(I;Xd),

V = r
0H

α
2
(
I; L2(Λd)

)
∩L2(I;Xd),

endowed with norms

‖u‖U =
{
‖u‖2

lH
α
2 (I;L2(Λd))

+ ‖u‖2L2(I;Xd)

} 1
2 ,

‖v‖V =
{
‖v‖2

rH
α
2 (I;L2(Λd))

+ ‖v‖2L2(I;Xd)

} 1
2 , (51)

where I = [0,T ], and

l
0H

α
2
(
I; L2(Λd)

)
={

u
∣∣∣‖u(t, ·)‖L2(Λd) ∈ H

α
2 (I),u|t=0 = u|x=a j = u|x=b j = 0

}
,

r
0H

α
2
(
I; L2(Λd)

)
={

v
∣∣∣‖v(t, ·)‖L2(Λd) ∈ H

α
2 (I),v|t=T = v|x=a j = v|x=b j = 0

}
,

equipped with norms ‖u‖lH
α
2 (I;L2(Λd))

and ‖u‖rH
α
2 (I;L2(Λd))

, re-
spectively. We can show that these norms take the following



forms

‖u‖lH
α
2 (I;L2(Λd))

=
∥∥∥∥‖u(t, ·)‖L2(Λd)

∥∥∥∥lH
α
2 (I)

=
(
‖ 0D

α
2
t (u)‖2L2(Ω) + ‖u‖2L2(Ω)

) 1
2 ,

‖u‖rH
α
2 (I;L2(Λd))

=
∥∥∥∥‖u(t, ·)‖L2(Λd)

∥∥∥∥rH
α
2 (I)

=
(
‖ tD

α
2
T (u)‖2L2(Ω) + ‖u‖2L2(Ω)

) 1
2 . (52)

Also, using Lemma A.2, we can show that

‖u‖L2(I;Xd) =
∥∥∥∥‖u(t, .)‖Xd

∥∥∥∥
L2(I)

(53)

=
{
‖u‖2L2(Ω) +

d∑
j=1

(
‖ x j
D

β j
2

b j
(u)‖2L2(Ω) + ‖ a j

D

β j
2

x j (u)‖2L2(Ω)
)} 1

2 .

Therefore, Eqn. (51) can be written as

‖u‖U =
{
‖u‖2L2(Ω) + ‖ 0D

α
2
t (u)‖2L2(Ω)

+

d∑
j=1

(
‖ x j
D

β j
2

b j
(u)‖2L2(Ω) + ‖ a j

D

β j
2

x j (u)‖2L2(Ω)
)} 1

2 , (54)

‖v‖V =
{
‖v‖2L2(Ω) + ‖ tD

α
2
T (v)‖2L2(Ω)

+

d∑
j=1

(
‖ x j
D

β j
2

b j
(v)‖2L2(Ω) + ‖ a j

D

β j
2

x j (v)‖2L2(Ω)
)} 1

2 . (55)

A.2 Weak Formulation
The following lemmas help us obtain the weak formu-

lation of deterministic problem in the physical domain and
construct the numerical scheme.

Lemma A.3. [52]: For all α ∈ (0,1), if u ∈ H1([0,T ])
such that u(0) = 0, and v ∈ Hα/2([0,T ]), then (0D

α
t u,v)Ω =

( 0D
α/2
t u , tD

α/2
T v )Ω, where (·, ·)Ω represents the standard in-

ner product in Ω = [0,T ].

Lemma A.4. [69]: Let 1 < β < 2, a and b be arbitrary
finite or infinite real numbers. Assume u ∈ Hβ(a,b) such that
u(a) = 0, also xD

β/2
b v is integrable in (a,b) such that v(b) = 0.

Then, (aD
β
xu , v) = (aD

β/2
x u , xD

β/2
b v).

Lemma A.5. Let 1< β j < 2 for j = 1,2, · · · ,d, and u,v ∈Xd.
Then,

(
a j
D
β j
x j u,v

)
Λd

=
(

a j
D

β j
2

x j u, x j
D

β j
2

b j
v
)
Λd
,

(
x j
D
β j
b j

u,v
)
Λd

=
(

x j
D

β j
2

b j
u, a j
D

β j
2

x j v
)
Λd
.

For any realization of Eqn. (20), we obtain the weak sys-
tem, i.e. the variational form of the deterministic counterpart

of the problem, subject to the given initial/boundary condi-
tions, by multiplying the equation with proper test functions
and integrate over the whole computational domainD. Using
Lemmas A.3-A.5, the bilinear form can be written as

a(u,v) =(0D
α
2
t u, tD

α
2
T v)D (56)

−

d∑
j=1

k j
[
(a j
D

β j
2

x j u, x j
D

β j
2

b j
v)D+ (x j

D

β j
2

b j
u, a j
D

β j
2

x j v)D
]
,

and thus, by letting U and V be the proper solution/test
spaces, the problem reads as: find u ∈ U such that

a(u,v) = (f,v)D, ∀v ∈ V, (57)

where f = h(t,x) + f (t).

A.3 Stability Analysis
We show the well-posedness of deterministic problem

and prove the stability of proposed PG scheme.

Lemma A.6. Let α ∈ (0,1), Ω = I × Λd, and u ∈
l
0Hα/2(I; L2(Λd)). Then,

∣∣∣ (0D
α/2
t u, tD

α/2
T v

)
Ω

∣∣∣
≡ ‖u‖lHα/2(I;L2(Λd)) ‖v‖rHα/2(I;L2(Λd)), ∀v ∈ r

0Hα/2(I; L2(Λd)).

Moreover,

|
(

ad
D
βd/2
xd u, xd

D
βd/2
bd

v
)
Λd
| (58)

≡ |u|
cHβd/2

(
(ad ,bd);L2(Λd−1)

) |v|
cHβd/2

(
(ad ,bd);L2(Λd−1)

),
and

|
(

xd
D
βd/2
bd

u, ad
D
βd/2
xd v

)
Λd
| (59)

≡ |u|
cHβd/2

(
(ad ,bd);L2(Λd−1)

) |v|
cHβd/2

(
(ad ,bd);L2(Λd−1)

).
Lemma A.7 (Continuity). The bilinear form Eqn. (56) is
continuous, i.e.,

∀u ∈ U, ∃γ > 0, s.t. |a(u,v)| ≤ γ ‖u‖U ‖v‖V , ∀v ∈ V.
(60)

Proof. The proof directly concludes from Eqn. (58) and
Lemma A.6.

Theorem A.8 (Stability). The following inf-sup condition
holds for the bilinear form Eqn. (56), i.e.,

inf
u,0∈U

sup
v,0∈V

|a(u,v)|
‖v‖V ‖u‖U

≥ γ > 0, (61)

where Ω = I×Λd and sup
u∈U
|a(u,v)| > 0.



Theorem A.9 (well-posedness). For all 0 < α < 1 and
1 < β j < 2, and j = 1, · · · ,d, there exists a unique solution to
Eqn. (57), continuously dependent on f , where f belongs to
the dual space of U.

Proof. Lemmas A.7 (continuity) and A.8 (stability) yield the
well-posedness of weak form Eqn. (57) in (1+d)-dimension
due to the generalized Babuška-Lax-Milgram theorem.

Since the defined basis and test spaces are Hilbert
spaces, and UN ⊂ U and VN ⊂ V , we can prove that the de-
veloped Petrov-Gelerkin spectral method is stable and the
following condition holds

inf
uN,0∈UN

sup
v,0∈VN

|a(uN ,vN)|
‖vN‖V ‖uN‖U

≥ γ > 0, (62)

with γ > 0 and independent of N, where sup
uN∈UN

|a(uN ,vN)| > 0.
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